第一章1.1.1课时作业

合集下载

2024-2025年北师大版数学选择性必修第一册1.1.1-1.1.2直线与直线的方程(带答案)

2024-2025年北师大版数学选择性必修第一册1.1.1-1.1.2直线与直线的方程(带答案)

第一部分课时作业 第一章 直线与圆§1 直线与直线的方程1.1 一次函数的图象与直线的方程 1.2 直线的倾斜角、斜率及其关系必备知识基础练知识点一 直线的倾斜角与斜率1.直线x =1的倾斜角和斜率分别是( ) A .45°,1 B .135°,-1 C .90°,不存在 D .180°,不存在2.若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( ) A .30° B .60°C .30°或150°D .60°或120°3.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 24.若两直线的斜率互为相反数,则它们的倾斜角的关系是________.知识点二 直线的斜率公式5.已知直线l 经过点A (0,-1),B (1,1),则直线l 的斜率是( ) A .2 B .-2C .12D .-126.(1)如图,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求l 1,l 2的斜率;(2)求经过两点A (a ,2),B (3,6)的直线的斜率.知识点三 斜率公式的应用7.若点P (x ,y )在函数y =2x +1(-2≤x ≤2)的图象上运动,则yx的取值范围是( )A .⎣⎡⎭⎫52,+∞B .⎝⎛⎦⎤-∞,32C .⎣⎡⎦⎤32,52D .⎝⎛⎦⎤-∞,32 ∪⎣⎡⎭⎫52,+∞ 8.设点A (m ,-m +3),B (2,m -1),C (-1,4),若直线AC 的斜率等于直线BC 的斜率的3倍,则实数m 的值为________.9.若A (2,2),B (a ,0),C (0,b )(ab ≠0)三点共线,求1a +1b的值.关键能力综合练一、选择题1.[多选题]下列命题中,正确的是( ) A .任意一条直线都有唯一的倾斜角B .一条直线的倾斜角可以是-π3C .倾斜角为0的直线有无数条D .若直线的倾斜角为α,则sin α∈(0,1)2.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°3.以下两点确定的直线的斜率不存在的是( ) A .(4,2)与(-4,1) B .(0,3)与(3,0) C .(3,-1)与(2,-1) D .(-2,2)与(-2,5)4.已知直线经过点A (a ,4),B (2,-a ),且斜率为4,则a 的值为( )A .-6B .-145C .45D .45.[易错题]直线l 经过点A (1,2),与x 轴交点的横坐标的取值范围是(-3,3),则其斜率的取值范围是( )A .⎝⎛⎭⎫-1,15 B .(-∞,-1)∪⎝⎛⎭⎫12,+∞ C .(-∞,-1)∪⎝⎛⎭⎫15,+∞ D .⎝⎛⎭⎫-∞,12 ∪(1,+∞) 二、填空题6.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率的取值范围是________.7.已知斜率为12的直线经过A (3,5),B (x ,-1),C (7,y )三点,则x ,y 的值分别为________.8.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为________.三、解答题9.[探究题]已知f (x )=log 2(x +1),且a >b >c >0,试用图示法比较f (a )a ,f (b )b ,f (c )c的大小关系.学科素养升级练1.已知点A (2,-3),B (-3,-2),直线l 过点P (1,1),且与线段AB 相交,则直线l 的斜率k 的取值范围是________.2.[学科素养——数学运算]已知一条光线从点A (-1,3)出发,射在x 轴上又反射出去,反射光线经过点B (2,7),求x 轴上光照点的坐标.§1 直线与直线的方程1.1 一次函数的图象与直线的方程 1.2 直线的倾斜角、斜率及其关系必备知识基础练1.解析:∵直线x =1与y 轴平行,∴倾斜角为90°,斜率不存在. 答案:C2.解析:如图,直线l 有两种情况,故l 的倾斜角为60°或120°.答案:D3.解析:由题图可知,直线l 1的倾斜角为钝角,所以k 1<0;直线l 2与直线l 3的倾斜角为锐角,且直线l 2的倾斜角较大,所以k 2>k 3>0,所以k 2>k 3>k 1.答案:D4.解析:两直线的斜率互为相反数,则它们的倾斜角互补. 答案:互补5.解析:因为直线l 经过点A (0,-1),B (1,1),所以直线l 的斜率为1-(-1)1-0 =2.故选A.答案:A6.解析:(1)l 1的斜率k 1=tan α1=tan 30°=33. ∵l 2的倾斜角α2=90°+30°=120°,∴l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=-3 . (2)当a =3时,斜率不存在; 当a ≠3时,直线的斜率k =43-a .7.解析:已知函数y =2x +1(-2≤x ≤2)的图象是一条线段,设为AB ,其中A (2,5),B (-2,-3).yx 的几何意义是线段AB 上的任意一点P (x ,y )与坐标原点O (0,0)连线的斜率,易得k OA =52 ,k OB =32 ,根据图象可知,yx的取值范围是⎝⎛⎦⎤-∞,32 ∪⎣⎡⎭⎫52,+∞ . 答案:D8.解析:依题意知直线AC 的斜率存在,则m ≠-1,由k AC =3k BC 得-m +3-4m -(-1) =3×m -1-42-(-1),所以m =4. 答案:49.解析:由题意可知直线AB ,AC 的斜率存在,∴a ≠2.由k AB =k AC 得2-02-a =2-b2-0,即a +b =12 ab ,又ab ≠0,∴1a +1b =12.关键能力综合练1.解析:任意一条直线都有唯一的倾斜角,倾斜角α的范围为[0,π),故sin α∈[0,1],倾斜角为0的直线有无数条,因此A 正确,B 错误,C 正确,D 错误.故选AC.答案:AC 2.解析:由倾斜角的取值范围知,只有当0°≤α+45°<180°(0°≤α<180°),即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°(如图).答案:D3.解析:两点(-2,2),(-2,5)的横坐标相同,因此过此两点的直线斜率不存在. 答案:D4.解析:∵A (a ,4),B (2,-a ),且斜率为4,∴k AB =-a -42-a =4,解得a =4.答案:D5.解析:过定点A 的直线经过点B (3,0)时,直线l 与x 轴交点的横坐标为3,此时k =2-01-3=-1;过定点A 的直线经过点C (-3,0)时,直线l 与x 轴交点的横坐标为-3,此时k =2-01+3 =12 .数形结合(如图所示)可知满足条件的直线l 的斜率的取值范围为(-∞,-1)∪⎝⎛⎭⎫12,+∞ .答案:B6.解析:如图,当直线l 在l 1位置时,k =tan 0°=0;当直线l 在l 2位置时,k =2-01-0=2,故直线l 的斜率的取值范围是[0,2].答案:[0,2]7.解析:由题意可知k AB =k AC =12 ,即5+13-x =y -57-3 =12 ,解得x =-9,y =7.答案:-9 78.解析:由题意知k P A =-1.设x 轴上点P 1(m ,0),y 轴上点P 2(0,n )满足题意.由0-2m -1=n -20-1=-1,得m =n =3.所以点P 的坐标为(3,0)或(0,3). 答案:(3,0)或(0,3) 9.解析:f (x )x 表示经过点O (0,0)和点A (x ,f (x ))的直线的斜率,所以我们可以赋予f (a )a ,f (b )b ,f (c )c几何意义:表示3个斜率.作函数f (x )=log 2(x +1)的图象如图所示. 因为a >b >c >0,在函数图象上找到对应点(a ,f (a )),(b ,f (b )),(c ,f (c )),将这三点与原点相连,可得f (c )c >f (b )b >f (a )a.学科素养升级练1.解析:如图所示,过点P 作直线PC ⊥x 轴交线段AB 于点C ,作出直线P A ,PB .①直线l 与线段AB 的交点在线段AC (除去点C )上时,直线l 的倾斜角为钝角,斜率的范围是k ≤k P A .②直线l 与线段AB 的交点在线段BC (除去点C )上时,直线l 的倾斜角为锐角,斜率的范围是k ≥k PB .因为k P A =-3-12-1 =-4,k PB =-2-1-3-1 =34 ,所以直线l 的斜率k 满足k ≥34 或k ≤-4.答案:(-∞,-4]∪⎣⎡⎭⎫34,+∞2.解析:设点A 关于x 轴的对称点为A ′,则A ′(-1,-3),连接A ′B ,与x 轴交于点C ,则点C 即为光照点.不妨设C (a ,0),由题意可知A ′,B ,C 三点共线,∴k A ′C =k BC ,即0-(-3)a -(-1)=0-7a -2 ,解得a =-110 .∴x 轴上光照点的坐标为⎝⎛⎭⎫-110,0 .。

高中数学选修2-1各章节课时作业及答案解析

高中数学选修2-1各章节课时作业及答案解析

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________. 9.下列语句是命题的是________. ①求证3是无理数; ②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数; ⑤若x ∈R ,则x 2+4x +7>0. 三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ; (2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根; (4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假. (1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题. 2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析 第一章 常用逻辑用语 §1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假 2.条件 结论 作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.] 3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.] 4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.] 6.D 7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形. 8.若一个函数是奇函数 这个函数的图象关于原点对称 9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x+7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2. (2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根. (4)假命题.因为不共线的三点确定一个圆.11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题.12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1; 若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2.故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.]14.B[①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A⊆B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3⇒a>-6,但由a>-6 a>-3,故真命题为原命题及原命题的逆否命题,故选B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.]14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.1.1.3四种命题间的相互关系【课时目标】 1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.1.四种命题的相互关系2.四种命题的真假性(1)原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假(2)四种命题的真假性之间的关系①两个命题互为逆否命题,它们有______的真假性.②两个命题为互逆命题或互否命题,它们的真假性______________.一、选择题1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是( ) A .若q 不正确,则p 不正确 B .若q 不正确,则p 正确 C .若p 正确,则q 不正确 D .若p 正确,则q 正确2.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“若a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真3.与命题“能被6整除的整数,一定能被2整除”等价的命题是( ) A .能被2整除的整数,一定能被6整除 B .不能被6整除的整数,一定不能被2整除 C .不能被6整除的整数,不一定能被2整除 D .不能被2整除的整数,一定不能被6整除4.命题:“若a 2+b 2=0 (a ,b ∈R ),则a =b =0”的逆否命题是( ) A .若a ≠b ≠0 (a ,b ∈R ),则a 2+b 2≠0 B .若a =b ≠0 (a ,b ∈R ),则a 2+b 2≠0C .若a ≠0,且b ≠0 (a ,b ∈R ),则a 2+b 2≠0D .若a ≠0,或b ≠0 (a ,b ∈R ),则a 2+b 2≠05.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( ) A .都真 B .都假C .否命题真D .逆否命题真6.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么( ) A .①是真命题,②是假命题 B .①是假命题,②是真命题 C .①②都是真命题 D .二、填空题7.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是________________________________________,它是______命题.(填“真”“假”) 8.“若x ≠1,则x 2-1≠0”的逆否命题为________命题.(填“真”、“假”)9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________. 三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0. 12.若a2+b2=c2,求证:a,b,c不可能都是奇数.【能力提升】13.给出下列三个命题:①若a≥b>-1,则a1+a≥b1+b;②若正整数m和n满足m≤n,则m(n-m)≤n 2;③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为()A.0B.1C.2D.314.a、b、c为三个人,命题A:“如果b的年龄不是最大的,那么a的年龄最小”和命题B:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a、b、c的年龄的大小顺序是否能确定?请说明理由.1.互为逆否的命题同真假,即原命题与逆否命题,逆命题与否命题同真假.四种命题中真命题的个数只能是偶数个,即0个、2个或4个.2.当一个命题是否定形式的命题,且不易判断其真假时,可以通过判断与之等价的逆否命题的真假来达到判断该命题真假的目的.1.1.3四种命题间的相互关系知识梳理1.若q,则p若綈p,则綈q若綈q,则綈p2.(2)①相同②没有关系作业设计1.D[原命题的逆命题和否命题互为逆否命题,只需写出原命题的否命题即可.] 2.D 3.D4.D[a=b=0的否定为a,b至少有一个不为0.]5.D[原命题是真命题,所以逆否命题也为真命题.]6.D7.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.8.假9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.证明若a,b,c都是奇数,则a2,b2,c2都是奇数.得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,即原命题的逆否命题为真,故原命题也为真命题.所以a,b,c不可能都是奇数.13.B[①用“分部分式”判断,具体:a1+a≥b1+b⇔1-11+a≥1-11+b⇔11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2 (x>0,y>0),取x=m,y=n-m,知本命题为真.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.]14.解能确定.理由如下:显然命题A和B的原命题的结论是矛盾的,因此应该从它的逆否命题来考虑.①由命题A为真可知,当b不是最大时,则a是最小的,即若c最大,则a最小,所以c>b>a;而它的逆否命题也为真,即“a不是最小,则b是最大”为真,所以b>a>c.总之由命题A为真可知:c>b>a或b>a>c.②同理由命题B为真可知a>c>b或b>a>c.从而可知,b>a>c.所以三个人年龄的大小顺序为b最大,a次之,c最小.§1.2充分条件与必要条件【课时目标】 1.结合实例,理解充分条件、必要条件、充要条件的意义.2.会判断(证明)某些命题的条件关系.1.如果已知“若p,则q”为真,即p⇒q,那么我们说p是q的__________,q是p的__________.2.如果既有p⇒q,又有q⇒p,就记作________.这时p是q的____________条件,简称________条件,实际上p与q互为________条件.如果p⇒q且q⇒p,则p是q的________________条件.一、选择题1.“x>0”是“x≠0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.设p:x<-1或x>1;q:x<-2或x>1,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.“a<0”是“方程ax2+2x+1=0至少有一个负数根”的()A.必要不充分条件B.充分不必要条件C.充分必要条件二、填空题7.用符号“⇒”或“ ”填空.(1)a>b________ac2>bc2;(2)ab≠0________a≠0.8.不等式(a+x)(1+x)<0成立的一个充分而不必要条件是-2<x<-1,则a的取值范围是________.9.函数y=ax2+bx+c (a>0)在[1,+∞)上单调递增的充要条件是__________.三、解答题10.下列命题中,判断条件p是条件q的什么条件:(1)p:|x|=|y|,q:x=y.(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.11.设x ,y ∈R ,求证|x +y |=|x |+|y |成立的充要条件是xy ≥0.12.已知P ={x |a -4<x <a +4},Q ={x |x 2-4x +3<0},若x ∈P 是x ∈Q 的必要条件,求实数a 的取值范围.【能力提升】 13.记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min {}x 1,x 2,…,x n .已知△ABC 的三边边长为a ,b ,c (a ≤b ≤c ),定义它的倾斜度为l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ,则“l =1”是“△ABC 为等边三角形”的( ) A .必要而不充分条件 B .充分而不必要条件 C .充要条件D .既不充分也不必要条件14.已知数列{a n }的前n 项和为S n =(n +1)2+c ,探究{a n }是等差数列的充要条件.1.判断p是q的什么条件,常用的方法是验证由p能否推出q,由q能否推出p,对于否定性命题,注意利用等价命题来判断.2.证明充要条件时,既要证明充分性,又要证明必要性,即证明原命题和逆命题都成立,但要分清必要性、充分性是证明怎样的一个式子成立.“A的充要条件为B”的命题的证明:A⇒B证明了必要性;B⇒A证明了充分性.“A是B的充要条件”的命题的证明:A⇒B证明了充分性;B⇒A证明了必要性.§1.2充分条件与必要条件知识梳理1.充分条件必要条件2.p⇔q充分必要充要充要既不充分又不必要作业设计1.A[对于“x>0”⇒“x≠0”,反之不一定成立.因此“x>0”是“x≠0”的充分而不必要条件.]2.A[∵q⇒p,∴綈p⇒綈q,反之不一定成立,因此綈p是綈q的充分不必要条件.] 3.B [因为N M.所以“a∈M”是“a∈N”的必要而不充分条件.]4.A[把k=1代入x-y+k=0,推得“直线x-y+k=0与圆x2+y2=1相交”;但“直线x-y+k=0与圆x2+y2=1相交”不一定推得“k=1”.故“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分而不必要条件.]5.A [l ⊥α⇒l ⊥m 且l ⊥n ,而m ,n 是平面α内两条直线,并不一定相交,所以l ⊥m 且l ⊥n 不能得到l ⊥α.]6.B [当a <0时,由韦达定理知x 1x 2=1a<0,故此一元二次方程有一正根和一负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当a =0时,该方程仅有一根为-12,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的充分不必要条件.] 7.(1) ⇒ (2)⇒ 8.a >2解析 不等式变形为(x +1)(x +a )<0,因当-2<x <-1时不等式成立,所以不等式的解为-a <x <-1.由题意有(-2,-1) (-a ,-1),∴-2>-a ,即a >2.9.b ≥-2a解析 由二次函数的图象可知当-b2a≤1,即b ≥-2a 时,函数y =ax 2+bx +c 在[1,+∞)上单调递增.10.解 (1)∵|x |=|y |⇒x =y , 但x =y ⇒|x |=|y |,∴p 是q 的必要条件,但不是充分条件.(2)△ABC 是直角三角形⇒△ABC 是等腰三角形. △ABC 是等腰三角形⇒△ABC 是直角三角形. ∴p 既不是q 的充分条件,也不是q 的必要条件. (3)四边形的对角线互相平分⇒四边形是矩形. 四边形是矩形⇒四边形的对角线互相平分. ∴p 是q 的必要条件,但不是充分条件.11.证明 ①充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,则|x +y |=|y |,|x |+|y |=|y |,∴等式成立. 当xy >0时,即x >0,y >0,或x <0,y <0,又当x >0,y >0时,|x +y |=x +y ,|x |+|y |=x +y , ∴等式成立.当x <0,y <0时,|x +y |=-(x +y ),|x |+|y |=-x -y ,∴等式成立. 总之,当xy ≥0时,|x +y |=|x |+|y |成立. ②必要性:若|x +y |=|x |+|y |且x ,y ∈R , 则|x +y |2=(|x |+|y |)2,即x 2+2xy +y 2=x 2+y 2+2|x ||y |, ∴|xy |=xy ,∴xy ≥0.综上可知,xy ≥0是等式|x +y |=|x |+|y |成立的充要条件. 12.解 由题意知,Q ={x |1<x <3},Q ⇒P , ∴⎩⎪⎨⎪⎧a -4≤1a +4≥3,解得-1≤a ≤5. ∴实数a 的取值范围是[-1,5].13.A [当△ABC 是等边三角形时,a =b =c ,∴l =max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a ·min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =1×1=1.∴“l =1”是“△ABC 为等边三角形”的必要条件.∵a ≤b ≤c ,∴max ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ca .又∵l =1,∴min ⎩⎨⎧⎭⎬⎫a b ,b c ,c a =ac,即ab=ac或bc=ac,得b=c或b=a,可知△ABC为等腰三角形,而不能推出△ABC为等边三角形.∴“l=1”不是“△ABC为等边三角形”的充分条件.]14.解当{a n}是等差数列时,∵S n=(n+1)2+c,∴当n≥2时,S n-1=n2+c,∴a n=S n-S n-1=2n+1,∴a n+1-a n=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c,∵{a n}是等差数列,∴a2-a1=2,∴1-c=2.∴c=-1,反之,当c=-1时,S n=n2+2n,可得a n=2n+1 (n≥1)为等差数列,∴{a n}为等差数列的充要条件是c=-1.§1.3简单的逻辑联结词【课时目标】 1.了解逻辑联结词“或”、“且”、“非”的含义.2.会用逻辑联结词联结两个命题或改写某些数学命题,并能判断命题的真假.1.用逻辑联结词构成新命题(1)用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(2)用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作________,读作__________.(3)对一个命题p全盘否定,就得到一个新命题,记作________,读作__________或__________.2.含有逻辑联结词的命题的真假判断p q p∨q p∧q綈p真真真真假真假真假假假真真假真假假假假真一、选择题1.已知p:2+2=5;q:3>2,则下列判断错误的是()A.“p∨q”为真,“綈q”为假B.“p∧q”为假,“綈p”为真C.“p∧q”为假,“綈p”为假D.“p∨q”为真,“綈p”为真2.已知p:∅{0},q:{2}∈{1,2,3}.由它们构成的新命题“綈p”,“綈q”,“p∧q”,“p∨q”中,真命题有( )A.1个B.2个C.3个D.4个3.下列命题:①2010年2月14日既是春节,又是情人节;②10的倍数一定是5的倍数;③梯形不是矩形.其中使用逻辑联结词的命题有()A.0个B.1个C.2个D.3个4.设p、q是两个命题,则新命题“綈(p∨q)为假,p∧q为假”的充要条件是() A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为假D.p为真,q为假5.命题p:在△ABC中,∠C>∠B是sin C>sin B的充分不必要条件;命题q:a>b是ac2>bc2的充分不必要条件.则()A.p假q真B.p真q假C.p∨q为假D.p∧q为真6.下列命题中既是p∧q形式的命题,又是真命题的是()A.10或15是5的倍数B.方程x2-3x-4=0的两根是-4和1C.方程x2+1=0没有实数根D.有两个角为45°的三角形是等腰直角三角形题号123456答案二、填空题7.“2≤3”中的逻辑联结词是________,它是________命题.(填“真”,“假”) 8.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的范围是____________.9.已知a、b∈R,设p:|a|+|b|>|a+b|,q:函数y=x2-x+1在(0,+∞)上是增函数,那么命题:p∨q、p∧q、綈p中的真命题是________.三、解答题10.分别指出由下列各组命题构成的“p∨q”“p∧q”“綈p”形式的复合命题的真假.(1)p:4+3=7,q:5<4;(2)p:9是质数,q:8是12的约数;(3)p:1∈{1,2};q:∅{1,2};(4)p:∅={0},q:∅⊆∅.11.写出由下列各组命题构成的“p或q”、“p且q”、“綈p”形式的复合命题,并判断真假.(1)p:1是质数;q:1是方程x2+2x-3=0的根;(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(3)p:0∈∅;q:{x|x2-3x-5<0}⊆R;(4)p:5≤5;q:27不是质数.12.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若p或q为真,p且q为假,求m的取值范围.【能力提升】13.命题p:若a,b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y =|x-1|-2 的定义域是(-∞,-1]∪[3,+∞),则()A.“p或q”为假B.“p且q”为真C.p真q假D.p假q真14.设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.1.从集合的角度理解“且”“或”“非”.设命题p:x∈A.命题q:x∈B.则p∧q⇔x∈A且x∈B⇔x∈A∩B;p∨q⇔x∈A或x∈B ⇔x∈A∪B;綈p⇔x∉A⇔x∈∁U A.2.对有逻辑联结词的命题真假性的判断当p、q都为真,p∧q才为真;当p、q有一个为真,p∨q即为真;綈p与p的真假性相反且一定有一个为真.3.含有逻辑联结词的命题否定“或”“且”联结词的否定形式:“p或q”的否定形式“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”,它类似于集合中的“∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B)”.§1.3简单的逻辑联结词知识梳理1.(1)p∧q“p且q”(2)p∨q“p或q”(3)綈p“非p”“p的否定”作业设计1.C[p假q真,根据真值表判断“p∧q”为假,“綈p”为真.]2.B[∵p真,q假,∴綈q真,p∨q真.]3.C[①③命题使用逻辑联结词,其中,①使用“且”,③使用“非”.]4.C [因为命题“綈(p ∨q )”为假命题,所以p ∨q 为真命题.所以p 、q 一真一假或都是真命题.又因为p ∧q 为假,所以p 、q 一真一假或都是假命题,所以p 、q 中有且只有一个为假.]5.C [命题p 、q 均为假命题,∴p ∨q 为假.]6.D [A 中的命题是p ∨q 型命题,B 中的命题是假命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型,且为真命题.] 7.或 真 8.[1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞),即x ∈(-∞,1)∪[2,+∞),由于命题是假命题, 所以1≤x <2,即x ∈[1,2). 9.綈p解析 对于p ,当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.10.解 (1)因为p 真q 假,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为假. (2)因为p 假q 假,所以“p ∨q ”为假,“p ∧q ”为假,“綈p ”为真. (3)因为p 真q 真,所以“p ∨q ”为真,“p ∧q ”为真,“綈p ”为假. (4)因为p 假q 真,所以“p ∨q ”为真,“p ∧q ”为假,“綈p ”为真. 11.解 (1)p 为假命题,q 为真命题.p 或q :1是质数或是方程x 2+2x -3=0的根.真命题. p 且q :1既是质数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是质数.真命题. (2)p 为假命题,q 为假命题.p 或q :平行四边形的对角线相等或互相垂直.假命题. p 且q :平行四边形的对角线相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题. (3)∵0∉∅,∴p 为假命题,又∵x 2-3x -5<0,∴3-292<x <3+292,∴{x |x 2-3x -5<0}=⎩⎨⎧⎭⎬⎫x |3-292<x <3+292⊆R 成立. ∴q 为真命题.∴p 或q :0∈∅或{x |x 2-3x -5<0}⊆R ,真命题, p 且q :0∈∅且{x |x 2-3x -5<0}⊆R ,假命题, 綈p :0∉∅,真命题.(4)显然p :5≤5为真命题,q :27不是质数为真命题, ∴p 或q :5≤5或27不是质数,真命题, p 且q :5≤5且27不是质数,真命题,綈p :5>5,假命题.12.解 若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0,。

2023-2024学年初中8年级上册道德与法治部编版课时练第1单元《第1课 1.1 我与社会》

2023-2024学年初中8年级上册道德与法治部编版课时练第1单元《第1课 1.1 我与社会》

课时练1.1 我与社会一.选择题(共10小题)1.有人这样比喻:社会就像一棵大树,我就是其中一片树叶;社会是浩瀚的星空,我就是其中一颗星星。

你对这段话的理解是()A.个人是社会的有机组成部分B.人的成长是不断社会化的过程C.要养成亲社会的行为D.社会离不开个人2.“花在树则生,离枝则死;鸟在林则乐,离群则悲。

”下列观点最能体现这句话主旨的是()A.我们的社会生活绚丽多彩B.人的成长是一个社会化的过程C.个人的生存和发展离不开社会,应积极融入社会D.亲社会行为是自然而然形成的3.9月4日,河南许昌一名三年级的女孩艾琳曼玉在文峰区爱心粥屋度过了她难忘的9岁生日,当天她拿出500元零花钱,请周围200位环卫工人、残障人士、孤寡老人吃爱心早餐。

她用行动告诉我们()A.人的身份是在社会关系中确定的B.人的成长是不断社会化的C.她对弱势群体的“施舍”让她从社会中获得物质支持D.同一个人任何时候身份都不会改变4.对于“个人与社会的关系”问题,以下同学的观点正确的是()①小玲:我喜欢一个人独处,感觉个人生活与社会发展没有什么关系②小莉:“狼孩”的故事说明人在狼群中不能完成社会化③小敏:鲁滨逊的故事说明个人的生存不能离开社会④小明:新冠肺炎疫情防控期间,我们居家隔离,说明个人可以离开社会存在A.①②B.②③C.①④D.③④5.人的生存和发展离不开社会,体现这一道理的是()A.单丝不成线,独木难成林B.千人同心,则有千人之力C.独学而无友,则孤陋而寡闻D.一根筷子容易折,一把筷子不易折6.人的身份是在社会关系中确定的。

我和家里的妹妹是()A.亲缘关系B.血缘关系C.地缘关系D.业缘关系7.“人非孤立存在,而是存在于一定的社会中。

因此,人的发展、人的素质提高,需要社会发展为之提供必需的物质和文化条件。

”从个人和社会的关系看,这表明()A.个人的生存和发展离不开社会B.个人与社会相互区别,不能等同C.个人的存在和发展对社会产生巨大影响D.社会离不开个人,个人是社会的有机组成部分8.“中国梦归根到底是人民的梦,必须紧紧依靠人民来实现。

2020-2021数学人教版选择性第一册课时1.1.1空间向量及其线性运算

2020-2021数学人教版选择性第一册课时1.1.1空间向量及其线性运算

2020-2021学年新教材数学人教A 版选择性必修第一册课时分层作业:1.1.1空间向量及其线性运算课时分层作业(一)(建议用时:40分钟)一、选择题1.空间任意四个点A ,B ,C ,D ,则错误!+错误!-错误!等于( )A .错误!B .错误!C .错误!D .错误!D [错误!+错误!-错误!=错误!+错误!=错误!。

]2.设有四边形ABCD ,O 为空间任意一点,且错误!+错误!=错误!+错误!,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵错误!+错误!=错误!+错误!,∴错误!=错误!.∴错误!∥错误!且|错误!|=|错误!|。

∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=错误!+错误!+错误!B .错误!=2错误!-错误!-错误!C .错误!=错误!+错误!错误!+错误!错误!D .错误!=错误!错误!+错误!错误!+错误!错误!D [由错误!=错误!错误!+错误!错误!+错误!错误!,可得3错误!=错误!+错误!+错误!⇒错误!-错误!+错误!-错误!+错误!-OC ,→=0,即错误!=-错误!-错误!。

所以错误!与错误!,错误!在一个平面上,即点M 与点A ,B ,C 一定共面.]4.若空间中任意四点O ,A ,B ,P 满足错误!=m 错误!+n 错误!,其中m +n =1,则( )A .P ∈ABB .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n ,所以错误!=(1-n )错误!+n 错误!,即错误!-错误!=n (错误!-错误!),即错误!=n 错误!,所以错误!与错误!共线.又错误!,错误!有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =错误!EF ,则错误!=( )A .AA 1→+错误!错误!+错误!错误!B .错误!错误!+错误!错误!+错误!错误!C.错误!错误!+错误!错误!+错误!错误!D.错误!错误!+错误!错误!+错误!错误!D[如图所示,错误!=错误!错误!,错误!=错误!+错误!,错误!=错误!错误!,错误!=错误!+错误!,错误!=错误!,错误!=错误!,所以错误!=错误!错误!=错误!错误!+错误!错误!+错误!错误!,故选D。

苏教版必修一课后作业:第一章 集合 1.1 第1课时 Word版含答案

苏教版必修一课后作业:第一章 集合 1.1 第1课时 Word版含答案

第1课时 集合的含义学习目标 1.通过实例理解集合的有关概念.2.初步理解集合中元素的三个特性.3.体会元素与集合的属于关系.4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.知识点一 集合的概念思考 有首歌中唱道:“他大舅他二舅都是他舅”你能从集合的角度解读一下这句话吗? 答案 “某人的舅”是一个集合,某人的大舅、二舅都是这个集合中的元素.梳理 (1)一定范围内某些确定的、不同的对象的全体构成一个集合.常用大写字母拉丁A ,B ,C ,…来表示.(2)集合中的每一个对象称为该集合的元素,简称元. 集合的元素常用小写拉丁字母a ,b ,c ,…表示. 知识点二 元素与集合的关系 思考 1是整数吗?12是整数吗?答案 1是整数;12不是整数.梳理 元素与集合的关系有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?答案 某班所有的“帅哥”不能构成集合,因为“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因为标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.思考2构成单词“bee”的字母形成的集合,其中的元素有多少个?答案2个.集合中的元素互不相同,这叫元素的互异性.思考3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?由此说明什么?答案两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性.梳理元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R类型一判断给定的对象能否构成集合例1观察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2015年在校的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.(2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数,如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于能否找到一个明确的标准,对于任何一个对象,都能确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是________.(填序号)①数学必修1课本中所有的难题;②小于8的所有素数;③直角坐标平面内第一象限的一些点;④所有小的正数.答案 ②解析 ①中“难题”的标准不确定,不能构成集合;②能构成集合;③中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;④中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N .其中正确的为________.(填序号) 答案 ①②解析 12是实数,①对;2不是有理数,②对; |-3|=3是自然数,③错; |-3|=3为无理数,④错; 0是自然数,⑤错.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号“∈”或“∉”填空. -2________R ; -3________Q ; -1________N ; π________Z . 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素有0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A,2∈A ,则a 的取值范围是____________. 答案 (-4,-2]解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2. 又∵2∈A ,∴2×2+a >0,a >-4, ∴-4<a ≤-2.类型三 元素的三个特性的应用例4 已知集合A 中有三个元素:a -3,2a -1,a 2+1,集合B 中也有三个元素:0,1,x . (1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1.经检验,0与-1都符合要求.∴a=0或-1.(2)当x=0,1,-1时,都有x2∈B,但考虑到集合元素的互异性,x≠0,x≠1,故x=-1.(3)显然a2+1≠0.由集合元素的无序性,只可能a-3=0或2a-1=0.若a-3=0,则a=3,A={a-3,2a-1,a2+1}={0,5,10}≠B.若2a-1=0,则a=12,A={a-3,2a-1,a2+1}={0,-52,54}≠B.故不存在这样的实数a,x,使A=B.反思与感悟(1)元素的无序性主要体现在①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.(2)元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4已知集合A只含有两个元素a和a2,若1∈A,求实数a的值.解若1∈A,则a=1或a2=1,故a=1或-1.当a=1时,集合A有重复元素,∴a≠1;∴当a=-1时,集合A含有两个元素1,-1,符合题意,∴a=-1.1.下列给出的对象中,能组成集合的是________.(填序号)①一切很大的数;②好心人;③漂亮的小女孩;④方程x2-1=0的实数根.答案④2.下面说法正确的是________.(填序号)①所有在N中的元素都在N*中;②所有不在N*中的数都在Z中;③所有不在Q中的实数都在R中;④方程4x=-8的解既在N中又在Z中.答案③3.由“book”中的字母构成的集合中元素的个数为________.答案 34.设函数y=x2-2x-1图象上的点构成集合A,则点(0,-1)________A.答案∈5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.答案 3解析由2∈A可知,若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A的元素为0,3,2,符合题意.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.课时作业一、填空题1.已知集合A由x<1的数构成,则有________.①3∈A;②1∈A;③0∈A;④-1∉A.答案③解析很明显3,1不满足不等式,而0,-1满足不等式.2.由实数x,-x,|x|,x2,-3x3所组成的集合,最多含________个元素.答案 2解析由于|x|=±x,x2=|x|,-3x3=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.3.下列结论中,不正确的是________.(填序号)①若a∈N,则-a∉N;②若a∈Z,则a2∈Z;③若a∈Q,则|a|∈Q;④若a∈R,则3a∈R.答案①解析①不对.反例:0∈N,-0∈N.4.已知x,y为非零实数,代数式x|x|+y|y|的值所组成的集合是M,则M中的元素为________.答案-2,0,2解析①当x,y为正数时,代数式x|x|+y|y|的值为2;②当x,y为一正一负时,代数式x|x|+y|y|的值为0;③当x,y均为负数时,代数式x|x|+y|y|的值为-2,所以集合M的元素共有3个:-2,0,2.5.已知集合A含有三个元素2,4,6,且当a∈A时,有6-a∈A,则a的值为________.答案2或4解析若a=2∈A,则6-a=4∈A;若a=4∈A,则6-a=2∈A;若a=6∈A,则6-a=0∉A .6.不等式x -a ≥0的解集为A ,若3∉A ,则实数a 的取值范围是________. 答案 (3,+∞)解析 因为3∉A ,所以3是不等式x -a <0的解,所以3-a <0,解得a >3. 7.在方程x 2-4x +4=0的解集中,有________个元素. 答案 1解析 易知方程x 2-4x +4=0的解为x 1=x 2=2,由集合元素的互异性知,方程的解集中只有1个元素.8.下列所给关系正确的个数是________.①π∈R ; ②3D ∈/Q ; ③0∈N *; ④|-4|D ∈/N *. 答案 2解析 ∵π是实数,3是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数为2.9.如果有一集合含有三个元素:1,x ,x 2-x ,则实数x 的取值范围是________. 答案 x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.10.已知a ,b ∈R ,集合A 中含有a ,ba ,1三个元素,集合B 中含有a 2,a +b,0三个元素,若A =B ,则a +b =______. 答案 -1解析 ∵A =B,0∈B ,∴0∈A . 又a ≠0,∴ba =0,则b =0.∴B ={a ,a 2,0}. ∵1∈B ,∴a 2=1,a =±1. 由元素的互异性知,a =-1, ∴a +b =-1. 二、解答题11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求实数a 的值. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,故a =-1舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,满足题意.∴实数a 的值为-32.12.已知集合A 含有两个元素a -3和2a -1,a ∈R . (1)若-3∈A ,试求实数a 的值; (2)若a ∈A ,试求实数a 的值. 解 (1)因为-3∈A , 所以-3=a -3或-3=2a -1. 若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1.此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1. (2)因为a ∈A ,所以a =a -3或a =2a -1. 当a =a -3时,有0=-3,不成立;当a =2a -1时,有a =1,此时A 中有两个元素-2,1,符合题意. 综上所述,满足题意的实数a 的值为1.13.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面的解答过程中,你能悟出什么道理?并大胆证明你发现的“道理”. 解 (1)2∈A ,则11-2∈A ,即-1∈A ,则11+1∈A ,即12∈A ,则11-12∈A ,即2∈A ,所以A 中其他所有元素为-1,12.(2)如:若3∈A ,则A 中其他所有元素为-12,23.(3)分析以上结果可以得出:A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1. 证明如下:若a ∈A ,a ≠1,则有11-a ∈A 且11-a ≠1,所以又有11-11-a =a -1a ∈A 且a -1a ≠1,进而有11-a -1a=a ∈A . 又因为a ≠11-a (因为若a =11-a ,则a 2-a +1=0,而方程a 2-a +1=0无解),同理11-a ≠a -1a ,a ≠a -1a .又因为a ·11-a ·a -1a =-1,所以A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.三、探究与拓展14.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是________. 答案 {1,2} 解析 由题意知: ⎩⎪⎨⎪⎧ a +b =1,b +c =2,c +a =3,解得⎩⎪⎨⎪⎧a =1,b =0,c =2,∴集合A ={0,1,2},则集合A 的任意2个不同元素的差的绝对值分别是1,2. 故集合A 的任意2个不同元素的差的绝对值的集合是{1,2}. 15.已知集合A 中的元素x 均满足x =m 2-n 2(m ,n ∈Z ),求证: (1)3∈A ;(2)偶数4k-2(k∈Z)不属于集合A.证明(1)令m=2∈Z,n=1∈Z,得x=m2-n2=4-1=3,所以3∈A.(2)假设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立.①当m,n同奇或同偶时,m+n,m-n均为偶数,所以(m+n)(m-n)为4的倍数与4k-2不是4的倍数矛盾.②当m,n一奇一偶时,m+n,m-n均为奇数,所以(m+n)(m-n)为奇数,与4k-2是偶数矛盾.所以假设不成立.综上,4k-2∉A.。

25《古典概型(一) 》

25《古典概型(一) 》
(2)女孩 K 和 S 各得到一个职位的结果有 3 种, 所以 K 和 S 各自得到一个 3 职位的概率为 . 10 (3)女孩 K 或 S 得到一个职位的结果有 9 种, 所以 K 或 S 得到一个职位的 9 概率为 . 10
第21页
返回首页
第一章 1.1 课时作业(01)
解析: 从数字 1,2,3 中任取两个不同的数组成的两位数, 共有 6 种不同结果, 即 12,13,21,23,31,32.其中大于 21 的两位数有 3 个,记“这个两位数大于 21”为 3 1 事件 A,则由古典概型的概率公式可知 P(A)= = .故选 D. 6 2 答案:D
第7页
返回首页
第一章 1.1 课时作业(01)
解:(1)从装有 4 个球的口袋内摸出 2 个球,共有 6 种不同结果. (2)若摸出的 2 个是黑球,则有 3 种不同的摸法. 3 1 (3)P= = . 6 2
第19页
返回首页
第一章 1.1 课时作业(01)
状元之路 高中· 新课标A版· 数学· 必修3
传播课堂正能量 唱响课堂好声音
12.假设有 5 个条件很类似的女孩,把她们分别记为 A、C、J、K、S, 她们应聘秘书工作,但只有 3 个秘书职位,因此 5 人中仅有 3 人被录用,如 果 5 个人被录用的机会相等,分别计算下列事件的概率. (1)女孩 K 得到一个职位; (2)女孩 K 和 S 各得到一个职位; (3)女孩 K 或 S 得到一个职位.
第10页
返回首页
第一章 1.1 课时作业(01)
状元之路 高中· 新课标A版· 数学· 必修3
传播课堂正能量 唱响课堂好声音
二、填空题:每小题 5 分,共 15 分. 7.下列试验:(1)种下一粒种子,观察它是否发芽;(2)从规格直径为 250 mm± 0.6 mm 的一批合格产品中任意抽取一件,测量其直径 d;(3)抛一枚硬币, 观察其朝上的一面是正面还是反面;(4)某人射击,中靶或不中靶.则其中是古 典概型的是__________.(填序号)

(人教版)化学高中必修一课时作业全 (全书完整版)

(人教版)化学高中必修一课时作业全 (全书完整版)

(人教版)高中化学必修一(全册)课时作业全汇总1.1.1化学实验安全基础巩固训练1.对于易燃、易爆、有毒的化学物质,往往会在其包装上贴上危险警告标签. 下面所列物质,贴错了包装标签的是( )解析:CCl4不易燃烧,属于有毒物质.答案:B2.下列有关化学实验安全问题的叙述中,不正确的是( )A.少量的浓硫酸沾到皮肤上时,迅速用干布擦拭,再用大量的水冲洗B.取用化学药品时,应特别注意观察药品包装容器上的安全警示标志C.凡是给玻璃仪器加热,都要加垫石棉网,以防止仪器炸裂D.闻任何化学药品的气味都不能使鼻子凑近药品解析:浓硫酸沾到皮肤上,先用干布擦拭,再用大量水冲洗,以防止浓硫酸稀释放热而灼烧皮肤,A项正确. 取用药品时,要先观察其安全警示标志,防止发生危险,B项正确. 有些玻璃仪器可以直接加热,如试管,有些玻璃仪器需要垫石棉网加热(如烧杯、烧瓶);有些玻璃仪器不能加热(如量筒),C项不正确. 闻任何化学药品时,不能使鼻子凑近,以防止中毒,D项正确.答案:C3.下列实验操作正确的是( )A.当某实验没有明确的药品用量说明时,为看到明显现象,取用药品越多越好B.取用细口瓶里的试液时,先拿下瓶塞,倒放在桌面上,然后标签朝外拿起瓶子,瓶口要紧挨着试管口,使液体缓缓地倒入试管C.胶头滴管量取完一种试液后,可直接量取另一种不与其反应的试液D.取用粉末状固体或固体小颗粒时,应用药匙或纸槽;取用块状固体时,应用镊子夹取解析:实验室里的药品,很多是易燃、易爆、有腐蚀性或有毒的. 因此在使用药品时一定要严格遵照有关规定和操作规程进行,确保安全. 通常应注意以下几点:①不能用手接触药品,不要把鼻孔凑近容器口去闻药品的气味,不得品尝任何药品的味道;②注意节约药品,严格按照实验规定的用量取用药品;③取用剩余的药品既不要放回原瓶,也不要随意丢弃,更不能拿出实验室,应该放入指定的容器(废液缸)内. 做实验时要节约,应严格按照实验规定的用量取用药品,如果没有用量说明,一般应按照最少量取,即液体1~2 mL,固体只需盖满试管底部,A项错误. 取用液体时标签应对着手心,以免药液腐蚀标签,B项错误. 滴瓶中配有的胶头滴管必须专管专用,防止因混用而引起药品污染,若不是滴瓶配有的胶头滴管,在取用完一种药品后,必须洗净才可吸取其他药品,C项错误.答案:D4.下列实验操作正确的是( )解析:不能用燃着的酒精灯去点燃另一盏酒精灯,否则会引起火灾,A项错误;托盘天平只能精确到0.1 g,不能称量10.05 g的固体,B项错误;应选用略大于液体体积的量筒去量取,过大会引起较大的误差,D项错误.答案:C5.下列实验操作中,不是从人身安全因素考虑的是( )A.酒精灯在不使用时,必须盖上灯帽B.给试管里的固体加热时,试管口应略向下倾斜,外壁干燥后再预热C.给试管里的液体加热时,试管口应略向上倾斜(约45°角),外壁干燥后再预热D.用氢气还原氧化铜时,应先通一会儿氢气,再加热氧化铜答案:A6.实验室常用氢氧化钠溶液吸收氯化氢尾气,以防止环境污染. 下列既能吸收尾气,又能防止溶液倒吸的装置是( )答案:B7.下列有关化学实验操作中“先”与“后”的说法错误的是( )A.用排水法收集气体后,先移出导管后撤酒精灯B.给试管加热时,先均匀加热,后局部加热C.碱液流到桌子上,先用稀醋酸溶液中和,后用水洗D.浓硫酸不慎洒到皮肤上,先涂上质量分数为3%~5%的NaHCO3溶液,后用水冲洗答案:D8.每个公民都应该有安全意识,近几年频繁发生的有关化学品泄漏或爆炸事件一次又一次给我们敲响了警钟. 下列做法存在安全隐患的是( )①将水沿着烧杯内壁缓缓加入到浓H2SO4中,并用玻璃棒不断搅拌②给试管中的液体加热时,应将试管倾斜,试管口斜向上,与桌面成45°角,直接集中在药品处加热③夜间发生厨房煤气泄漏,应立即开灯检查煤气泄漏的原因,并打开所有门窗通风④废旧电池应回收处理⑤不慎将浓H2SO4沾在皮肤上,立即用NaOH溶液冲洗⑥氢气还原氧化铜实验中先加热再通氢气A.全部B.①②③⑤⑥C.①③⑤⑥ D.③⑤⑥解析:本题以实验的安全意识为切入点,考查化学用品、实验操作等方面的安全问题. 稀释浓H2SO4时,应将浓H2SO4沿烧杯内壁缓缓倒入水中,并用玻璃棒不断搅拌,①操作错误. 加热液体时应先预热,然后集中在药品处加热,②操作错误. 发现煤气泄漏时不能开灯,因为开灯会产生电火花,可引燃煤气而爆炸,③操作错误. 浓H2SO4沾在皮肤上不能用NaOH 溶液冲洗,应先用干抹布擦拭,再用NaHCO3溶液冲洗,⑤操作错误. H2还原CuO时,如果先加热再通H2,则H2与空气混合受热可能会引起爆炸,⑥操作错误. 故选B.答案:B1.1.1化学实验安全课时作业时间:45分钟满分:100分一、选择题(每小题4分,共44分)1.进行化学实验必须注意安全,下列说法中正确的组合是( )①点燃氢气前要检验氢气的纯度,以免发生爆炸②CO气体有毒,处理CO气体时可将其点燃,转化为无毒的CO2③在盛O2的集气瓶中进行铁丝燃烧实验时,事先在集气瓶底部铺上一层沙子④用氢气还原氧化铜时,先加热再通入氢气,以免浪费氢气⑤稀释浓硫酸的操作如右上图所示A.①②③④B.①②③C.①②④D.①②③④⑤解析:内容指向·联系分析结论①氢气易燃易爆,点燃前必须检验其纯度√②CO有毒但具有可燃性,点燃时生成的CO2无毒√③铁燃烧生成的Fe3O4温度很高,直接落到集气瓶底部,会导致集气瓶炸裂√④氢气易燃易爆,故应先通入氢气,赶走装置中的空气,待排出的氢气纯净后,才能加热氧化铜×⑤稀释浓硫酸时应将浓硫酸沿容器内壁加入到水中×2.下列实验操作先后顺序正确的是( )A.先装好药品,再检查装置的气密性B.先用双手握紧试管,再将导管插入水中检查装置气密性C.结束氢气还原氧化铜的实验时,先熄灭酒精灯后撤出导管D.稀释硫酸时,先在烧杯里倒入浓硫酸,再小心倒入水并不断搅拌答案:C3.做化学实验时,必须十分重视安全和环保问题。

2017-2018学年高一数学必修3全册同步课时作业含解析【人教B版】

2017-2018学年高一数学必修3全册同步课时作业含解析【人教B版】

2017-2018学年高一数学必修3全册同步课时作业目录1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1 1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示2 1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示3 1.2.1赋值输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2.1用样本的频率分布估计总体2.2.2用样本的数字特征估计总体2.3.1变量间的相关关系2.3.2两个变量的线性相关3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与3.1.4 的加法公式3.2.1古典概型3.2.2 的一般加法公式选学3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用第一章 1.1 1.1.1算法的概念A 级 基础巩固一、选择题1.下列语句中是算法的是导学号 95064017( A )A .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1B .吃饭C .做饭D .写作业[解析] 选项A 是解一元一次方程的具体步骤,故它是算法,而B 、C 、D 是说的三个事实,不是算法.2.计算下列各式中的S 值,能设计算法求解的是导学号 95064018( B ) ①S =1+2+3+…+100; ②S =1+2+3+…+100+…;③S =1+2+3+…+n (n ≥1,且n ∈N ). A .①② B .①③ C .②D .②③[解析] 由算法的确定性、有限性知选B .3.早上从起床到出门需要洗脸、刷牙(5 min),刷水壶(2 min),烧水(8 min),泡面(3 min),吃饭(10 min),听广播(8 min)几个过程,下列选项中最好的一种算法是导学号 95064019( C )A .第一步,洗脸刷牙;第二步,刷水壶;第三步,烧水;第四步,泡面;第五步,吃饭;第六步,听广播B .第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭;第五步,听广播C .第一步,刷水壶;第二步,烧水同时洗脸刷牙;第三步,泡面;第四步,吃饭同时听广播D .第一步,吃饭同时听广播;第二步,泡面;第三步,烧水同时洗脸刷牙;第四步,刷水壶[解析] 因为A 选项共用时36 min ,B 选项共有时31 min ,C 选项共用时23 min ,选项D 的算法步骤不符合常理,所以最好的一种算法为C 选项.4.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2,在写求此方程组解的算法时,需要我们注意的是导学号 95064020( C )A.a1≠0B.a2≠0C.a1b2-a2b1≠0D.a1b1-a2b2≠0[解析]由二元一次方程组的公式算法即知C正确.5.下面是对高斯消去法的理解:①它是解方程的一种方法;②它只能用来解二元一次方程组;③它可以用来解多元一次方程组;④用它来解方程组时,有些方程组的答案可能不准确.其中正确的是导学号 95064021( A )A.①②B.②④C.①③D.②③[解析]高斯消去法是只能用来解二元一次方程组的一种方法,故①②正确.6.一个算法步骤如下:S1 S取值0,i取值2;S2 如果i≤10,则执行S3,否则执行S6;S3 计算S+i并将结果代替S;S4 用i+2的值代替;S5 转去执行S2;S6 输出S.运行以上步骤输出的结果为导学号 95064022( B )A.25 B.30C.35 D.40[解析]按算法步骤一步一步地循环计算替换,该算法作用为求和S=2+4+6+8+10=30.二、填空题7.已知直角三角形两条直角边长分别为a、b,求斜边长c的算法如下:导学号 95064023S1 输入两直角边长a、b的值.S2 计算c=a2+b2的值;S3 ____________.将算法补充完整,横线处应填__输出斜边长c的值__.[解析]算法要有输出,故S3应为输出c的值.8.一个算法步骤如下:导学号 95064024S1 S取值0,i取值1;S2 如果i≤12,则执行S3,否则执行S6;S3 计算S+i并将结果代替S;S4 用i+3的值代替i;S5 转去执行S2;S6 输出S.运行以上步骤输出的结果为S=__22__.[解析]由以上算法可知:S=1+4+7+10=22.三、解答题9.某年青歌赛流行唱法个人组决赛中,某歌手以99.19分夺得金奖.青歌赛在计算选手最后得分时,要去掉所有评委对该选手所打分数中的最高分和最低分,试设计一个找出最高分的算法.导学号 95064025[解析]S1 先假定其中一个为“最高分”;S2 将第二个分数与“最高分”比较,如果它比“最高分”还高,就假定这个分数为“最高分”;否则“最高分”不变;S3 如果还有其他分数,重复S2;S4 一直到没有可比的分数为止,这时假定的“最高分”就是所有评委打分中的最高分.10.一个人带三只狼和三只羚羊过河,只有一条船,同船最多可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法.导学号 95064026[解析]算法如下:S1 人带两只狼过河;S2 人自己返回;S3 人带一只羚羊过河;S4 人带两只狼返回;S5 人带两只羚羊过河;S6 人自己返回;S7 人带两只狼过河;S8 人自己返回;S9 人带一只狼过河.B级素养提升一、选择题1.算法:S1 输入n;S2 判断n是否是2.若n=2,则n满足条件;若n>2,则执行S3;S3 依次从2到n-1检验能不能整除n,若不能整除n,则满足条件.上述满足条件的数是导学号 95064027( A )A.质数B.奇数C.偶数D.4的倍数[解析]根据算法可知,如果n=2直接就是满足条件的数.n不是2时,验证从2到n -1有没有n的因数,如果没有就满足条件.显然,满足这个算法中条件的数是质数.故选A.2.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是导学号 95064028( B )A.4 B.5C.6 D.8[解析]按各放3张,可以算出答案是5,各放x张答案也是一样的.二、填空题3.下面算法运行后输出结果为__720__.导学号 95064029S1 设i=1,P=1;S2 如果i≤6则执行S3,否则执行S5;S3 计算P×i,并将结果代替P的值;S4 用i+1的值代替i的值,转去执行S2;S5 输出P.[解析]该算法包含一个循环结构,计数变量i的初值为1,每次循环它的值增加1.由1变到6.P是一个累乘变量,每一次循环得到一个新的结果,并用新的结果替代原值.第一次循环i=1,P=1.第二次循环i=2,P=2.第三次循环i=3,P=6.第四次循环i=4,P =24.第五次循环i =5,P =120.第六次循环i =6,P =720.4.下面是解决一个问题的算法:导学号 95064030 S1 输入x ;S2 若x ≥4,转到S3;否则转到S4; S3 输出2x -1; S4 输出x 2-2x +3.当输入x 的值为__1__输出的数值最小值为__2__.[解析] 所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥4)x 2-2x +3 (x <4)的函数值的问题当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2.所以f (x )min =2,此时x =1.即当输入x 的值为1时,输出的数值最小,且最小值是2.三、解答题5.设计一个算法,求表面积为16π的球的体积. 导学号 95064031 [解析] S1 取S =16π; S2 计算R =S4π(由于S =4πR 2);S3 计算V =43πR 3;S4 输出运算结果.6.设火车托运行李,当行李重量为m (kg)时,每千米的费用(单位:元)标准为y =⎩⎪⎨⎪⎧0.3m (m ≤30 kg )0.3×30+0.5(m -30)(m >30 kg),试写出当托运路程为S 千米时计算运费的算法.导学号 95064032[解析] 算法如下: S1 输入m ;S2 若m ≤30,则执行S3,若m >30,则执行S4; S3 输出0.3m ×S ;S4 输出[0.3×30+0.5(m -30)]×S .C 级 能力拔高1.已知函数y =⎩⎪⎨⎪⎧2x-1(x ≤-1)log 2(x +1)(-1<x <2)x 2(x ≥2),请设计一个算法,输入x 的值,求对应的函数值.导学号 95064033[解析] 算法如下: S1 输入x 的值;S2 当x ≤-1时,计算y =2x-1,否则执行S3; S3 当x <2时,计算y =log 2(x +1),否则执行S4; S4 计算y =x 2; S5 输出y .2.试描述判断圆(x -x 0)2+(y -y 0)2=r 2和直线Ax +By +C =0的位置关系的算法.导学号 95064034[解析] S1 输入圆心的坐标(x 0,y 0),直线方程的系数A ,B ,C 和半径r ; S2 计算z 1=Ax 0+By 0+C ; S3 计算z 2=A 2+B 2; S4 计算d =|z 1|z 2;S5 如果d >r ,则相离;如果d =r ,则相切;如果d <r ,则相交.1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(1)A 级 基础巩固一、选择题1.任何一种算法都离不开的基本结构为导学号 95064050( D ) A .逻辑结构 B .条件结构 C .循环结构D .顺序结构[解析] 任何一种算法都离不开顺序结构.2.如图所示程序框图中,其中不含有的程序框是导学号 95064051( C )A .终端框B .输入、输出框C .判断框D .处理框[解析] 含有终端框,输入、输出框和处理框,不含有判断框. 3.如图所示的程序框图的运行结果是导学号 95064052( B )A .2B .2.5C .3.5D .4[解析] ∵a =2,b =4,∴S =a b +b a =12+2=2.5.二、填空题4.在如图所示的程序框图中,若输出的z 的值等于3,那么输入的x 的值为 19.导学号 95064053[解析] 当输出的z 的值为3时,z =y =3,∴y =9,由1x =9,得x =19,故输入的x的值为19.5.如图是求一个数的百分之几的程序框图,则(1)处应填__n =n ×m __.导学号 95064054[解析] 因为程序框图的作用是求一个数的百分之几,故(1)处应填输入的数n 与百分比m 的乘积所得数,再让它赋值给n .三、解答题6.已知球的半径为1,求其表面积和体积,画出其算法的程序框图.导学号 95064055 [解析] 如图所示:7.已知x =10,y =2,画出计算w =5x +8y 值的程序框图.导学号 95064056 [解析] 算法如下:S1 令x=10,y=2.S2 计算w=5x+8y.S3 输出w的值.其程序框图如图所示:B级素养提升一、选择题1.如图所示的程序框图中,要想使输入的值与输出的值相等,输入的a值应为导学号 95064057( D )A.1 B.3C.1或3 D.0或3[解析]本题实质是解方程a=-a2+4a,解得a=0或a=3.2.阅读如图所示的程序框图,若输入的a、b、c的值分别是21、32、75,则输出的a、b、c分别是导学号 95064058( A )A.75,21,32 B.21,32,75C.32,21,75 D.75,32,21[解析]输入21,32,75后,该程序框图的执行过程是:输入21,32,75.x=21.a=75.c=32.b=21.输出75,21,32.二、填空题3.如图所示的程序框图,输出的结果是S=7,则输入的A值为__3__.导学号 95064059[解析]该程序框图的功能是输入A,计算2A+1的值.由2A+1=7,解得A=3.4.如下图,程序框图的功能是__求五个数的和以及这五个数的平均数__. 导学号 95064060[解析]该程序框图表示的算法是首先输入5个数,然后计算这5个数的和,再求这5个数的算术平均数,最后输出它们的和与平均数.三、解答题5.已知一个圆柱的底面半径为R,高为h,求圆柱的体积.设计解决该问题的一个算法,并画出相应的程序框图.导学号 95064061[解析]算法如下:S1 输入R,h,S2 计算V=πR2h.S3 输出V.程序框图如图所示:6.已知两个单元分别存放了变量x 和y ,试变换两个变量的值,并输出x 和y ,请写出算法并画出程序框图.导学号 95064062[解析] 算法如下: S1 输入x ,y . S2 把x 的值赋给p . S3 把y 的值域给x . S4 把p 的值赋给y . S5 输出x ,y . 程序框图如下:C 级 能力拔高1.已知一个直角三角形的两条直角边长为a 、b ,斜边长为c ,写出它的外接圆和内切圆面积的算法,并画出程序框图.导学号 95064063[解析] 算法步骤如下: S1 输入a ,b . S2 计算c =a 2+b 2.S3 计算r =12(a +b +c ),R =c2.S4 计算内切圆面积S 1=πr 2,外接圆面积S 2=πR 2. S5 输出S 1、S 2,结束. 程序框图如图.2.已知函数y=2x+3,若给出函数图象上任一点的横坐标x(由键盘输入),设计一个算法,求该点到坐标原点的距离,并画出程序框图.导学号 95064064[解析]算法如下:S1 输入横坐标的值;S2 计算y=2x+3;S3 计算d=x2+y2;S4 输出d.程序框图如图:1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(2)A 级 基础巩固一、选择题1.如图所示的程序框图中,输入x =2,则输出的结果是导学号 95064079( B )A .1B .2C .3D .4[解析] 输入x =2后,该程序框图的执行过程是: 输入x =2,x =2>1成立, y =2+2=2,输出y =2.2.要解决下面的四个问题,只用顺序结构画不出其算法框图的是导学号 95064080( C )A .利用公式1+2+…+n =n (n +1)2计算1+2+…+10的值B .当圆面积已知时,求圆的周长C .当给定一个数x 时,求其绝对值D .求函数f (x )=x 2-3x -5的函数值[解析] C 中要判断x 是大于等于0还是小于0,故选项C 只用顺序结构画不出其程序框图.3.已知a =212,b =log33,运算原理如图所示,则输出的值为导学号 95064081( D )A .22B . 2C .2-12D .2+12[解析] 由a =2<b =log33=lg3lg 3=2,知a >b 不成立,故输出a +1b =2+12.4.如图是计算函数y =⎩⎪⎨⎪⎧-x (x ≤-1)0(-1<x ≤2)x 2(x >2)的值的程序框图,在①、②、③处应分别填入的是导学号 95064082( A )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0 C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2[解析] ①处x 满足x ≤-1,则由函数的解析式知,①处应填入y =-x ; ②处x 满足-1<x ≤2,则由函数的解析式知,②处应填入y =0; ③处x 满足x >2,则由函数的解析式知,③处应填入y =x 2. 二、填空题5.某算法的程序框图如图所示,若输出结果为12,则输入的实数x 的值是导学号 95064083[解析] 当x ≤1时,y =x -1≤0, ∵输出结果为12,∴x >1,∴log 2x =12,∴x = 2.6.如图所示表示求函数f (x )=|x -3|的值的算法.请将程序框图补充完整.其中①处应填__x <3?(或x ≤3?)__,②处应填__y =x -3__.导学号 95064084三、解答题7.获得学习优良奖的条件如下:导学号 95064085 (1)所考五门课成绩总分超过460分; (2)每门课都在85分以上;(3)前三门(主课)每门成绩都在95分以上.输入一名学生的五门课的成绩,问他是否符合优良奖的条件,画出这一算法的程序框图. [解析] 我们设这名学生的五门课的成绩分别为a 、b 、c 、d 、e .设计算法如下: 第一步,输入学生五门课的成绩a 、b 、c 、d 、e ; 第二步,计算学生的总成绩S =a +b +c +d +e ; 第三步,若S ≥460,则执行第四步,否则执行第十步;第四步,若a ≥95,则执行第五步,否则执行第十步; 第五步,若b ≥95,则执行第六步,否则执行第十步; 第六步,若c ≥95,则执行第七步,否则执行第十步; 第七步,若d ≥85,则执行第八步,否则执行第十步; 第八步,若e ≥85,则执行第九步,否则执行第十步; 第九步,输出“该学生获得学习优良奖”; 第十步,输出“该学生不获得学习优良奖”. 程序框图如图:8.画出输入一个数x ,求分段函数y =⎩⎨⎧x (x ≥0)e x (x <0)的函数值的程序框图.导学号 95064086[解析] 程序框图如图所示:B级素养提升一、选择题1.某市出租车的起步价为8元(含3 km),超过3 km的里程每千米收2.6元,另外每车次超过3 km收燃油附加费1元(不考虑其他因素).相应的收费系统的程序框图如图所示(此处的x假定为整数),则(1)处应填导学号 95064087( D )A.y=8+2.6x B.y=9+2.6xC.y=8+2.6(x-3) D.y=9+2.6(x-3)[解析]当x>3时,y=8+2.6(x-3)+1=9+2.6(x-3),∴(1)处应填y=9+2.6(x-3).2.执行如图所示的程序框图,若输出的结果是8,则输入的数是导学号 95064088 ( A )A.2或-2 2 B.22或-2 2C .-2或-2 2D .2或2 2[解析] 当x 3=8时x =2,a =4,b =8,b >a ,输出8 当x 2=8时,x =±22,a =8,b =±62, 又a >b ,输出8, 所以x =-22,故选A . 二、填空题3.下列程序框图的运算结果为__5__.导学号 95064089[解析] ∵a =5,S =1,a ≥4, ∴S =1×5=5, ∴输出S 的值为5.4.已知函数y =⎩⎪⎨⎪⎧log 2x (x ≥2)2-x (x <2),下图中表示的是给定x 的值,求其对应的函数值y的程序框图.①处应填写__x <2?__;②处应填写__y =log 2x __.导学号 95064090[解析] 框图中的①就是分段函数解析式两种形式的判断条件,故填写“x <2?”.②就是该函数的另一段表达式y =log 2x .三、解答题5.在音乐唱片超市里,每张唱片售价25元,顾客如果购买5张以上(含5张)唱片,则按照九折收费;如果顾客购买10张以上(含10张)唱片,则按照八五折收费.请设计一个完成计费工作的算法,并画出程序框图.导学号 95064091[解析]算法如下:S1 输入a;S2 若a<5,则c=25a;否则,执行S3;S3 若a<10,则c=22.5a;否则(a≥10),c=21.25a.S4 输出c.程序框图如图所示:C级能力拔高1.某市劳动保障部门规定:某工种在法定工作时间内,工资为8元/h,加班工资为12元/h.已知某人在一周内工作60 h,其中加班20 h,他每周收入的10%要交纳税金.请设计一个算法,计算此人这周所得净收入,并画出相应的程序框图.导学号 95064092 [解析]此人一周在法定工作时间内工作40 h,加班20 h,他一周内的净收入等于(40×8+20×12)×(1-10%)元.算法步骤如下:第一步,令T=40,t=20.第二步,计算S=(8×T+12×t)×(1-10%).第三步,输出S.程序框图如图所示:2.阅读如图程序框图,并根据该框图回答以下问题.导学号 95064093(1)分别求f (-1),f (0),f (12),f (3)的值;(2)写出函数f (x )的表达式.[解析] (1)当x =-1时,满足x <0,故执行y =0, 即f (-1)=0,同样地,可得f (0)=1,f (12)=1,f (3)=3.(2)算法的功能是求下面函数的函数值:f (x )=⎩⎪⎨⎪⎧0(x <0)1(0≤x <1)x (x ≥1).1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(3)A级基础巩固一、选择题1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是导学号 95064111( D )A.一个算法只能含有一种逻辑结构B.一个算法最多可包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合[解析]一个算法可以含有一种逻辑结构,也可以含有两种逻辑结构,还可以含有三种逻辑结构,故选D.2.下列判断正确的是导学号 95064112( B )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构[解析]由循环结构的定义知B正确.3.下面关于当型循环结构和直到型循环结构的说法,不正确的是导学号 95064113 ( D )A.当型循环结构是先判断后循环,条件成立时执行循环体,条件不成立时结束循环B.直到型循环结构要先执行循环体再判断条件,条件成立时结束循环,条件不成立时执行循环体C.设计程序框图时,两种循环结构可以任选其中的一个,两种结构也可以相互转化D.设计循环结构的程序框图时只能选择这两种结构中的一种,除这两种结构外,再无其他循环结构[解析]循环结构的程序框中必须包含条件结构,故选项D的说法是错误的.4.(2015·福建文,4)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为导学号 95064114( C )A .2B .7C .8D .128[解析] 由题意得,该程序是求分段函数y =⎩⎪⎨⎪⎧2x,x ≥29-x ,x <2的函数值,则f (1)=9-1=8,故选C .二、填空题5.执行下面的程序框图,若p =0.8,则输出的n =__4__.导学号 95064115[解析] 第一次循环后:S =12,n =2;第二次循环后:S =12+14=34,n =3;第三次循环后:S =12+14+18=78,n =4,此时循环结束.6.(2016·山东文)执行下面的程序框图,若输入n 的值为3,则输出的S 的值为__1__.导学号 95064116[解析]第一次运行,i=1,S=2-1;第二次运行,i=2,S=3-1;第三次运行,i=3,S=1,符合判断条件,故输出的S的值为1.三、解答题7.用直到型和当型两种循环结构写出求1+3+5+…+99的算法,并画出各自的算法流程图.导学号 95064938[解析]直到型循环算法:第一步,S=0.第二步,i=1.第三步,S=S+i.第四步,i=i+2.第五步,如果i不大于99,转第三步,否则,输出S.相应流程图如图①所示.当型循环算法如下:第一步,S=0.第二步,i=1.第三步,当i≤99时,转第四步,否则,输出S.第四步,S=S+i.第五步,i=i+2,并转入第三步.相应流程图如图②所示.8.设计一个算法,求1×22×33×…×100100的值,画出程序框图.导学号 95064117 [解析]算法步骤如下:S1 S=1;S2 i=1;S3 S=S×i i;S4 i=i+1;S5 判断i>100是否成立,若成立,则输出S,结束算出;否则,返回S3.该算法的程序框图如图所示:B级素养提升一、选择题1.阅读下边的程序框图,运行相应的程序,则输出S的值为导学号 95064118( B )A .-10B .6C .14D .18[解析] 输入S =20,i =1;i =2×1=2,S =20-2=18,2>5不成立; i =2×2=4,S =18-4=14,4>5不成立; i =2×4=8,S =14-8=6,8>5成立.输出6,故选B .2.(2017·山东文,6)执行如图所示的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为导学号 95064119( B )A .x >3B .x >4C .x ≤4D .x ≤5[解析] 输入x =4,若满足条件,则y =4+2=6,不合题意;若不满足条件,则y =log 24=2,符合题意,结合选项可知应填x >4,故选B .二、填空题3.执行下面的程序框图,若输入x =9,则输出y =299.导学号 95064120[解析] 输入x =9,则y =5,|y -x |=4>1,执行否,x =5,y =113,|y -x |=43>1,执行否,x =113,y =299,|y -x |=49<1,执行是,输出y =299.4.如图所示,程序框图中输出S 的值为__94__.导学号 95064121[解析] 该程序框图的运行过程是:i =1,S =1i =1+1=2 S =2×(1+1)=4 i =2>5不成立 i =2+1=3 S =2×(4+1)=10 i =3>5不成立 i =3+1=4 S =2×(10+1)=22 i =4>5不成立 i =4+1=5 S =2×(22+1)=46 i =5>5不成立 i =5+1=6S=2×(46+1)=94i=6>5成立,输出S=94.三、解答题5.经过市场调查分析得知,2017年第一季度内,北京市海淀区居民对某种商品的需求量为18 000件.为保证商品不脱销,商家在月初时将商品按相同数量投放市场.已知年初商品的库存量为50 000件,用K表示商品的库存量,请设计一个程序框图,求出第一季度结束时商品的库存量.导学号 95064122[解析]设置出判断框中的条件,再由第一季度每个月份结束时商品的库存量,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,用循环结构实现这一算法.程序框图如下:C级能力拔高1.数学课上,老师为了提高同学们的兴趣,先让同学们从1到3循环报数,结果最后一个同学报2;再让同学们从1到5循环报数,最后一个同学报3;又让同学们从1到7循报数,最后一个同学报 4.请你设计一个算法,计算这个班至少有多少人,并画出程序框图.导学号 95064123[解析]算法如下:第一步,选择一个起始数x=7.第二步,判断这个数是否满足除以3余2.如果不满足,则加1后再判断,直至满足,转入第三步.第三步,判断第二步得到的数是否满足除以5余3.如果不满足,则加1后再转入第二步判断,直至满足,转入第四步.第四步,判断第三步得到的数是否满足除以7余4.如果不满足,则加1后再转入第二步判断,直至满足,转入第五步.第五步,输出第四步得到的数,即为所求的最小值.程序框图如图所示:2.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,画出解决此问题的程序框图.导学号 95064124[解析]程序框图如图所示.第一章 1.2 1.2.1赋值、输入和输出语句A级基础巩固一、选择题1.下列给出的赋值语句正确的是导学号 95064141( B )A.5=M B.x=-xC.B=A=3 D.x+y=0[解析]赋值号左边只能是变量,而不能是表达式,故选项A、D错误;在一个赋值语句中只能给一个变量赋值,不能出现两个或多个“=”,故C错.2.执行“print(%io(2),3+5)”的输出结果是导学号 95064142( C )A.3+5=3+5 B.3+5=8C.8 D.8=8[解析]输出语句有计算功能,∴3+5=8.3.下列输入、输出语句正确的是导学号 95064143( D )A.输入语句input a;b;cB.输入语句input x=3C.输出语句print A=4D.输出语句print(%io(2),x)[解析]A中,变量之间应用逗号“,”隔开;B中,input语句中只能是变量,而不能是表达式;C中,print语句中不能再用赋值号“=”;D中,print语句可以输出变量、表达式的值,故选D.4.将两个数A=9,B=15交换使得A=15,B=9,下列语句正确的一组是导学号 95064144( D )A=B B=A A=CC=BB=AB=AA=BC=BB=AA=CA B C D [解析]此语句功能是交换两个变量的值,要找一个中间变量来过渡.5.以下程序运行后输出结果是导学号 95064145( D )A.58 B.88C.13 D.85[解析]∵x=58,a为58除以10的整数商,∴a=5.又∵b为58除以10的余数,∴b=8.∴x=10×8+5=85.6.下列程序若输出的结果为3,则输入的x值可能是导学号 95064146( D )x=input(”x=”);y=x*x+2*x;print(%io(2),y);A.1 B.-3C.-1 D.1或-3[解析]依题意,得x2+2x=3,∴x=1或x=-3,即输入的x的值可能是1或-3.二、填空题7.下列程序的运行结果是__12,4__.导学号 95064147a=1;b=3;a=a+b;b=b*a;print(%io(2),a,b);[解析]∵a=1,b=3,∴a=a+b=4;b=b*a=3×4=12,故输出结果为12,4.8.执行下列程序:导学号 95064148A=20;B=15;A=A+B;B=A-B;A=A*B;B=A+B;print(%io(2),B);运行结果为__720__.[解析]∵A=20,B=15,∴A=A+B=35,B=A-B=20,∴A=A×B=35×20=700,∴B=A+B=700+20=720.故运行结果为720.三、解答题9.在一次数学考试中,小明、小亮、小强的成绩分别为a、b、c,后来发现统计错了.小亮的成绩记在了小明的名下,小强的成绩记在了小亮的名下,而小明的成绩记在小强的名下了.设计程序更正成绩单,并输出.导学号 95064149[解析]程序如下:a=input(“a=”);b=input(“b=”);c=input(“c=”);x=a;a=c;c=b;b=x;print(%io(2),a,b,c);10.求下列赋值语句各变量的值:a=2;b=5;c=a+b2;a=a+c;b=a+b.导学号 95064150[解析]c=a+b2,a为2,b为5,故c=27.a=a+c,a为2,c为27,故a=29.b=a+b,a为29,b为5,故b=34.故a、b、c的值为29、34、27.B级素养提升一、选择题1.给出下列程序:x1=input(“x1=”;)y1=input(“y1=”);x2=input(“x2=”);y2=input(“y2=”);a=x1-x2;m=a^2;b=y1-y2;n=b^2;s=m+n;d=sqrt(s);print(%io(2),d);此程序的功能为导学号 95064151( B )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和[解析]输入的四个实数可作为两个点的坐标,程序中的a、b分别表示两个点的横、纵坐标之差,而m 、n 分别表示两点横、纵坐标之差的平方;s 是横、纵坐标之差的平方和,d 是平方和的算术平方根,即两点之间的距离,最后输出此距离.2.给出下面一个程序: A =5;B =8;X =A ;A =B ;B =X +A ;print(%io(2),A ,B);此程序运行的结果是导学号 95064152( C ) A .5,8 B .8,5 C .8,13D .5,13[解析] 先将A 的值赋给X ,此时X =5,再将B 的值8赋给A ,此时A =8,再将X +A (即5+8=13)的值赋给B ,此时B =13,最后出A 、B ,则A =8,B =13.二、填空题3.下列程序的运行结果是__10__.导学号 95064153a =2;b =3;c =4;a =b ;b =a +c ;c =b +a ;a =(a +b +c)/2;print(%io(2),a);[解析] ∵a =2,b =3,c =4, ∴a =b =3,b =a +c =7,c =b +a =10,a =a +b +c 2=3+7+102=10.故运行结果为10.4导学号 95064154[解析] 输入x 、输出y 分别转化为输入语句、输出语句,y =2x转化为赋值语句. 三、解答题5.编写一个程序,要求输入两个正数a 和b 的值,输出a b与b a的值.导学号 95064155 [解析] 解法一:程序为:a =input (“a =”);b =input (“b =”);A =a ^b ;B =b ^a ;print (%io(2),A);print(%io(2),B);解法二:程序为:a =input(“a=”);b =input(“b=”);A =a^b ;print(%io(2),A);x =a ;a =b ;b =x ;A =a^b ;print(%(2),A); C 级 能力拔高1.以下是用Scilab 语言编写的一个程序,解释每步程序的作用.导学号 95064156 x =input(“x=”);y =input(“y=”);print(%io(2),x/2);print(%io(2),3*y);x =x +1;y =y +1;print(%io(2),y ,x);[解析] x =input(“x=”)的作用是输入x 的值, y =input(“y=”)的作用是输入y 的值, print(%io(2),x/2)的作用是输出x2的值,print(%io(2),3*y)的作用是输出3y的值,x=x+1的作用是将x的值增加1,y=y+1的作用是将y的值增加1,print(%io(2),y,x)的作用是顺次输出x、y的值.2.编写一个程序,求用长度为l的细铁丝分别围成一个正方形和一个圆时所围成的正方形和圆的面积.要求输入l的值,输出正方形和圆的面积(π取3.14).导学号 95064157 [解析]程序如下:l=input(“l=”);S1=(l^2)/16;S2=(l^2)/(4*3.14);print(%io(2),S1);print(%io(2),S2);第一章 1.2 1.2.2条件语句A 级 基础巩固一、选择题1.对条件语句的描述正确的是导学号 95064172( C ) A .else 后面的语句不可以是条件语句 B .两个条件语句可以共用一个end C .条件语句可以没有else 后的语句D .条件语句中,if 和else 后的语句必须都有[解析] 如果作二次判断else 后的语句可以是条件语句,每一个条件语句都有自己的if 与end ,不可共用,else 后可以没有语句.2.当a =1,b =3时,执行完下面一段程序后x 的值是导学号 95064173( C ) if a<b x =a +b elsex =a -b end xA .1B .3C .4D .-2[解析] ∵1<3满足a <b ,∴x =1+3=4,故选C .3.给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a 、b 、c 中的最大数;④求函数f (x )=⎩⎪⎨⎪⎧x -1(x ≥0)x +2(x <0)的函数值.其中不需要用条件语句来描述其算法的有导学号 95064174( B ) A .1个 B .2个 C .3个D .4个[解析] ①②直接用顺序结构即可,不需用条件语句;而③需要判断三个数的大小,④是分段函数求值问题,故需用到条件语句.4.若如图程序运行后的结果是3,那么输入的x 的值是导学号 95064175( C )。

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

课时作业1:1.1 自尊是人人都需要的

课时作业1:1.1 自尊是人人都需要的

自尊是人人都需要的
八年级学生小赵为在班里向同学们显示自己的家庭如何有钱,经常穿名牌、戴名牌。

该学生的所作所为也的确引起了一些人的羡慕。

可突然有一段时间,小赵没有来上学。

原来小赵的家庭并不富裕,他常常在双休日为一个个体户看服装摊,还经常背着老板穿戴摊上的所谓“名牌”。

前不久,老板发现了他的行为,他不得不旷课一周用劳动来赔偿老板的损失。

(1)小赵的行为体现了怎样的心理?这种心理的具体表现还有哪些?
(2)你想对小赵说些什么?
参考答案:
(1)①爱慕虚荣的心理。

虚荣心是一种追求表面上的荣耀、光彩的心理。

虚荣心重的人,往往将名利作为支配自己行动的内在动力,总是在乎他人对自己的评价。

②虚荣心的主要表现有:为他人而活,丧失自我;对挫折的知觉敏感性高,承受能力低;为了满足虚荣心去编织谎言;虚荣心过强会引起郁闷、多虑、怀疑等不良心态。

(2)作自尊的人,勇敢面对现实,抛弃虚荣心。

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1全册课时作业及答案

苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。

高中化学人教版(2019)选择性必修1 第一章 第一节第1课时反应热焓变作业

高中化学人教版(2019)选择性必修1 第一章 第一节第1课时反应热焓变作业

第一节反应热第1课时反应热焓变课时作业选题表基础题组1.(2022·舟山期末检测)下列反应既属于氧化还原反应,又属于吸热反应的是( B )A.NaHCO3与盐酸的反应B.灼热的炭与CO2的反应C.镁条与稀盐酸的反应D.SO2的催化氧化2.雪是冬之精灵,在雪水冰的转化中,关于能量变化的叙述正确的是( B )A.ΔH1>0,ΔH2>0B.ΔH1>0,ΔH2<0C.ΔH1<0,ΔH2<0D.ΔH1<0,ΔH2>0解析:雪→水的过程需吸收热量,故ΔH1>0,水→冰的过程需放出热量,故ΔH2<0,选项B项正确。

3.下列说法错误的是( A )A.焓变就是反应热,其单位为kJ/molB.化学反应中有物质变化也有能量变化C.需要加热的化学反应不一定是吸热反应D.化学键断裂吸收能量,化学键形成放出能量解析:在等压条件下进行的化学反应,其反应热等于反应的焓变,故A 错误。

4.已知硫黄在空气中燃烧的化学方程式为S(s)+O2(g)SO2(g),生成1 mol SO2(g)可放出297.2 kJ 热量。

下列说法中不正确的是( D )A.1 mol S(g)在空气中完全燃烧放出的热量大于297.2 kJB.1 mol SO2(g)所具有的能量低于1 mol S(s)与1 mol O2(g)所具有的能量之和C.16 g固体硫在空气中充分燃烧,可放出 148.6 kJ的热量D.在该反应中,若O2过量,S(s)可转化成SO3使反应放出的热量增多解析:A项,1 mol S(s)完全燃烧放热297.2 kJ,因固体气化吸热,则1 mol S(g)完全燃烧放出的热量大于297.2 kJ,正确;B项,硫燃烧反应是放热反应,则生成物[1 mol SO2(g)]所具有的能量低于反应物[1 mol S(s)+1 mol O2(g)]所具有的总能量,正确;C项,1 mol S(s)完全燃烧放热297.2 kJ,则 0.5 mol S(s)(16 g)燃烧放热148.6 kJ,正确;D项,不论O2是否过量,S(s)燃烧只生成SO2,错误。

精选人教版生物必修1练习:第1章 第1节 课时作业含答案

精选人教版生物必修1练习:第1章 第1节 课时作业含答案

第一章第1节一、选择题1.(2018·醴陵二中、醴陵四中两校联考高一期末)和“稻田内所有生物”生命系统的结构层次相同的是( B )①一个大肠杆菌②培养皿中的大肠杆菌菌落③培养基被污染后,滋生了除大肠杆菌之外的细菌和真菌A.②③B.③C.①D.②[解析] 稻田内所有生物属于群落层次。

①一个大肠杆菌属于个体层次,②培养皿中的大肠杆菌菌落属于种群层次,③培养基被污染后,滋生了除大肠杆菌之外的细菌和真菌属于群落层次。

2.(2018·武汉外国语学校上学期期末)校园内桂花树的生命系统结构层次不包括( C )A.细胞B.器官C.系统D.个体[解析] 植物最基本的生命系统是细胞;植物具有根、茎、叶等器官;一棵桂花树属于一个个体;植物没有系统这一生命系统层次。

3.(2018·湛江一中第一学期期末考试)下列组合中,依次属于种群、群落和生态系统的一组是( C )①公园中的全部菊花②一块棉田中的所有棉蚜③一个果园中所有的果树及其无机环境④一片原始森林中的全部动物和绿色植物⑤东海岛的全部生物⑥瑞云湖公园中的全部生物及其无机环境A.①③⑥B.②④③C.②⑤⑥D.①⑤③[解析] ①公园中的全部菊花不是一个物种也不是全部物种,既不是种群,也不是群落,更不是生态系统;②一块棉田中的所有的棉蚜属于种群;③一个果园中所有的苹果树及其无机环境,既不是种群,也不是群落,更不是生态系统;④一片原始森林中的全部动物和绿色植物,既不是种群,也不是群落,更不是生态系统;⑤长江中的全部生物属于群落;⑥瑞云水库中的全部生物及其无机环境属于生态系统,故答案选C。

4.(2018·山西省临汾一中、晋城一中、内蒙古鄂尔多斯一中等六校高一上学期期末)黑藻是观察叶绿体的理想实验材料,一株黑藻的生命系统的结构层次由小到大依次是( B )A.细胞→组织→器官→系统→个体B.细胞→组织→器官→个体C.细胞→组织→系统→个体D.细胞→个体[解析] 生命系统的结构层次由低到高依次是:细胞、组织、器官、系统、个体、种群和群落、生态系统、生物圈。

北师大版七年级上册数学课时作业:第一章丰富的图形世界

北师大版七年级上册数学课时作业:第一章丰富的图形世界

数学 课时作业
3.将图中剪去一个正方形,使剩余的部分恰好能 折成一个正方体,问应剪去几号小正方形?写出 所有可能的情况.
解:根据有“田”字格的展开图都不是正方体 的表面展开图业
4.如图是一个长方体的表面展开图,每个面上都标注了字母和数据, 请根据要求回答. (1)如果A面在长方体的底部,那么 F 面会在上面; (2)求这个长方体的表面积和体积.
- 课时作业 -
谢谢观看
This is the last of the postings. Thank you for watching.
北师大版 七年级数学上册
- 课时作业 -
1.2 展开与折叠(1)
北师大版 七年级数学上册
数学 课时作业 一、选择题。
1.下面图形中是正方体的表面展开图的是
(D )
数学 课时作业 三、解答题。
1.我们知道,将一个长方形绕它的一边旋转一周得到的几何体是 圆柱,现有一个长是5 cm,宽是3 cm的长方形,分别绕它的长和宽所 在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积. 解:分两种情况: ①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm3); ②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm3). 故它们的体积分别为45π cm3、75π cm3.
解:这个长方体的表面积是: 2×(1×3+1×2+2×3)=22(米2). 这个长方体的体积是:1×2×3=6(米3).
- 课时作业 -
谢谢观看
This is the last of the postings. Thank you for watching.
北师大版 七年级数学上册
创新作业系列丛书

课时作业本人教版四年级上册语文

课时作业本人教版四年级上册语文

课时作业本人教版四年级上册语文第一章:儿童文学与评说文学1.1 儿童文学的特点儿童文学是供儿童阅读和欣赏的文学作品,具有以下特点:1)儿童文学的表达方式生动、形象,能够吸引孩子的注意力;2)儿童文学的内容贴近生活,充满乐趣和想象,能够激发孩子的阅读兴趣;3)儿童文学的语言简单明了,易于理解和记忆,适合儿童阅读。

1.2 评说文学的种类评说文学是通过评论、叙述和解释来反映人们对事物的认识和评价的文学形式,包括寓言、小品文、童话等多种形式,其中,寓言是评说文学的一种重要形式,它通过生动活泼的故事情节,富有趣味的形象和深刻的寓意,教育人们正确的道德观念和行为准则。

第二章:识字与词语运用2.1 信息识字与综合运用信息识字是指通过图画、图表、符号、句子等形式获取信息,进行文字理解与积累。

综合运用则是指在实际阅读、写作等活动中,能够根据具体情境,准确、得体地使用语句。

信息识字和综合运用相辅相成,有助于提高阅读理解和写作水平。

2.2 词语拼音的认读与理解词语拼音是汉语拼音的应用,通过汉字的拼音,帮助学生理解并掌握词语的读音和意义。

词语拼音的认读与理解是学生词汇量扩大的重要手段,也是提高学生阅读、书写水平的基础。

第三章:句子3.1 句子的基本要素句子是表达完整意思的一组词语的集合体,包括主语、谓语和宾语。

主语是句子中说明“是谁”或“是什么”的成分,谓语是句子中说明主语“做什么”或“是什么”的成分,宾语是句子中说明主语“做什么”或“是什么”的成分。

3.2 句子的成分及语序句子的成分包括主语、谓语、宾语、定语、状语和补语等,则根据成分的不同,句子的语序也有所不同,但汉语的基本语序是主谓宾。

在句子成分和语序的理解和掌握中,能够帮助学生正确理解句子的意思,提高语言表达的准确性和流畅性。

第四章:段落4.1 段落的基本概念段落是一篇文章中语义上自成章节的组织单位,是作者围绕一个主题或一个中心来组织写作的。

每个段落都有独特的主题句,通过论据、例证等方式来展开说明,使得整篇文章结构合理、逻辑清晰。

11《秦九韶算法 》

11《秦九韶算法 》

解析:改写多项式为 f(x)=(((3x+0)x+2)x+1)x+4,则 v0=3,v1=3×10 +0=30.
第11页
返回首页
第一章 1.1 课时作业(01)
状元之路 高中· 新课标A版· 数学· 必修3
传播课堂正能量 唱响课堂好声音
8. 用秦九韶算法求函数 f(x)=1+2x+x2-3x3+2x4, 当 x=-1 时的值时, 6 v2 的结果是__________ .
状元之路 高中· 新课标A版· 数学· 必修3
传播课堂正能量 唱响课堂好声音
3. 用秦九韶算法计算多项式 f(x)=6x6+5x5+4x4+3x3+2x2+x+7 在 x=0.4 时的值时,需做加法和乘法的次数的和为( A.10 C.12 B.9 D.8 )
解析:f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,∴加法 6 次,乘法 6 次, ∴6+6=12(次),故选 C. 答案:C
第14页
返回首页
第一章 1.1 课时作业(01)
状元之路 高中· 新课标A版· 数学· 必修3
传播课堂正能量 唱响课堂好声音
三、解答题:每小题 15 分,共 45 分. 10.利用秦九韶算法计算多项式 f(x)=3x4+2x3-9x2-11x+1 当 x=4 时 的值,写出每一步的计算表达式.
解:根据秦九韶算法将多项式改写成 f(x)=(((3x+2)x-9)x-11)x+1, 按由内到外的顺序依次计算一次多项式 x=4 时的值. v0=3;v1=3×4+2=14; v2=14×4-9=47;v3=47×4-11=177; v4=177×4+1=709. ∴x=4 时,多项式的值 f(4)=709.
-1)+(n-2)+…+1= 答案:C

课时作业5:1.1.1 反应热 焓变

课时作业5:1.1.1 反应热 焓变

第一章化学反应的热效应第一节反应热第1课时反应热焓变基础过关1.H2在O2中的燃烧是放热反应,下列说法正确的是()A.该过程中热能转化为化学能B.该过程中化学能转化为热能C.生成物的总能量等于反应物的总能量D.该反应放热是因为成键过程放出能量2.下列说法正确的是()A.需要加热才能发生的反应一定是吸热反应B.化学反应中放热是产生了新的能量C.任何放热反应在常温下一定能发生D.反应物和生成物所具有的总能量决定了反应是放热还是吸热3.已知中和热的数值是57.3 kJ·mol-1。

下列物质反应时产生的热量为57.3 kJ的是() A.稀盐酸和稀NaOH溶液B.1.0 mol·L-1稀盐酸和1.0 mol·L-1 NaOH溶液C.500 mL 2.0 mol·L-1稀盐酸和500 mL 2.0 mol·L-1 NaOH溶液D.500 mL 2.0 mol·L-1 H2SO4溶液和500 mL 2.0 mol·L-1 Ba(OH)2溶液4.下列反应的热效应变化符合如图所示的是()A.Ba(OH)2·8H2O与NH4Cl反应B.乙醇燃烧C.铁粉与稀硫酸反应D.NaOH溶液与盐酸反应5.将V1 mL 1.0 mol·L-1 HCl溶液和V2 mL未知浓度的NaOH溶液混合均匀后测量并记录溶液温度,实验结果如图所示(实验中始终保持V1+V2=50),下列叙述正确的是()A.做该实验时环境温度为22 ℃B.该实验表明化学能可以转化为热能C.NaOH溶液的浓度约是1.00 mol·L-1D.该实验表明有水生成的反应都是放热反应6.已知:①2NO2(g)N2O4(g)ΔH1<0;②2NO2(g)N2O4(l)ΔH2<0。

下列能量变化示意图中,正确的是()能力提升7.下列说法正确的是()A.化学反应中能量变化的多少与反应物的质量有关B.化学变化中的能量变化都是以热能形式表现出来的C.在一个确定的化学反应关系中,反应物的总焓与生成物的总焓一定相同D.在一个确定的化学反应关系中,反应物的总焓总是高于生成物的总焓8.已知化学反应A2(g)+B2(g)===2AB(g)的能量变化如图所示,判断下列叙述中正确的是()A.每生成2分子AB吸收b kJ热量B.该反应的反应热ΔH=-(a-b) kJ·mol-1C.该反应中生成物的总能量高于反应物的总能量D.断裂1 mol A—A和1 mol B—B,放出a kJ能量9.化学反应是反应热的必要源泉,可以提供人类生活和生产活动的必要能量。

课时作业8:1.1.1 焓变 反应热

课时作业8:1.1.1 焓变 反应热

第一章化学反应与能量第一节化学反应与能量的变化第1课时焓变反应热[基础过关]一、放热反应和吸热反应1.下列说法不正确的是()A.化学反应除了生成新物质外,还伴随着能量的变化B.对于ΔH>0的反应,反应物的能量小于生成物的能量C.放热反应都不需要加热就能发生D.吸热反应在一定条件(如常温、加热等)下也能发生2.下列反应属于吸热反应的是()A.炭燃烧生成一氧化碳B.中和反应C.锌粒与稀硫酸反应制取H2D.Ba(OH)2·8H2O与NH4Cl反应二、反应热、焓变3.下列说法中正确的是()A.焓变是指1 mol物质参加反应时的能量变化B.反应放热时,ΔH>0;反应吸热时,ΔH<0C.在一个确定的化学反应关系中,反应物的总焓与生成物的总焓一定不同D.在一个确定的化学反应关系中,反应物的总焓总是高于生成物的总焓4.在相同条件下,下列两个反应放出的热量分别用ΔH1和ΔH2表示:2H2(g)+O2(g)===2H2O(g)ΔH12H2(g)+O2(g)===2H2O(l)ΔH2则()A.ΔH2>ΔH1B.ΔH1>ΔH2C.ΔH1=ΔH2D.无法确定5.科学家已获得了极具理论研究意义的N4分子,其结构为正四面体(如图所示),与白磷分子相似。

已知断裂1 mol N—N键吸收193 kJ热量,断裂1 mol N≡N键吸收941 kJ 热量,则( ) A .N 4的熔点比P 4高B .1 mol N 4气体转化为N 2时要吸收724 kJ 能量C .N 4是N 2的同系物D .1 mol N 4气体转化为N 2时要放出724 kJ 能量 三、热化学方程式6.已知H 2(g)+F 2(g)===2HF(g) ΔH =-270 kJ·mol -1,下列说法正确的是( ) A .2 L 氟化氢气体分解成1 L 氢气与1 L 氟气吸收 270 kJ 热量B .1 mol 氢气与1 mol 氟气反应生成2 mol 液态氟化氢放出的热量小于270 kJC .在相同条件下,1 mol 氢气与1 mol 氟气的能量总和大于2 mol 氟化氢气体的能量D .1个氢气分子与1个氟气分子反应生成2个氟化氢气体分子放出270 kJ 热量7.根据热化学方程式:S(s)+O 2(g)===SO 2(g) ΔH =a kJ·mol -1(a =-297.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学业水平训练]
1.下列各组对象不能组成集合的是( )
A .中央电视台著名节目主持人
B .联合国常任理事国
C .上海市所有的中学生
D .中国古代四大发明
解析:选A.“著名”无明确标准,因而A 组不成集合,对于B 、C 、D ,对象都是确定的.
2.集合{x ∈N *|x -3<2}的另一种表示法是( )
A .{0,1,2,3,4}
B ..{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5}
解析:选B.∵x -3<2,x ∈N *,∴x <5,x ∈N *.
∴x =1,2,3,4.故选B.
3.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )
A .1
B .2
C .3
D .4
解析:选C.方程x 2-5x +6=0的解为2,3,方程x 2-x -2=0的解为2,-1,故集合
M 中有3个元素,分别是2,3,-1.
4.(2013·高考江西卷)若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =( )
A .4
B ..2
C .0
D .0或4
解析:选A.当a =0时,显然不成立;当a ≠0时,由Δ=a 2-4a =0,得a =4.故选A.
5.下列各组集合中,表示同一集合的是( )
A .M ={(3,2)},N ={(2,3)}
B .M ={3,2},N ={2,3}
C .M ={(x ,y )|x +y =1},N ={y |x +y =1}
D .M ={(3,2)},N ={(2,4)}
解析:选B.由于集合中元素具有无序性,因此{3,2}和{2,3}是相等的,C 中{(x ,y )|x +y =1}的代表元素是点,而{y |x +y =1}的代表元素是点的纵坐标.
6.已知①5∈R ;②13
∈Q ;③0={0};④0∉N ;⑤π∈Q .其中,正确的个数为________. 解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②正确. 答案:2
7.(2014·济宁高一检测)若集合P 含有两个元素1,2,集合Q 含有两个元素1,a 2,且P ,Q 相等,则a =________.
解析:由于P ,Q 相等,故a 2=2,从而a =±2.
答案:±2
8.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________.
解析:∵1∉A ,∴2+a ≤0,即a ≤-2.
答案:a ≤-2
9.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解:∵a ∈A 且3a ∈A ,
∴⎩
⎪⎨⎪⎧a <6,3a <6,解得a <2.又a ∈N , ∴a =0或1.
10.(1)用描述法表示图中阴影部分(含边界)的点构成的集合.
(2)用列举法表示集合A =⎩⎨⎧⎭
⎬⎫x ∈N ⎪⎪910-x ∈N . 解:(1)阴影部分的点P (x ,y )的横坐标x 的取值范围为-1≤x ≤3,纵坐标y 的取值范围为0≤y ≤3.
故阴影部分的点构成的集合为{(x ,y )|-1≤x ≤3,0≤y ≤3}.
(2)因为x ∈N ,910-x ∈N ,当x =1时,910-x =1;当x =7时,910-x
=3;当x =9时,910-x
=9. 所以A ={1,7,9}.
[高考水平训练]
1.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )
A .2
B .3
C .0或3
D .0,2,3均可
解析:选B.若m =2,则22-3×2+2=0,不满足互异性;若m 2-3m +2=2,
则m =0或3,显然当m =0时不满足元素的互异性,故m =3.
2.设由2,4,6构成的集合为A ,若实数a 满足a ∈A 时,6-a ∈A ,则a =________. 解析:∵A 中的三个元素是2,4,6,
∴当a =2时,6-a =4∈A ,适合题意;
当a =4时,6-a =2∈A ,也适合题意.
当a =6时,6-6=0∉A ,不合题意,
∴a 的值为2或4.
答案:2或4
3.设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z }.若a ∈A ,b ∈B ,试判断a +b 与A ,B 的关系.
解:∵a ∈A ,∴a =2k 1(k 1∈Z ).
∵b ∈B ,∴b =2k 2+1(k 2∈Z ).
∴a +b =2(k 1+k 2)+1.
又∵k 1+k 2∈Z ,
∴a +b ∈B ,a +b ∉A .
4.已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,求实数a 的值及集合A . 解:(1)若a +2=1,则a =-1.
所以A ={1,0,1},与集合中元素的互异性矛盾,
则a =-1应舍去.
(2)若(a +1)2=1,则a =0或a =-2,
当a =0时,A ={2,1,3}满足题意;
当a =-2时,A ={0,1,1},与集合中元素的互异性矛盾,
则a =-2应舍去.
(3)若a 2+3a +3=1,则a =-1或a =-2,
由上分析知a =-1与a =-2均应舍去.
综上,a =0,集合A ={1,2,3}.。

相关文档
最新文档