苏科版七年级上册第2章《有理数》章节培优复习

合集下载

苏科版数学七年级上册 第2章 《有理数 》数轴中的运动类问题培优生专练一

苏科版数学七年级上册 第2章 《有理数 》数轴中的运动类问题培优生专练一

第2章《有理数》数轴中的运动类问题培优生专练一1.对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′,点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′,如图,若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是.已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E 表示的数是.2.已知a,b,c满足(c﹣5)2+|a+b|=0,且b是最小的正整数,数轴上A,B,C各点所对应的数分别为a,b,c,解答下列问题:(1)填空:a=,b=,c=.(2)点M在点A左侧,其对应的数为x,化简|2x|(要求说明理由).(3)点P从点A出发以每秒1个单位长度的速度向左运动,点Q从点B出发以每秒2个单位长度的速度向右运动,点R从点C出发以每秒5个单位长度的速度向右运动,这三个点同时出发,设运动时间为t秒,若点P与点Q之间的距离表示为m,点Q与点R 之间的距离表示为n,问:n﹣m的值与1的值是否有关?3.已知数轴上两点A、B对应的数为﹣1和3,点P为数轴上一动点,其对应的数为x.(1)请画出数轴及A、B两点在数轴上的位置,并用x的式子表示线段PA、PB的长度;(2)数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由;(3)当点P以每分钟1个单位长度的速度从O点向右运动,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向右运动,在运动的过程中,M、N分别是AP、OB的中点,给出下列两个结论:①的值不变;②的值不变,其中有一个结论是正确的,请你做出正确的选择,说明理由并求值.4.某检修小组从O地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西为负,一天中七次行驶纪录如表.(单位:km)第一次A第二次B第三次C第四次D第五次E第六次F第七次G ﹣4 +7 ﹣9 +8 +6 ﹣5 ﹣2 (1)画数轴表示出每次结束时的点的位置(用表格中的字母表示),并求出收工时距A 地多远?(2)在第次纪录时距A地最远.(3)若每千米耗油0.3升,问共耗油多少升?5.如图一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A 重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为20;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为5,由此可得到木棒长为cm.(2)图中点A所表示的数是,点B所表示的数是.(3)由题(1)(2)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我已经130岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?6.对数轴上的点P进行如下操作:先把点P表示的数乘,再把所得数对应的点向右移动1个单位长度,得到点P的对应点P′,点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′,如图,回答下列问题:(1)若点A表示的数是﹣3,则点A′表示的数是;(2)若点B′表示的数是2,则点B表示的数是.7.如图,数轴上点A表示的数是10,将点A向右平移2个单位到点B,将点A向左平移12个单位到点P(1)点B所表示的数是,点P所表示的数是(2)点A以2个单位每秒的速度,点B以1个单位每秒的速度,点P以1.5个单位每秒的速度,同时出发向左运动①出发多少秒后,点A表示的数和点B表示的数恰好互为相反数(要求写出推理过程)①运动过程中,线段AB的中点与点P的距离是否发生变化?如果要变化,请说明理由,如果不变,请求出这个距离.8.已知数轴上两点A、B对应的数分别为﹣5,3,O为原点.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)当点B以每秒3个单位长度的速度向右运动时,点A以每秒4个单位长度的速度向右运动,问他们同时出发,几秒后A、B、O其中一点是连结另外两点的线段的中点?9.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负.沈师博营运十批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣7,+8,+4,﹣9,﹣4,+3,﹣3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?10.如图,在一条不完整的数轴上一动点A向左移动5个单位长度到达点B,再向右移动9个单位长度到达点C.(1)①若点A表示的数为0,则点B、点C表示的数分别为:、;②若点C表示的数为1,则点A、点B表示的数分别为:、;(2)如果点A、C表示的数互为相反数,求点B表示的数.参考答案1.解:点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=1.5.故答案为:0,3,1.5.2.解:(1)∵b是最小的正整数,∴b=1,∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,∴c=5,b=1,a=﹣1,故答案是:﹣1;1;5;(2)由(1)知,a=﹣1,a在数轴上所对应的点分别为A,∵点M在点A左侧,∴x<0,∴|2x|=﹣2x;(3)t秒时,点P表示的数为:﹣1﹣t,点Q表示的数为:1+2t,点R表示的数为:5+5t,则m=PQ=1+2t﹣(﹣1﹣t)=3t+2,n=QR=5+5t﹣1﹣2t=3t+4,∴n﹣m=3t+4﹣3t﹣2=2,则n﹣m的值与1没有关系,n﹣m=2.3.解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示).故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)+(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)②,的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.4.解:(1)﹣4+7﹣9+8+6﹣5﹣2,=7+8+6﹣4﹣9﹣5﹣2,=21﹣20,=1千米,1﹣(﹣4)=5答:收工时检修小组在距O地东边5千米处;(2)第1次到第7次记录时距离A的分别为:0、3、6、2、8、3、1,所以,距A地最远时是第5次;(3)|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣2|,=4+7+9+8+6+5+2,=41千米,41×0.3=31.2升.答:从出发到收工时共耗油31.2升5.解:(1)由数轴观察知三根木棒长是20﹣5=15(cm),则此木棒长为5cm.(2)图中点A所表示的数是10,点B所表示的数是15.故答案为:5,10,15.(3)如图:借助数轴,把小红与爷爷的年龄差看做木棒AB,类似爷爷比小红大时看做当A点移动到B点时,此时B点所对应的数为﹣35.小红比爷爷大时看做当B点移动到A点时,此时A点所对应的数为130.∴可知爷爷比小红大[130﹣(﹣35)]÷3=55,可知爷爷的年龄为130﹣55=75.6.解:(1)点A′:﹣3×+1=0;(2)设点B表示的数为a,则a+1=2,解得a=3.故答案为:0,3.7.解:(1)点B所表示的数是10+2=12,点P所表示的数是10﹣12=﹣2.故答案为:12,﹣2;(2)①设出发x秒后,点A表示的数和点B表示的数恰好互为相反数,依题意有10﹣2x+12﹣x=0,解得x=7.故出发7秒后,点A表示的数和点B表示的数恰好互为相反数;②运动过程中,线段AB的中点为(10﹣2x+12﹣x)=11﹣1.5x,运动过程中,点P的坐标为﹣2﹣1.5x,线段AB的中点与点P的距离为(11﹣1.5x)﹣(﹣2﹣1.5x)=13.故线段AB的中点与点P的距离不变,这个距离是13.8.解:(1)设点P对应的数为x,根据题意得:|x﹣(﹣5)|=|x﹣3|,解得:x=﹣1.∴当点P到点A、点B的距离相等时,点P对应的数为﹣1.(2)设运动时间为t秒,则点A对应的数为4t﹣5,点B对应的数为3t+3,当点O为AB的中点时,有5﹣4t=3t+3,解得:t=;当点A为OB的中点时,有4t﹣5=3t+3﹣(4t﹣5),解得:t=;当点B为OA的中点时,有3t+3=4t﹣5﹣(3t+3),解得:t=﹣(不合题意,舍去).答:秒或秒时,A、B、O其中一点是连结另外两点的线段的中点.9.解:(1)由题意得:(+8)+(﹣6)+(+3)+(﹣7)+(+8)+(+4)+(﹣9)+(﹣4)+(+3)+(﹣3)=﹣3(千米),答:将最后一批乘客送到目的地时,沈师傅在距离第一批乘客出发地的西面,距离是3千米;(2)由题意得:|+8|+|﹣6|+|+3|+|﹣7|+|+8|+|+4|+|﹣9|+|﹣4|+|+3|+|﹣3|=55(千米),上午8:00~9:15李师傅开车的时间是:1小时(15分)=1.25小时;55÷1.25=44(千米/小时),答:上午8:00~9:15沈师傅开车的平均速度是44千米/小时;(3)一共有10位乘客,则起步费为:8×10=80(元),超过3千米的收费总额为:[(8﹣3)+(6﹣3)+(3﹣3)+(7﹣3)+(8﹣3)+(4﹣3)+(9﹣3)+(4﹣3)+(3﹣3)+(3﹣3)]×2=50(元),80+50=130(元),答:沈师傅在上午8:00~9:15一共收入130元.10.解:(1)①根据题意可得AB=5,BC=9,AC=4,若点A表示的数为0,则点B表示的数为0﹣5=﹣5,点C表示的数为0+4=4,故答案为:﹣5,4;②点C表示的数为1,则点A所表示的数为1﹣4=﹣3,点B所表示的数为1﹣9=﹣8,故答案为:﹣3,﹣8;(2)∵点A、C表示的数互为相反数,AC=4,∴点C所表示的数为2,点A所表示的数为﹣2,又∵BC=9,∴点B表示的数为2﹣9=﹣7,答:点B表示的数为﹣7.。

苏科版数学七年级上册 有理数(培优篇)(Word版 含解析)

苏科版数学七年级上册 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.4.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。

苏科版数学七年级上册 有理数(培优篇)(Word版 含解析)

苏科版数学七年级上册 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。

苏科版七年级上册第二章有理数知识点汇总

苏科版七年级上册第二章有理数知识点汇总

苏科版月考知识点总结第二章 有理数 知识点全归纳第1讲 有理数的意义知能解读 (一)正数和负数的意义(1)像3+,l ,8%,3.5这样大于0的数(“+”通常省略不写)叫作正数... (2)像3-, 2.7-%, 4.5-, 1.2-这样在正数前面加上“-”(读负号)的数叫作负数..,负数小于0.注意:(1)0既不是正数也不是负数,它是一个整数,它表示正数和负数的分界.(2)对于正数和负数的概念,不能简单理解为带“+”的数是正数,带“-”的数是负数.如0+是0,0-也是0;当0a <时,a -就是正数.(二)具有相反意义的量正数和负数是根据实际需要而产生的,比如一些具有相反意义的量:收入200元与支出200元,上升7米与下降3米,零上2℃与零下7℃等.虽然它们都表示一定的数量,却意义相反,那么我们如何去表示它们呢?我们把一种意义的量规定为正的(如收入200元规定为200+元),把另一种和它意义相反的量规定为负的(如支出200元规定为200-元),于是就产生了正数和负数.注意:(1)用正数和负数表示具有相反意义的量时,哪种意义的量规定为正,是可以任意选定的(如将上升2米规定为2+米或2-米都可以),一旦选定一种意义的量为正,则另一种意义相反的量就只能为负.(2)具有相反意义的量的特点:①具有相反意义的量是成对出现的,单独一个量不能成为具有相反意义的量;②与一个量意义相反的量不止一个;③具有相反意义的量包含两个要素:一是它们的意义相反,二是它们都具有数量;④具有相反意义的量必须是同类量,如节约3吨油与浪费1吨水不是具有相反意义的量.(三)有理数的分类1.有理数的定义:凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数; 正整数、0、负整数统称整数...正分数和负分数统称分数...整数和分数统称有理数.....2.有理数的分类:(1)按定义分类: 整数⎩⎪⎨⎪⎧正整数0负整数 分数⎩⎨⎧正分数负分数(有限小数或无限循环小数也是分数) (2)按正负分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数0(即不是正数也不是负数)负有理数⎩⎨⎧负整数负分数 注意:(1)在对有理数进行分类时,要做到不重不漏.(2)在分类时,注意0的地位和意义.(3)正整数,0统称非负整数(也叫自然数);负整数,0统称非正整数.(四)无理数:无限不循环小数角无理数;注:无理数的常见形式:(1)无限不循环小数形式:-2.010010001…(2)含π的形式:⋯-πππ31,, (3)含有根号的:⋯5,3,2(初二上学期学)(五)数轴规定了原点、正方向、单位长度的一条直线叫数轴;它满足以下要求:(1)在直线上任取—个点表示数0,这个0点叫作原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示l ,2,3,…;从原点向左,用类似方法依次表示1-,2-,3-,…(如图所示).点拨:(1)利用数轴,我们可以表示任意一个有理数,还可以表示任意一个无理数.(2)数轴是研究数学的重要工具,也是“数形结合”的重要体现.(3)数轴的定义包含三层含义:①数轴是一条可以向两端无限延伸的直线;②数轴有三要素:原点、单位长度、正方向;③原点的位置、单位长度、正方向都是根据实际需要规定的.65-5-1-2-3-412340有理数 自然数(六)绝对值一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作a .正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩点拨:因为有理数的绝对值表示两点之间的距离,距离总是正数或零,所以任意一个有理数的绝对值是非负数,即0a ≥.(七)相反数只有..符号不同,绝对值相等的两个数互为相反数.其中一个数是另一个数的相反数;特别地,0的相反数是0.(1)在数轴上,互为相反数的两个数对应的点与原点的距离相等(几何意义).且在原点两侧;(2)数a 的相反数是a .若a ,b 互为相反数,则0a b +=(或a b =-,或b a =-).(八)有理数大小比较的常用方法(1)数轴比较法:将两数分别表示在数轴上,右边的点表示的数总比左边的点表示的数大.(2)代数比较法:正数大于零,负数小于零,正数大于一切负数;两个负数,绝对值大的反而小.(3)差值比较法:设a ,b 是两个任意数,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <;(4)商值比较法:设a ,b 是两个正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <.(初中基本不用,高中用)此外,还有倒数比较法、中间值比较法、平方比较法、换元比较法等.(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

2020年秋 苏科版七年级上册第二章《有理数》中的动点问题培优训练(一)

2020年秋 苏科版七年级上册第二章《有理数》中的动点问题培优训练(一)

第二章《有理数》中的动点问题培优训练(一)1.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?2.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.3.阅读理解:A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们称点C是(A,B)的“奇点”;若点C到点B的距离是点C到点A的距离的3倍,我们称点C是(B,A)的“奇点”.知识运用:若已知数轴上点A表示数﹣2,点B表示数10.(1)若点C表示数14,则点B是的“奇点”;(2)若点C在点A的左侧且点A是(C,B)的“奇点”,求点C表示的数;(3)若点C在点A、B之间,且其中一个点恰好是另两个点的“奇点”,求点C表示的数.4.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.5.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC 的值.6.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B 的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC 的值.7.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?8.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t 的值.9.如图:已知A、B、C是数轴(O是原点)上的三点,点C表示的数是6,线段BC=4,线段AB=12.(1)写出数轴上A、B两点表示的数.(2)动点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,t为何值时,原点O是线段PQ的中点?10.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.参考答案1.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.2.解:(1)MN的长为3﹣(﹣1)=4.(2)x=(3﹣1)÷2=1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.故答案为:4;1.3.解:(1)∵点A表示数﹣2,点B表示数10,点C表示数14,∴BA=10﹣(﹣2)=12,BC=14﹣10=4,∴BA=3BC,∴点B是(A,C)的“奇点”,故答案为:(A,C);(2)设点C表示的数为c(c<﹣2),∵点A表示数﹣2,点B表示数10,∴AC=﹣2﹣c,AB=10﹣(﹣2)=12,∵点A是(C,B)的“奇点”,∴AC=3AB,∴﹣2﹣c=3×12,∴c=﹣38,即:点C表示的数为﹣38;(3)设点C表示的数为x(﹣2<x<10),∵点A表示数﹣2,点B表示数10,∴AC=x﹣(﹣2)=x+2,AB=10﹣(﹣2)=12,BC=10﹣x①当点A是(B,C)的“奇点”时,∴AB=3AC,∴12=3(x+2),∴x=2,②当点B是(A,C)的“奇点”时,∴AB=3BC,∴12=3(10﹣x),∴x=6,③当点C是(B,A)的“奇点”时,∴BC=3AC,∴10﹣x=3(x+2),∴x=1,④当点C是(A,B)的“奇点”时,∴AC=3BC,∴x+2=3(10﹣x),∴x=7,即:点C表示的数为1或2或6或7.4.解:(1)∵点A表示数﹣2,点B表示数1,C1表示的数为﹣1,∴AC1=1,BC1=2,∴C1是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C2表示的数为2,∴AC2=4,BC1=1,∴C2不是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C3表示的数为4,∴AC3=6,BC3=3,∴C3是点A、B的“关联点”;∵点A表示数﹣2,点B表示数1,C4表示的数为6,∴AC4=8,BC4=5,∴C4不是点A、B的“关联点”;故答案为:C1,C3;(2)①若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为x (Ⅰ)当点P在A的左侧时,则有:2PA=PB,即,2(﹣10﹣x)=15﹣x,解得,x =﹣35;(Ⅱ)当点P在A、B之间时,有2PA=PB或PA=2PB,即有,2(x+10)=15﹣x或x+10=2(15﹣x),解得,x=﹣或x=;因此点P表示的数为﹣35或﹣或;②若点P在点B的右侧,(Ⅰ)若点P是点A、B的“关联点”,则有,2PB=PA,即2(x﹣15)=x+10,解得,x=40;(Ⅱ)若点B是点A、P的“关联点”,则有,2AB=PB或AB=2PB,即2(15+10)=x﹣15或15+10=2(x﹣15),得,x=65或x=;(Ⅲ)若点A是点B、P的“关联点”,则有,2AB=PA,即2(15+10)=x+10,解得,x=40;因此点P表示的数为40或65或;5.解:(1)由题意可得a=﹣1,b=1,c=﹣1+1=0(2)(3)∵BC=(1+5t)﹣(0﹣t)=1+6tAB=(1+5t)﹣(﹣1﹣t)=2+6t∴AB﹣BC=2+6t﹣(1+6t)=1∴AB﹣BC的值不会随着时间的变化而改变,AB﹣BC的值为1.6.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.7.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.8.解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.9.解:(1)∵点C表示的数是6,BC=4,AB=12,且点A、点B在点C左边,∴点B表示的数为:6﹣4=2,点A表示的数为:6﹣4﹣12=﹣10,即数轴上A点表示的数为﹣10,数轴上B点表示的数为2;(2)若点O是点P与点Q的中点,则|﹣10+2t|=|6﹣t|,解得:t1=4,t2=(舍去).故t为4秒时,原点O是线段PQ的中点.10.解:(1)(6﹣4)÷2=1.故点P在数轴上表示的数是1;故答案为:1;(2)设点P运动x秒时,在点C处追上点R,则AC=6x BC=4x,AB=10,∵AC﹣BC=AB,∴6x﹣4x=10,解得x=5,∴点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时(如图①):MN=MP+NP=AP+BP=(AP+BP)=AB=5.②当点P运动到点B左侧时(如图②),MN=PM﹣PN=AP﹣BP=(AP﹣BP)=AB=5.综上所述,线段MN的长度不发生变化,其长度为5.故答案为:1.。

苏科版七年级上第2章 有理数培优训练(含解析答案)

苏科版七年级上第2章 有理数培优训练(含解析答案)

苏科版七年级上第2章 有理数培优训练(含解析答案)1 / 12有理数培优训练学校:___________姓名:___________班级:___________考号:___________ 一、选择题(本大题共8小题,共24.0分) 1. 下列具有相反意义的量的是( )A. 前进与后退B. 身高增加2厘米与体重减少2千克C. 胜3局与负2局D. 气温升高 与气温为 2. 已知a 、b 表示两个非零的有理数,则 +的值不可能是( )A. 2B.C. 1D. 03. 数x 、y 在数轴上对应点如图所示,则化简|x +y |-|y -x |的结果是( ) A. 0 B. 2x C. 2yD. 4. 若|a |=19,|b |=97,且|a +b |≠a +b ,那么a -b 的值是( )A. 或116B. 78或116C. 或D. 78或5. 下列说法:①平方等于64的数是8;②若a 、b 互为相反数,则=-1:③若|-a |=a ,则(-a )3的值为负数;④若ab ≠0,则 +的取值在0,1,2,-2这四个数中,不可取的值是0.其中正确的个数为() A. 0个 B. 1个 C. 2个 D. 3个6. 小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加7.若小昱在某页写的数为101,则阿帆在该页写的数为何?( ) A. 350 B. 351 C. 356 D. 358 7. 有理数 、 、 在数轴上的位置如图所示,则在式子中,值最大的是( )A. B. C.D.8. 现定义一种新运算“*”,规定a *b =ab +a -b ,如1*3=1×3+1-3,则(-2*5)*6等于( ) A. 120 B. 125 C. D. 二、填空题(本大题共8小题,共24.0分)9. 如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律移动下去,第n 次移动到点A n ,如果点A n 与原点的距离不小于20,那么n 的最小值是______ .10. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…则÷99的值为______ .11.求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+ (22014)因此2S-S=22014-1.仿照以上推理,计算出1+5+52+53+…+52014=______.12.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=-1,-1的差倒数为,现已知x1=-,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=______.13.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c= ______ .14.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为______.15.若=-1,则x的取值范围是______ .16.如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是-,则B点在数轴上对应的数值是______.三、计算题(本大题共1小题,共16.0分)17.计算:(1)--21+3-2(2)-81÷2×÷(-15)(3)+23×+(-57)×+(-26)×(4)-14-[-2+(1-0.2÷)×(-3)].四、解答题(本大题共4小题,共36.0分)18.先阅读,再解题:因为,,,…所以===参照上述解法计算:.苏科版七年级上第2章有理数培优训练(含解析答案)19.如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5,用含t的式子填空:BP=____________________,AQ=__________;(2)当t=2时,求PQ的值;(3)当时,求t的值.20.已知:b是最小的正整数,且a、b满足(c-6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ______ ,b= ______ ,c= ______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P 在A、B之间运动时,请化简式子:|x+1|-|x-1|-2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n >0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.21.阅读下列材料并解决有关问题:我们知道,所以当x>0时,==1;当x<0时,==-1.现在我们可以用这个结论来解决3 / 12下面问题:(1)已知a,b是有理数,当ab≠0时,+= ______ ;(2)已知a,b是有理数,当abc≠0时,++= ______ ;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= ______ .苏科版七年级上第2章有理数培优训练(含解析答案)答案和解析1.【答案】C【解析】【分析】本题解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:A、前进与后退,具有相反意义,但没有量.故错误;B、身高增加2厘米与体重减少2千克不具有相反意义,故错误;C、正确;D、升高与降低是具有相反意义,气温为-3只表示某一时刻的温度,故错误.故选C.2.【答案】C【解析】解:∵a、b表示两个非零的有理数,∴=±1,=±1,∴+=2或-2或0.故选:C.根据绝对值的意义得到=±1,=±1,则+可能为2或-2或0.本题考查了绝对值的性质,解题时注意:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.3.【答案】C【解析】【分析】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.先根据x、y在数轴上的位置判断出x、y的符号及绝对值的大小,再去括号,合并同类项即可.【解答】解:∵由图可知,y<0<x,x>|y|,∴原式=x+y-(x-y)=x+y-x+y=2y.故选C.4.【答案】B【解析】解:∵|a|=19,|b|=97∴a=±19,b=±97又∵|a+b|≠a+b,则a+b<0∴a=19,b=-97或a=-19,b=-97当a=19,b=-97时,a-b=19-(-97)=116;当a=-19,b=-97时,a-b=-19+97=78.故选B.根据|a|=19,|b|=97,且|a+b|≠a+b,求得a、b的值,然后计算a-b的值即可.本题主要考查了绝对值的性质,若x≠0,且|x|=a,则x=±a,根据任何数的绝对值一定是5 / 12非负数,正确确定a,b的值,是解决本题的关键.5.【答案】A【解析】解:①平方等于64的数是±8,故错误;②没考虑等于0的情况,故错误;③|-a|=a说明a为非正数,可以为0,所以(-a)3的值不一定为负数,故错误;④当a和b之间有一个大于0一个小于0时,则+=0,故错误.综上可得没有一个说法正确.故选A.6.【答案】B【解析】解:小昱所写的数为1,3,5,7,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×7=1+50×7=1+350=351.故选:B.根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.7.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.8.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.故选:D.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.9.【答案】13【解析】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1-3=-2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为-2+6=4;苏科版七年级上第2章有理数培优训练(含解析答案)第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4-9=-5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为-5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7-15=-8;…;则A7表示的数为-8-3=-11,A9表示的数为-11-3=-14,A11表示的数为-14-3=-17,A13表示的数为-17-3=-20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为:13.序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为-17-3=-20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.10.【答案】100【解析】解:÷99=×=100.故答案为:100.根据“!”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.11.【答案】【解析】解:设S=1+5+52+53+ (52014)则5S=5+52+53+ (52015)5S-S=(5+52+53+…+52015)-(1+5+52+53+…+52014)=52015-1,所以,S=.故答案为:.根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可.本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.12.【答案】-【解析】解:由题意可得,x1=-,x2=,7 / 12x3=,x4=,2017÷3=672…1,∴x2017=,故答案为:.根据题目中的数据可以分别求得前面几个数据值,从而可以发现其中的规律,从而可以解答本题.本题考查数字的变化类,解题的关键是发现数字之间的变化规律.13.【答案】-1或9【解析】解:9=(-1)×(-9)=1×9=3×3=(-3)×(-3),∵a、b、c、d是互不相等的整数,且abc=9,∴a、b、c三个数为-1、3、-3,或1、-1、9,那么a+b+c=1或-9,故答案为:-1或9.把9分解质因数,然后判断出a、b、c三个数,再求和即可.本题考查了有理数的乘法,有理数的加法,根据9的质因数判断出a、b、c、d四个数的值是解题的关键.14.【答案】29或6【解析】解:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=(不合题意舍去)∴满足条件所有x的值是29或6.故答案为:29或6.利用逆向思维来做,分析第一个数就是直接输出144,可得方程5x-1=144,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.此题考查了方程与不等式的应用,注意理解题意与逆向思维的应用是解题的关键.15.【答案】x<1【解析】解:由题意得x-1≤0且x-1≠0即x≤1,且x≠1所以x<1.故答案为x<1.由绝对值的定义和分式有意义的条件入手求解.解决本题的关键是注意分式的分母不能为0.即x-1≠0的条件.苏科版七年级上第2章有理数培优训练(含解析答案)16.【答案】0或【解析】解:--+×5=-+1=,∵BC=,∴点B表示的有理数是0或.故答案为:0或.首先根据图示,可得点A和点C之间有5个刻度,求出点C表示的数是多少;然后根据BC=,求出点B表示的有理数是多少即可.此题主要考查了数轴的特征和应用,要熟练掌握.17.【答案】解:(1)--21+3-2=(-+3)+(-2-21)=3-24=-21(2)-81÷2×÷(-15)=-36×÷(-15)=-16÷(-15)=1(3)+23×+(-57)×+(-26)×=(23-57-26)×=(-60)×═-15(4)-14-[-2+(1-0.2÷)×(-3)]═-1-[-2-2]=-1+4=39 / 12【解析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.(3)应用乘法分配律,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.【答案】解:原式=(1-+-+-+…+-)=(1-)=×=.【解析】根据题中给出的材料可知利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.解此类题目的关键是熟悉分数的通分方法,利用通分的逆运算把分式拆成两个分数的加法或减法的形式,可使计算简便.19.【答案】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=OB-OP=OB-(OA+AP)=15-(10+t)=5-t,AQ=OA-AQ=10-2t;故答案为5-t,10-2t;(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12-4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t-(10+t)|=|t-10|,∵PQ=,∴|t-10|=2.5,解得t=12.5或7.5.【解析】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,(3)中解方程时要注意分两种情况进行讨论.(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t-(10+t)|=|t-10|,根据PQ=列出方程,解方程即可.20.【答案】(1)-1;1;6(2)由题意-1<x<1,∴|x+1|-|x-1|-2|x+5|=x+1+1-x-2(x+5)=2-2x-10=-2x-8.(3)由题意BC=5+5nt-2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC-AB=(5+3nt)-(2+3nt)=3,∴BC-AB的值不变,BC-AB=3.苏科版七年级上第2章有理数培优训练(含解析答案)【解析】【分析】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长,属于中考常考题型.(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC-AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【解答】解:(1)∵b是最小的正整数,∴b=1,∵(c-6)2+|a+b|=0,(c-6)2≥0,|a+b|≥0,∴c=6,a=-1,b=1,故答案为-1,1,6.(2)由题意-1<x<1,∴x+1>0,x-1<0,x+5>0∴|x+1|-|x-1|-2|x+5|=x+1+1-x-2x-10=-2x-8.(3)由题意BC=5+5nt-2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC-AB=(5+3nt)-(2+3nt)=3,∴BC-AB的值不变,BC-AB=3.21.【答案】(1)±2或0;(2)±1或±3;(3)-1.【解析】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=-1-1=-2,②a>0,b>0,+=1+1=2,③a、b异号,+=0,故答案为:±2或0;(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=-1-1-1=-3,②a>0,b>0,c>0,++=1+1+1=3,③a、b、c两负一正,++=-1-1+1=-1,④a、b、c两正一负,++=-1+1+1=1,故答案为:±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,则++═---=1-1-1=-1,故答案为:-1.【分析】(1)分3种情况讨论即可求解;11 / 12(2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,进一步计算即可求解.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.。

苏科版七年级数学上册第2章:有理数全章复习讲义

苏科版七年级数学上册第2章:有理数全章复习讲义

有理数全章复习巩固讲义知识点1:有理数的分类基础小练:1. 在–2,+3.5,0,32-,–0.7,11中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个11. 在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中,正数是________________,不是整数有____________________________。

9. 下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

A 、1个 B 、2个 C 、3个 D 、4个 例题讲解1.如图两个椭圆分别表示正数集合和整数集合(1)请在每个圈内填入6个数;(2)其中有3个数既是正数又是整数这3个数应填在______处(A ,B ,C )•你能说出两个圈重叠部分表示什么数的集合吗?2.把下列各数分别填入相应的集合里。

()()532-33333.0-314-72211--314.0-02-2、、、、、、、正有理数集合:( .......) 负有理数集合:( .......)整数集合:( .......) 自然数集合:( .......) 分数集合:( .......) 巩固练习:1、把下列各数填入表示它所在的数集的大括号:π3,2-,12-,3.020020002(每两个2之间多1个0), 227,()3--,0.333,0,314-,17-.整数集合:{ …}分数集合:{ …}负有理数集合:{ …}无理数集合:{ …}知识点2:有理数的实际应用“+、-”在不同的实际问题中表示相反的意义 基础练习:1.如果小明向东走40米,记作+40米,那么-50米表示小明______________。

2. 如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( )A.26℃B.22-℃C.18-℃D.16-℃ 3.某地上午气温为—1℃,下午上升3℃,到夜里又下降6℃,则夜里气温为 ℃. 例题讲解:1、光明奶粉每袋标准质量为454克,在质量检测中,若超出标准质量2克记为+2克,若质量低于标准质量3克和3克以上,则这袋奶粉视为不合格产品,现抽取10袋样品进行质量(1)这10袋奶粉中,有哪几袋不合格? (2)质量最多的是哪袋?它的实际质量是多少? (3)质量最少的是哪袋?它的实际质量是多少?2、一只电子昆虫从原点出发在一条直线上左右来回爬行,假定向右爬行的路程记为正,向左爬行的路程记作负,各次爬行的结果记录如下【单位,cm】:-5 ,+2 ,-3,+5,+4, -5,(1)这只电子昆虫停止爬行时,是否回到了出发点?请说明理由.(2) 这只电子昆虫一共爬行多少cm?巩固练习:1.袋稻谷,以每袋90千克为标准,超过的千克数记做正数,不足的千克数记做负数,称重如下:+4,-2,+1,+6,-3,+2,-1,+4,-6,+5,问10袋稻谷的总重量是多少?2、一振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动录为(单位mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求停止时所在位置距A点何方向,有多远?(2)如果每毫米需时0.02秒,则共用多少秒?知识点3:数轴数轴三要素:结合数轴三要素,学会正确画数轴基础练习:1.数轴上原点以及原点右边的点所表示的数是()A.负数 B.非负数C.正数 D.非正数2.在数轴上表示﹣3的点与表示﹣2的点的距离是()A.1个单位长度B.2个单位长度C.5个单位长度D.3个单位长度3.在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是.例题讲解:1、把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.2.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有个.–6 –4 –3 –2 —1 0 1 2 3 5 3、有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ;②|b|<|a|;③ab >0;④a -b >a+b .A .①②B .①④C .②③D .③④4、已知在纸面上有一数轴(如图),折叠纸面.(1)若表示1的点与表示﹣1的点重合,则表示﹣2的点与表示数__________的点重合; (2)若表示﹣1的点与表示3的点重合,回答以下问题: ①表示5的点与表示数__________的点重合; ①若数轴上A 、B 两点之间的距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?巩固练习:1.如图,以点A 为圆心,4个单位长度为半径画圆,该圆与数轴的交点表示的数是 .2.已知a ,b ,c 三个数的位置如图所示.则下列结论不正确的是( )A .a+b <0B .b ﹣a >0C .a+b >0D .a+c <03.在数轴上原点左边表示数a的点到原点的距离为3,则a-3= 。

苏科版七年级数学上册第二章有理数全章知识点归纳汇总

苏科版七年级数学上册第二章有理数全章知识点归纳汇总

苏科版七年级数学上册第二章有理数全章知识点归纳汇总一、正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:二、有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

苏科版七年级上册第2章有理数培优综合训练有答案

苏科版七年级上册第2章有理数培优综合训练有答案

苏科版七年级上册第2章有理数培优综合训练有答案班级姓名得分一、选择题1.下列各组数中,相等的一组是( )A. 与B. 与C. 与D.与(‒3)2‒32(‒2)3‒232332(23)22232.在数轴上,0为原点,某点A 移动到B ,移动了12.6个单位长度;点A 表示数a ,点B 表示数b ,且a +b =0,A 到0的距离为( )A. B. C. D. 12.66.3‒12.6‒6.33.计算(-0.25)2011×(-4)2012等于( )A. B. 1 C. D. 4‒1‒44.四个式子:①-32=9,②(-7)÷(-1)7=1,③,④中,(‒25)2‒225=08÷9×19=8不正确的个数有( )A. 1个B. 2个C. 3个D. 4个5.据报道目前用超级计算机找到的最大质数是2859433-1,这个质数的末尾数字是( )A. 1B. 3C. 7D. 96.1000+999-998-997+996+…+104+103-102-101=()A. 225B. 900C. 1000D. 40007.我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(a +b )n (n 为非负整数)的展开式的项数及各项系数的有关规律.由此规律可解决如下问题:假如今天是星期三,再过7天还是星期三,那么再过821天是( )A. 星期二B. 星期三C. 星期四D. 星期五8.若|a |=2,|b |=5且b >0,则a +b 的值应该是( )A. 7B. 和C. 3和7D. 和7‒3‒7‒39.小明使用电脑编了如下一个程序:已知当输入x 的值是2时,输出的值为-14,当输入x 的值是-2时,输出的值为18,则当输入x 的值为时,输出的值为( )12A. B.C.D.112‒11211413410.小明用所示的胶滚从左到右的方向将图案滚到墙上,正面给出的四个图案中,用图示胶滚涂出的( )A. B. C. D.二、填空题11.已知,且,,且,则(a +1)2=25a <0|a +3|+|b +2|=14ab >0________.a +b =12.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A :____________;B :____________;(2)观察数轴,与点A 的距离为4的点表示的数是:____________;(3)若将数轴折叠,使得A 点与-3表示的点重合,则B 点与数____________表示的点重合;(4)若数轴上M 、N 两点之间的距离为2010(M 在N 的左侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M :____________N :____________.13.(1)按下面的程序计算:如果输入的值是正整数,输出结果是150,那么满足条件的的值有____ 个.x x (2)一只小球落在数轴上的某点,第一次从向左跳1个单位到,第二次从p 0p 0p 1向右跳2个单位到,第三次从 向左跳3个单位到,第四次从 向右跳4p 1p 2p 2p 3p 3个单位到 ..., 若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点p 4 所表示的数是___;若小球按以上规律跳了2n 次时,它落在数轴上的点 所p 6p 2n 表示的数恰好是n +2,则这只小球的初始位置点所表示的数是____.p 0 (3)对于两个不相等的有理数a ,b ,我们规定:符号min{a ,b }表示a ,b 中较小的数.例如,min{2,4}=2.按照这个规定,方程min{x ,}=的解为‒x ‒12x ‒1__ .(4) 如图已知a 、b 、c 在数轴上的位置,求的值.|b +c|‒|a ‒b|‒|c ‒b|14.(1)若|x +5|=2,则x =_________;(2)代数式|x -1|+|x +3|的最小值为_________,当取此最小值时,x 的取值范围是_________;(3)解方程:|2x +4|-|x -3|=9.15.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是______ 米.16.若四位数的各个数位上的数字具有如下特征:个位数是其余各个位上的数字之和,则称此四位数是和谐数,如2013满足3=2+0+1,则2013是和谐数,又如2015不是和谐数,因为5≠2+0+1,那么在大于1000且小于2025的所有四位数中,和谐数的个数有_________个.(提示:列举法,如个位是1的只有1001)17.质点P 从距原点1个单位的A 点处向原点方向跳动,第一次从A 跳动到OA 的中点A 1处,第二次从A 1点跳动到OA 1的中点A 2,第三次从A 2跳动到OA 2的中点A 3处,如此不断地跳下去,则第10次跳动后,该质点到原点的距离为_________.18.若|a |+|b |=2,则满足条件的整数a 、b 的值有______组.三、解答题19.数轴上A 、B 对应的数分别为a ,b ,且,点P 是数轴上(12ab +100)2+|a ‒20|=0的一个动点.(1)取适当的单位长度画一条数轴,在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,……点P 能移动到与A 或B 重合的位置吗?若能,请探索第几次移动时重合;若不能,请说明理由.20.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的差值(单位:千克)-3.5-2-1.501 2.5筐数242138(1)20筐白菜中,最重的一筐比最轻的一筐重______千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?21.如图,A 、B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.(1)请写出与A 、B 两点距离相等的点M 所对应的数;(2)现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C 点对应的数是多少吗?(3)若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?22.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.(1)如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D 到点A的距离是1,到点B的距离是2,那么点D______【A,B】的好点,但点D______【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2.数______所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过______秒时,P、A和B中恰有一个点为其余两点的好点?答案和解析1.【答案】B【解析】解:A 、(-3)2=9,-32=-9,故选项错误;B 、(-2)3=-8-23=-8,故选项正确;C 、23=8,32=9,故选项错误;D 、=,=,故选项错误.(23)24922343故选B .A 、B 、C 、D 分别利用乘方的法则化简即可判定.此题主要考查了有理数的乘方运算,解题的关键是利用有理数的乘方法则化简即可解决问题.2.【答案】B【解析】解:∵在数轴上,点A 移动到B ,移动了12.6个单位长度;点A 表示数a ,点B 表示数b ,且a +b =0,∴在数轴上,到原点距离12.6÷2=6.3个单位长度.故选:B .根据数轴上各数到原点距离的定义及数轴的特点解答即可.本题考查的是绝对值的性质及数轴的特点,是一道较为简单的题目.3.【答案】C【解析】解:(-0.25)2011×(-4)2012=(-)2011×(-4)2012=(-)2011×(-4)2011×(-14144)=-4.故选:C .灵活运用有理数的乘方法则求解.本题主要考查了有理数的乘方,解题的关键是灵活运用有理数的乘方法则求解.4.【答案】D【解析】解:①-32=-3×3=-9,故本选项错误;②(-7)÷(-1)7=(-7)÷(-1)=7,错误;③加括号与不加括号底数不同,前一项底数是-,后一项底数是2,故本选项错误;25④应按从左到右的顺序计算8÷9×=8××=,故本选项错误.191919881故选D .根据有理数的乘方及混合运算的法则作答.本题主要考查有理数的混合运算.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的.5.【答案】A【解析】解:∵859433=214858×4+1,∴2859433的末尾数与21的末尾数相同,都为2,∴2859433-1的末尾数是1.故选A.根据以2为底数的幂,其末尾数的变化规律是2,4,8,6,依次循环,859433=214858×4+1,2859433-1的末尾数是2.本题考查的是质数与合数,解答此题的关键是找出以2为底数的幂末尾数的变化规律.6.【答案】B【解析】【分析】本题主要考查简便运算.此题也可这样理解:此算式除了1000和后三项103-102-101,其它每四个数字为一组,结果为0,因此此算式的结果为1000+103-102-101=1000+(103-102)-101=1000+1-101=900. 将算式四个分为一组,然后找一下共有几组这样的数,然后根据规律解答.【解答】解:1000+999-998-997+996+…+104+103-102-101,=(1000+999-998-997)+(996+995-994-993)+…+(104+103-102-101),=4×225,=900.故选B.7.【答案】C【解析】【分析】根据杨辉三角,下一行的系数是上一行相邻两系数的和,根据821=(7+1)21=721+21×720+…+21×7+1可知821除以7的余数为1,从而可得答案.【解答】解:∵821=(7+1)21=721+21×720+…+21×7+1,∴821除以7的余数为1,∴假如今天是星期三,那么再过821天是星期四,故选C.8.【答案】C【解析】解:∵|a |=2,|b |=5且b >0,∴a =2,b =5;a =-2,b =5,则a +b =7或3,故选C根据题意,利用绝对值的代数意义求出a 与b 的值,即可求出a +b 的值.此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】解:∵输入x 的值是2时,输出的值为-14,当输入x 的值是-2时,输出的值为18,∴,{8k +b =‒14‒8k +b =18解得:,{k =‒2b =2当x =时,输出()3×(-2)+2=1.121234故选:D .首先把输入x 的值是2时,输出的值为-14,当输入x 的值是-2时,输出的值为18,代入得出关于k 、b 的二元一次方程组,求得k 、b ,进一步代入x =求得结果即可.12此题考查二元一次方程组的运用,有理数的混合运算,理解题意,利用运算程序得出方程组,求得k 、b 的数值是解决问题的关键.10.【答案】C【解析】解:对题意的分析可知,胶滚上第一行中间为小黑三角形,胶滚从左到右的方向将图案涂到墙上,故第一行应该中间为小黑三角形,所以只有C 满足条件.故答案为:C .本题可从题意进行分析,胶滚上第一行中间为小黑三角形,然后在选项中进行排除即可.本题考查图形的展开,从题意进行分析,运用排除法即可.11.【答案】-19【解析】【分析】本题主要考查了有理数的乘方、绝对值和有理数的乘法的知识点,解题的关键是根据题意确定出a 的值.首先根据,且a<0确定a的值,再把a的值代入|a+3|+|b+2|=14中求出b (a+1)2=25的值,再根据ab>0进一步确定出b的值,最后把a,b的值代入a+b中即可得到结果.【解答】解:∵,(a+1)2=25∴a+1=±5,∴a=-6或4,∵a<0,∴a=-6,∵|a+3|+|b+2|=14∴b+2=±11,b=9或-13,∵ab>0,a<0,∴b<0,b=-13,∴a+b=-6-13=-19.故答案为-19.12.【答案】1;-2.5;5或-3;0.5;-1006;1004【解析】解:(1)由数轴可知,A点表示数1,B点表示数-2.5.故答案为:1,-2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:-3或5.故答案为:-3或5;(3)当A点与-3表示的点重合,则B点与数0.5表示的点重合.故答案为0.5;(4)由对称点为-1,且M、N两点之间的距离为2010(M在N的左侧)可知,点M、N到-1的距离为2010÷2=1005,所以,M点表示数-1-1005=-1006,N点表示数-1+1005=1004.故答案为:-1006,1004.13.【答案】(1)3(2)3;2(3)2或‒23(4)a+b【解析】(1)【分析】本题主要考查的是代数式求值,根据题意列出关于x 的方程是解题的关键.当输入数字为x ,输出数字为150时,4x -2=150,解得x =38;当输入数字为x ,输出数字为38时,得到4x -2=38,解得x =10,当输入数字为x ,输出数字为10时,4x -2=10,解得x =3,当输入数字为x ,输出数字为3时,4x -2=3,解得不合题x =54意.【解答】解:当4x -2=150时,解得:x =38;当4x -2=38时,解得:x =10;当4x -2=10时,解得:x =3;当4x -2=3时,解得:不合题意,x =54故符合条件的x 的值有3个.故答案为3.(2)【分析】此题考查数字的变化规律,数轴的认识、有理数的加减.根据题意,可以发现题目中每次跳跃后相对于初始点的距离,从而可以解答本题.【解答】解:由题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P 6所表示的数是6÷2=3,小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 所表示的数恰好是n +2,则这只小球的初始位置点P 0所表示的数是:n +2-(2n ÷2)=2,故答案为3,2.(3)【分析】此题考查了一元一次方程.分类讨论x 与-x 的范围,利用题中的规定确定出解即可.【解答】解:当x >-x ,即x >0时,方程化为,‒x =‒x2‒1解得:x =2;当x <-x ,即x <0时,方程化为,x =‒x2‒1解得:,x =‒23综上所述,方程min{x ,}=的解为2或.‒x ‒12x ‒1‒23故答案为2或.‒23(4)【分析】本题考查了整式的加减,解答本题的关键是掌握绝对值的化简以及合并同类项法则.根据a 、b 、c 在数轴上的位置,先进行绝对值的化简,然后合并.【解答】解:由图可得,a <0<b <c ,∴b +c >0,a -b <0,c -b >0,∴|b +c |-|a -b |-|c -b |=b +c +a -b -c +b =a +b .14.【答案】(1)-3或-7;(2)4;-3≤x ≤1;(3)当x ≤-2时,原方程可化为:-2x -4+x -3=9,解得:x =-16;当x ≥3时,原方程可化为:2x +4-x +3=9,解得:x =2,与x ≥3不符;当-2<x <3时,原方程可化为:2x +4+x -3=9,解得:.综上所述,方程的解为:x =-16或.x =83x =83【解析】【分析】本题主要考查了绝对值的性质,以及含有绝对值的一元一次方程的求解,先分情况去绝对值符号再计算即可。

2020年秋苏科版七年级上册第二章《有理数》中的动点问题培优训练(一)

2020年秋苏科版七年级上册第二章《有理数》中的动点问题培优训练(一)

2020年秋苏科版七上第二章《有理数》中的动点问题培优训练(一)培优训练小练习(一):限时30分钟1.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为X.(1)若点P到点A、点B的距离相等,请直接写出点P对应的数X;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为18?若存在,请直接写出x的值;若不存在,说明理由.(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以18个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?2.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B 的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC 的值.3.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分別为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3=;(2)如果t<4,且点Q3表示的数为3,那么t=;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.4.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.5.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.培优训练小练习(二):限时30分钟6.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?7.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).8.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?9.已知快递公司坐落在一条东西走向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1千米到达A店,继续向东骑行2千米到达B店,然后向西骑行5千米到达C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1厘米表示1千米,画出数轴,并在数轴上表示出A,B,C三个店的位置.(2)C店离A店有多远?(3)快递员一共骑行了多少千米?10.已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数对应的点重合;②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C原来表示的数是多少?请列式计算,说明理由.培优训练小练习(三):限时30分钟11.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?12.已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.(1)数轴上A、B两点的距离为.(2)当P点满足PB=2PA时,求P点表示的数.(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则k o的值是多少?②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是(请直接写答案).13.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A是数轴上的点,完成下列各题:(1)如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A、B两点间的距离为;一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是,A、B两点间的距离为.14.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.15.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t 值.参考答案1.解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=18(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=18,得x=﹣8;当P在A的右侧,PA+PB=x﹣(﹣1)+x﹣3=18,得x=10.故点P对应的数为﹣8或10;(3)设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4.则18x=18×4=72.答:点P所经过的总路程是72个单位长度.2.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.3.解:(1)当t=4时,Q1表示的数为4,Q1Q2=4×2=8,Q2表示的数为4+8=12,Q2Q3=4×3=12,Q3所表示的数为0,∴Q1Q3=4,故答案为:4.(2)①当Q3未到点N返回前,有t+2t+3t=3,解得:t=,②当Q3点到达N返回再到表示3的位置,t+2t+3t+3=12×2,解得:t=,故答案为:或;(3)①当Q4未到点N,有3t+4t=2,解得:t=;②当Q4到达点N返回且在Q2的右侧时,有24﹣10t﹣3t=2,解得:t=;③当Q4到达点N返回且在Q2的左侧时,有3t﹣(24﹣10t)=2,解得:t=2;答:t的值为或或2.4.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.5.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.6.解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①点P在点M的左边:﹣3﹣0.5=﹣3.5,②点P在点N的右边:1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.7.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.8.解:(1)如图所示:(2)CD=3.5﹣1=2.5,BC=1﹣(﹣2)=3;(3)MN=|a﹣b|;(4)①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或4秒时P,Q两点之间的距离为1.故答案为:2.5,3;|a﹣b|.9.解:(1)如图所示:;(2)C店离A店:1﹣(﹣2)=3千米;(3)快递员一共行了:|1+|+|2|+|﹣5|+|2|=10千米.10.解:(1)∵折叠后1表示的点与﹣1表示的点重合,∴对折的中心所表示的数为0,∵﹣2到原点0的距离为2,∴只有2到原点0的距离为2,故答案为:2.(2)∵折叠后﹣2表示的点与4表示的点重合∴折叠中心表示的数为(﹣2+4)÷2=1,①设这个数为m,则有:7﹣1=1﹣m,解得:m=﹣5,故答案为:﹣5.②设A表示的数为a,B表示的数为b,由题意得,b﹣1=1﹣a且b﹣a=2019,解得,a=﹣1008.5,b=1010.5,答:A点表示的数是﹣1008.5,B点表示的数是1010.5.(3)设点C原位置表示的数为c,则点C的新位置表示的数为c+2,根据题意得,c+2=﹣c,解得,c=﹣1,答:C原来表示的数是﹣1.11.解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4﹣(﹣5)=9(千米).12.解:(1)|+2﹣(﹣6)|=8,故答案为:8.(2)设点表示的数为x,①当点P在点A的左侧时,有2(2﹣x)=x﹣(﹣6)解得,x=﹣,②当点P在点A的右侧时,有x+6=2(x﹣2),解得,x=10答:点P所表示的数为﹣或10.(3)①设k0所表示的数为a,由题意得,a+2﹣4+6﹣8+10﹣12=12,解得,a=18,答:k0所表示的数为18.②由题意的,a+2﹣4+6﹣8+10﹣12+…+2002﹣2004=1998,解得,a=3000,故答案为:3000.13.解:(1)∵点A表示数3,∴点A向左移动7个单位长度,再向右移动5个单位长度,终点B表示的数是3﹣7+5=1,A,B两点间的距离是|3﹣1|=2,故答案为1,2;(2)∵点A表示数﹣4,∴将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是﹣4+168﹣256=﹣92,A、B两点间的距离是|﹣4+92|=88;故答案为﹣92,88;∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动t个单位长度,那么点B表示的数为(m+n﹣t),A,B两点间的距离为|n﹣t|,故答案为m+n﹣t,|n﹣t|.14.解:(1)设运动时间为x秒,4x+6x=55﹣(﹣5),解得:x=6,因此C点对应的数为﹣5+4×6=19,(2)设运动时间为y秒,6y﹣4y=55﹣(﹣5),解得:y=30,点D对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.15.解:(1)当t=1时3×1=3﹣6+3=﹣3所以点P所表示的有理数是﹣3;(2)当点P与点B重合时,点P所运动的路程为|6﹣(﹣6)|=12所以t=12÷3=4;(3)点P沿数轴由点A到点B再回到点A的运动过程中,点P与点A的距离分为2种情况:当点P到达点B前点P与点A的距离是3t(0≤t<4);当点P到达点B再回到点A的运动过程中点P与点A的距离是:24﹣3t(4≤t≤8);(4)当点P表示的有理数与原点(设原点为O)的距离是3个单位长度时,则有以下四种情况:当点P由点A到点O时:OP=AO﹣3t,即:6﹣3t=3,∴t=1;当点P由点O到点B时:OP=3t﹣AO,即:3t﹣6=3,∴t=3;当点P由点B到点O时:OP=18﹣3t,即:18﹣3t=3,∴t=5;当点P由点O到AO时:OP=3t﹣18,即:3t﹣18=3,∴t=7,即:当点P表示的有理数与原点的距离是3个单位长度时,t的值为1或3或5或7.。

苏科版七年级上册第2章《有理数》章节培优复习

苏科版七年级上册第2章《有理数》章节培优复习

第2章《有理数》章节培优复习一.选择题1.下列各数中,既是负数,又是分数的数是()A.﹣3 B.C.D.02.下列说法中,正确的是()A.无理数包括正无理数、0和负无理数B.无理数是用根号形式表示的数C.无理数是开方开不尽的数D.无理数是无限不循环小数3.下列各组数中,结果一定相等的为()A.﹣a2与(﹣a)2B.﹣(﹣a)2与a2C.﹣a2与﹣(﹣a)2D.(﹣a)2与﹣(﹣a)24.已知水星的半径约为2440000米,用科学记数法表示为()米.A.0.244×107B.2.44×107C.2.44×106D.24.4×1055.对于式子(﹣2)3,下列说法不正确的是()A.指数是3 B.底数是﹣2C.幂为﹣8 D.表示3个2相乘6.去年11月份我市某一天的最高气温是15℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高()A.16℃B.﹣15℃C.14℃D.13℃7.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,④﹣3÷(﹣)=9.其中正确的有()A.0个B.1个C.2个D.3个8.一个数的绝对值是正数,这个数一定是()A.正数B.非零数C.任何数D.以上都不是9.a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是()A.﹣1 B.0 C.1 D.210.若|abc|=﹣abc,且abc≠0,则++=()A.1或﹣3 B.﹣1或﹣3 C.±1或±3 D.无法判断二.填空题11.计算(﹣2)3的结果是.12.点M表示的有理数是﹣1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.13.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选)14.在,﹣(﹣1),﹣|8﹣22|,﹣3,﹣32,﹣(﹣)3,0中有理数有m个,自然数有n个,分数有k个,负数有t个,则m﹣n﹣k+t=.15.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.16.已知有理数a、b表示的点在数轴上的位置如图所示,化简:|b﹣a|﹣|a+1|=.三.解答题17.计算:(1)(﹣3)2×23﹣(﹣4)÷2=(2)(﹣+﹣)×12+(﹣1)2011=18.把下列各数填在表示集合的相应大括号中:+6,﹣8,﹣0.4,25,0,﹣,9.15,1整数集合﹛﹜分数集合﹛﹜非负数集合﹛﹜正数集合﹛﹜负数集合﹛﹜19.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,﹣4,+3,﹣10,+3,﹣9(1)最后一名老师送到目的地时,小王距出租车出发地的距离是多少千米?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?20.观察等式:,,,将以上三个等式两边分别相加得=.(1)猜想并写出:=.(2)直接写出下式的计算结果:=.(3)探究并计算:+…+=.21.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8 (1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(3)根据记录的数据可知该厂本周实际生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣25元,那么该厂工人这一周的工资总额是多少元?参考答案一.选择题1.解:A、﹣3是负数,但不是分数,故本选项错误;B、﹣是负数也是分数,故本选项正确;C、是分数,但不是负数,故本选项错误;D、0不是负数也不是分数,故本选项错误.故选:B.2.解:A、0不是无理数,故无理数不包括0,故本选项错误;B、无理数不是用根号表示的数,例如=2,是有理数,故本选项错误;C、开方开不尽的数是无理数,但无理数不一定是开方开不尽的数,故本选项错误;D、无理数是无限不循环小数,故本选项错误.故选:D.3.解:A、只有a=0时,﹣a2=(﹣a)2,故本选项错误;B、只有a=0时,﹣(﹣a)2=a2,故本选项错误;C、对任何数﹣a2=﹣(﹣a)2,故本选项正确;D、只有a=0时,(﹣a)2=﹣(﹣a)2,故本选项错误.故选:C.4.解:2 440 000=2.44×106.故选:C.5.解:(﹣2)3指数是3,底数是﹣2,幂为﹣8,表示3个﹣2相乘,所以,错误的是D选项.故选:D.6.解:15﹣(﹣1),=15+1,=16℃.故选:A.7.解:①(﹣5)+(+3)=﹣2,错误;②﹣(﹣2)3=﹣(﹣8)=8,错误;③(+)+(﹣)=,错误;④﹣3÷(﹣)=﹣3×(﹣3)=9,正确.则其中正确的有1个.故选:B.8.解:∵一个数的绝对值是正数,∴这个数一定不是0,∴这个数是非零数.故选:B.9.解;a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0,故选:B.10.解:∵|abc|=﹣abc,且abc≠0,∴abc中负数有一个或三个,则原式=1或﹣3,故选:A.二.填空题(共6小题)11.解:原式=﹣8,故答案为:﹣812.解:﹣1﹣5=﹣6,或﹣1+5=4.故点N表示的有理数是﹣6或4.故答案为:﹣6或4.13.解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R且|MA|=|BR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故答案为:M或R.14.解:,﹣(﹣1),﹣|8﹣22|,﹣3,﹣32,﹣(﹣)3,0是有理数,则m=7;﹣(﹣1),0是自然数,则n=2;,﹣(﹣)3是分数,则k=2;﹣|8﹣22|,﹣3,﹣32是负数,则t=3,则m﹣n﹣k+t=7﹣2﹣2+3=6,故答案为:6.15.解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.16.解:根据图示知:b>a,a<﹣1,∴|b﹣a|﹣|a+1|=b﹣a﹣(﹣a﹣1)=b﹣a+a+1=b+1.故答案为:b+1.三.解答题(共5小题)17.解:(1)(﹣3)2×23﹣(﹣4)÷2,=9×8+2,=74;(2)(﹣+﹣)×12+(﹣1)2011,=﹣9+2﹣4.5﹣1,=﹣12.5.故答案为:(1)74,(2)﹣12.5.18.解:整数集合{+6,﹣8,25,0…};分数集合{﹣0.4,9.15,,…};非负数集合{25,+6,9.15,0,…};正数集合{+6,25,9.15,…};负数集合{﹣8,﹣0.4,…}.19.解:(1)根据题意:规定向东为正,向西为负:则(+5)+(﹣4)+(+3)+(﹣10)+(+3)+(﹣9)=﹣12(千米),故小王距出租车出发地的距离是12千米;(2)汽车走的路程为:|+5|+|﹣4|+|+3|+|﹣10|+|+3|+|﹣9|=34(千米),若汽车耗油量为0.4升/千米,则耗油量为:34×0.4=13.6(升),故这天下午汽车共耗油13.6升.20.解:(1)由已知等式,得=﹣,故答案为:﹣;(2)由分数拆分,抵消规律可知,=,故答案为:;(3)+…+=(+++…+)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案为:.21.解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12辆,故该厂星期四生产自行车212辆;(2)根据图示产量最多的一天是216,产量最少的一天是190,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(3)根据题意知,6﹣2﹣4+12﹣10+16﹣8=10,200×7+10=1410辆,故该厂本周实际生产自行车1410辆;(4)根据图示,本周工人工资总额=200×7×50+10×(50+20)=70700元,(或:本周工人工资总额=1410×50+10×20=70700元)故该厂工人这一周的工资总额是70700元.故答案为:(1)212;(2)26;(3)1410;(4)70700.。

【精选】苏科版七年级上册数学 有理数(培优篇)(Word版 含解析)

【精选】苏科版七年级上册数学 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.3.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。

2020年秋苏科版七年级数学上册期中复习——2章有理数培优复习

2020年秋苏科版七年级数学上册期中复习——2章有理数培优复习

2章有理数培优复习一、选择题1.一个数的相反数是最大的负整数,则这个数为( ) A .﹣1 B .0C .1D .不存在这样的数2.定义一种新运算a ⊙b =(a+b )×2,计算(﹣5)⊙3的值为( ) A .﹣7 B .﹣1C .1D .﹣43.下列各对数中互为相反数的是( ) A. 32与−23 B. −23与(−2)3 C. −32与(−3)2D. −2×32与(2×3)24.下列判断中不正确的是( ) A .﹣的倒数是B .﹣2的绝对值是2C .﹣6是整数D .﹣4,﹣5,8,0中最小的数是﹣5 5.下列各组数中,相等的是( ) A. −1与−3−2 B. −22与4 C. −(−13)与−|−13|D. −a +b 与b −a 6.在3.14159,4,1.1010010001…,4.,π,中,有理数有( )A .1个B .2个C .3个D .4个7.计算下列各式,其结果为负数的是( ) A .﹣(﹣3) B .|﹣3|C .(﹣3)3D .(﹣3)28.现规定一种运算:a ∗b =ab +a −b ,其中a 、b 为有理数,则3∗5的值为()A. 11B. 12C. 13D. 149.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0B.a+b>0C.a﹣b<0D.ab>010.已知a、b、c在数轴上对应的点如图所示,则代数式|﹣a|﹣|b﹣a|+|c﹣a|化简后的结果为()A.﹣a﹣b+c B.3a﹣b+cC.2a﹣b+c D.a﹣b﹣c二、填空题11.如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作______m.12.比较大小:﹣1﹣(填“>”“<”或“=”)13.今年我国多地发现猪瘟疫情,疫情发生后,农业农村部第一时间采取措施,使疫情得到了有效控制.疫情是由一种病毒引起的,这种病毒的直径约85纳米(1纳米=0.000000001米).数据85纳米用科学记数法可以表示为米.14.若|a−2|=1,则a=______________.15.已知|x|=4,|y|=5且x>y,则x﹣y的值为.16. (−2)+(−7)−(−5)−(−6)写成省略括号的和的形式是_______读作________17.a,b是自然数,规定a∇b=3×a﹣,则2∇17的值是.三、解答题18.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣26.19.将﹣|﹣2|,1,0,﹣(﹣3.5),﹣在数轴上表示出来,并用“<”把他们连接起来.20.在数轴上画出表示下列各数的点,再用“<”号把各数连接起来.|−4|, −3.5, (−1)4, −(+2)21.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n及称为n进制,现在最常用的是十进制,通常使用10个阿拉伯数字0﹣9进行基数,特点是满逢进1,对于任意一个n(2≤n≤10)进制表示的数通常使用n个阿拉伯数字0﹣(n﹣1)进行基数,特点是逢n进一,我们可以通过一下方式把它转化为十进制例如:五进制数(234)=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76(1)请将以下两个数转化为十进制:(333)5=,(46)7=;(2)若一个正数可以用7进制表示为(abc)7也可以用五进制表示为(cba)5,求出这个数并用十进制表示.22.规定一种新的运算△:a△b=a(a+b)﹣a+b.例如,1△2=1×(1+2)﹣1+2=4.(1)8△9=;(2)若x△3=11,求x的值;(3)求代数式﹣x△4的最小值.23.已知有理数a,b,c,d,e,且a、b互为倒数,c、d互为相反数,e是绝对值等于23的数,求式子12ab +c+d 5+e 2的值.24. 有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果. (1)计算:2+3﹣5﹣9;(2)若2÷3×5 9=30,请推算横线上的符号;(3)在“2 3 5+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.答案1. C 2. D 3. C4. A . 5. D 6. D 7. C . 8. C 9. A 10. A 11. –3 12. < 13. 8.5×10﹣8. 14. 3或1 15. 9或1.16. –2−7+5+6;−2,−7,+5,+6的和 17..18.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.19.解:如图所示:∴﹣|﹣2|<﹣<0<1<﹣(﹣3.5).20. 解:如图所示:用“<”号把各数连接起来为:−3.3<−(+3)<(−3)3<|−3|.21.解:(1)由题意得:(333)5=3×52+3×5+3=93,(46)7=4×7+6=34故答案为:93,34.(2)根据题意得:72a+7b+c=52c+5b+a∴24a+b=12c∵1≤a≤9,0≤b≤9,1≤c≤9,且a、b、c均为整数∴a=1、b=0、c=2,此数用十进制表示为102;a=2、b=0、c=4,此数用十进制表示为204;a=3、b=0、c=6,此数用十进制表示为306;a=4、b=0、c=8,此数用十进制表示为408.∴这个数用十进制表示102或204或306或408.22.解:(1)∵a△b=a(a+b)﹣a+b,∴8△9=8×(8+9)﹣8+9=8×17﹣8+9=136﹣8+9=137,故答案为:137;(2)∵x△3=11,∴x(x+3)﹣x+3=11,解得,x1=2,x2=﹣4;(3)∵﹣x△4=﹣x(﹣x+4)+x+4=x2﹣4x+x+4=x2﹣3x+4=(x﹣)2+,∴当x=时,﹣x△4有最小值.23. 解:由题意可知:ab=1,c+d=0,e=±23,∴e2=(±23)2=49,∴12ab+c+d5+e2=12+0+49=1718.24.解:(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”;(3)2﹣3×5+9=﹣4,故答案为:﹣×.。

第2章有理数(单元复习2提高版)苏科版数学七年级上册

第2章有理数(单元复习2提高版)苏科版数学七年级上册

第2章有理数(单元复习提高版)【典型例题】题型一:新定义题型【例题】现定义一种新运算:a※b=b2﹣ab,如:1※2=22﹣1×2=2,则(﹣1※2)※3等于.【变式训练】1.我们定义一种新运算:a*b=a2﹣b+ab.例如:1*2=12﹣2+1×2=1(1)求2*3的值.(2)求(﹣2)*[2*(﹣3)]的值.2.将下列计算的结果直接写成幂的形式:2÷2÷2=()1;2÷2÷2÷2=;=;(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)÷(﹣5)=;(2)一般地,把n个a(a为有理数且a≠0,n为正整数)相除的结果记作aⓝ,读作“a的圈n 次方”.计算:aⓝ==(其中a≠0,n为正整数).请你尝试用文字概括归纳aⓝ的运算结果:一个非零有理数的圈n次方等于;(3)计算:24÷(﹣)⑤+(﹣27)×3④.3.[新定义]:A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的3倍,我们就称点C是[A,B]的幸运点.[特例感知](1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B 的距离是1,那么点C是[A,B]的幸运点,①[B,A]的幸运点表示的数是;②试说明A是[C,E]的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则[M,N]的幸运点表示的数为.[拓展应用](3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?题型二:找规律题型【例题】国庆节,广场上要设计一排灯笼增强气氛,其中有一个设计由如图所示图案逐步演变而成,其中圆圈代表灯笼,n代表第n次演变过程,s代表第n次演变后的灯笼的个数.仔细观察下列演变过程,当n=6时,s=__________.【变式训练】1.将下表从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填整数之和都相等,则第2022个格子中的数字是()3 a b c ﹣1 0 2 …A.3 B.2 C.0 D.﹣12.将初一年级的500名同学从1到500编号,并按编号从小到大的顺序站成一排报数1、2、3…,报到奇数的退下,偶数的留下,留下的同学从编号小的开始继续报数1、2、3…,报到奇数的退下,偶数的留下,…,如此继续,最后留下一个同学,则最后留下的这个同学编号是.3.观察下列式子:1×3+1=22,2×4+1=32,3×5+1=42,4×6+1=52,…,(1)请你依照上述规律,写出第6个式子:;(2)请写出第n个式子:;(3)计算:(1+)×(1+)×(1+)×…×(1+).4.类比推理是一种重要的推理方法,根据两种事物在某些特征上相似,得出它们在其他特征上也可能相似的结论.比如在异分母的分数的加减法中,往往先化作同分母,然后分子相加减,例如:113232123233266--=-==⨯⨯,我们将上述计算过程倒过来,得到111162323==-⨯,这一恒等变形过程在数学中叫做裂项.类似地,对于146⨯可以用裂项的方法变形为:111146246⎛⎫=- ⎪⨯⎝⎭.类比上述方法,解决以下问题.(1)猜想并写出:()11n n =⨯+ ; (2)类比裂项的方法,计算:;(3)探究并计算:111111335577920212023+++++-⨯-⨯-⨯-⨯-⨯.题型三:数轴上的动点问题【例题】如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴向右滚动1周,点A 到达点A ′的位置,则点A ′表示的数是2π;若起点A 开始时是与﹣1重合的,则向左滚动2周后点A ′表示的数是 .【变式训练】1.如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是 .(结果保留π)2.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度123-1 A返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q表示的数;(2)当t=2.5时,求点Q表示的数;(3)当点Q到原点O的距离为4时,求点P表示的数.3.如图,已知数轴上两点A、B对应的数分别为﹣1、3,(1)点P为数轴上一动点,其对应的数为x.①若点P到点A、点B的距离相等,则x=;②若点P到点A、点B的距离之和为10,则x=;(2)若将数轴折叠,使﹣1与3表示的点重合.①则﹣3表示的点与数表示的点重合;②若数轴上M、N两点之间的距离为2022,且M、N两点经过折叠后互相重合,求M,N两点表示的数.题型四:绝对值与相反数【例题】如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n ,p ,q 四个数中,绝对值最大的一个是数 ▲ .【变式训练】1.数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|=|﹣3|=3;表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|=|﹣5|=5.也就是说,在数轴上,如果A 点表示的数记为a ,B 点表示的数记为b .则A ,B 两点间的距离就可记作|a ﹣b|. 回答下列问题:(1)数轴上表示3和7的两点之间的距离是 ,轴上表示2和﹣5的两点之间的距离是 ;(2)数轴上表示x 与﹣3的两点A 和B 之间的距离为2,那么x 为 ; (3)①找出所有使得|x+1|+|x ﹣1|=2的整数x ; ②若|x+1|+|x ﹣1|=4,求x ;③|x+1|+|x ﹣1|是否有最值?如果有,请直接写出结果;如果没有,请说明理由.2.阅读理解:我们知道x 的几何意义是:在数轴上数x 对应的点与原点的距离,也就是说,x 表示在数轴上数x 与数0对应点之间的距离,这个结论可以推广为: 12x x 表示在数轴上数12,x x 对应点之间的距离.举例:数轴上表示数a 和﹣1的两点A 和B 之间的距离是AB=|a ﹣(﹣1)|=|a+1|. 问题探究:参考阅读材料,解答下列问题. (1)求数轴上表示2和﹣3的两点之间的距离;(2)若数轴上表示数a 的点位于﹣3与5之间,求|a+3|+|a ﹣5|的值; (3)当|a ﹣1|+|a ﹣2|取最小值时,相应的数a 的取值范围是 ; (4)求|a ﹣1|+|a ﹣2|+|a ﹣3|的最小值是 . 实际应用:(5)问题:某一直线沿街一侧有2023户居民(相邻两户居民间隔相同),每户按序标记为:A 1,第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10(1)B地在A地哪个方向,与A地相距多少千米?(2)巡逻车在巡逻过程中,离开A地最远是多少千米?(3)若每千米耗油0.2升,问共耗油多少升?2.外卖员骑摩托车从餐馆出发,先向南骑行3km到达A小区,继续向南骑行2km到达B小区,然后向北行12km到C小区,最后回到餐馆.(1)以餐馆为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个小区的位置;(2)外卖员最远离开出发点多远?(3)若摩托车每1km耗油0.04升,这趟路共耗油多少升?3.某共享单车厂计划一周生产自行车2100辆,平均每天生产300辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日。

2021年秋苏科版七上第二章《有理数》中的动点问题培优训练(三)

2021年秋苏科版七上第二章《有理数》中的动点问题培优训练(三)

秋苏科版七上第二章《有理数》中的动点问题培优训练小练习(一):限时45分钟1.已知数轴上两点A.B对应的数分别为﹣2和7,点M为数轴上一动点.(1)请画出数轴,并在数轴上标出点A、点B;(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是【A,B】的好点.①若点M运动到原点O时,此时点M【A,B】的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间(3)试探究线段BM和AM的差即BM﹣AM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.2.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t 秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.3.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每千米耗油约0.1升,每升汽油6.20元,请你计算他需多少汽油费?4.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A 和B中恰有一个点为其余两点的奇点?5.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P 从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t 的值;若没有,请说明理由.6.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.7.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:N:.8.如图,在数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).(1)求t=2时点P表示的有理数;(2)求点P是AB的中点时t的值;(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)在点P由点B到点A的返回过程中,点P表示的有理数是多少(用含t的代数式表示).9.快递员骑摩托车从快递公司出发,先向东骑行2km到达A村,继续向东骑行3km到达B 村,然后向西骑行9km到C村,最后回到公司.(1)以快递公司为原点,以向东方向为正方向,用1cm表示1km画数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100km耗油2.5L,完成此次任务,摩托车耗油多少升?10.在数轴上,一只蚂蚁从原点出发,先向右爬行了4个单位长度到达点A,再向右爬行了2个单位长度到达点B,然后又向左爬行了10个单位长度到达点C.(1)画出数轴,并在数轴上表示出A、B、C三点;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬行了几个单位长度得到的?培优训练小练习(二):限时45分钟11.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,到终点表示的数是﹣2.已知A、B是数轴上的点,请参照上图,完成下列填空:(1)如果点A表示的数是3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动12个单位长度,再向左移动16个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)一般地,如果点A表示的数是a,将点A先向右移动m个单位长度,再向左移动n 个单位长度,那么终点B表示的数是,A、B两点间的距离为.12.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)A景区与C景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.13.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小明家西边150米,邮局位于小明家东边100米,图书馆位于学校西边250米.(1)用数轴表示A、B、C、D的位置(以小明家为原点)(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了8分钟,试问小明此时的位置在何处?到图书馆和学校的距离分别是多少米?14.一辆货车从超市出发,向东走了4千米到达小华家,继续走了1.5千米到达小颖家,然后向西走了8.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请画出数轴,并在数轴上表示出小明家、小华家和小颖家的位置.(2)小明家距小华家多远?(3)货车一共行驶了多少千米?15.小明早晨跑步,他从自家向东跑了3千米到达小彬家,继续向东跑了2.5千米到达小红家,然后向西跑了7.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,请在数轴上标出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?16.如图,边长为1个单位的等边三角形纸片的一个顶点A与数轴上的原点重合.(1)把等边三角形纸片沿数轴向右滚动(无滑动),滚动1周后(等边三角形纸片滚动后AB再次落在数轴上时称为1周),点B对应的数为:;在滚动过程中是哪个顶点经过数轴上的数2016?答:;(2)纸片在数轴上向右滚动的周数记为正数,纸片在数轴上向左滚动的周数记为负数,下列是该纸片5次运动的周数记录情况:+2,﹣3,+1,﹣4,+3.(注:+2表示第1次纸片向右滚动了2周).①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远;②当纸片结束运动时,此时点A所表示的数是.17.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?18.元旦放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在数轴上分别用点A、B、C表示出来;(2)问超市A和外公家C相距多少千米?(3)若小轿车每千米耗油0.15升,求小明一家从出发到返回家时小车的耗油量.19.一个点从数轴上原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,完成下列各题(1)如果A表示﹣3,将A向右移动7个单位长度得到点B,那么B表示的数是,A,B两点间的距离是.(2)如果A表示数3,将A向左移动7个单位长度再向右移动5个单位长度,得到点B,则点B表示的数为,A,B两点间的距离是(3)一般地,如果A表示数a,将A向右移动b个单位长度,再向左移动c个单位长度得到B,那么B表示的数是,A,B两点间的距离是(用含a,b,c的式子表示)20.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣7表示的点与数表示的点重合;(2)若﹣1表示的点与5表示的点重合,回答以下问题:①13表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为2015(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章《有理数》章节培优复习
一.选择题
1.下列各数中,既是负数,又是分数的数是()
A.﹣3 B.C.D.0
2.下列说法中,正确的是()
A.无理数包括正无理数、0和负无理数
B.无理数是用根号形式表示的数
C.无理数是开方开不尽的数
D.无理数是无限不循环小数
3.下列各组数中,结果一定相等的为()
A.﹣a2与(﹣a)2B.﹣(﹣a)2与a2
C.﹣a2与﹣(﹣a)2D.(﹣a)2与﹣(﹣a)2
4.已知水星的半径约为2440000米,用科学记数法表示为()米.A.0.244×107B.2.44×107C.2.44×106D.24.4×105
5.对于式子(﹣2)3,下列说法不正确的是()
A.指数是3 B.底数是﹣2
C.幂为﹣8 D.表示3个2相乘
6.去年11月份我市某一天的最高气温是15℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高()
A.16℃B.﹣15℃C.14℃D.13℃
7.有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③(+)+(﹣)=,
④﹣3÷(﹣)=9.其中正确的有()
A.0个B.1个C.2个D.3个
8.一个数的绝对值是正数,这个数一定是()
A.正数B.非零数C.任何数D.以上都不是
9.a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是()
A.﹣1 B.0 C.1 D.2
10.若|abc|=﹣abc,且abc≠0,则++=()
A.1或﹣3 B.﹣1或﹣3 C.±1或±3 D.无法判断
二.填空题
11.计算(﹣2)3的结果是.
12.点M表示的有理数是﹣1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.
13.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选)
14.在,﹣(﹣1),﹣|8﹣22|,﹣3,﹣32,﹣(﹣)3,0中有理数有m个,自然数有n个,分数有k个,负数有t个,则m﹣n﹣k+t=.
15.每袋大米以50kg为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是kg.
16.已知有理数a、b表示的点在数轴上的位置如图所示,化简:|b﹣a|﹣|a+1|=.
三.解答题
17.计算:
(1)(﹣3)2×23﹣(﹣4)÷2=
(2)(﹣+﹣)×12+(﹣1)2011=
18.把下列各数填在表示集合的相应大括号中:
+6,﹣8,﹣0.4,25,0,﹣,9.15,1
整数集合﹛﹜
分数集合﹛﹜
非负数集合﹛﹜
正数集合﹛﹜
负数集合﹛﹜
19.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,﹣4,+3,﹣10,+3,﹣9
(1)最后一名老师送到目的地时,小王距出租车出发地的距离是多少千米?
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
20.观察等式:,


将以上三个等式两边分别相加得
=.
(1)猜想并写出:=.
(2)直接写出下式的计算结果:=.(3)探究并计算:+…+=.
21.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日
增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8 (1)根据记录的数据可知该厂星期四生产自行车辆;
(2)产量最多的一天比产量最少的一天多生产自行车辆;
(3)根据记录的数据可知该厂本周实际生产自行车辆;
(4)该厂实行每周计件工资制,每生产一辆车可得50元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣25元,那么该厂工人这一周的工资总额是多少元?
参考答案
一.选择题
1.解:A、﹣3是负数,但不是分数,故本选项错误;
B、﹣是负数也是分数,故本选项正确;
C、是分数,但不是负数,故本选项错误;
D、0不是负数也不是分数,故本选项错误.
故选:B.
2.解:A、0不是无理数,故无理数不包括0,故本选项错误;
B、无理数不是用根号表示的数,例如=2,是有理数,故本选项错误;
C、开方开不尽的数是无理数,但无理数不一定是开方开不尽的数,故本选项错误;
D、无理数是无限不循环小数,故本选项错误.
故选:D.
3.解:A、只有a=0时,﹣a2=(﹣a)2,故本选项错误;
B、只有a=0时,﹣(﹣a)2=a2,故本选项错误;
C、对任何数﹣a2=﹣(﹣a)2,故本选项正确;
D、只有a=0时,(﹣a)2=﹣(﹣a)2,故本选项错误.
故选:C.
4.解:2 440 000=2.44×106.
故选:C.
5.解:(﹣2)3指数是3,底数是﹣2,幂为﹣8,表示3个﹣2相乘,所以,错误的是D选项.
故选:D.
6.解:15﹣(﹣1),
=15+1,
=16℃.
故选:A.
7.解:①(﹣5)+(+3)=﹣2,错误;
②﹣(﹣2)3=﹣(﹣8)=8,错误;
③(+)+(﹣)=,错误;
④﹣3÷(﹣)=﹣3×(﹣3)=9,正确.
则其中正确的有1个.
故选:B.
8.解:∵一个数的绝对值是正数,
∴这个数一定不是0,
∴这个数是非零数.
故选:B.
9.解;a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,a=1,b=﹣1,c=0,
∴a+b+c=1+(﹣1)+0=0,
故选:B.
10.解:∵|abc|=﹣abc,且abc≠0,
∴abc中负数有一个或三个,
则原式=1或﹣3,
故选:A.
二.填空题(共6小题)
11.解:原式=﹣8,
故答案为:﹣8
12.解:﹣1﹣5=﹣6,
或﹣1+5=4.
故点N表示的有理数是﹣6或4.
故答案为:﹣6或4.
13.解:∵MN=NP=PR=1,
∴|MN|=|NP|=|PR|=1,
∴|MR|=3;
①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P
点;
②当原点在M、R且|MA|=|BR|时,|a|+|b|=3;
综上所述,此原点应是在M或R点.
故答案为:M或R.
14.解:,﹣(﹣1),﹣|8﹣22|,﹣3,﹣32,﹣(﹣)3,0是有理数,则m=7;
﹣(﹣1),0是自然数,则n=2;
,﹣(﹣)3是分数,则k=2;
﹣|8﹣22|,﹣3,﹣32是负数,则t=3,
则m﹣n﹣k+t=7﹣2﹣2+3=6,
故答案为:6.
15.解:50+(﹣0.7)=49.3kg,
故答案为:49.3kg.
16.解:根据图示知:b>a,a<﹣1,
∴|b﹣a|﹣|a+1|
=b﹣a﹣(﹣a﹣1)
=b﹣a+a+1
=b+1.
故答案为:b+1.
三.解答题(共5小题)
17.解:(1)(﹣3)2×23﹣(﹣4)÷2,
=9×8+2,
=74;
(2)(﹣+﹣)×12+(﹣1)2011,
=﹣9+2﹣4.5﹣1,
=﹣12.5.
故答案为:(1)74,(2)﹣12.5.
18.解:整数集合{+6,﹣8,25,0…};
分数集合{﹣0.4,9.15,,…};
非负数集合{25,+6,9.15,0,…};
正数集合{+6,25,9.15,…};
负数集合{﹣8,﹣0.4,…}.
19.解:(1)根据题意:规定向东为正,向西为负:则(+5)+(﹣4)+(+3)+(﹣10)+(+3)+(﹣9)=﹣12(千米),
故小王距出租车出发地的距离是12千米;
(2)汽车走的路程为:|+5|+|﹣4|+|+3|+|﹣10|+|+3|+|﹣9|=34(千米),
若汽车耗油量为0.4升/千米,
则耗油量为:34×0.4=13.6(升),
故这天下午汽车共耗油13.6升.
20.解:(1)由已知等式,得=﹣,
故答案为:﹣;
(2)由分数拆分,抵消规律可知,=,故答案为:;
(3)+…+
=(+++…+)
=(1﹣+﹣+﹣+…+﹣)
=(1﹣)
=.
故答案为:.
21.解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12辆,故该厂星期四生产自行车212辆;
(2)根据图示产量最多的一天是216,产量最少的一天是190,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;
(3)根据题意知,
6﹣2﹣4+12﹣10+16﹣8=10,200×7+10=1410辆,
故该厂本周实际生产自行车1410辆;
(4)根据图示,本周工人工资总额=200×7×50+10×(50+20)=70700元,(或:本周工人工资总额=1410×50+10×20=70700元)
故该厂工人这一周的工资总额是70700元.
故答案为:(1)212;(2)26;(3)1410;(4)70700.。

相关文档
最新文档