人教A版高中数学 高三一轮第五章 数列5.3 等比数列及其前n项和(学案)Word版
2022年高考数学(文)一轮复习文档:第五章 数列 第3讲等比数列及其前n项和 Word版含答案
第3讲 等比数列及其前n 项和 ,)1.等比数列的有关概念 (1)定义假如一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项假如a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).1.辨明三个易误点(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能马上断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必需留意对q =1与q ≠1分类争辩,防止因忽视q =1这一特殊情形而导致解题失误.2.等比数列的三种判定方法(1)定义法:a n +1a n=q (q 是不为零的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cqn -1(c 、q 均是不为零的常数,n ∈N *)⇔{a n }是等比数列.(3)等比中项法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中依据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)分类争辩思想:在应用等比数列前n 项和公式时,必需分类求和,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q;在推断等比数列单调性时,也必需对a 1与q 分类争辩.1.教材习题改编 等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54C 法一:由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝ ⎛⎭⎪⎫325=812.故选C.法二:由等比数列性质知,a 23=a 2a 4,所以a 2=a 23a 4=12218=8,又a 24=a 2a 6,所以a 6=a 24a 2=1828=812.故选C.2.教材习题改编 设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64C 由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C. 3.教材习题改编 在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 27,814.教材习题改编 由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. log 2a 1+log 2a 2+…+log 2a 10 =log 2=log 2(a 3a 8)5=log 2225=25.255.教材习题改编 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 由于a 5-a 1=15,a 4-a 2=6.所以a 1q 4-a 1=15,① a 1q 3-a 1q =6,②且q ≠1. ①②得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, 所以q =2或q =12,当q =2时,a 1=1;当q =12时,a 1=-16(舍去).所以a 3=1×22=4. 4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,属中、低档题. 高考对等比数列基本运算的考查主要有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.(2021·兰州模拟)设数列{a n }的前n 项和S n 满足6S n +1=9a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n,求数列{b n }的前n 项和T n .【解】 (1)当n =1时,由6a 1+1=9a 1,得a 1=13.当n ≥2时,由6S n +1=9a n ,得6S n -1+1=9a n -1, 两式相减得6(S n -S n -1)=9(a n -a n -1), 即6a n =9(a n -a n -1),所以a n =3a n -1.所以数列{a n }是首项为13,公比为3的等比数列,其通项公式为a n =13×3n -1=3n -2.(2)由于b n =1a n =⎝ ⎛⎭⎪⎫13n -2,所以{b n }是首项为3,公比为13的等比数列,所以T n =b 1+b 2+…+b n =3⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=92⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .等比数列基本运算的解题技巧(1)求等比数列的基本量问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出以首项和公比为未知数的方程(组);②求出首项和公比;③求出项数或前n 项和等其余量.(2)设元的技巧,可削减运算量,如三个数成等比数列,可设为a q,a ,aq (公比为q );四个数成等比数列且q >0时,设为a q 3,a q,aq ,aq 3.角度一 求首项a 1、公比q 或项数n1.(2021·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.由于a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列. 又由于S n =126,所以2(1-2n)1-2=126,所以n =6.6角度二 求通项或特定项2.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 由于3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简,得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.3n -1角度三 求前n 项和3.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-310) B .19(1-3-10) C .3(1-3-10) D .3(1+3-10)C 由题意知数列{a n }为等比数列,设其公比为q ,则q =a n +1a n =-13,a 1=a 2q =4,因此其前10项和等于4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).等比数列的判定与证明(2022·高考全国卷丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.【解】 (1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列, 于是a n =11-λ(λλ-1)n -1.(2)由(1)得,S n =1-(λλ-1)n. 由S 5=3132得,1-(λλ-1)5=3132,即(λλ-1)5=132. 解得λ=-1.证明数列{a n }是等比数列常用的方法 一是定义法,证明a n a n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若推断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.已知数列{a n }是等差数列,a 3=10,a 6=22,数列{b n }的前n 项和是T n ,且T n +13b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+2d =10,a 1+5d =22,解得a 1=2,d =4.所以a n =2+(n -1)×4=4n -2. (2)证明:由T n =1-13b n ,①令n =1,得T 1=b 1=1-13b 1.解得b 1=34,当n ≥2时,T n -1=1-13b n -1,②①-②得b n =13b n -1-13b n ,所以b n =14b n -1,所以b n b n -1=14.又由于b 1=34≠0, 所以数列{b n }是以34为首项,14为公比的等比数列.等比数列的性质(1)(2021·高考全国卷Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42D .48(3)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. 【解析】 (1)法一:由于a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又由于q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:由于a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1).将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31,故选A.(3)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.【答案】 (1)C (2)A (3)-12等比数列常见性质的应用(1)在解决等比数列的有关问题时,要留意挖掘隐含条件,利用性质,特殊是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以削减运算量,提高解题速度.(2)等比数列性质的应用可以分为三类:①通项公式的变形;②等比中项的变形;③前n 项和公式的变形.依据题目条件,认真分析,发觉具体的变化特征即可找出解决问题的突破口.(3)在应用相应性质解题时,要留意性质成立的前提条件,有时需要进行适当变形.此外,解题时留意设而不求思想的运用.1.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A .18 B .-18C .578D .558A 由于a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.2.(2021·沈阳质量监测)数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.设等比数列{a n }的公比为q ,由等比数列的性质知a 5=a 2q 3,求得q =12,所以a 1=4.a 2a 3=⎝ ⎛⎭⎪⎫12a 1⎝ ⎛⎭⎪⎫12a 2=14a 1a 2,a n a n +1=⎝ ⎛⎭⎪⎫12a n -1⎝ ⎛⎭⎪⎫12a n =14a n -1a n (n ≥2).设b n =a n a n +1,可以得出数列{b n }是以8为首项,以14为公比的等比数列,所以a 1a 2+a 2a 3+…+a n a n +1为数列{b n }的前n 项和,由等比数列前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).323(1-4-n) ,)——分类争辩思想在等比数列中的应用已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.【解析】 设公比为q ,若q =1,则S 2m S m =2,与题中条件冲突,故q ≠1.由于S 2m S m =a 1(1-q 2m )1-q a 1(1-q m)1-q =q m+1=9,所以q m=8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 【答案】 2(1)本题在利用等比数列的前n 项和公式表示S 2m 和S m 时,对公比q =1和q ≠1进行了分类争辩.(2)分类争辩思想在等比数列中应用较多,常见的分类争辩有: ①已知S n 与a n 的关系,要分n =1,n ≥2两种状况. ②等比数列中遇到求和问题要分公比q =1,q ≠1争辩.③项数的奇、偶数争辩.④等比数列的单调性的推断留意与a 1,q 的取值的争辩.在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .(1)由题意知(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n (n +1)2=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1). 由于b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n 2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n (n +1)=-(n +1)22.所以T n=⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.,)1.(2021·太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4C . 2D .2 2B 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q2=a 4a 2=14, 所以q =12,a 1=a 2q=4.2.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B .13C .-12D .12A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a2,所以a =-13.3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C .n (n +1)2D .n (n -1)2A 由于a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2×2=n (n +1).故选A.4.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .3C 设数列{a n }的首项为a 1,公比为q ,依据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52.所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2021·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017D 由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.6.(2021·唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1B .4n-1 C .2n -1D .2n-1D 设{a n}的公比为q ,由于⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,所以⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①②可得1+q2q +q 3=2,所以q =12,代入①得a 1=2,所以a n =2×⎝ ⎛⎭⎪⎫12n -1=42n , 所以S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝ ⎛⎭⎪⎫1-12n , 所以S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n-1,选D.7.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n1-2=2n-1.2n-18.(2021·郑州其次次质量猜测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.289.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________. T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.1510.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1qn -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.9311.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明:依题意S n =4a n -3(n ∈N *), 当n =1时,a 1=4a 1-3,解得a 1=1. 由于S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1, 公比为43的等比数列.(2)由于a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2),当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1.12.(2021·衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n=( )A .2n +1-2 B .3n C .2nD .3n-1C 由于数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,由于数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.13.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n-1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=8⎝ ⎛⎭⎪⎫1+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.14.(2021·南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .(1)由于a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 由于q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n, T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.。
2014届高三数学总复习 5.3等比数列教案 新人教A版
2014届高三数学总复习 5.3等比数列教案 新人教A 版1. (必修5P 55习题2(1)改编)设S n 是等比数列{a n }的前n 项和,若a 1=1,a 6=32,则S 3=________.答案:7解析:q 5=a 6a 1=32,q =2,S 3=1×(1-23)1-2=7.2. (必修5P 49习题1改编) {a n }为等比数列,a 2=6,a 5=162,则{a n }的通项公式a n =________.答案:a n =2×3n -1解析:由a 2=6,a 5=162,得⎩⎪⎨⎪⎧a 1q =6,a 1q 4=162,所以a 1=2,q =3.3. (必修5P 49习题6改编)等比数列{a n }中,a 1>0,a 2a 4+2a 3a 5+a 4a 6=36,则a 3+a 5=________.答案:6解析:a 2a 4+2a 3a 5+a 4a 6=(a 3+a 5)2=36,又a 1>0,∴ a 3,a 5>0,∴ a 3+a 5=6. 4. (必修5P 49习题7(2)改编)已知两个数k +9和6-k 的等比中项是2k ,则k =________. 答案:3解析:由已知得(2k)2=(k +9)(6-k),k ∈N *,∴ k =3.5. (必修5P51例2改编)等比数列{a n }中,S 3=7,S 6=63,则a n =________.答案:2n -1解析:由已知得a 1=1,q =2;∴ a n =2n -1.1. 等比数列的概念 (1) 文字语言:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.(2) 符号语言:a n +1a n_=q(n∈N ,q 是等比数列的公比).2. 等比数列的通项公式设{a n }是首项为a 1,公比为q 的等比数列,则第n 项an =a 1q n -1.推广:a n =a m q (n -m).3. 等比中项若a ,G ,b 成等比数列,则G 为a 和b 的等比中项且G 4. 等比数列的前n 项和公式(1) 当q =1时,S n =na 1.(2) 当q≠1时,S n =a 1(1-q n)1-q =a 1-a n q1-q.5. 等比数列的性质(1) a n =a m q n -m.(2) 等比数列{a n }中,对任意的m 、n 、p 、q∈N *,若m +n =p +q ,则a m a n =a p a q .特殊的,若m +n =2p ,则a m a n =a 2p .(3) 等比数列{a n }中依次每m 项的和仍成等比数列,即S m 、S 2m -S m 、S 3m -S 2m 、…仍成等比数列,其公比为q m(q≠-1).[备课札记]题型1 等比数列的基本运算例1 等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1) 求{a n }的公比q ; (2) 若a 1-a 3=3,求S n .解:(1) ∵ S 1,S 3,S 2成等差数列,∴ 2S 3=S 1+S 2,即2(a 1+a 2+a 3)=a 1+a 1+a 2, ∴ 2a 3=-a 2,∴ q =a 3a 2=-12.(2) a 3=a 1q 2=14a 1,∴ a 1-14a 1=3,∴ a 1=4,∴ S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1+12=83-83⎝ ⎛⎭⎪⎫-12n.变式训练已知数列{a n }的前n 项和为S n ,a 1=1,且2a n +1=S n +2(n∈N ). (1) 求a 2,a 3的值,并求数列{a n }的通项公式; (2) 解不等式∑i =1n3a i>S n (n∈N ).解:(1) ∵ 2a 2=S 1+2=a 1+2=3,∴ a 2=32.∵ 2a 3=S 2+2=a 1+a 2+2=92,∴ a 3=94.∵ 2a n +1=S n +2,∴ 2a n =S n -1+2(n≥2),两式相减,得2a n +1-2a n =S n -S n -1.∴ 2a n +1-2a n =a n .则a n +1=32a n (n≥2).∵ a 2=32a 1,∴ a n +1=32a n (n∈N ).∵ a 1=1≠0,∴ a n +1a n =32,即{a n }为等比数列,a n =⎝ ⎛⎭⎪⎫32n -1.(2) 3a n =3×⎝ ⎛⎭⎪⎫23n -1,∴ 数列⎩⎨⎧⎭⎬⎫3a n 是首项为3,公比为23的等比数列.数列⎩⎨⎧⎭⎬⎫3a n 的前5项为:3,2,43,89,1627.{a n }的前5项为:1,32,94,278,8116.∴ n =1,2,3时,∑i =1n3a i >S n 成立;而n =4时,∑i =1n3a i ≤S n ;∵ n ≥5时,3a n<1,a n >1,∴ ∑i =1n3a i≤S n .∴ 不等式∑i =1n3a i>S n (n∈N )的解集为{1,2,3}.题型2 等比数列的判定与证明例2 已知数列{a n }的前n 项和为S n ,3S n =a n -1(n∈N ). (1) 求a 1,a 2;(2) 求证:数列{a n }是等比数列; (3) 求a n 和S n .(1) 解:由3S 1=a 1-1,得3a 1=a 1-1,∴ a 1=-12.又3S 2=a 2-1,即3a 1+3a 2=a 2-1,得a 2=14.(2) 证明:当n≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12,所以{a n }是首项为-12,公比为-12的等比数列.(3) 解:由(2)可得a n =⎝ ⎛⎭⎪⎫-12n,S n =⎝ ⎛⎭⎪⎫-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=-13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .备选变式(教师专享)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1) 求证:数列{a n -n}是等比数列; (2) 求数列{a n }的前n 项和S n ;(3) 求证:不等式S n +1≤4S n 对任意n∈N *皆成立.(1) 证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *.又a 1-1=1,所以数列{a n -n}是首项为1,公比为4的等比数列.(2) 解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =4n-13+n (n +1)2.(3) 证明:对任意的n∈N *,S n+1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n-13+n (n +1)2=-12(3n 2+n -4)≤0,所以不等式S n +1≤4S n对任意n∈N *皆成立.题型3 等比数列的性质例3 已知等比数列{a n }中,a 2=32,a 8=12,a n +1<a n .(1) 求数列{a n }的通项公式;(2) 设T n =log 2a 1+log 2a 2+…+log 2a n ,求T n 的最大值及相应的n 值.解:(1) q 6=a 8a 2=1232=164, a n +1<a n ,所以q =12.以a 1=a 2q =3212=64为首项,所以通项公式为a n =64·⎝ ⎛⎭⎪⎫12n -1=27-n(n∈N ).(2) 设b n =log 2a n ,则b n =log 227-n=7-n.所以{b n }是首项为6,公差为-1的等差数列.T n =6n +n (n -1)2(-1)=-12n 2+132n =-12(n -132)2+1698.因为n 是自然数,所以n =6或n =7时,T n 最大,其最大值是T 6=T 7=21.备选变式(教师专享)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1(n∈N *)的取值范围是________.答案:⎣⎢⎡⎭⎪⎫8,323解析:∵a 5=a 2q 3,∴14=2×q 3,∴q =12,∴a 1=a 2q =4,∴a n =4×⎝ ⎛⎭⎪⎫12n -1=23-n ,∴a k a k +1=12k -3·12k -2=122k -5,∴a 1a 2+a 2a 3+…+a n a n +1=12+12+…+12=32×⎝ ⎛⎭⎪⎫14+142+…+14n =32×14⎝ ⎛⎭⎪⎫1-14n 1-14=323⎝ ⎛⎭⎪⎫1-14n ∈⎣⎢⎡⎭⎪⎫8,323.题型4 等比数列的应用例4 定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n },{f(a n )}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x 2;②f(x)=2x;③f(x)=|x|;④f(x)=ln(x). 其中是“保等比数列函数”的是__________.(填序号) 答案:①③解析:验证:① f (a n +1)f (a n )=a 2n +1a 2n =q 2;③ f (a n +1)f (a n )=|a n +1||a n |=|q|. 备选变式(教师专享)已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n . (1) 求数列{a n }与{b n }的通项公式;(2) 设c n =a 2n ·b n ,证明:当且仅当n≥3时,c n +1<c n .(1) 解:a 1=S 1=4,当n≥2时,a n =S n -S n -1=2n(n +1)-2(n -1)n =4n.又a 1=4适合上式,∴a n =4n(n∈N *).将n =1代入T n =2-b n ,得b 1=2-b 1,∴T 1=b 1=1. 当n≥2时,T n -1=2-b n -1,T n =2-b n , ∴b n =T n -T n -1=b n -1-b n , ∴b n =12b n -1,∴b n =21-n.(2) 证明:证法1:由c n =a 2n ·b n =n 2·25-n,得c n +1c n =12⎝ ⎛⎭⎪⎫1+1n 2. 当且仅当n≥3时,1+1n ≤43<2,即c n +1<c n .证法2:由c n =a 2n ·b n =n 2·25-n ,得c n +1-c n =24-n [(n +1)2-2n 2]=24-n [-(n -1)2+2]. 当且仅当n≥3时,c n +1-c n <0,即c n +1<c n.1. (2013·大纲版)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和为________.答案:3(1-3-10)解析:q =-13,a 1=4,则S 10=4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13101-⎝ ⎛⎭⎪⎫-13=3(1-3-10).2. (2013·新课标1)若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n=________.答案:a n =(-2)n -1解析:S n =23a n +13,S n -1=23a n -1+13(n≥2),相减得a n =23a n -23a n -1,即a n =-2a n -1(n≥2).又S 1=23a 1+13,即a 1=1,故a n =(-2)n -1.3. (2013·新课标Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=________.答案:19解析:有条件得a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9,解得q =±3,a 1=19.4. 若数列{a n }满足lga n +1=1+lga n ,a 1+a 2+a 3=10,则lg(a 4+a 5+a 6)=________. 答案:4解析:由条件知:a n +1a n=10,即数列{a n }是公比为10的等比数列,所以lg(a 4+a 5+a 6)=lgq 3(a 1+a 2+a 3)=4.1. 等比数列{a n }的前n 项和为S n ,已知a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.解:解法1:在等比数列{a n }中,a 1a n =a 2a n -1=128.又a 1+a n =66,∴⎩⎪⎨⎪⎧a 1+a n =66,a 1a n =128,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2,∴q ≠1.由a n =a 1qn -1和S n =a 1(1-q n)1-q=126,得⎩⎪⎨⎪⎧2q n -1=64,2(1-q n )1-q =126或⎩⎪⎨⎪⎧64q n -1=2,64(1-q n )1-q =126,解得⎩⎪⎨⎪⎧n =6,q =2或⎩⎪⎨⎪⎧n =6,q =12.解法2:当q =1时,经检验不合适,由题意可得 ⎩⎪⎨⎪⎧a 1(1+qn -1)=66, ①a 21q n -1=128, ②a 1(1-q n)1-q =126, ③由②可得qn -1=128a 21,代入①,得a 1⎝⎛⎭⎪⎫1+128a 21=66,化简得a 21-66a 1+128=0,解得a 1=2或a 1=64.当a 1=2时,代入①,得q n -1=32,将a 1=2和qn -1=32代入③,得2(1-32q )1-q=126,解得q =2.又qn -1=32,即2n -1=32=25,∴n =6.同理,当a 1=64时,可解得q =12,n =6.综上所述,n 的值为6,q =2或12.2. 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +1,设b n =a n +1-2a n .证明:数列{b n }是等比数列.证明:由于S n +1=4a n +1,① 当n≥2时,S n =4a n -1+1.② ①-②,得a n +1=4a n -4a n -1. 所以a n +1-2a n =2(a n -2a n -1).又b n =a n +1-2a n ,所以b n =2b n -1.因为a 1=1,且a 1+a 2=4a 1+1,即a 2=3a 1+1=4.所以b 1=a 2-2a 1=2,故数列{b n }是首项为2,公比为2的等比数列.3. (2013·辽宁)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.答案:63解析:因为等比数列{a n }是递增数列,所以a 1=1,a 3=4,则q =2,故S 6=1×(1-26)1-2=63.4. 已知数列{a n }的首项a 1=2a +1(a 是常数,且a≠-1),a n =2a n -1+n 2-4n +2(n≥2),数列{b n }的首项b 1=a ,b n =a n +n 2(n≥2).(1) 证明:{b n }从第2项起是以2为公比的等比数列;(2) 设S n 为数列{b n }的前n 项和,且{S n }是等比数列,求实数a 的值; (3) 当a>0时,求数列{a n }的最小项.(1) 证明:∵ b n =a n +n 2,∴ b n +1=a n +1+(n +1)2=2a n +(n +1)2-4(n +1)+2+(n +1)2=2a n +2n 2=2b n (n≥2).由a 1=2a +1,得a 2=4a ,b 2=a 2+4=4a +4,∵ a ≠-1, ∴ b 2≠0,即{b n }从第2项起是以2为公比的等比数列.(2) 解:由(1)知b n =⎩⎪⎨⎪⎧a ,n =1,(4a +4)2n -2,n ≥2. S n =a +(4a +4)(2n -1-1)2-1=-3a -4+(2a +2)2n,当n≥2时,S nS n -1=(2a +2)2n-3a -4(2a +2)2n -1-3a -4=2+3a +4(a +1)2n -1-3a -4. ∵ {S n }是等比数列, ∴ S n S n -1(n≥2)是常数,∴ 3a +4=0,即a =-43.(3) 解:由(1)知当n≥2时,b n =(4a +4)2n -2=(a +1)2n,∴ a n =⎩⎪⎨⎪⎧2a +1,n =1,(a +1)2n -n 2,n ≥2, ∴ 数列{a n }为2a +1,4a ,8a -1,16a ,32a +7,…显然最小项是前三项中的一项.当a∈⎝ ⎛⎭⎪⎫0,14时,最小项为8a -1; 当a =14时,最小项为4a 或8a -1;当a∈⎝ ⎛⎭⎪⎫14,12时,最小项为4a ; 当a =12时,最小项为4a 或2a +1;当a∈⎝ ⎛⎭⎪⎫12,+∞时,最小项为2a +1.1. 重点是本着化多为少的原则,解题时,需抓住首项a 1和公比q.2. 运用等比数列求和公式时,要对q =1和q≠1进行讨论.3. 解决等比数列有关问题的常见思想方法:①方程的思想:等比数列中有五个量a 1,q ,n ,a n ,S n ,一般可以“知三求二”,通过列方程组求关键量a 1,q ;②分类的思想:当a 1>0,q>1或者a1<0,0<q<1时,等比数列{a n}递增;当a1>0,0<q<1或者a1<0,q>1时,等比数列{a n}递减;当q<0时,等比数列为摆动数列;当q=1时,等比数列为常数列;③函数的思想:用函数的观点来理解和掌握等比数列的概念、通项公式和前n项和公式.4. 巧用性质,减少运算量,在解题中非常重要.请使用课时训练(A)第3课时(见活页).。
(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业
第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。
【创新方案】2021届高考数学一轮复习 5.3等比数列及其前n项和讲解与练习 理 新人教A版
第三节等比数列及其前n项和[备考方向要明了]考什么怎么考1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 1.以客观题的形式考查等比数列的性质及其基本量的计算,如2012年新课标全国T5,浙江T13等.2.以解答题的形式考查等比数列的定义、通项公式、前n项和公式及性质的综合应用,如2012年湖北T18等.[归纳·知识整合] 1.等比数列的相关概念相关名词等比数列{a n}的有关概念及公式定义a n+1a n=q(q是常数且q≠0,n∈N*)或a na n-1=q(q是常数且q≠0,n∈N*且n≥2)通项公式a n=a1q n-1=a m·q n-m前n项和公式S n=⎩⎪⎨⎪⎧na1q=1a11-q n1-q=a1-a n q1-qq≠1等比中项设a,b为任意两个同号的实数,则a,b的等比中项G=±ab[探究] 1.b2=ac是a,b,c成等比数列的什么条件?提示:b2=ac是a,b,c成等比数列的必要不充分条件,因为当b=0时,a,c至少有一个为零时,b2=ac成立,但a,b,c不成等比数列;若a,b,c成等比数列,则必有b2=ac.2.如何理解等比数列{a n}与指数函数的关系?提示:等比数列{a n }的通项公式a n =a 1qn -1可改写为a n =a 1q·q n.当q >0,且q ≠1时,y=q x是一个指数函数,而y =a 1q·q x是一个不为0的常数与指数函数的积,因此等比数列{a n }的图象是函数y =a 1q·q x的图象上的一群孤立的点.2.等比数列的性质(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q 则a m ·a n =a p ·a q . 特别地,若m +n =2p ,则a m ·a n =a 2p .(2)若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m-S 2m )(m ∈N *,公比q ≠-1).(3)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.[自测·牛刀小试]1.在等比数列{a n }中,如果公比q <1,那么等比数列{a n }是( ) A .递增数列 B .递减数列C .常数列D .无法确定数列的增减性解析:选D 当a 1>0,0<q <1,数列{a n }为递减数列,当q <0,数列{a n }为摆动数列. 2.(教材习题改编)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35解析:选B ∵数列{a n }为等比数列,∴a 5a 6=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=5log 3a 5a 6=5log 39=10.3.(教材习题改编)在等比数列{a n }中,若a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:∵⎩⎪⎨⎪⎧a 5-a 1=15,a 4-a 2=6,∴⎩⎪⎨⎪⎧a 1q 4-1=15,a 1q 3-q =6.∴q 2-1≠0,q 4-1q 3-q =52.∴2q 2-5q +2=0,解得q =12或q =2.当q =2时,a 1=1,∴a 3=a 1q 2=4. 当q =12时,a 1=-16,∴a 3=a 1q 2=-4.答案:4或-44.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________. 解析:由等比数列性质,已知转化为a 23+2a 3a 5+a 25=25, 即(a 3+a 5)2=25,又a n >0,故a 3+a 5=5. 答案:55.在1与4之间插入三个数使这五个数成等比数列,则这三个数分别是________. 解析:设等比数列的公比为q ,则4=q 4.即q =± 2. 当q =2时,插入的三个数是2,2,2 2. 当q =-2时,插入的三个数是-2,2,-2 2. 答案:2,2,22或-2,2,-2 2等比数列的基本运算[例1] (1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·辽宁高考)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.(3)(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.[自主解答] (1)设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2,或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12,或⎩⎪⎨⎪⎧a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1,或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.(2)∵2(a n +a n +2)=5a n +1,∴2a n +2a n ·q 2=5a n ·q , 即2q 2-5q +2=0,解得q =2或q =12(舍去).又∵a 25=a 10=a 5·q 5, ∴a 5=q 5=25=32. ∴32=a 1·q 4,解得a 1=2. ∴a n =2×2n -1=2n ,故a n =2n.(3)由S 2=3a 2+2,S 4=3a 4+2作差可得a 3+a 4=3a 4-3a 2,即2a 4-a 3-3a 2=0,所以2q 2-q -3=0,解得q =32或q =-1(舍去).[答案] (1)D (2)2n(3)32———————————————————等比数列运算的通法与等差数列一样,求等比数列的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式a n =a 1·q n -1(a 1q ≠0)及前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1中共有五个变量,已知其中的三个变量,可以通过构造方程或方程组求另外两个变量,在求公比q 时,要注意应用q ≠0验证求得的结果.1.(1)(2013·海淀模拟)在等数列{a n }中,a 1=8,a 4=a 3a 5,则a 7=( ) A.116B.18C.14D.12(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152 B.314 C.334D.172解析:(1)选B 在等比数列{a n }中,a 24=a 3a 5,又a 4=a 3a 5,所以a 4=1,故q =12,所以a 7=18.(2)选B 显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12,或⎩⎪⎨⎪⎧a 1=9,q =-13,(舍去)故S 5=a 11-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314.等比数列的判定与证明[例2] 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .[自主解答] (1)证明:∵由a 1=1,及S n +1=4a n +2, 有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2,①知当n ≥2时,有S n =4a n -1+2,② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). 又∵b n =a n +1-2a n ,∴b n =2b n -1.∴{b n }是首项b 1=3,公比q =2的等比数列. (2)由(1)可得b n =a n +1-2a n =3×2n -1,∴a n +12n +1-a n 2n =34. ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14. a n =(3n -1)×2n -2.———————————————————等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.2.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.解:(1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1×22,解得b 1=54.所以{b n }是以54为首项,以2为公比的等比数列,其通项公式为b n =54×2n -1=5×2n -3.(2)证明:由(1)得数列{b n }的前n 项和S n =541-2n1-2=5×2n -2-54,即S n +54=5×2n -2.所以S 1+54=52,S n +1+54S n +54=5×2n -15×2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,以2为公比的等比数列.等比数列的性质及应用[例3] (1)在等比数列{a n }中,若a 1·a 2·a 3·a 4=1,a 13·a 14·a 15·a 16=8,则a 41·a 42·a 43·a 44=________.(2)已知数列{a n }为等比数列,S n 为其前n 项和,n ∈N *,若a 1+a 2+a 3=3,a 4+a 5+a 6=6,则S 12=________.[自主解答] (1)法一:a 1·a 2·a 3·a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,①a 13·a 14·a 15·a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,② 由②÷①,得a 41·q 54a 41·q6=q 48=8⇒q 16=2,又a 41·a 42·a 43·a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1·210=1 024.法二:由性质可知,依次4项的积为等比数列,设公比为q ,T 1=a 1·a 2·a 3·a 4=1,T 4=a 13·a 14·a 15·a 16=8,∴T 4=T 1·q 3=1·q 3=8,即q =2.∴T 11=a 41·a 42·a 43·a 44=T 1·q 10=210=1 024.(2)法一:设等比数列{a n }的公比为q ,则a 4+a 5+a 6a 1+a 2+a 3=a 1·q 3+a 2·q 3+a 3·q 3a 1+a 2+a 3=q 3=63,即q 3=2.故S 12=(a 1+a 2+a 3)+(a 4+a 5+a 6)+(a 7+a 8+a 9)+(a 10+a 11+a 12)=(a 1+a 2+a 3)+(a 1·q 3+a 2·q 3+a 3·q 3)+(a 1·q 6+a 2·q 6+a 3·q 6)+(a 1·q 9+a 2·q 9+a 3·q 9)=(a 1+a 2+a 3)+(a 1+a 2+a 3)q 3+(a 1+a 2+a 3)q 6+(a 1+a 2+a 3)q 9=(a 1+a 2+a 3)(1+q 3+q 6+q 9)=3×(1+2+22+23)=45.法二:设等比数列{a n }的公比为q , 则a 4+a 5+a 6a 1+a 2+a 3=q 3=63,即q 3=2.因为S 6=a 1+a 2+a 3+a 4+a 5+a 6=9,S 12-S 6=a 7+a 8+a 9+a 10+a 11+a 12,所以S 12-S 6S 6=a 7+a 8+a 9+a 10+a 11+a 12a 1+a 2+a 3+a 4+a 5+a 6= a 1·q 6+a 2·q 6+a 3·q 6+a 4·q 6+a 5·q 6+a 6·q 6a 1+a 2+a 3+a 4+a 5+a 6=q 6=4.所以S 12=5S 6=45. [答案] (1)1 024 (2)45———————————————————等比数列常见性质的应用等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.3.已知等比数列前n 项的和为2,其后2n 项的和为12,求再后面3n 项的和. 解:∵S n =2,其后2n 项为S 3n -S n =S 3n -2=12, ∴S 3n =14.由等比数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等比数列, 即(S 2n -2)2=2·(14-S 2n )解得S 2n =-4,或S 2n =6.当S 2n =-4时,S n ,S 2n -S n ,S 3n -S 2n ,…是首项为2,公比为-3的等比数列, 则S 6n =S n +(S 2n -S n )+…+(S 6n -S 5n )=-364, ∴再后3n 项的和为S 6n -S 3n =-364-14=-378.当S 2n =6时,同理可得再后3n 项的和为S 6n -S 3n =126-14=112. 故所求的和为-378或112.3个防范——应用等比数列的公比应注意的问题 (1)注意q =1时,S n =na ,这一特殊情况.(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0.(3)在应用等比数列的前n 项和公式时,必须注意对q =1和q ≠1分类讨论,防止因忽略q =1这一特殊情况而导致错误.4个思想——求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n 项和的公式中联系着五个量:a 1,q ,n ,a n ,S n ,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a 1与q ,在解题中根据已知条件建立关于a 1与q 的方程或者方程组,是解题的关键.(2)整体思想:当公比q ≠1时,S n =a 11-q n 1-q =a 11-q ·(1-q n),令a 11-q =t ,则S n =t (1-q n ).把a 11-q与q n当成一个整体求解,也可简化运算.(3)分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当q =1时,S n=na 1;当q ≠1时,S n =a 11-q n1-q;在判断等比数列单调性时,也必须对a 1与q 分类讨论.(4)函数思想:在等比数列{a n }中,a n =a 1q·q n,它的各项是函数y =a 1q·q x图象上的一群孤立的点,可以根据指数函数的一些性质研究等比数列问题(如单调性),注意函数思想在等比数列问题中的应用.创新交汇——以等比数列为背景的新定义问题1.在新情境下先定义一个新数列,然后根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来新兴起的一类问题,同时,数列也常与函数、不等式等形成交汇命题.2.对于此类新定义问题,我们要弄清其本质,然后根据所学的数列的性质即可快速解决.[典例] (2012·湖北高考)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=|x|;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )A.①②B.③④C.①③D.②④[解析] 法一:设{a n}的公比为q.①f(a n)=a2n,∵a2n+1a2n=⎝⎛⎭⎪⎫a n+1a n2=q2,∴{f(a n)}是等比数列.排除B、D.③f(a n)=|a n|,∵|a n+1||a n|=⎪⎪⎪⎪⎪⎪a n+1a n=|q|,∴{f(a n)}是等比数列.法二:不妨令a n=2n.①因为f(x)=x2,所以f(a n)=4n.显然{f(2n)}是首项为4,公比为4的等比数列.②因为f(x)=2x,所以f(a1)=f(2)=22,f(a2)=f(4)=24,f(a3)=f(8)=28,所以f a 2f a 1=2422=4≠f a 3f a 2=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n. 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln|x |,所以f (a n )=ln 2n=n ln 2. 显然{f (a n )}是首项为ln 2,公差为ln 2的等差数列. [答案] C [名师点评]1.本题具有以下创新点(1)命题背景新颖:本题是以“保等比数列函数”为新定义背景,考查等比数列的有关性质.(2)考查内容创新:本题没有直接指明判断等比数列的有关性质,而是通过新定义将指数函数、对数函数及幂函数、二次函数与数列有机结合,对学生灵活处理问题的能力有较高要求.2.解决本题的关键有以下两点(1)迅速脱掉“新定义”的外衣,认清本题的实质是:已知数列{a n }为正项等比数列,判断数列{a 2n },{2a n },{|a n |}及{ln|a n |}是否为等比数列问题.(2)灵活运用排除法或特殊值法也是正确解决本题的关键. [变式训练]1.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则m n =( )A.32 B.32或23 C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b=92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23. 2.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,2B.⎣⎢⎡⎦⎥⎤12,2C.⎣⎢⎡⎦⎥⎤12,1 D.⎣⎢⎡⎭⎪⎫12,1 解析:选D 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=⎝ ⎛⎭⎪⎫122,a 3=f (3)=f (2)·f (1)=[f (1)]3=⎝ ⎛⎭⎪⎫123,…,a n =f (n )=[f (1)]n =⎝ ⎛⎭⎪⎫12n ,∴S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n .∵n ∈N *,∴12≤S n <1.一、选择题(本大题共6小题,每小题5分,共30分)1.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4×⎝ ⎛⎭⎪⎫32nB .4×⎝ ⎛⎭⎪⎫23nC .4×⎝ ⎛⎭⎪⎫32n -1D .4×⎝ ⎛⎭⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎫32n -1.2.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B 由题意可知a 3a 11=a 27=16,因为{a n }为正项等比数列,所以a 7=4.所以log 2a 10=log 2(a 7×23)=log 225=5.3.各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ) A .33 B .72 C .84D .189解析:选C ∵a 1+a 2+a 3=21,∴a 1+a 1·q +a 1·q 2=21,3+3×q +3×q 2=21, 1+q +q 2=7,解得q =2或q =-3.∵a n >0,∴q =2,a 3+a 4+a 5=21×q 2=21×4=84.4.(2013·西安模拟)已知a ,b ,m ,n ,x ,y 均为正数,且a ≠b ,若a ,m ,b ,x 成等差数列,a ,n ,b ,y 成等比数列,则有( )A .m >n ,x >yB .m >n ,x <yC .m <n ,x <yD .m <n ,x >y解析:选B ∵m =a +b2,n =ab (a ≠b ),∴m >n .又2b =m +x ,由b 2=ny ,得b =ny , 即2ny =m +x ≥2mx ,∴ny ≥mx , 即ny ≥mx ,y x ≥mn>1.∴y >x .5.已知等比数列{a n }中,a 1=2,a 5=18,则a 2a 3a 4等于( ) A .36 B .216 C .±36D .±216解析:选B 由等比数列的性质得a 23=a 1·a 5=2×18=36, 又a 3=a 1q 2=2q 2>0,故a 3=6. 所以a 2a 3a 4=a 33=216.6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1解析:选B 利用等比数列知识求解. ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n .∴a n =S n -S n -1=2a n +1-2a n .∴3a n =2a n +1. ∴a n +1a n =32.又∵S 1=2a 2,∴a 2=12.∴a 2a 1=12.∴{a n }从第二项起是以32为公比的等比数列.∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1⎝⎛也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,⎭⎪⎫求得S n =⎝ ⎛⎭⎪⎫32n -1.二、填空题(本大题共3小题,每小题5分,共15分)7.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 解析:∵S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-28.若数列{a n }(a n ∈R )对任意的正整数m ,n 满足a m +n =a m a n ,且a 3=22,那么a 12=________.解析:令m =1,则a n +1=a n a 1⇒a 1=q ,a 3=a 1q 2=22⇒q 3=22,a 12=q 12=64. 答案:649.(2013·聊城模拟)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b∈R ,满足f (a ·b )=af (b )+bf (a ),f (2)=2,a n =f 2n n (n ∈N *),b n =f 2n 2n(n ∈N *),考察下列结论.①f (0)=f (1);②f (x )为偶函数;③数列{a n }为等比数列;④{b n }为等差数列.其中正确的是________.解析:令a =0,b =0,则f (0)=0,令a =b =1, 则f (1)=2f (1),故f (0)=f (1)=0; 设a =-1,b =x ,因为f (1)=f [(-1)×(-1)]=-2f (-1), 则f (-1)=0,所以f (-x )=-f (x )+xf (-1)=-f (x ),f (x )为奇函数;f (2n)=2f (2n -1)+2n -1f (2)=2f (2n -1)+2n⇒f 2n2n=f 2n -12n -1+1,则{b n }为等差数列;∵b 1=f 22=1,∴b n =1+(n -1)×1=n .∴f 2n2n =n ,a n =f 2n n=2n,则数列{a n }为等比数列.答案:①③④三、解答题(本大题共3小题,每小题12分,共36分) 10.数列{a n }中,S n =1+ka n (k ≠0,k ≠1). (1)证明:数列{a n }为等比数列; (2)求通项a n ;(3)当k =-1时,求和a 21+a 22+…+a 2n . 解:(1)∵S n =1+ka n ,①S n -1=1+ka n -1,②①-②得S n -S n -1=ka n -ka n -1(n ≥2), ∴(k -1)a n =ka n -1,a n a n -1=k k -1为常数,n ≥2. ∴{a n }是公比为kk -1的等比数列.(2)∵S 1=a 1=1+ka 1,∴a 1=11-k. ∴a n =11-k ·⎝ ⎛⎭⎪⎫k k -1n -1=-kn -1k -1n.(3)∵{a n }中a 1=11-k ,q =k k -1,∴{a 2n }是首项为⎝⎛⎭⎪⎫1k -12,公比为⎝ ⎛⎭⎪⎫k k -12的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,∴a 21+a 22+…+a 2n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .11.设数列{a n }是一等差数列,数列{b n }的前n 项和为S n =23(b n -1),若a 2=b 1,a 5=b 2.(1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和S n .解:(1)∵S 1=23(b 1-1)=b 1,∴b 1=-2.又S 2=23(b 2-1)=b 1+b 2=-2+b 2,∴b 2=4.∴a 2=-2,a 5=4. ∵{a n }为等差数列, ∴公差d =a 5-a 23=63=2, 即a n =-2+(n -2)·2=2n -6. (2)∵S n +1=23(b n +1-1),①S n =23(b n -1),②①-②得S n +1-S n =23(b n +1-b n )=b n +1,∴b n +1=-2b n .∴数列{b n }是等比数列,公比q =-2,首项b 1=-2, ∴b n =(-2)n. ∴S n =23[(-2)n-1].12.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵由已知得a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ), 解得d =2或d =0(舍去).∴a n =1+(n -1)·2=2n -1(n ∈N *). 又b 2=a 2=3,b 3=a 5=9, ∴数列{b n }的公比为3. ∴b n =3·3n -2=3n -1(n ∈N *).(2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n . 两式相减得,n ≥2时,c n b n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2, ∴c 1=3.∴c n =⎩⎪⎨⎪⎧3n =1,2·3n -1n ≥2.∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.1.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6D .4 2解析:选A 法一:由等比中项的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 4a 5a 6=(a 4a 6)·a 5=a 35=(a 2a 8)3=(5016)3=5 2.法二:由等比数列的性质知a 1a 2a 3,a 4a 5a 6,a 7a 8a 9构成等比数列,所以(a 1a 2a 3)(a 7a 8a 9)=(a 4a 5a 6)2,即a 4a 5a 6=±5×10=±52,又数列各项均为正数,所以a 4a 5a 6=5 2.2.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3解析:选C 由等比数列的性质:S 3、S 6-S 3、S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34.3.设正项等比数列{a n }的前n 项和为S n ,已知a 3=4,a 4a 5a 6=212. (1)求首项a 1和公比q 的值; (2)若S n =210-1,求n 的值. 解:(1)∵a 4a 5a 6=a 35=212⇒a 5=16,∴a 5a 3=q 2=4⇒q =2,a 1q 2=a 3,解得a 1=1.(2)由S n =210-1,得S n =a 1q n -1q -1=2n-1,∴2n -1=210-1⇒2n =210,即n =10.4.已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明{b n }是等比数列; (2)求{a n }的通项公式. 解:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,以-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 又a 1=1也符合上式,所以{a n }的通项公式为a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
高考数学总复习 第5章 第3讲 等比数列及其前n项和课件 理 新人教A版
[变式探究(tànjiū)] 已知数列{an}的前n项和Sn=2an+1,求 证:{an}是等比数列,并求出通项公式.
证明:∵Sn=2an+1, ∴Sn+1=2an+1+1, ∴ an + 1 = Sn + 1 - Sn = (2an + 1 + 1) - (2an + 1) = 2an + 1 - 2an. ∴an+1=2an, 又∵S1=2a1+1=a1,∴a1=-1≠0,
-an-1),不为定值,故不符合题意;对于 f(x)= |x|,f(an)=
|an|,则
|an| = |an-1|
aan-n 1= |q|为定值,
第二十四页,共49页。
符合题意;对于 f(x)=ln|x|,f(an)=ln|an|,由等比数列定 义得, ln|an| 并不为定值,故不符合题意;故①③正确.
(2)在等比数列{an}中,a2013=8a2010,则 q=________. (3)已知等比数列的公比是 2,且前 4 项的和为 1,那么 前 8 项之和为________.
第十页,共49页。
2. 等比数列的主要性质 (1){an}是等比数列⇒{c·an}是等比数列(c≠0). (2){an}{bn}均为等比数列⇒{an·bn}、{abnn}是等比数列. (3){an}为等比数列,则aamn =________. (4)若 m、n、p、q∈N*且 m+n=p+q,则 am·an=ap·aq. 特别地,a1an=a2an-1
填一填:(1)2 2n-1-12 (2)2
第十四页,共49页。
(3)17 提示:将 q=2,S4=1,n=4 代入 Sn=a111--qqn, 得 1=a111--224,解之得 a1=115, ∴S8=11511--228=17.
(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人
5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。
5.3.2 等比数列的前 n项和(学案)-2020-2021学年高中数学同步备课学案
5.3.2 等比数列的前 n 项和知识点归纳知识点一、等比数列的前n 项和公式等比数列的前n 项和公式S n=⎩⎪⎨⎪⎧na 1q =1,a 1-a n q1-qq ≠1知识点二、等比数列前n 项和的性质1.在等比数列的前n 项和公式S n =a 1(1-q n )1-q 中,如果令A =a 1q -1,那么S n =Aq n -A (A ≠0,q ≠0,n ∈N *),则数列{a n }为等比数列,即S n =Aq n -A (A ≠0,q ≠0,q ≠1,n ∈N *)⇔数列{a n }为等比数列.2.等比数列{a n }中,若项数为2n ,则S 偶S 奇=q (S 奇≠0);若项数为2n +1,则S 奇-a 1S 偶=q (S 偶≠0).3.涉及S n ,S 2n ,S 3n ,…的关系或S n 与S m 的关系考虑应用以下两个性质(1)等比数列前n 项和为S n (且S n ≠0),则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n (q ≠-1).(2)等比数列{a n }的公比为q ,则S n +m =S n +q n S m . 4.错位相减法(1)推导等比数列前n 项和的方法一般地,等比数列{a n }的前n 项和可写为:S n =a 1+a 1q +a 1q 2+…+a 1q n -1, ① 用公比q 乘①的两边,可得qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n , ② 由①-②,得(1-q )S n =a 1-a 1q n,整理得S n =a 1(1-q n )1-q(q ≠1).(2)我们把上述方法叫错位相减法,一般适用于数列{a n ·b n }前n 项和的求解,其中{a n }为等差数列,{b n }为等比数列,且q ≠1.典例分析一、等比数列前n 项和的基本计算 例1 在等比数列{a n }中,(1)若S n =189,q =2,a n =96,求a 1和n ; (2)若a 1+a 3=10,a 4+a 6=54,求a 4和S 5;(3)若a 3=32,S 3=92,求a 1和公比q .解析 (1)由S n =a 1(1-q n )1-q,a n =a 1q n -1以及已知条件,得⎩⎪⎨⎪⎧189=a 1-2a n 1-2=a 1-2×96-1,96=a 1·2n -1,∴a 1=3.又∵2n -1=963=32,∴n =6.(2)设公比为q ,由通项公式及已知条件得⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q 3+a 1q 5=54, 即⎩⎪⎨⎪⎧ a 1(1+q 2)=10,a 1q 3(1+q 2)=54.①②∵a 1≠0,1+q 2≠0,∴②÷①得,q 3=18,即q =12,∴a 1=8.∴a 4=a 1q 3=8×⎝⎛⎭⎫123=1,S 5=a 1(1-q 5)1-q=8×⎣⎡⎦⎤1-⎝⎛⎭⎫1251-12=312.(3)当q =1时,S 3=3a 1,a 3=a 1=32.∴3×32=S 3=92,∴a 1=32,q =1.当q ≠1时,S 3=a 1(1-q 3)1-q =92,a 3=a 1·q 2=32,∴32q 2(1+q +q 2)=92,∴q =-12,q =1(舍去),∴a 1=6. 综上所述:⎩⎪⎨⎪⎧ a 1=6,q =-12或⎩⎪⎨⎪⎧a 1=32,q =1. 答案 见解析二、等比数列前n 项和的性质例2 (1)各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=10,S 12=130,则S 8=( )A .-30B .40C .40或-30D .40或-50 (2)等比数列{a n }各项为正,a 3,a 5,-a 4成等差数列,S n 为{a n }的前n 项和,则S 6S 3=______.解析 (1)S 4,S 8-S 4,S 12-S 8构成等比数列,所以(S 8-S 4)2=S 4·(S 12-S 8), 因为S 4=10,S 12=130,∴(S 8-10)2=10(130-S 8).解得S 8=40.故选B .(2)因为等比数列{a n }各项为正,a 3,a 5,-a 4成等差数列,所以a 1q 2-a 1q 3=2a 1q 4,2q 2+q -1=0,q =12或q =-1(舍去),S 6S 3=S 3+q 3S 3S 3=1+(12)3=98.答案 (1)B(2)98自我测试1.已知在等比数列{a n }中,a 1=3,a n =96,S n =189,则n 的值为( ) A .4 B .5 C .6 D .7 解析 由a n =a 1q n -1,得96=3q n -1,∴q n -1=32=25.令n =6,q =2,这时S 6=3(1-26)1-2=189,符合题意,故选C .答案 C2.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)解析 ∵3a n +1+a n =0,∴a n +1=-13a n ,∴{a n }为等比数列,q =-13,又a 2=a 1·q =-13a 1=-43,∴a 1=4,∴S 10=4⎣⎡⎦⎤1-⎝⎛⎭⎫-13101-⎝⎛⎭⎫-13=3(1-3-10).故选C.答案 C3.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13 B .-13 C .19 D .-19解析 由题知公比q ≠1,则S 3=a 1(1-q 3)1-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C.答案 C4.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7 解析 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1.由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q=316,得⎩⎨⎧a 1=14,q =-12,∴a n =14×⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1.由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.故选A. 答案 A5.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (n )=( )A.27(8n -1) B.27(8n +1-1) C.27(8n +3-1) D.27(8n +4-1) 解析 ∵f (n )可看作是以2为首项,23为公比的等比数列的前n +4项和,∴f (n )=2[1-(23)n +4]1-23=27(8n +4-1).故选D. 答案D6.若等比数列{a n }的前n 项和S n =2n -1+a ,则a 3a 5=( ) A .4 B .8 C .16 D .32解析 S 1=1+a ,∴a 1=a +1,S 2=2+a ,a 2=1,S 3=4+a ,a 3=2, ∴a 22=a 1a 3,即1=2(a +1),解得a =-12,∴S n =2n -1-12,∴a 4=S 4-S 3=4, ∴a 3a 5=a 24=16,故选C . 答案 C7.若数列{a n }的前n 项和为S n =3n +a (a 为常数),则数列{a n }是( ) A .等比数列B .仅当a =-1时,是等比数列C .不是等比数列D .仅当a =0时,是等比数列解析 a n =⎩⎪⎨⎪⎧ S 1(n =1),S n -S n -1(n ≥2)=⎩⎪⎨⎪⎧3+a (n =1),2×3n -1(n ≥2). 当a =-1时,a 1=2适合通项a n =2×3n -1,故数列{a n }是等比数列. 当a ≠-1时,{a n }不是等比数列.故选B. 答案 B8.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4,即5(1+q )=1+q +q 2+q 3, q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0,解得q =-1或±2, 当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.故选C. 答案 C9.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26 D .16解析 ∵S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n 成等比数列,∴S n ·(S 3n -S 2n )=(S 2n -S n )2, 即2×(14-S 2n )=(S 2n -2)2,解得S 2n =6或S 2n =-4(舍去). 同理,(6-2)(S 4n -14)=(14-6)2,解得S 4n =30. 答案 B10.在等比数列{a n }中,若a 3=2S 2+1,a 4=2S 3+1,则公比q =________. 解析 a 4-a 3=2(S 3-S 2)=2a 3,∴a 4=3a 3.∴q =a 4a 3=3.答案 311.若等比数列{a n }的前n 项和为S n ,a 3=32,S 3=92,则公比q =___________.解析 因为a 3=32,S 3=92,所以a 1+a 2+a 3=92,则a 1+a 2=3,所以32q 2+32q =3,化简得2q 2-q -1=0,解得q =1或-12.答案12.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式; (2)设b n =22n a -,求b 1+b 2+b 3+…+b 10的值.解析 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+d =4,a 1+3d +a 1+6d =15,解得⎩⎪⎨⎪⎧a 1=3,d =1, ∴a n =3+(n -1)×1,即a n =n +2.(2)由(1)知b n =2n ,∴b 1+b 2+b 3+…+b 10=21+22+…+210 =2(1-210)1-2=2046.答案 (1)n +2 (2)204613.求和:12+34+58+716+…+2n -12n .解析 设S n =12+34+58+716+…+2n -12n=12+322+523+724+…+2n -32n -1+2n -12n ,① 则12S n =122+323+524+…+2n -32n +2n -12n +1.② ①-②,得12S n =12+222+223+224+…+22n -2n -12n +1=12+12+122+…+12n -1-2n -12n +1 =12+12-12n -1×121-12-2n -12n +1=32-12n -1-2n -12n +1 =32-2n +32n +1,∴S n =3-2n +32n . 答案 3-2n +32n14.已知数列{a n }满足:a 1=1,a n +1=2a n +n -2(n ∈N *). (1)求证:数列{a n +n -1}是等比数列;(2)求数列{a n }的前n 项和S n . 解析 (1)由已知得a n +1+na n +n -1=2,又a 1+1-1=1,所以数列{a n +n -1}是首项为1,公比为2的等比数列. (2)由(1)知:a n +n -1=2n -1, a n =2n -1+1-n ,S n =a 1+a 2+…+a n =(1+2+…+2n -1)-(1+2+…+n -1) S n =(2n-1)-12(n 2-n )=2n-n 2-n +22.答案 (1)首项为1,公比为2的等比数列 (2)2n-n 2-n +22。
高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1
第二节 等差数列及其前n 项和等差数列(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数的关系. 知识点一 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N +,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.易误提醒1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.[自测练习]1.现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4解析:①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②因为1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不一定是等差数列.故等差数列的个数为2.答案:B2.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公式d =9-25-1=74,所以c -a =2d =72.答案:72知识点二 等差数列的通项及求和公式 等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 必记结论1.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.2.前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.[自测练习]3.(2016·日照模拟)已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,那么a 4+a 5+a 6等于( )A .40B .42C .43D .45解析:设等差数列公差为d ,则有a 2+a 3=2a 1+3d =4+3d =13,解得d =3,故a 4+a 5+a 6=3a 5=3(a 1+4d )=3×(2+4×3)=42,故选B.答案:B4.(2015·兰州诊断)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54D .72解析:由S 8=8×(a 1+a 8)2,又a 4+a 5=a 1+a 8=18,∴S 8=8×182=72.答案:D5.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0, 所以S 5a 5=5a 1+5×42d a 1+4d =5a 1+10da 1+4d =155=3.答案:3考点一 等差数列的基本运算|1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:法一:数列{a n }为等差数列,设公差为d ,∴a 1+a 3+a 5=3a 1+6d =3,∴a 1+2d =1,∴S 5=5a 1+5×42×d =5(a 1+2d )=5.法二:数列{a n }为等差数列,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5×2a 32=5.答案:A2.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d 为________.解析:∵a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 015+(m -1)1mn =1n ,解得1mn =12 015,即d =12 015. 答案:12 0153.(2015·通州模拟)已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5=________.解析:将已知条件代入公式易得S 5=5(a 2-d )+5×42d =-20.答案:-20等差数列的基本运算的两个解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明|已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. [解] (1)证明:1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.等差数列的四种判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52,∴数列{b n }是以-52为首项,1为公差的等差数列.考点三 等差数列的性质及最值|(1)(2016·泉州质检)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18=( )A .20B .60C .90D .100[解析] 因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90,故选择C.[答案] C(2)(2015·广州模拟)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[解析] 本题考查等差数列的性质.这个数列的项数为2n ,于是有2×n =25-15=10,2n =10,即这个数列的项数为10,故选A.[答案] A(3)已知在等差数列{a n }中,a 1=31,S n 是它的前n 项的和,S 10=S 22. ①求S n ;②这个数列前多少项的和最大?并求出这个最大值.[解] ①∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.②法一:由①知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由①知,令⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.2.(2015·深圳调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:C3.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=18,则a 8=________.解析:等差数列性质可得S 3=3,S 6-S 3=15,S 9-S 6=a 7+a 8+a 9=3a 8成等差数列,故有2(S 6-S 3)=S 3+S 9-S 6⇒2×15=3+3a 8,解得a 8=9.答案:917.整体思想在等差数列中的应用【典例】 已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4[思路点拨] 若利用a ,d 基本计算较繁,可考虑S 2,S 4-S 2,S 6-S 4成等差数列,采用整体求值较简便.[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4,得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.[答案] A[方法点评] 利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算烦琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[跟踪练习] 已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, 且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-S 20=10+2×10=30, ∴S 30=60.答案:60A 组 考点能力演练1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选择B.答案:B2.(2016·宝鸡质检)设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n=336,则n 的值为( )A .18B .19C .20D .21解析:因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选择D.答案:D3.(2015·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21解析:a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.答案:C4.在等差数列{a n }中,a 2+a 3+a 4+a 5=40,则3a 1+a 11=( ) A .20 B .30 C .40D .60解析:本题考查等差数列的通项公式及性质的应用.由等差数列的性质得a 2+a 3+a 4+a 5=2(a 3+a 4)=40,解得a 3+a 4=20,即a 3+a 4=2a 1+5d =20,又3a 1+a 11=4a 1+10d =2(2a 1+5d )=40,故选C.答案:C5.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=( ) A.345 B .5 C.314D.315解析:法一:令S n =(7n +1)n ,T n =(n +3)n ,则a n =14n -6,b n =2n +2,所以a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=22+64+232+30218+22+26+34=315.法二:设等差数列{a n },{b n }的公差分别为d 1,d 2,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=4a 1+42d 14b 1+42d 2=2a 1+21d 12b 1+21d 2=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案:D6.(2015·广州一模)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 解析:因为{a n }是等差数列,所以S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,所以a 6=4,所以S 11=11(a 1+a 11)2=11a 6=44.答案:447.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式为a n =________.解析:设b n =nS n +(n +2)a n ,则b 1=1×S 1+(1+2)a 1=1×a 1+3a 1=4,b 2=2×S 2+(2+2)a 2=2×(a 1+a 2)+(2+2)a 2=8,所以等差数列{b n }的首项为4,公差为4,所以b n =4+(n -1)×4=4n ,即nS n +(n +2)a n =4n .当n ≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0,所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝⎛⎭⎫12n -1,所以a n =n2n -1. 答案:n 2n-18.设等差数列{a n }满足公差d ∈N *,a n ∈N *,且数列{a n }中任意两项之和也是该数列的一项.若a 1=35,则d 的所有可能取值之和为________.解析:本题考查等差数列的通项公式.依题意得a n =a 1+(n -1)d ,a i +a j =2a 1+(i +j -2)d =a 1+(m -1)d (i ,j ,m ∈N *),即(m -i -j +1)d =a 1,kd =a 1=35(其中k ,d ∈N *),因此d 的所有可能取值是35的所有正约数,即分别是1,3,32,33,34,35,因此d 的所有可能取值之和为1-35×31-3=364. 答案:3649.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{b n }满足:b 1=a 1且b n =a n +b n -1(n ≥2,n ∈N *),求数列{b n }的通项公式.解:(1)由题意得:⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16,∵公差d >0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n ≥2,n ∈N *), ∴b n -b n -1=2n -1(n ≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n ≥2,n ∈N *),且b 1=a 1=1, ∴b n =2n -1+2n -3+…+3+1=n 2(n ≥2,n ∈N *). ∴b n =n 2(n ∈N *).10.(2015·南昌一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1(n ≥2),②①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n . (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n 2n ,则c n +1c n =n +12n, 当n ≥2时,c n <1,数列{c n }单调递减,∴(c n )max =12,故λ>12. B 组 高考题型专练1.(2015·高考重庆卷)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质知a 2+a 6=2a 4,所以a 6=2a 4-a 2=0,故选B. 答案:B2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12解析:设等差数列{a n }的首项为a 1,公差为d .由题设知d =1,S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=12+9=192,选B. 答案:B3.(2015·高考北京卷)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:若{a n }是递减的等差数列,则选项A ,B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 答案:C4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:275.(2015·高考北京卷)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n }的公比为q .因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63.所以b 6与数列{a n }的第63项相等.6.(2015·高考重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 即a 1+2d =2,a 1+d =32, 解得a 1=1,d =12, 故通项公式为a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.。
高中数学人教A版必修5《等比数列》教案
《等比数列》教案教学目标:1、通过实例,理解等比数列的概念2、探索并掌握等比数列的通项公式3、通过等比数列与指数函数的关系体会数列是一种特殊的函数。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列与其对应函数的关系。
教学过程:一 、复习旧知:1、等比数列的定义及通项公式2、等差数列的通项公式与一次函数之间的关系二、探究新知1、(1)有人说:如果能将一张厚度为 的报纸对折、再对折。
对折50次后,报纸的厚度超过了地球与月球间的距离,你信吗?每次对折后报纸的厚度依次构成数列:(2)《庄子》一书中说:“一尺之棰,日取其半,万世不竭!”(3)某人年初向银行贷款1万元,如果贷款年利率是6%,那么,5年内各年末应该还款总额依次为:1×1.06, 1×1.062, 1×1.063,1×1.064, 1×1.065结合实例分析上述几个数列的共同特点。
mm050、.2050 ...... 2050 ,2050.2050......2050,20502,050 2,05050325032⨯⨯⨯⨯⨯⨯⨯⨯、、、、、、、、 (32)1,161,81,41,21,12、探究等比数列的定义定义:如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,那么这个数列叫做等比数列,这 个常数叫做等比数列的公比,通常用字母q 表示 (q ≠0).3、类比等差数列探究等比数列的通项公式(一)不完全归纳法 (二)累乘法4、探究通项公式与指数函数间的关系思考:教材第50页的探究题课后探究:当 满足什么条件时,等比数列 是递增数列、递减数列?三、例题精析例1:在等比数列{a n}中, (1)a 4=2,a 7=16,求a n ; (2)a 2+a 5=18,a 3+a 6=9,a n=1,求n . (3)a 3=2,a 2+a 4= ,求a n . 变式训练:变式训练:已知数列 满足 , (1)求证:数列 是等比数列 (2)求 的表达式. 四、课堂练习1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B.16或-16 C.32 D.32或-322.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) 320 【例1】 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 分析:设公比q,列出关于a 1和q 的方程组来求解. 解:设等比数列{a n }的公比为q, 则有 a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①② 由①÷②,得q=12或q=2. 当q=12时,a 1=-16. 当q=2时,a 1=1. 故a n =-16· 12 n -1或a n =2n-1. 【例2】 已知数列{a n }满足lg a n =3n+5,求证:{a n }是等比数列. 分析:可由lg a n =3n+5求出a n ,再证明a n+1a n 是与n 无关的常数. 证明:∵lg a n =3n+5,∴a n =103n+5. ∴a n+1=103(n+1)+5=103n+8.∴a n+1a n =103n+8103n+5=1 000. ∴数列{a n }是等比数列.{}n a 12,111+==+n n a a a {}1+n a {}n a q a 1和{}n aA.4 B.8 C.6 D.323.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于() A.64 B.81 C.128 D.2434.若数列{a n}的前n项和S n=23an+13,则{a n}的通项公式是a n=________.。
三维设计高考数学人教版理科一轮复习配套题库5.3等比数列及其前n项和(含答案详析)
高考真题备选题库 第5章 数列第3节 等比数列及其前n 项和 考点一 等比数列的通项公式1.(2013新课标全国Ⅱ,5分)等比数列{a n }的前n 项和为S n .已知S 3 = a 2 +10a 1 ,a 5=9,则a 1=( )A.13 B .-13C.19D .-19解析:本题考查等比数列的基本知识,包括等比数列的前n 项和及通项公式,属于基础题,考查考生的基本运算能力.由题知q ≠1,则S 3=a 1(1-q 3)1-q =a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C.答案:C2.(2013北京,5分)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.解析:本题考查等比数列的通项公式和求和公式,考查方程思想以及考生的运算求解能力.q =a 3+a 5a 2+a 4=2,又a 2+a 4=20,故a 1q +a 1q 3=20,解得a 1=2,所以S n =2n +1-2. 答案:2 2n +1-23.(2013湖北,12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125. (1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.解:本题考查等比数列的通项公式、前n 项和公式、不等式等基础知识和基本方法,考查方程思想、分类与整合思想,考查运算求解能力、逻辑思维能力,考查综合运用知识分析问题和解决问题的能力.(1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10,解得⎩⎪⎨⎪⎧a 1=53,q =3,或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1,或a n =-5·(-1)n -1.(2)若a n =53·3n -1,则1a n =35·⎝⎛⎭⎫13n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列, 从而∑n =1m 1a n =35·⎣⎡⎦⎤1-⎝⎛⎭⎫13m 1-13=910·⎣⎡⎦⎤1-⎝⎛⎭⎫13m <910<1. 若a n =-5·(-1)n -1,则1a n =-15(-1)n -1,故⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列,从而∑n =1m1a n =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N +),0,m =2k (k ∈N +),故∑n =1m1a n<1. 综上,对任何正整数m ,总有∑n =1m1a n<1. 故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立.4.(2012辽宁,5分)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:由2(a n +a n +2)=5a n +1⇒2q 2-5q +2=0⇒q =2或12,由a 25=a 10=a 1q 9>0⇒a 1>0,又数列{a n }递增,所以q =2.a 25=a 10>0⇒(a 1q 4)2=a 1q 9⇒a 1=q =2,所以数列{a n }的通项公式为a n =2n .答案:2n5.(2010福建,4分)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.解析:∵在等比数列{a n }中,前3项之和等于21, ∴a 1(1-43)1-4=21,∴a 1=1,∴a n =4n -1.答案:4n -16.(2011新课标全国,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.解:(1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13. 由2a 1+3a 2=1,得2a 1+3a 1q =1,得a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n = -(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1). 1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2n n +1. 所以数列{1b n }的前n 项和为-2n n +1. 考点二 等比数列的前n 项和1.(2013辽宁,5分)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析:本题主要考查等比数列的性质、通项公式、求和公式,意在考查考生对等比数列公式的运用,以及等比数列性质的应用情况.由题意得,a 1+a 3=5,a 1a 3=4,由数列是递增数列得,a 1=1,a 3=4,所以q =2,代入等比数列的求和公式得S 6=63.答案:632.(2013湖北,13分)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解:本题主要考查等比数列的性质、等差数列的性质、等比数列的通项公式及前n 项和公式,也考查了分类讨论思想.(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 3.(2013陕西,12分)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.解:本题考查等比数列前n 项和公式推导所用的错位相减法以及用反证法研究问题,深度考查考生应用数列作工具进行逻辑推理的思维方法.(1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.4.(2010广东,5分)已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析:设数列{a n }的公比为q ,a 2·a 3=a 21·q 3=a 1·a 4=2a 1⇒a 4=2,a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54⇒q =12,故a 1=a 4q 3=16,S 5=a 1(1-q 5)1-q =31.答案:C5.(2010安徽,5分)设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )解析:根据等比数列的性质:若{a n }是等比数列,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列,即X ,Y -X ,Z -Y 成等比数列, 故(Y -X )2=X (Z -Y ),整理得Y (Y -X )=X (Z -X ),故选D. 答案:D6.(2010辽宁,5分)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )A.152 B.314 C.334D.172解析:显然公比q ≠1,由题意得,⎩⎪⎨⎪⎧a 1q ·a 1q 3=1a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4q =12,∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.答案:B7.(2010天津,5分)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.158或5 B.3116或5 C.3116D.158解析:由题意可知9(1-q 3)1-q =1-q 61-q ,解得q =2,数列{1a n }是以1为首项,以12为公比的等比数列,由求和公式可得S 5=3116.答案:C8.(2009·辽宁,5分)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73 C.83D .3解析:由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由S 6=3S 3,可推出S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 答案:B考点三 等比数列的性质及应用1.(2013江西,5分)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24解析:选A 本题考查等比数列的通项以及等比数列的性质,意在考查考生的运算能力及对基础知识的掌握情况.由等比数列的前三项为x,3x +3,6x +6,可得(3x +3)2=x (6x +6),解得x =-3或x =-1(此时3x +3=0,不合题意,舍去),故该等比数列的首项x =-3,公比q =3x +3x=2,所以第四项为(6x +6)×q =-24.2.(2013江苏,5分)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析:本题主要考查等比数列的基本性质,意在考查学生的运算能力.设等比数列{a n }的公比为q (q >0).由a 5=12,a 6+a 7=3,可得12(q +q 2)=3,即q 2+q -6=0,所以q =2,所以a n =2n -6,数列{a n }的前n 项和S n =2n -5-2-5,所以a 1a 2…a n =(a 1a n )n 2=2n (n -11)2,由a 1+a 2+…+a n >a 1a 2…a n 可得2n -5-2-5>2n (n -11)2,由2n -5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5>213不成立,所以n 的最大值为12.答案:123.(2012新课标全国,5分)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7解析:设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧ a 4=4,a 7=-2,或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12,或⎩⎪⎨⎪⎧a 1=1,q 3=-2, 所以⎩⎪⎨⎪⎧ a 1=-8,a 10=1,或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7.答案:D4.(2010北京,5分)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m =( )A .9B .10C .11D .12解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C5.(2012浙江,4分)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =____________.解析:∵S 4-S 2=a 3+a 4=3(a 4-a 2),∴a 2(q +q 2)=3a 2(q 2-1), 解得q =-1(舍去)或q =32.答案:326.(2011江西,12分)已知两个等比数列{a n },{b n },满足a 1=a (a >0), b 1-a 1=1,b 2-a 2=2,b 3-a 3=3. (1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.解:(1)设数列{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2, 由b 1,b 2,b 3成等比数列得(2+q )2=2(3+q 2). 即q 2-4q +2=0,解得q 1=2+2,q 2=2- 2. 所以数列{a n }的通项公式为a n =(2+2)n-1或a n =(2-2)n -1.(2)设数列{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*), 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由数列{a n }唯一,知方程(*)必有一根为0,代入(*)得 a =13.。
高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和
因为 q<1,解得 q=-1 或 q=-2. 当 q=-1 时,代入①得 a1=2, - 通项公式 an=2×(-1)n 1; 1 当 q=-2 时,代入①得 a1=2, 1 通项公式 an=2×(-2)n-1.
点评:等比数列基本量的运算是等比数列中的一类基本问 题,解决这类问题的关键在于熟练掌握等比数列的有关公式, 并能灵活运用.尤其需要注意的是,在使用等比数列的前 n 项 和公式时,应根据公比的取值情况进行分类讨论,此外在运算 过程中,还应善于运用整体代换思想简化运算过程.
高中数学
5.3 等比数列及其前n项和
考纲点击 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用 有关知识解决相应的问题. 4.了解等比数列与指数函数的关系
说基础
课前预习读教材
考点梳理 1.等比数列的定义 如果一个数列从第二项起,①____________等于同一个常 数,这个数列叫做等比数列,这个常数叫做等比数列的 ② ______.公比通常用字母 q 表示(q≠0). 2.通项公式与前 n 项和公式. (1)通项公式:③__________,a1 为首项,q 为公比. (2)前 n 项和公式: 当 q=1 时, ④__________; 当 q≠1 时, ⑤______________.
解析:由等比数列的性质知:a1· a19=16=a8· a12=a2 10,∴ a10=4,则 a8· a10· a12=a3 10=64,故选 B. 答案:B
1n 3. 若等比数列{an}的前 n 项和为 Sn=3( ) +m(n∈N*), 则 2 实数 m 的取值为( ) 3 A.- B.-1 2 C.-3 D.一切实数n-1 Nhomakorabea1 -2
2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版
第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。
2020版高考数学大一轮复习第五章数列第3节等比数列及其前n项和理解析版新人教A版
第3节 等比数列及其前n 项和考试要求 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.体会等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列. 数学语言表达式:a na n -1=q (n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q.3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n 也是等比数列.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(必修5P53A1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.(必修5P54A8改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n)1-2=126,解得n =6. 答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n =1的情形进行验证.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n)1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D. 2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________. 解析 (1)根据根与系数之间的关系得a 3+a 7=-4,a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0,所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73. 法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73. 答案 (1)B (2)73[思维升华]1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.(1)方程思想:如求等比数列中的基本量.(2)分类讨论思想:如求和时要分q =1和q ≠1两种情况讨论,判断单调性时对a 1与q 分类讨论. [易错防范]1.特别注意q =1时,S n =na 1这一特殊情况.2.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1时且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想. 类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. (2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2. 又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d . 由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B.-18C.578D.558解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q nS m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0. 则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案 (1)2 (2)3116基础巩固题组 (建议用时:40分钟)一、选择题1.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C2.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( ) A.16B.8C.2 2D.4解析 因为a 4与a 14的等比中项为22, 所以a 4·a 14=a 7·a 11=(22)2=8, 所以2a 7+a 11≥22a 7a 11=22×8=8, 所以2a 7+a 11的最小值为8. 答案 B3.(2019·上海崇明区模拟)已知公比q ≠1的等比数列{a n }的前n 项和为S n ,a 1=1,S 3=3a 3,则S 5=( ) A.1B.5C.3148D.1116解析 由题意得a 1(1-q 3)1-q =3a 1q 2,解得q =-12或q =1(舍),所以S 5=a 1(1-q 5)1-q=1-⎝ ⎛⎭⎪⎫-1251-⎝ ⎛⎭⎪⎫-12=1116. 答案 D4.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏B.3盏C.5盏D.9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B5.(2019·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则ab=( )A.-3B.-1C.1D.3解析 ∵等比数列{a n }的前n 项和S n =a ·3n -1+b ,∴a 1=S 1=a +b ,a 2=S 2-S 1=3a +b -a -b =2a ,a 3=S 3-S 2=9a +b -3a -b =6a ,∵等比数列{a n }中,a 22=a 1a 3, ∴(2a )2=(a +b )×6a ,解得a b=-3.答案 A 二、填空题6.等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 13+a 14a 14+a 15=________.解析 设{a n }的公比为q .由题意得a 1+2a 2=a 3,则a 1(1+2q )=a 1q 2,q 2-2q -1=0,所以q =1+2(舍负). 则a 13+a 14a 14+a 15=1q=2-1.答案2-17.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2), ∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n . 答案12n 8.(2018·南京模拟)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022. 答案 1 022 三、解答题9.(2018·全国Ⅲ卷)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2.故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.10.已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个首项为1,公差为2的等差数列,a n =a 1+(n -1)d =2n -1.(2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n1-3=3n-12.T n ≤S n 即3n-12≤n 2,又n ∈N *,所以n =1或2.能力提升题组 (建议用时:20分钟)11.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( ) A.4B.5C.6D.7解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6.答案 C12.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( ) A.(3n-1)2B.12(9n-1)C.9n-1D.14(3n-1) 解析 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n-3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).答案 B13.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25, ∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q,∴1-q 4+1-q 12=λ(1-q 8), 将q 4=2代入计算可得λ=83.答案 8314.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n-1,所以n (a n +1)=n ×2n,T n =2+2×22+3×23+…+n ×2n ,①2T n =22+2×23+3×24+…+n ×2n +1,②①-②得:-T n =2+22+23+ (2)-n ×2n +1=2(1-2n)1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2.所以T n=(n-1)2n+1+2.新高考创新预测15.(创新思维)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=e a1+a2+a3.若a1>1,则下列选项可能成立的是( )A.a1<a2<a3<a4B.a1=a2=a3=a4C.a1>a2>a3>a4D.以上结论都有可能成立解析构造函数f(x)=e x-x-1,f′(x)=e x-1=0,x=0,得极小值f(0)=0,故f(x)≥0,即e x≥x+1恒成立(x=0取等号).a1+a2+a3+a4=e a1+a2+a3>a1+a2+a3+1⇒a4>1⇒q>0,且a2>1,a3>1,若公比q∈(0,1],则4a1≥a1+a2+a3+a4=e a1+a2+a3>e2+a1>7e a1>7a1+7>4a1,产生矛盾.所以公比q>1,故a1<a2<a3<a4.故选A.答案 A。
高考数学一轮复习第五章数列第三节等比数列及其前n项和课件新人教版
根,则916的值为( D ) A.2
B.- 2
C. 2
D.- 2或 2
3.(2020·高考全国卷Ⅱ)数列{an}中,a1=2,am+n=aman,若ak+1+ak+
2+…+ak+10=215-25,则k=( C )
A.2
B.3
C.4
D.5
解析:∵a1=2,am+n=aman, 令m=1,则an+1=a1an=2an, ∴{an}是以a1=2为首项,2为公比的等比数列, ∴an=2×2n-1=2n.
2.若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),
1
an
,{a
2 n
},
{an·bn},abnn仍是等比数列. 3.当q≠-1或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n仍成等比数
列,其公比为qn.
1.等比数列{an}各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2
数列的综合问题常将等差、等比数列结合,两者相互联系、相互 转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.
[对点训练]
(2021·山东泰安模拟)在①Sn=n2+n,②a3+a5=16,S3+S5=42,③
an+1 an
=
n+1 n
,S7=56这三个条件中任选一个补充在下面的问题中,并加
第三节 等比数列及其前n项和
热点命题分析
学科核心素养
本节是高考的考查热点,主要考查 本节通过等比数列通项公式及其前
等比数列的基本运算和性质,等比 n项和公式、等比数列性质的应
数列的通项公式和前n项和公式, 用,考查对函数与方程、转化与化
尤其要注意以数学文化为背景的数 归和分类讨论思想的应用,提升考
高三一轮复习第五章 第三节等比数列及其前n项和
课时作业1.(2022·三明月考)若S n为数列{a n}的前n项和,且S n=2a n-2,则S8等于( ) A.255 B.256C.510 D.511【解析】 当n=1时,a1=2a1-2,据此可得:a1=2,当n≥2时:S n=2a n-2,S n-1=2a n-1-2,两式作差可得:a n=2a n-2a n-1,则:a n=2a n-1,据此可得数列{a n}是首项为2,公比为2的等比数列,其前8项和为:S8=2×(1-28)1-2=29-2=512-2=510.故选C.【答案】 C2.等比数列{a n}中,其公比q<0,且a2=1-a1,a4=4-a3,则a4+a5等于( ) A.8 B.-8C.16 D.-16【解析】 q2=a3+a4a1+a2=4,q=-2.a4+a5=(a3+a4)q=-8.【答案】 B3.(2022·湛江二模)已知递增的等比数列{a n}中,a2=6,a1+1、a2+2、a3成等差数列,则该数列的前6项和S6=( )A.93 B.189C.18916D.378【解析】 设数列的公比为q,由题意可知:q>1,且:2(a2+2)=a1+1+a3,即:2×(6+2)=6q+1+6q,整理可得:2q2-5q+2=0,则q=2,(q=12舍去).则:a1=62=3,该数列的前6项和S6=3×(1-26)1-2=189.故选B.【答案】 B4.(2022·贵阳一中模拟考试)已知各项均为正数的等比数列{a n},前3项和为13,a3=a2·a4,则a4=( )A.13B.19C.1 D.3 【解析】 ∵a3=a2a4,又a n>0,∴a3=1,S3=a3q2+a3q+1=13,又q>0,∴q=13,∴a4=a3q=13,【答案】 A5.(2022·贵州模拟)已知等比数列{a n}的前n项和为S n,若a2=32,S3=214,则数列{a n}的公比为( )A.2或12B.-2或-12C.-12或2 D.12或-2【解析】 设等比数列{a n}的公比为q,则a2=a1q=32,S3=a1(1+q+q2)=214,两式相除得(1+q+q2)q=72,即2q2-5q+2=0,解得q=12或2.故选A.【答案】 A6.(2022·安徽淮北模拟)5个数依次组成等比数列,且公比为-2,则其中奇数项和与偶数项和的比值为( )A.-2120B.-2C.-2110D.-215【解析】 由题意可知设这5个数分别为a,-2a,4a,-8a,16a,a≠0,故奇数项和与偶数项和的比值为a+4a+16a-2a-8a=-2110.【答案】 C7.(2022·大庆二模)已知各项均不为0的等差数列{a n},满足2a3-a27+2a11=0,数列{b n}为等比数列,且b7=a7,则b1·b13=( )A.16 B.8C.4 D.2【解析】 各项均不为0的等差数列{a n},2a3-a27+2a11=0∴4a7-a27=0,∴a7=4b1·b13=b27=a27=16.故选A【答案】 A8.(2022·山西晋中一模)已知等比数列{a n}的各项均为正数,且2a1+3a2=16,2a2+a3=a4,则log2a1+log2a2+log2a3+…+log2a100等于( )A.11 000 B.5 050C.5 000 D.10 000【解析】 设等比数列{a n}的公比为q,因为等比数列{a n}的各项均为正数,所以q>0,因为2a2+a3=a4,所以2a2+a2q=a2q2,即q2-q-2=0,解得q=2或q=-1(舍去),因为2a1+3a2=16,即2a1+3a1q=16,解得a1=2,所以通项公式为a n=a1q n-1=2×2n-1=2n,所以log2a n=log22n=n,所以log2a1+log2a2+log2a3+…+log2a100=1+2+3+…+100=(1+100)×1002=5050.故选B.【答案】 B9.(多选)(2022·广东肇庆模拟)已知数列{a n}是等比数列,公比为q,前n项和为S n,下列判断错误的有( )A.{1a n}为等比数列B.{log2a n}为等差数列C.{a n+a n+1}为等比数列D.若S n=3n-1+r,则r=-1 3【解析】 令b n=1a n,则b n+1b n=a na n+1=1q(n∈N+),所以{1a n}是等比数列,选项A正确;若a n<0,则log2a n无意义,所以选项B错误;当q =-1时,a n +a n +1=0,此时{a n +a n +1}不是等比数列,所以选项C 错误;若S n =3n -1+r ,则a 1=S 1=1+r ,a 2=S 2-S 1=3+r -(1+r )=2, a 3=S 3-S 2=9+r -(3+r )=6, 由{a n }是等比数列,得a 2=a 1a 3,即4=6(1+r ),解得r =-13,所以选项D 正确.故选BC .【答案】 BC10.(多选)(2022·浙江镇海中学模拟)设{a n }为等比数列,设S n 和T n 分别为{a n }的前n 项和与前n 项积,则下列选项正确的是( )A .若S 2023≥S 2 022,则{S n }不一定是递增数列B .若T 2 024≥T 2 023,则{T n }不一定是递增数列C .若{S n }为递增数列,则可能存在a 2 022<a 2 021D .若{T n }是递增数列,则a 2 022>a 2 021一定成立【解析】 对于选项A ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,S 2 023=1,S 2 022=0,S 2 021=1,满足S 2 023≥S 2 022,但S 2 021>S 2 022, 所以{S n }不是递增数列,故选项A 正确;对于选项B ,当{a n }为:1,-1,1,-1,1,-1,1,-1,…,时,T 2 023=-1,T 2 024=1,T 2 026=-1,满足T 2 024≥T 2 023,但{T n }不是递增数列,故选项B 正确;对于选项C ,当{a n }为:1,12,14,18,…,时,S n =1-12n1-12=2(1-12n ),满足{S n }为递增数列,此时a 2 022=122 021<a 2 021=122 020,故选项C 正确; 对于选项D ,当{a n }为:2,2,2,…,时, T n =2n ,满足{T n }是递增数列,但是a 2 022=a 2 021=2,故选项D 不正确. 【答案】 ABC11.(2022·北京海淀高三上期末)设等比数列{a n }的前n 项和为S n .若-S 1、S 2、a 3 成等差数列,则数列{a n }的公比为________.【解析】 设等比数列{a n }的公比为q ,因为等比数列{a n }的前n 项和为S n ,-S 1、S 2、a 3成等差数列,所以2S 2=-S 1+a 3,则2(a 1+a 2)=-a 1+a 3,因此3a 1+2a 2=a 3,所以q 2-2q -3=0,解得q =3或q =-1. 【答案】 3或-112.(2022·新乡三模)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).【解析】 很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-qa 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.【答案】 -1213.(2022·石家庄二模)已知前n 项和为S n 的等比数列{a n }中,8a 2=a 3a 4,S 5=a 6-4. (1)求数列{a n }的通项公式; (2)求证:14≤1a 1+1a 2+…+1a n <12.【解】 (1)设等比数列{a n }的公比为q ,首项为a 1, 由8a 2=a 3a 4有q 3=a 3a 4a=8,可得q =2, 又由S 5=a 6-4,有a 1(1-25)1-2=32a 1-4,解得a 1=4,有a n =4×2n -1=2n +1.故数列{a n }的通项公式为a n =2n +1. (2)证明:由1an =(12)n +1,可得1a1+1a2+…+1a n=14[1-(12)n]1-12=12-12n+1,又n∈N*,所以12-12n+1<12;而12-12n+1显然随n的增大而增大,所以12-12n+1≥14,因此14≤1a1+1a2+…+1a n<12.14.(2022·威海市高三模拟)已知正项等差数列{a n}的前n项和为S n,若S3=12,且2a1,a2,a3+1成等比数列.(1)求{a n}的通项公式;(2)设b n=a n3n,记数列{b n}的前n项和为T n,求T n.【解】 (1)∵S3=12,即a1+a2+a3=12,∴3a2=12,所以a2=4.又∵2a1,a2,a3+1成等比数列,∴a2=2a1·(a3+1),即a2=2(a2-d)·(a2+d+1),解得,d=3或d=-4(舍去),∴a1=a2-d=1,故a n=3n-2.(2)b n=a n3n=3n-23n=(3n-2)·13n,∴T n=1×13+4×132+7×133+…+(3n-2)×13n,①①×13得13T n=1×132+4×133+7×134+…+(3n-5)×13n+(3n-2)×13n+1.②①-②得2 3 T n=13+3×132+3×133+3×134+ (3)13n-(3n-2)×13n+1=13+3×132(1-13n-1)1-13-(3n-2)×13n+1=56-12×13n-1-(3n-2)×13n+1,∴T n=54-14×13n-2-3n-22×13n=54-6n+54×13n.。
【创新设计】高三数学 一轮复习 第5知识块第3讲 等比数列及其前n项和课件 文 新人教A
3.解题的过程,常表现在“猜”与“凑”.“猜”即猜测解题方向; “凑”,即凑此方向.对于证明题,因为结论已明确,所以需要的 是
【例2】 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*). (1)证明:数列{an+1-an}是等比数列; (2)求数列{an}的通项公式; 思维点拨:(1)构造新数列{an+1-an}; (2)累加,求和得an.
得a=5,则a1=4,q=
∴an=4·
1. 对于等比数列的有关计算问题,可类比等差数列问题进行,在解 方程组的过程中要注意“相除”消元的方法,同时要注意整体代入 (换元)思想方法的应用.
2.在涉及等比数列前n项和公式时要注意对公比q是否等于1的判 断和讨论.
【例1】 已知{an}为等比数列,a3=2,a2+a4= 求{an}的通项公式.
巧用性质,可以减少计算量,同时需要有敏锐的观察能力和应对能力.
【例3】 等比数列{an}的前n项和等于2,紧接在后面的2n项和等于
12,再紧接其后的3n项和为S,求出S.
思维点拨:利用等比数列的性质求解或利用整体代换,通过
求 qn和
来解决问题.
解:解法一:设依次n项之和分别为:A1,A2,A3… 则有A1=2,A2+A3=12,A4+A5+A6=S, 而数列{An}为等比数列,公比为qn, ∴A2+A3=2qn+2q2n,∴2qn+2q2n=12, ∴q2n+qn-6=0,∴qn=2或qn=-3. 当qn=2时,S=A4+A5+A6=2×23+2×24+2×25=112; 当qn=-3时,S=A4+A5+A6 =2×(-3)3+2×(-3)4+2×(-3)5=-378. 所以S的值为112或-378.
高考数学一轮复习 第5章 数列 第3节 等比数列及其前n项和教学案 理(含解析)新人教A版-新人教A
第三节 等比数列及其前n 项和[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的数学表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1=a m qn -m.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1q =1,a 11-q n 1-q=a 1-a n q1-q q ≠1.[常用结论]1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍然是等比数列.3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n,其中当公比为-1时,n 为偶数时除外.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( )[答案](1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =( )A .-12B .-2C .2 D.12D [由通项公式及已知得a 1q =2①,a 1q 4=14②,由②÷①得q 3=18,解得q =12.故选D.]3.已知数列{a n }满足a n =12a n +1,若a 3+a 4=2,则a 4+a 5=( )A.12 B .1 C .4 D .8 C [∵a n =12a n +1,∴a n +1a n=2.∴a 4+a 5=2(a 3+a 4)=2×2=4.故选C.]4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-19C [∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,∴a 3=9a 1,即公比q 2=9,又a 5=a 1q 4,∴a 1=a 5q 4=981=19.故选C.] 5.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =__________. 6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴21-2n1-2=126,解得n =6.]等比数列的基本运算1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5D .6B [因为3S 3=a 4-2,3S 2=a 3-2,所以两式相减,得3(S 3-S 2)=(a 4-2)-(a 3-2),即3a 3=a 4-a 3,得a 4=4a 3,所以q =a 4a 3=4.]2.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知a 3=32,S 3=92,则a 2=________.-3或32 [法一:∵数列{a n }是等比数列,∴当q =1时,a 1=a 2=a 3=32,显然S 3=3a 3=92.当q ≠1时,由题意可知⎩⎪⎨⎪⎧a 11-q 31-q =92,a 1q 2=32,解得q =-12或q =1(舍去).∴a 2=a 3q =32×(-2)=-3.综上可知a 2=-3或32.法二:由a 3=32得a 1+a 2=3.∴a 3q 2+a 3q=3, 即2q 2-q -1=0, ∴q =-12或q =1.∴a 2=a 3q =-3或32.]3.(2019·某某模拟)已知等比数列{a n }的前n 项和为S n 且a 1+a 3=52,a 2+a 4=54,则S na n =________.2n-1 [设等比数列的公比为q ,则 (a 1+a 3)q =(a 2+a 4),即q =5452=12,由a 1+a 3=a 1(1+q 2)=52可知a 1=2.∴a n =2·⎝ ⎛⎭⎪⎫12n -1=12n -2.S n =2⎝ ⎛⎭⎪⎫1-12n 1-12=4⎝ ⎛⎭⎪⎫1-12n .∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 12n -2=2n -1.] [规律方法]1等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程组便可迎刃而解.2等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和等比数列的判定与证明【例1】 (2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解](1)由条件可得a n +1=2n +1na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得a n +1n +1=2a nn ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[规律方法]1证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. 2利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,(1)求证:{b n }是等比数列. (2)求{a n }的通项公式.[解](1)因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以b n +1b n =a n +2-2a n +1a n +1-2a n=4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列. (2)由(1)知b n =a n +1-2a n =3·2n -1,所以a n +12n +1-a n 2n =34,故⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.所以a n 2n =12+(n -1)·34=3n -14,所以a n =(3n -1)·2n -2.等比数列性质的应用【例2】 (1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( )A .1B .2C .3D .5(2)(2019·某某调研)在各项均为正数的等比数列{a n }中,若a m ·a m +2=2a m +1(m ∈N *),数列{a n }的前n 项积为T n ,且T 2m +1=128,则m 的值为( ) A .3 B .4 C .5D .6(3)等比数列{a n }满足a n >0,且a 2a 8=4,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 9=________. (1)C (2)A (3)9 [(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项, 所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=a 5+a 72a 1+a 3=428=2; 同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项, 所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=a 9+a 112a 5+a 7=224=1. 所以a 9+a 11+a 13+a 15=2+1=3.(2)因为a m ·a m +2=2a m +1,所以a 2m +1=2a m +1,即a m +1=2,即{a n }为常数列.又T 2m +1=(a m +1)2m +1,由22m +1=128,得m =3,故选A.(3)由题意可得a 2a 8=a 25=4,a 5>0,所以a 5=2,则原式=log 2(a 1a 2……a 9)=9log 2a 5=9.] [规律方法]1在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2等比数列的性质可以分为三类:一是通项公式的变形;二是等比中项的变形;三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________. (2)(2019·某某模拟)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.(1)-12 (2)-53 [(1)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.(2)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9, 所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53.]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏D .9盏B [设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=a 11-q 71-q =a 11-271-2=381,解得a 1=3.故选B.]2.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84B [∵a 1=3,a 1+a 3+a 5=21,∴3+3q 2+3q 4=21. ∴1+q 2+q 4=7.解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.故选B.]3.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. -8 [设等比数列{a n }的公比为q , ∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,①a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2.∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.]4.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.64 [设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8. 故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12n -1n2=23n -n 22+n2=2-n 22+72n .记t =-n 22+7n2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6.又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64.]5.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . [解](1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.。
高考数学(理科)一轮复习等比数列及其前n项和学案含答案
高考数学(理科)一轮复习等比数列及其前n项和学案含答案本资料为woRD文档,请点击下载地址下载全文下载地址学案30 等比数列及其前n项和导学目标:1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.4.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.自主梳理.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母________表示.2.等比数列的通项公式设等比数列{an}的首项为a1,公比为q,则它的通项an =______________.3.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.4.等比数列的常用性质通项公式的推广:an=am•________.若{an}为等比数列,且k+l=m+n,则__________________________.若{an},{bn}是等比数列,则{λan},1an,{a2n},{an•bn},anbn仍是等比数列.单调性:a1>0,q>1或a1<00<q<1⇔{an}是________数列;a1>0,0<q<1或a1<0q>1⇔{an}是________数列;q=1⇔{an}是____数列;q<0⇔{an}是________数列.5.等比数列的前n项和公式等比数列{an}的公比为q,其前n项和为Sn,当q=1时,Sn=na1;当q≠1时,Sn=a11-qn1-q=a1qn-1q-1=a1qnq-1-a1q-1.6.等比数列前n项和的性质公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为______.自我检测.“b=ac”是“a、b、c成等比数列”的A.充分不必要条件B.必要不充分条件c.充要条件D.既不充分也不必要条件2.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是A.3B.1c.0D.-13.设f=2+24+27+…+23n+1,则f等于A.27B.27c.27D.274.已知等比数列{an}的前三项依次为a-2,a+2,a +8,则an等于A.8•32nB.8•23nc.8•32n-1D.8•23n-15.设{an}是公比为q的等比数列,|q|>1,令bn=an+1,若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.探究点一等比数列的基本量运算例 1 已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an和前n项和Sn.变式迁移1在等比数列{an}中,a1+an=66,a2•an-1=128,Sn=126,求n和q.探究点二等比数列的判定例2 已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5,n∈N*.证明数列{an+1}是等比数列;求{an}的通项公式以及Sn.变式迁移2 设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=Sn+2n.求a2,a3的值;求证:数列{Sn+2}是等比数列.探究点三等比数列性质的应用例3 在等比数列{an}中,a1+a2+a3+a4+a5=8,且1a1+1a2+1a3+1a4+1a5=2,求a3.变式迁移3 已知等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,求b5+b9的值;在等比数列{an}中,若a1a2a3a4=1,a13a14a15a16=8,求a41a42a43a44.分类讨论思想与整体思想的应用例设首项为正数的等比数列{an}的前n项和为80,它的前2n项和为6560,且前n项中数值最大的项为54,求此数列的第2n项.【答题模板】解设数列{an}的公比为q,若q=1,则Sn=na1,S2n=2na1=2Sn.∵S2n=6560≠2Sn=160,∴q≠1,[2分]由题意得a11-qn1-q=80,①a11-q2n1-q=6560.②[4分]将①整体代入②得80=6560,∴qn=81.[6分]将qn=81代入①得a1=80,∴a1=q-1,由a1>0,得q>1,∴数列{an}为递增数列.[8分]∴an=a1qn-1=a1q•qn=81•a1q=54.∴a1q=23.[10分]与a1=q-1联立可得a1=2,q=3,∴a2n=2×32n-1.[12分]【突破思维障碍】分类讨论的思想:①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论;②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为摆动数列;当q=1时为常数列.函数的思想:等比数列的通项公式an=a1qn-1=a1q•qn常和指数函数相联系.整体思想:应用等比数列前n项和时,常把qn,a11-q当成整体求解.本题条件前n项中数值最大的项为54的利用是解决本题的关键,同时将qn和a11-qn1-q的值整体代入求解,简化了运算,体现了整体代换的思想,在解决有关数列求和的题目时应灵活运用..等比数列的通项公式、前n项公式分别为an=a1qn -1,Sn=na1,q=1,a11-qn1-q,q≠1.2.等比数列的判定方法:定义法:即证明an+1an=q.中项法:证明一个数列满足a2n+1=an•an+2.3.等比数列的性质:an=am•qn-m;若{an}为等比数列,且k+l=m+n,则ak•al=am•an;设公比不为-1的等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.4.在利用等比数列前n项和公式时,一定要对公比q =1或q≠1作出判断;计算过程中要注意整体代入的思想方法.5.等差数列与等比数列的关系是:若一个数列既是等差数列,又是等比数列,则此数列是非零常数列;若{an}是等比数列,且an>0,则{lgan}构成等差数列.一、选择题.设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于A.152B.314c.334D.1722.设Sn为等比数列{an}的前n项和,8a2+a5=0,则S5S2等于A.-11B.-8c.5D.113.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5等于A.33B.72c.84D.1894.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是A.T10B.T13c.T17D.T255.记等比数列{an}的前n项和为Sn,若S3=2,S6=18,则S10S5等于A.-3B.5c.-31D.33题号2345答案二、填空题6.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为________.7.在等比数列{an}中,公比q=2,前99项的和S99=30,则a3+a6+a9+…+a99=________.8.在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________.三、解答题9.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.求数列{an}的通项;求数列{2an}的前n项和Sn.0.已知数列{log2}为等差数列,且a1=3,a2=5.求证:数列{an-1}是等比数列;求1a2-a1+1a3-a2+…+1an+1-an的值.1.已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.求数列{an}与{bn}的通项公式;设数列{cn}对n∈N*均有c1b1+c2b2+…+cnbn=an+1成立,求c1+c2+c3+…+cXX.答案自主梳理.公比q 2.a1•qn-1 4.qn-m ak•al=am•an递增递减常摆动 6.qn自我检测.D 2.B 3.B 4.c 5.-9课堂活动区例1 解题导引在等比数列的通项公式和前n项和公式中共有a1,an,q,n,Sn五个量,知道其中任意三个量,都可以求出其余两个量.解题时,将已知条件转化为基本量间的关系,然后利用方程组的思想求解;本例可将所有项都用a1和q表示,转化为关于a1和q 的方程组求解;也可利用等比数列的性质来转化,两种方法目的都是消元转化.解方法一由已知得:a21q4+2a21q6+a21q8=100,a21q4-2a21q6+a21q8=36.①②①-②,得4a21q6=64,∴a21q6=16.③代入①,得16q2+2×16+16q2=100.解得q2=4或q2=14.又数列{an}为正项数列,∴q=2或12.当q=2时,可得a1=12,∴an=12×2n-1=2n-2,Sn=121-2=2n-1-12;当q=12时,可得a1=32.∴an=32×12n-1=26-n.Sn=321-12n1-12=64-26-n.方法二∵a1a5=a2a4=a23,a2a6=a3a5,a3a7=a4a6=a25,由a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,可得a23+2a3a5+a25=100,a23-2a3a5+a25=36,即2=100,2=36.∴a3+a5=10,a3-a5=±6.解得a3=8,a5=2,或a3=2,a5=8.当a3=8,a5=2时,q2=a5a3=28=14.∵q>0,∴q=12,由a3=a1q2=8,得a1=32,∴an=32×12n-1=26-n.Sn=32-26-n×121-12=64-26-n.当a3=2,a5=8时,q2=82=4,且q>0,∴q=2.由a3=a1q2,得a1=24=12.∴an=12×2n-1=2n-2.Sn=122-1=2n-1-12.变式迁移1 解由题意得a2•an-1=a1•an=128,a1+an=66,解得a1=64,an=2或a1=2,an=64.若a1=64,an=2,则Sn=a1-anq1-q=64-2q1-q =126,解得q=12,此时,an=2=64•12n-1,∴n=6.若a1=2,an=64,则Sn=2-64q1-q=126,∴q=2.∴an=64=2•2n-1.∴n=6.综上n=6,q=2或12.例2 解题导引证明数列是等比数列的两个基本方法:①an+1an=q.②a2n+1=anan+2.证明数列不是等比数列,可以通过具体的三个连续项不成等比数列来证明,也可用反证法.证明由已知Sn+1=2Sn+n+5,n∈N*,可得n≥2时,Sn=2Sn-1+n+4,两式相减得Sn+1-Sn=2+1,即an+1=2an+1,从而an+1+1=2,当n=1时,S2=2S1+1+5,所以a2+a1=2a1+6,又a1=5,所以a2=11,从而a2+1=2,故总有an+1+1=2,n∈N*,又a1=5,a1+1≠0,从而an+1+1an+1=2,即数列{an+1}是首项为6,公比为2的等比数列.解由得an+1=6•2n-1,所以an=6•2n-1-1,于是Sn=6•1-2-n=6•2n-n-6.变式迁移2 解∵a1+2a2+3a3+…+nan=Sn+2n,∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=+4,∴a2=4;当n=3时,a1+2a2+3a3=2+6,∴a3=8.证明∵a1+2a2+3a3+…+nan=Sn+2n,①∴当n≥2时,a1+2a2+3a3+…+an-1=Sn-1+2.②①-②得nan=Sn-Sn-1+2=n-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,∴Sn+2=2.∵S1+2=4≠0,∴Sn-1+2≠0,∴Sn+2Sn-1+2=2,故{Sn+2}是以4为首项,2为公比的等比数列.例3 解题导引在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am•an=ap•aq”,可以减少运算量,提高解题速度.解由已知得a1+1a2+1a3+1a4+1a5=a1+a5a1a5+a2+a4a2a4+a3a23=a1+a2+a3+a4+a5a23=8a23=2,∴a23=4,∴a3=±2.若a3=-2,设数列的公比为q,则-2q2+-2q-2-2q-2q2=8,即1q2+1q+1+q+q2=1q+122+q+122+12=-4.此式显然不成立,经验证,a3=2符合题意,故a3=2.变式迁移3 解∵a3a11=a27=4a7,∵a7≠0,∴a7=4,∴b7=4,∵{bn}为等差数列,∴b5+b9=2b7=8.a1a2a3a4=a1•a1q•a1q2•a1q3=a41q6=1.①a13a14a15a16=a1q12•a1q13•a1q14•a1q15=a41•q54=8.②②÷①:a41•q54a41•q6=q48=8⇒q16=2,又a41a42a43a44=a1q40•a1q41•a1q42•a1q43=a41•q166=a41•q6•q160=•10=1•210=1024.课后练习区.B [∵{an}是由正数组成的等比数列,且a2a4=1,∴设{an}的公比为q,则q>0,且a23=1,即a3=1.∵S3=7,∴a1+a2+a3=1q2+1q+1=7,即6q2-q -1=0.故q=12或q=-13,∴a1=1q2=4.∴S5=41-12=8=314.]2.A [由8a2+a5=0,得8a1q+a1q4=0,所以q=-2,则S5S2=a1a1=-11.]3.c [由题可设等比数列的公比为q,则31-q=21⇒1+q+q2=7⇒q2+q-6=0 ⇒=0,根据题意可知q>0,故q=2.所以a3+a4+a5=q2S3=4×21=84.]4.c [a3a6a18=a31q2+5+17=3=a39,即a9为定值,所以下标和为9的倍数的积为定值,可知T17为定值.] 5.D [因为等比数列{an}中有S3=2,S6=18,即S6S3=a11-qa11-q=1+q3=182=9,故q=2,从而S10S5=a11-qa11-q=1+q5=1+25=33.]6.127解析∵公比q4=a5a1=16,且q>0,∴q=2,∴S7=1-271-2=127.7.1207解析∵S99=30,即a1=30,∵数列a3,a6,a9,…,a99也成等比数列且公比为8,∴a3+a6+a9+…+a99=4a11-8=4a17=47×30=1207.8.4n-1解析∵等比数列{an}的前3项之和为21,公比q=4,不妨设首项为a1,则a1+a1q+a1q2=a1=21a1=21,∴a1=1,∴an=1×4n-1=4n-1.9.解由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,得1+2d1=1+8d1+2d,…………………………………………………………………………解得d=1或d=0.故{an}的通项an=1+×1=n.……………………………………………………由知2an=2n,由等比数列前n项和公式,得Sn=2+22+23+…+2n=21-2=2n+1-2.………………………………………………………………………………0.证明设log2-log2=d,因为a1=3,a2=5,所以d=log2-log2=log24-log22=1,…………………………………………………………所以log2=n,所以an-1=2n,所以an-1an-1-1=2,所以{an-1}是以2为首项,2为公比的等比数列.………解由可得an-1=•2n-1,所以an=2n+1,…………………………………………………………………………所以1a2-a1+1a3-a2+…+1an+1-an=122-2+123-22+…+12n+1-2n=12+122+…+12n=1-12n.………………………………………………………………1.解由已知有a2=1+d,a5=1+4d,a14=1+13d,∴2=.解得d=2.……………………………………………………………………∴an=1+•2=2n-1.………………………………………………………………又b2=a2=3,b3=a5=9,∴数列{bn}的公比为3,∴bn=3•3n-2=3n-1.………………………………………………………………………由c1b1+c2b2+…+cnbn=an+1得当n≥2时,c1b1+c2b2+…+cn-1bn-1=an.两式相减得:当n≥2时,cnbn=an+1-an=2.……………………………………………∴cn=2bn=2•3n-1.又当n=1时,c1b1=a2,∴c1=3.∴cn=3 2•3n-1.……………………………………………………………∴c1+c2+c3+…+cXX=3+6-2×3XX1-3=3+=3XX.…………………………………………。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三 一轮复习 5.3 等比数列及其前n 项和 学案
【考纲传真】
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n 项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.
【知识扫描】
知识点1 等比数列的有关概念
1.定义;如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q
表示,公比的表达式为a n +1a n
=q . 2.等比中项;如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .
知识点2 等比数列的有关公式
1.通项公式:a n =a 1q n -1=a m q n -m .
2.前n 项和公式:S n =⎩⎪⎨⎪⎧
na 1
,q =1,a 1 1-q n 1-q
=a 1-a n q 1-q ,q ≠1. 1.必会结论;等比数列的性质
(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .
(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{|a n |},⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.
(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .
(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.
(5)若等比数列{a n }共2k (k ∈N *)项,则S 偶S 奇
=q . 2.必清误区
(1)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,与等差数列不同.
(2)由a n +1=qa n (q ≠0)并不能断言{a n }是等比数列,还要验证a 1≠0.
【学情自测】
1.判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)数列a ,a ,a ,…(a ∈R )必为等比数列.( )
(2)当q <0时,等比数列{a n }为递减数列.( )
(3)G 为a ,b 的等比中项⇔G 2=ab .( )
(4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }是等比数列.( )
2.已知{a n }是等比数列,a 2=2,a 5=14
,则公比q 等于( ) A .-12
B .-2
C .2 D.12
3.(2015·广东高考)若三个正数a ,b ,c 成等比数列,其中a =5+26,c =5-26,则b =________.
4.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2
=________. 5.(2014·重庆高考)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.
(1)求a n 及S n ;
(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及
其前n 项和T n .
参考答案
1【解析】 (1)错误.a =0时不能构成等比数列.
(2)错误.当q <0时,{a n }为摆动数列.
(3)错误.G 2=abD ⇒/G 为a ,b 的等比中项.
(4)错误.若a 1=0,则{a n }不是等比数列.
【答案】 (1)× (2)× (3)× (4)×
2【解析】 由题意知q 3=a 5a 2=18,∴q =12
. 【答案】 D
3【解析】 ∵a ,b ,c 成等比数列,∴b 2=a ·c =(5+26)(5-26)=1.又b >0,∴b =1.
【答案】 1
4【解析】 设等比数列{a n }的公比为q ,因为8a 2+a 5=0,所以8a 1q +a 1q 4=0.
∴q 3
+8=0,∴q =-2,∴S 5S 2=a 1 1-q 5 1-q ·1-q a 1 1-q 2 =1-q 51-q 2=1- -2 51-4=-11. 【答案】 -11
5【解】 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1.
故S n =1+3+…+(2n -1)=n a 1+a n 2=n 1+2n -1 2
=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,
所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,
所以b n =b 1q
n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1 1-q n 1-q =23(4n -1).。