[VIP专享]食品化学(知识点)

合集下载

食品化学主要知识点

食品化学主要知识点

第一章水1、水结冰时体积增大;0℃下冰的导热值约为同温度下水的4倍;冰的热扩散速率是水的9倍;温差相等时,生物组织的冷冻速率比解冻速率更快。

(P11)2、分子的缔合:水分子在三维空间形成多重氢键键合,每个水分子具有相等数目的氢键给体和受体,能够在三维空间形成氢键网络结构。

(P13)3、水分子缔合的原因:①H-O键间电荷的非对称分布使H-O键具有极性,这种极性使分子之间产生引力;②由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键;③静电效应。

(P13)4、持水容量:通常用来描述基质分子(一般指大分子化合物)截留大量水的能力。

(P20)5、食品中水的存在形式:体相水(自由水、截留水)和结合水(化合水、邻近水、多分子层水)(P19)6、水与离子和离子基团的相互作用:①由于水中添加可解离的溶质,使纯水考氢键键合形成的四面体排列的正常结构遭到破坏②由于既不具有氢键受体又没有给体的简单无机离子,它们与水相互作用时仅仅是离子-偶极的极性结合③在稀水溶液中一些离子具有净结构破坏效应,这些离子大多为负离子和大的正离子,如:K+,Rb+,NH4+,Cl-,Br-,I-,NO3-,BrO3-,IO3-,ClO4-等④另外一些离子具有净结构形成效应,这些离子大多是电场强度大,离子半径小的离子。

如:Li+,Na+,Ca2+,Ba2+,Mg2+,Al3+,F-,OH-等(P23)7、水具有氢键键合能力的中性基团的相互作用:①水与溶质之间的氢键键合比水与离子之间的相互作用弱②氢键作用的强度与水分子之间的氢键相近③水能与某些基团,例如羟基、氨基、羰基、酰氨基和亚氨基等极性基团,发生氢键键合。

④结晶大分子的亲水基团间的距离是与纯水中最邻近两个氧原子间的距离相等⑤如果在水合大分子中这种间隔占优势,这将会促进第一层水和第二层水之间相互形成氢键⑥在生物大分子的两个部位或两个大分子之间可形成由几个水分子所构成的“水桥”8、水与非极性物质的相互作用:①水中加入疏水性物质,疏水基团与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,结构更为有序②疏水基团之间相互聚集,从而使它们与水的接触面积减小,结果导致自由水分子增多③非极性物质具有两种特殊的性质,蛋白质分子产生的疏水相互作用,极性物质能和水形成笼形水合物9、疏水水合:向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程成为疏水水合。

食品化学的知识点总结

食品化学的知识点总结

食品化学的知识点总结一、食品成分食品的化学成分是指食品中含有的各种化学物质。

食品成分主要包括水分、蛋白质、脂肪、碳水化合物、维生素和矿物质等。

这些成分对于食品的营养价值和风味都有很大的影响。

1. 水分水是食品中最主要的成分之一,对于食品的质地、口感和营养价值都有着重要的影响。

食品中的水分含量是影响食品贮存以及微生物、酶、氧化、酶解等变质的主要因素之一。

2. 蛋白质蛋白质是食品中的主要营养成分,它是由氨基酸组成的,对于维持人体正常的生理功能和机体的发育都有重要的意义。

蛋白质在食品中的作用主要有增加食品的营养价值、影响食品的质地和口感等。

3. 脂肪脂肪是食品中的主要能量来源,也是体内沉积物和传导器,对于维持人的正常生理功能有重要的作用。

食品中的脂肪含量会影响食品的口感、香味和营养价值。

4. 碳水化合物碳水化合物是人体的主要能量来源,是构成膳食纤维的主要成分,对于维持人体生命活动和保持体能都有着重要的意义。

食品中的碳水化合物含量会影响食品的甜度、质地和口感。

5. 维生素维生素是对人体的新陈代谢活动和细胞分裂具有重要作用的微量营养素。

食品中的维生素种类繁多,对于维持人体的正常生理功能和增强人体的抵抗力都有着重要的作用。

6. 矿物质矿物质是人体必需的微量元素,对于人体的生理功能具有重要的作用。

食品中的矿物质种类繁多,对于人体的正常生长和发育都有着重要的意义。

二、食品的味道和香味的形成食品的味道和香味的形成是由于食品中的各种化学成分对人的感官器官产生的感觉。

食品的味道主要来自于咸、甜、酸、苦、鲜等味道,食品的香味主要来自于食品中的挥发性物质。

1. 咸味很多食品中都含有盐分,食品中的盐分会使食品呈现出咸味。

人的舌头上具有咸味感受器,当含有盐分的食品进入口腔时,就会产生咸味的感觉。

2. 甜味食品中含有碳水化合物会使食品呈现出甜味,当含有碳水化合物的食品进入口腔时,就会产生甜味的感觉。

3. 酸味食品中含有有机酸或无机酸会使食品呈现出酸味,当含有酸性物质的食品进入口腔时,就会产生酸味的感觉。

食品化学复习知识点

食品化学复习知识点

食品化学复习知识点一、名词解释1、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储存和运销过程中的变化及其对食品品质和安全性影响的科学。

2、构型:一个分子各原子在空间的相对分布或排列,即各原子特有的固定的空间排列,使该分子所具有的特定的立体结构形式。

3、变旋现象:当单糖溶解在水中的时候,由于开链结构和环状结构直接的相互转化,出现的一种现象。

4、间苯二酚反应:5、膨润现象:淀粉颗粒因吸水,体积膨胀到数十倍,生淀粉的胶束结构即行消失的现象。

6、糊化:生淀粉在水中加热至胶束结构全部崩溃,淀粉分子形成单分子,并为水所包围而成凝胶状态,由于淀粉分子是链状或分支状,彼此牵扯,结果形成具有粘性的糊状黏稠体系的现象。

7、淀粉老化:经过糊化后的淀粉在室温或低于室温的条件下放置后,溶液变得不透明甚至凝结而沉淀的现象。

8、多糖(淀粉)的改性:指在一定条件下通过物理或化学的方法使多糖的形态或结构发生变化,从而改变多糖的理化性能的过程。

(如胶原淀粉)9、同质多晶现象:同一种物质具有不同固体形态的现象。

10、油脂塑性:指在一定压力下表现固体脂肪具有的抗应变能力。

11、油脂的精炼:采用不同的物理或化学方法,将粗油(直接由油料中经压榨、有机溶剂提取到的油脂)中影响产品外观(如色素等)、气味、品质、的杂质去除,提高油脂品质,延长储藏期的过程。

(碱炼:NaOH去除游离脂肪酸)12、氨基酸的等电点:当氨基酸在某一pH值时,氨基酸所带正电荷和负电荷相等,即净电荷为零,此时的pH值成为氨基酸的等电点。

13、蛋白石四级结构:由多条各自具有三级结构的肽链通过非共价键连接起来的结构形式。

14、蛋白质的变性:把蛋白质二级及其以上的高级结构在一定条件下(如加热、酸、碱、有机溶剂、重金属离子等)遭到破坏而一级结构并未发生变化的过程。

15、水合性质:由于蛋白质与水的相互作用,使蛋白质内一部分水的物理化学性质不同于正常水。

食品化学知识点范文

食品化学知识点范文

食品化学知识点范文食品化学是研究食品组分、结构、性质、变化和相互作用的科学,涉及食品的营养和安全方面的知识。

下面是一些常见的食品化学知识点。

一、碳水化合物2.碳水化合物包括单糖、双糖和多糖,如葡萄糖、果糖、麦芽糖、蔗糖、淀粉和纤维素等。

3.碳水化合物分解为葡萄糖后进入血液循环,供给机体能量,并通过胰岛素调节血糖水平。

二、脂肪1.脂肪是由甘油和脂肪酸组成的化合物。

3.脂肪分为饱和脂肪、不饱和脂肪和转化脂肪酸等。

三、蛋白质1.蛋白质是由氨基酸组成的高聚合物,是构成生物体的重要组成部分。

2.蛋白质可以分为动物蛋白质和植物蛋白质,如肉、鱼、奶、豆类等。

3.蛋白质的主要功能包括供给机体能量、维持组织结构和功能、抗体产生和酶的催化等。

四、维生素1.维生素是一类对机体正常生长、发育、生理功能具有重要作用的有机物质。

2.维生素可以分为水溶性维生素和脂溶性维生素。

3.维生素不可被机体合成,需从食物中摄取。

五、矿物质1.矿物质是食物中的无机物质,包括钙、铁、锌、镁、钠、钾等。

2.矿物质对于机体的正常生理功能具有重要作用,如构成骨骼、维持神经传导、维持水平衡等。

六、食物添加剂1.食物添加剂是指用于改善食品品质和特性、提高加工性能和延长食品保质期的物质。

2.食物添加剂包括色素、甜味剂、防腐剂、抗氧化剂、增稠剂、着色剂等。

七、食品储藏和加工1.食品储藏是指将食品保存在适宜的条件下,防止食品变质和营养丢失的过程。

2.食品加工是指改变食品原有的物理、化学和生物学特性,提高食品的质量和风味的过程。

3.食品加工和储藏可以通过控制温度、湿度、氧气和光照等条件来保证食品的品质和安全。

八、食品变质和毒素1.食品变质是指食品由于微生物、酶和化学反应等原因而发生质量下降的过程。

2.食品变质可以表现为腐败、发酵、霉变等。

3.食品中的毒素包括微生物毒素、化学污染物和放射性物质等。

以上只是食品化学的一部分知识点,食品化学的研究范围广泛且深入。

对于食品的营养和安全,掌握食物化学的基本知识是非常重要的。

食品化学复习知识点

食品化学复习知识点

水1.冰:是水分子通过氢键有序排列成巨大且长的晶体。

2.冷冻食品中常见的4种冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶。

3.冰的特性——过冷(1)过冷是由于无晶核存在,当液体水冷却到冰点(0℃)以下仍不析出固体的现象(常常先被冷却成过冷状态,只有当温度降低到开始出现稳定性晶核时,或在震动促进下才会立即向冰晶体转化并促使温度回升到0℃,开始出现稳定性晶核的温度叫过冷温度)(2)若向冷水中投入一粒冰晶或摩擦器壁产生冰晶,过冷现象立即消失(3)过冷溶液中加入晶核,晶核逐渐形成长大的结晶,这种现象称之为异相成核(4)冰晶体的大小和结晶速度受溶质、温度、温度降低速度、溶质的种类和数量等因素影响4.水在食品中的存在状态:自由水、结合水(1)结合水特点:呈现低的流动性,在-40℃不会结冰,不能作为所加入溶质的溶剂,在质子核磁共振实验中使氢的谱线变宽(2)结合水分类:化合水——单层水——多层水——(自由水)(3)游离水分类:滞化水、毛细管水、自由流动水5.水与溶质的相互作用(1)水与离子或离子基团的相互作用:水合作用(2)水与极性基团的相互作用:各种有机分子与水之间的作用以氢键为主要方式(3)水与非极性基团的相互作用:主要为疏水水合作用疏水水合:含有非极性基团的烃类、脂肪酸、氨基酸以及蛋白质加入水中,由于极性的差异使疏水基尽可能聚集在一起以减少它们与水的接触,此过程称为疏水水合6.水分活度(Aw):在一定温度下,食品中水的蒸气压和该温度下纯水的饱和蒸气压的比值Aw与温度的关系:温度升高时,Aw随之升高,这对密封在袋中或罐内食品的稳定性有很大影响7.水的吸湿等温线:在一定温度条件下,用来联系食品的含水量(用每单位干物质中的水含量表示)与其水活度的关系图(MSI)【结合食品的吸湿等温线,解释各区间水的存在形式】区间Ⅰ:化合水,水与溶质结合最紧密区间Ⅰ与区间Ⅱ之间:化合水+单层水区间Ⅱ:化合水+单层水+多层水区间Ⅱ与区间Ⅲ之间:出现游离水区间Ⅲ:游离水,既可以作为溶剂,又有利于微生物生长8.滞后现象:食品的脱附曲线与吸湿曲线理论上应该一致,但实际不能重叠的现象【简述Aw与食品保存性的关系】1.Aw与微生物生命活动的关系:不同类群微生物生长繁殖的最低Aw范围是:大多数细菌为0.94-0.99,大多数霉菌为0.8.-0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60-0.65,、在Aw低于0.60时,绝大多数微生物就无法生长。

食品化学知识点

食品化学知识点

食品化学知识点第一章水1、在冷冻食品中存在4中主要的冰晶体结构:六方形、不规则树枝状、粗糙的球形和易消失的球晶以及各种中间状态的晶体。

2、冰的特性—过冷A】食品中水的蒸汽压和该温度下纯水的饱和蒸汽压的比值。

3、【水分活度W4、水在食品中以游离水和结合水两种状态存在的。

5、结合水的特性:①在-40℃不会结冰;②不能作为所加入溶质的溶剂;③在质子核磁共振试验中使氢的谱线变宽。

6、各种有机分子与水之间的作用以氢键为主要方式。

7、【吸湿等温线(MSI)】在恒定温度下,食品的水分含量与它的水分活度之间的关系图。

8、吸湿等温线:Ⅰ区:水的主要形式是化合水。

Ⅰ区和Ⅱ区分界线之间:水的主要形式是化合水和单层水。

Ⅱ区:水的主要形式是化合水+单层水+多层水。

Ⅱ区和Ⅲ区分界线之间:出现游离水。

Ⅲ区:游离水。

9、滞后现象:理论上二者应该一致,但实际二者之间有一个滞后现象,形成滞后环。

在一定时,食品的解吸过程一般比回吸过程时含水量更高。

【简答】10、简述水分活度与食品保存性的关系。

(一)、水分活度与微生物生长的关系:不同类群微生物生长繁殖的W A 最低范围是:大多数细菌为0.94~0.99,大多数霉菌为0.80~0.94,大多数耐盐细菌为0.75,耐干燥霉菌和耐高渗透压酵母为0.60~0.65。

在低于0.60时。

绝大多数微生物就无法生长。

细菌形成芽孢时的W A 阈值比繁殖生长时要高。

(二)、水分活度与酶水解的关系:当降低到0.25~0.30的范围,就能有效地减慢或阻止酶促褐变的进行。

(三)、水分活度与化学反应的关系:① 大多数化学反应都必须在水溶液中才能进行。

降低水分活度,食品中许多化学反应受到抑制,反应速率下降。

② 发生离子化学反应的条件是反应物首先必须进行离子的水合作用,所以要有足够的游离水。

③ 化学反应和生物反应都必须有水分子参与。

降低水分活度,减少了参加反应的水的有效数量,反应速率下降。

④ 当W A <0.8时,大多数酶活力受抑制;当W A 在0.25~0.30之间时,淀粉酶、多酚氧化酶和过氧化物酶就会丧失活力或受到强烈的抑制。

食品化学知识点

食品化学知识点

食品化学知识点一、食品组成及相关知识食品是指提供营养和能量,并满足人体生理和心理需求的物质。

食品大致可分为五大类:谷类、肉类、蔬菜类、水果类和奶类。

1.1 营养素营养素是指人体必须吸收的物质,包括碳水化合物、脂肪、蛋白质、维生素和矿物质等。

碳水化合物是人体能量的主要来源,包括单糖、双糖和多糖。

单糖包括葡萄糖、果糖和半乳糖等;双糖包括蔗糖、乳糖和麦芽糖等;多糖包括淀粉和纤维素等。

脂肪是人体必须吸收的营养素,包括不饱和脂肪酸和饱和脂肪酸等。

不饱和脂肪酸包括单不饱和脂肪酸和多不饱和脂肪酸等,可降低胆固醇水平,预防心血管疾病。

蛋白质是组成人体组织的重要成分,包括必需氨基酸和非必需氨基酸等。

维生素是维持人体生理功能的重要物质,包括水溶性维生素(如维生素B1、维生素B2、维生素B6、维生素C等)和脂溶性维生素(如维生素A、维生素D、维生素E、维生素K 等)等。

矿物质是人体必须吸收的元素,包括铁、钙、钾、镁、锌等。

1.2 食品添加剂食品添加剂是指在食品加工中添加的具有特定功能的物质,可分为色素、防腐剂、甜味剂、增味剂、膨松剂、酸味剂、稳定剂和乳化剂等。

色素可增加食品的色泽,使其更具吸引力;防腐剂可延长食品的保质期,防止细菌滋生;甜味剂可增加食品的甜度;增味剂可增强食品的香味和口感;膨松剂可增加食品的松软度;酸味剂可增加食品的酸味;稳定剂可提高食品的稳定性;乳化剂可使油水混合物更加均匀。

1.3 食品中的化学成分食品中含有多种化学成分,包括糖类、蛋白质、脂肪、矿物质、维生素、酸碱度等。

其中,糖类是食品中含量最高的成分之一,可分为单糖、双糖和多糖。

同时,食品中还含有不同种类的酸,如有机酸和脂肪酸等。

二、食品加工及相关知识2.1 食品生产加工食品生产加工包括原材料处理、加工制备、成品包装和贮存等环节。

其中,原材料处理包括采集、分级、分选、清洗、翻晒等步骤;加工制备包括切割、研磨、混合、腌制、烘干等步骤;成品包装包括采购包装材料、包装机械调试、包装等步骤;贮存包括成品的仓储、保管、配送、销售等步骤。

食品化学知识归纳

食品化学知识归纳

绪论一、名词解释1、食物:被人体摄取的含有供给人体营养成分和能量的物料(可供人类食用的物质统称为食物)。

2、食品:广义地说,食品是指被食用并经消化吸收以后,或构成机体组织,或供给机体能量,或调节机体生理机能的物质。

(经特定方式加工后具有营养价值且安全无害供人类食用的物质。

)3、食品化学:应用化学的原理和方法,研究食品及其原料的组成、结构、理化性质、生理功能、体内生化过程、营养价值、安全性质及在加工、储藏、运输和销售中的变化及对食品品质和安全性影响的一门新兴、综合、交叉性学科。

二、知识点1、食品加工中主控反应的条件食品保藏与加工中的重要可变因素有(自身因素和环境因素):温度(T)、时间(t)、温度变化的速度(Dt/dt)、pH、产品的成分、气相的成分、水分活度。

第一章食品的化学成分一、名词解释:1、结合水(束缚水):生物体中以氢键结合力结合着,难分离。

不易结冰(冰点约为-40℃),不能作为溶质的溶剂。

2、自由水:游离水) :以毛细管力联系着的水称为自由水(或游离水)。

易结冰,起溶剂的作用3、盐析:.一般是指溶液中加入无机盐类而使溶解的物质析出的过程。

4、常量元素:矿物质元素在生物体内的含量低于0.01%以上的元素。

5、微量元素:矿物质元素在生物体内的含量低于0.01%以下的元素6、水分活度:指食品中水的蒸汽压(P)与同一温度下纯水的饱和蒸汽压(P0)的比值,用以表达食品中水分可以被微生物所利用的程度。

7、等温吸湿线:指在恒定温度下表示食品水分活度与食品含水量关系的曲线。

8、糖:是多羟基醛或多羟基酮及其缩合、聚合物以及某些衍生物的总称。

9、转化糖的DE值:表示淀粉的水解程度或糖化程度。

糖化液中,还原性糖全部当作葡萄糖计算时,其占干物质的百分比。

10、多糖:由多个单糖单位通过糖苷键连接起来的高分子化合物,在一定的条件下,糖苷键断裂,完全水解后最终产物是单糖11、淀粉:是许多葡萄糖组成的被人体消化吸收的植物多糖,是人类碳水化合物的主要食物来源。

食品化学重点

食品化学重点

第一章绪论1、食品科学(food Science)——一门将基础学科和工程学的理论用于研究食品基本的物理、化学和生物化学性质以及食品加工原理的学问。

它是一门涉及到食品的特性及其变化、保藏和改性原理的科学。

2、食品化学(Food Chemistry)论述食品的成分和性质以及食品在处理、加工和贮藏中经受的化学变化。

第二章水1、水在生物体内的生理功能:✧化学作用的介质,也是化学反应的反应物或生成物。

✧水是一种溶剂,能够作为体内营养素运输、吸收和废弃物排泄的载体。

✧是维持体温的载温体。

✧是生物体内减缓磨擦的润滑剂。

2、食品中的水构成大多数食品主要组分水分子的含量和分布直接影响到食品的外观、色泽、风味、质量、状态、贮藏时间及其对腐败的敏感性等。

不同的食品有其特征性的水分含量。

3、水分子缔合的原因:H-O键间电荷的非对称分布使H-O键具有极性,这种极性使分子之间产生引力。

由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键。

4、水分子缔合解释水的许多性质?低蒸汽压高沸点高熔化点高蒸发热5、按冷冻速度和对称要素(对称面、对称轴、对称中心),冰可分为四大类:o六方型冰晶:是大多数冷冻食品中重要的冰结晶形式,它是一种高度有序的普通结构。

o不规则树枝状结晶o粗糙的球状结晶o易消失的球状结晶及各种中间体。

6、六方冰晶形成的条件:①在最适度的低温冷却剂中缓慢冷冻②溶质的性质及浓度均不严重干扰水分子的迁移。

7、在正常压力及0℃时,只有普通的六方形冰是稳定的。

8、冷冻速度、溶质的种类及浓度等会影响冰结晶的结构。

例,随着冷冻速度增大或明胶浓度的提高,主要形成立方形和玻璃状冰结晶。

9、液态水分子的结构特征⏹水是呈四面体的网状结构;⏹水分子之间的氢键网络是动态的;⏹水分子氢键键合程度取决于温度。

10、水的特点一、高沸点(bp)(H2O)n,打破氢键需额外能量。

压力P下降,bp降低。

高海拔处烹煮食物难熟。

二、高比热,高蒸发热水为优良的冷却剂。

食品化学(知识点)

食品化学(知识点)

10、引起滞后现象的原因 1、解吸过程中一些吸水与非水溶液成分作用而无法释放。 2、样品中不规则形状产生的毛细管现象的部位,欲填满或抽空水分需要不同的蒸汽压
(要抽出需要 P 内>P 外,要填满即吸着时需 P 外>P 内)。 3、解吸时,因组织改变,无法紧密结合水分,因此回吸相同水分含量时其水分活度较
从水的正常结构来看,所有离子对水的结构都起到破坏作用,因为它们都能阻止水在 0℃

结冰。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

食品化学笔记1

食品化学笔记1

食品化学笔记1食品化学知识点总结1、食品剖析的目的包含两方面。

一方面是确切了解营养成分,如维生素,蛋白质,氨基酸和糖类;另一方面是对食品中有害成分进行监测,如黄曲霉毒素,农药残余,多核芳烃及各类添加剂等。

2、食品化学是研究食品的组成、性质以及食品在加工、储藏过程中发生的化学变化的一门科学。

3、食品分析与检测的任务:研究食品组成、性质以及食品在贮藏、加工、包装及运销过程中可能发生的化学和物理变化,科学认识食品中各种成分及其变化对人类膳食营养、食品安全性及食品其他质量属性的影响。

4、生物体六大营养物质:蛋白质、脂类、碳水化合物、无机盐、维生素、水5、蛋白质:催化作用,调节生理机能,氧的运输,肌肉收缩,支架作用,免疫作用,遗传物质,调节体液和维持酸碱平衡.蛋白质种类:动物蛋白和植物蛋白。

6、脂肪:提供高浓度的热能和必要的热能储备.脂类分为两大类,即油脂和类脂油脂:即甘油三脂或称之为脂酰甘油,是油和脂肪的统称。

一般把常温下是液体的称作油,而把常温下是固体的称作脂肪类脂:包括磷脂,糖脂和胆固醇三大类。

7、碳水化合物在体内消化吸收较其他产能营养素迅速且解酵。

糖也被称为碳水化合物糖类可以分为四大类:单糖(葡萄糖等),低聚糖(蔗糖、乳糖、麦芽糖等),多糖(淀粉、纤维素等)以及糖化合物(糖蛋白等)。

8、矿物质又称无机盐.是集体的重要组成部分.维持细胞渗透压与集体的酸碱平衡,保持神经和肌肉的兴奋性,具有特殊生理功能和营养价值.9、维生素维持人体正常分理功能所必须的有机营养素,人体需要量少但是也不可缺少。

10、维生素A:防止夜盲症和视力减退,有抗呼吸系统感染作用;有助于免疫系统功能正常;促进发育,强壮骨骼,维护皮肤、头发、牙齿、牙床的健康;有助于对肺气肿、甲状腺机能亢进症的治疗。

11、维生素B1:促进成长;帮助消化。

维生素B2:促进发育和细胞的再生;增进视力。

维生素B5:有助于伤口痊愈;可制造抗体抵抗传染病。

维生素B6:能适当地消化、吸收蛋白质和脂肪。

食品化学复习知识点(二)

食品化学复习知识点(二)

食品化学复习知识点(一)引言概述:食品化学是研究食品的组成、结构、性质和变化规律的学科,了解食品化学的知识对于提高食品的品质、安全和营养价值具有重要意义。

本文将介绍食品化学的复习知识点,以帮助读者更好地理解和掌握相关内容。

正文:一、食物的化学组成1.1 主要食物成分:碳水化合物、脂类、蛋白质、维生素和矿物质等。

1.2 食物的营养价值:了解食物中不同成分的营养作用和重要性。

1.3 食物的能量价值:计算食物的热量含量及其在人体中的利用。

二、食物的化学反应2.1 激素和酶的作用:了解激素和酶在食物化学反应中的作用机制。

2.2 食品的变质过程:细菌、酵母菌和霉菌的作用以及氧化和褐变等反应的原因和机制。

2.3 食品储存的化学原理:掌握食品储存中的化学反应和控制措施。

三、食品的添加剂3.1 食品添加剂的分类:了解食品添加剂的种类及其用途。

3.2 食品添加剂的作用原理:理解食品添加剂的功能和作用机制。

3.3 食品添加剂的安全性评价:了解食品添加剂的安全性评价标准和方法。

四、食品的鉴别与分析4.1 食品鉴别的方法:介绍常用的食品鉴别方法,如感官评价、化学分析和生物检测等。

4.2 食品中有害物质的检测:了解食品中常见有害物质的检测方法及其危害。

4.3 食品分析技术:介绍常用的食品分析技术,如色谱分析和质谱分析等。

五、食品加工与营养保持5.1 食品加工的化学原理:了解常用食品加工方法的化学原理和影响因素。

5.2 食品贮藏与保鲜技术:介绍常用的食品贮藏与保鲜技术,如冷冻、真空包装和辐照等。

5.3 食品的营养保持:了解食品加工对营养物质的影响以及保持营养物质的方法。

总结:本文介绍了食品化学的复习知识点,包括食物的化学组成、化学反应、添加剂、鉴别与分析以及食品加工与营养保持。

通过深入了解和掌握这些知识点,读者可以更好地理解和应用食品化学的原理,提高食品的质量和卫生安全水平,保障食品的营养价值。

食品化学必备知识点[参考]

食品化学必备知识点[参考]

食品化学必备知识点[参考]食品化学是利用其食品组成部分、水解物质及食用物质等,及其形成机理及合成反应,研究食品的可食用物质及物理化学性质,以及它们之间的关系的学科。

一、食物组成1.蛋白质:是植物及动物体中重要的组成部分,具有复杂的结构及各种功能,是构成食物的主要成分,其中包括氨基酸、多肽、免疫球蛋白、淀粉蛋白及微量元素等。

2.脂肪:是食物的主要成份之一,其组成以脂肪酸为主,也含有一定数量的维生素及色素。

3.碳水化合物:也就是普通意义上的糖(含有果糖、蔗糖等),也有维生素、钙、铁等含量较高的碳水化合物,来源主要有谷物、饼干、面包等等。

4.矿物质:也称作微量元素,是食物中的重要成份,如钠、钙、钾、铁等,它们对人体的健康很重要。

5.水:占人体总重的 60-70%,是最重要的成份之一,有一定的温度、酸度和胃口等特性,另外,水里还含有某些水溶性维生素,对于食品加工和食物质量都至关重要。

二、食物水解食物水解就是把食物中的碳水化合物、脂肪、蛋白质等,通过酶及其他物质将其分解后形成更小分子物质,比如乳糖、氨基酸、脂肪酸等,这些物质可以被身体吸收利用,是人体能量及养分的主要来源。

食物合成是指食物原料中的化学物质,通过合成反应形成新的物质,从而获得食物的新特性或功能,比如改变口感、保质期等,也可以增加剂量、迅速上市等特殊功能。

四、口感化学口感化学是一门以研究人的口感体验及各种味道为核心的学科,它研究食物中的口感特性,如质地、口感、香味等,及其调整食物口感的方法,还可以通过技术评估食品及原料味道及口感品质,从而确定食品及原料的品质及满意度。

五、膳食纤维膳食纤维又称作非消化性纤维,它不会被人体的酶分解,它们能传导饱足感以及维持肠道蠕动,由食物中植物性组成部分所构成,如蔬菜、水果等,其作用通常是当食物经过肠道时,膳食纤维会被水解发生反应,增加大肠中有益细菌的生长,同时也会降低吸收的油类、脂肪,有缓解血脂升高,降低患病风险。

食品化学必备知识点[参考]

食品化学必备知识点[参考]

食品化学必备知识点[参考]
1.营养学基础知识:包括碳水化合物、脂肪、蛋白质、维生素、矿物质、水的作用、摄入量等基础营养学知识。

2. 食品成分分析:包括食品成分分析的方法和相关技术,如气相色谱、液相色谱、质谱等分析方法。

3. 蛋白质的结构和功能:包括蛋白质的结构、种类、功能和在食品加工中的应用。

4. 脂质的结构和功能:包括脂质的结构、种类、功能和在食品加工中的应用。

5. 食品添加剂:包括食品添加剂的种类、作用、应用范围、安全性等方面的知识。

6. 食品营养强化:包括食品营养强化的原理、方法和在食品生产中的应用。

7. 食品储藏和保质期:包括食品在储藏和运输过程中的易变质因素、储藏方式、保质期等方面的知识。

8. 食品加工过程中的化学反应:包括掌握食品加工过程中在不同条件下发生的化学反应及其机理。

9. 食品安全:包括食品卫生、食品灾害和突发事件应对等方面的知识。

10. 食品质量控制:包括食品质量标准、抽样检测、质量改进等方面的知识。

食品化学知识点总结

食品化学知识点总结

引言概述:食品化学是研究食品的组成成分、结构、性质以及其在加工、贮藏、烹饪等过程中的变化规律的科学。

它不仅与我们的日常饮食密切相关,还关系到食品的质量、安全和营养价值。

本文将就食品化学的主要知识点进行总结,以丰富读者对食品化学的了解。

正文内容:一、食品的主要成分1. 碳水化合物:食品中最主要的能量供给来源,包括单糖、双糖和多糖。

2. 蛋白质:由氨基酸组成的高聚物,是身体建筑材料和许多生化反应的催化剂。

3. 脂肪:主要作为能量储存和细胞膜成分,分为饱和脂肪酸、不饱和脂肪酸和转化脂肪酸。

4. 维生素:对身体的正常生理和代谢具有重要作用,分为脂溶性和水溶性维生素。

5. 矿物质:在体内起着构成骨骼、维持神经传导等重要作用,如钙、铁、锌等。

二、食品加工与化学反应1. 热处理:包括烹调、炖煮、烘焙等,通过破坏细胞膜结构和酶的活性,改变食品的口感和风味。

2. 调味品的作用:含有多种化学物质,如氨基酸、核苷酸、酸味物质等,可以增强食品的风味和口感。

3. 食品防腐:使用化学物质(如抗菌剂、抗氧化剂)阻止食品腐败和变质,延长食品的保质期。

4. 食品着色剂:用于提高食品的色泽,如天然色素和合成色素等。

5. 食品营养强化:通过添加维生素、矿物质等物质,提高食品的营养价值。

三、食品贮藏和变质1. 微生物的作用:细菌、霉菌和酵母菌会导致食品的变质和腐败,引起食品中毒等食品安全问题。

2. 酸碱平衡:食品的pH值对细菌生长和食品稳定性有影响,过高或过低的pH值会导致食品变质。

3. 氧化反应:氧气引起食品中脂肪的氧化,导致食品发生质量变化,出现异味和变色。

4. 食品贮藏方式:低温贮藏可以延缓食品变质,真空包装和气调包装可以减少氧化反应。

四、食品加工中的化学反应1. 糖的糊化和焦化:在烘焙、炒菜过程中,糖类可以发生糊化和焦化反应,产生香味和颜色。

2. 蛋白质的应用:在食品加工中,蛋白质可以发生凝胶化、变性和交联等反应,改变食品的质地和稳定性。

食品化学知识点总结人教版

食品化学知识点总结人教版

食品化学知识点总结人教版食品化学是以化学原理和方法为基础,研究食品成分、结构、性质、质量和加工、储藏和保鲜等问题的学科。

通过对食品的化学成分、结构和性质进行深入研究,可以为保障食品安全、提高食品品质、改善加工技术等提供理论依据和实践指导。

下面对食品化学的一些重要知识点进行总结。

一、食品成分1. 蛋白质蛋白质是构成生物体细胞的主要成分,也是组成食品的基本成分之一。

蛋白质是由氨基酸通过肽键连接而成的大分子化合物,具有多种功能和生物活性。

食品中的蛋白质主要有动物蛋白和植物蛋白两种,在不同的食品加工过程中,蛋白质会发生酸碱水解、氧化、变性等变化,从而影响食品的营养价值和质量。

2. 碳水化合物碳水化合物是构成生物体细胞的主要营养素之一,也是食品中的主要成分之一。

碳水化合物包括单糖、双糖、多糖等多种化合物,它们在食品加工过程中会发生糖类酵解、糖类水解、糖类聚合等化学反应,影响着食品的味道、口感和保质期。

3. 脂类脂类是一类重要的营养素,包括脂肪和油脂两大类。

脂类在食品中既是重要的能量来源,又是维持细胞结构和功能的重要组成部分。

在食品加工和储藏过程中,脂类容易发生氧化、水解、皂化等化学反应,导致食品的变质和品质下降。

4. 维生素维生素是维持生物体正常生长和代谢的必需营养素,包括水溶性维生素和脂溶性维生素两类。

维生素在食品中易受光、热、氧等因素的影响而失活,食品加工中如何保护维生素的完整性成为一个重要问题。

5. 矿物质矿物质是构成生物体的无机物质,包括金属元素和非金属元素两大类。

矿物质在食品中起着重要的功能,如影响食品的色泽、口感、保质期等。

在食品加工过程中,矿物质也易受到酸碱、氧化、螯合等化学反应的影响。

二、食品质量1. 食品的感官质量食品的感官质量是评价食品品质的重要指标,包括色泽、香味、口感和外观等方面。

对于不同的食品,其感官质量受到不同的化学因素影响,如氧化、酶解、己型变化等。

2. 食品的安全质量食品的安全质量是保障食品安全的基本要求,包括重金属、农药、激素、添加剂等有害物质的限量要求和检测方法。

食品化学复习资料(全)

食品化学复习资料(全)

食品化学复习资料第一章引论一、名词解释:1、营养素:指那些能维持人体正常生长发育和新陈代谢所必需的物质。

2、食物:可供人类食用的含有营养素的天然生物体。

3、食品:经特定方式加工后供人类食用的食物。

4、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储存和运销过程中的变化及其对食品品质和安全性影响的科学。

二、问答题:1、食品在加工贮藏过程中发生的化学变化有那些?答:①、一般包括生理成熟和衰老过程中的酶促变化;②、水份活度改变引起的变化;③、原料或组织因混合而引起的酶促变化和化学反应;④、热加工等激烈加工条件引起的分解、聚合及变性;⑤、空气中的氧气或其它氧化剂引起的氧化;⑥、光照引起的光化学变化及包装材料的某些成分向食品迁移引起的变化。

2、为什么生物工程在食品中应用紧紧依赖于食品化学?答:①、生物工程必须通过食品化学的研究来指明原有生物原料的物性有哪些需要改造和改造的关键在哪里,指明何种食品添加剂和酶制剂是急需的以及它们的结构和性质如何;②、生物工程产品的结构和性质有时并不和食品中的应用要求完全相同,需要进一步分离、纯化、复配、化学改性和修饰,在这些工作中,食品化学具有最直接的指导意义;③、生物工程可能生产出传统食品中没有用过的材料,需由食品化学研究其在食品中利用的可能性、安全性和有效性。

3、食品化学的主要研究内容?答:研究食品中营养成分、呈色、香、味成分和有害成分的化学组成、性质、结构和功能;阐明食品成分在生产、加工、贮藏、运销中的变化,即化学反应历程、中间产物和最终产物的结构及其对食品的品质和卫生安全性的影响;研究食品贮藏加工的新技术,开发新的产品和新的食品资源以及新的食品添加剂等,构成了食品化学的主要研究内容。

4、食品化学研究方法与一般化学研究方法的区别?答:是把食品的化学组成、理化性质及变化的研究同食品的品质和安全性研究联系起来。

因此,从实验设计开始,食品化学的研究就带有揭示食品品质或安全性变化的目的,并且把实际的食品物质系统和主要食品加工工艺条件作为实验设计第二章水一、填空题1、冰的导热系数在0℃时近似为同温度下水的导热系数的 4 倍,冰的热扩散系数约为水的 5 倍,说明在同一环境中,冰比水能更快的改变自身的温度。

食品化学重点

食品化学重点

P2第一章绪论1.食品化学:是从化学的角度研究食品的本质和变化的科学,它涉及食品化学组成的含量分析和结构测定,及其在食品加工、贮运、营销和鉴定等过程中表现出的性质和变化;主要研究方向包括:食品生物化学、食品营养化学、食品工艺化学和食品风味化学;简言之,食品化学即是研究食品的组成、结构、功能及其变化规律,从分子水平认识食品的一门科学;2.食品化学的研究内容1研究食品中营养成分,呈色、香、味成分和有害成分的化学组成、性质、结构和功能;2阐明食品成分之间在生产、加工、储存、运输中的各类化学变化,即化学反应历程、中间产物和最终产物的结构及其对食品的品质和卫生安全性的影响;3研究食品储藏和加工的新技术,开发新的产品和新的食品资源以及新的食品添加剂等;4研究食品中化学反应的动力学行为及其环境因素的影响;3.食品化学的研究领域1根据研究内容分类,食品化学主要包括:食品营养成分化学、食品色香味化学、食品工艺化学、食品物理化学和食品有害成分化学;2根据研究内容的物质分类,食品化学主要包括:食品碳水化合物化学、食品油脂化学、食品蛋白质化学、食品酶学、食品添加剂化学、维生素化学、食品矿物质元素化学、调味品化学、食品风味化学、食品色素化学、食品毒物化学、食品保健成分化学;P11第二章水分第二章水第一节引言生物体系的基本成分包括:蛋白质、碳水化合物、脂质、核酸、维生素、矿物质和水;水是最普遍存在的组分,占50%~90%是其它食品组分的溶剂水在食品中的重要作用a.水是食品的重要组成成分,是形成食品加工工艺考虑的重要因素;b.水分含量、分布和状态对于食品的结构、外观、质地、风味、新鲜程度会产生极大的影响;c.是引起食品化学变化及微生物作用的重要原因,直接关系到食品的贮藏特性;水与食品加工了解水在食品中的存在形式是掌握食品加工和保藏技术原理的基础;决定食品的市场品质,是食品的法定标准;大多数食品加工的单元操作都与水有关;干燥、浓缩、冷冻、水的固定;复水、解冻没有完全成功第二节水、冰的结构和性质二、水分子的缔合与水的三态由于水分子的极性及两种组成原子的电负性差别,导致水分子之间可以通过形成氢键而呈现缔合状态:由于每个水分子上有四个形成氢键的位点,因此每个水分子的可以通过氢键结合4个水分子;由于水分子之间可以以不同数目和不同形式结合,因此缔合态的水在空间有不同的存在形式,如:由于水分子之间除了通过氢键结合外,还有极性的作用力,因此水分子之间的缔合数可能大于4;在通常情况下,水有三种存在状态,即气态、液态和固态;水分子之间的缔合程度与水的存在状态有关;在气态下,水分子之间的缔合程度很小,可看作以自由的形式存在;在液态,水分子之间有一定程度的缔合,几乎没有游离的水分子,由此可理解为什么水具有高的沸点;而在固态也就是结冰的状态下,水分子之间的缔合数是4,每个水分子都固定在相应的晶格里,这也是水的熔点高的原因;水具有一定的黏度是因为水分子在大多数情况下是缔合的,而水具有流动性是因为水分子之间的缔合是动态的;当水分子在很短的时间内改变它们与临近水分子之间的氢键键合关系时,会改变水的流动性;水分子不仅相互之间可以通过氢键缔合,而且可以和其它带有极性基团的有机分子通过氢键相互结合,所以糖类、氨基酸类、蛋白质类、黄酮类、多酚类化合物在水中均有一定的溶解度;另外,水还可以作为两亲分子的分散介质,通过这种途径使得疏水物质也可在水中均匀分散;三、冰的结构和性质冰是水分子通过氢键相互结合、有序排列形成的低密度、具有一定刚性的六方形晶体结构;普通冰的晶胞和基础平面可如下图所示:在冰的晶体结构中,每个水和另外4个水分子相互缔合,O-O之间的最小距离为,O-O-O之间的夹角为109°;当水溶液结冰时,其所含溶质的种类和数量可以影响冰晶的数量、大小、结构、位置和取向;一般有4种类型,即六方形、不规则树状、粗糙球状、易消失的球晶;六方形是多见的、在大多数冷冻食品中重要的结晶形式;这种晶形形成的条件是在最适的低温冷却剂中缓慢冷冻,并且溶质的性质及浓度不严重干扰水分子的迁移;纯水结晶时有下列行为:即尽管冰点是0℃,但常并不在0℃结冻,而是出现过冷状态,只有当温度降低到零下某一温度时才可能出现结晶加入固体颗粒或振动可促使此现象提前出现;出现冰晶时温度迅速回升到0℃;把开始出现稳定晶核时的温度叫过冷温度;如果外加晶核,不必达到过冷温度就能结冰,但此时生产的冰晶粗大,因为冰晶主要围绕有限数量的晶核成长;一般食品中的水均是溶解了其它可溶性成分所形成的溶液,因此其结冰温度均低于0℃;把食品中水完全结晶的温度叫低共熔点,大多数食品的低共熔点在-55~-65℃之间;但冷藏食品一般不需要如此低的温度,如我国冷藏食品的温度一般定为-18℃,这个温度离低共熔点相差甚多,但已使大部分水结冰,且最大程度的降低了其中的化学反应;现代食品冷藏技术中提倡速冻,这是因为速冻形成的冰晶细小,呈针状,冻结时间短且微生物活动受到更大限制,从而保证了食品品质;四、水、冰的物理特性与食品质量关系水是一种特殊的溶剂,其物理性质和热行为有与其它溶剂显着不同的方面:a.水的熔点、沸点比质量和组成相近的分子高得多;如甲烷的:-162℃,:-183℃,而水在下:100℃,:0℃;这些特性将对食品加工中的冷冻和干燥过程产生很大的影响;b.水的密度较低,水在冻结时体积增加,表现出异常的膨胀行为,这会使得含水的食品在冻结的过程中其组织结构遭到破坏;c.水的热导率较大,然而冰的热导率却是水同温度下的4倍;这说明冰的热传导速度比非流动水如动、植物组织内的水快得多;因此水的冻结速度比熔化速度要快得多;d.冰的热扩散速度是水的9倍,因此在一定的环境条件下,冰的温度变化速度比水大得多;正是由于水的以上物理特性,导致含水食品在加工贮藏过程中的许多方法及工艺条件必须以水为重点进行考虑和设计;特别是在利用食品低温加工技术时要充分重视水的热传导和热扩散的特点;1 与离子或离子基团的相互作用当食品中存在离子或可解离成离子或离子基团的盐类物质时,这些物质由于在水中可以溶解而且解离出带电荷的离子,因而可以固定相当数量的水;例如食品中的食盐和水之间的作用:第三节食品中水与非水组分之间的相互作用由于离子带有完整的电荷,因此它们和水分子之间的极性作用比水分子之间的氢键连接还要强,如Na+与水分子之间的结合能力大约是水分子间氢键连接力的4倍;正是由于自由离子和水分子之间的强的相互作用,导致破坏原先水分子之间的缔合关系,使一部分水固定在了离子的表面;随着离子种类的变化及所带电荷的不同,与水之间的相互作用也有所差别;大致可以分作两类:能阻碍水分子之间网状结构的形成,溶液的流动性比水大,此类离子如:K+、Rb+、Cs+、NH+4、Cl-、Br-、I-、NO-3、BrO-3等;有助于水分子网状结构的形成,水溶液的流动性小于水,此类离子一般为离子半径小、电场强度大或多价离子,如:Li+、Na+、H3O+、Ca2+、Ba2+、Mg2+、Al3+、OH-等;2与具有氢键键合能力的中性分子或基团的相互作用许多食品成分,如蛋白质、多糖淀粉或纤维素、果胶等,其结构中含有大量的极性基团,如羟基、羧基、氨基、羰基等,这些极性基团均可与水分子通过氢键相互结合;因此通常在这些物质的表面总有一定数量的被结合、被相对固定的水;不同的极性基团与水的结合能力有所差别;一般情况下,氨基、羧基等在生理条件下可以呈解离状态的极性基团均与水有较强的结合,而羟基、酰胺基等非解离基团与水之间的结合较弱;带有极性基团的有机物质由于和水能够通过氢键相互结合,因此对纯水的正常结构都有一定程度的破坏,而且也可降低冰点;带极性基团的食品分子不但可以通过氢键结合并固定水分子在自己的表面,而且通过静电引力还可吸引一些水分子处于结合水的外围,这些水称为临近水:尽管结合或附着在分子上的水分子数量并不多,但其作用和性质常常非常重要;它们常是一些酶保持活性结构并能发挥作用的重要因素;也常是食品保持正常结构的重要因素;3 与非极性物质的相互作用非极性的分子通常包括烃类、脂类、甾萜类等,通过化学的手段也可在一些含极性基团的分子如蛋白质等中引入非极性部分基团;当水中存在非极性物质,即疏水性物质时,由于它们与水分子产生斥力,可以导致疏水分子附近的水分子之间的氢键键合增强;由于在这些不相容的非极性实体邻近的水形成了特殊的结构,使得熵下降,此过程称为疏水水合作用;由于疏水水合在热力学上是不利的,因此水倾向于尽可能地减少与存在的非极性实体靠近;如果存在两个分离的非极性实体,那么不相容的水环境将促使它们相互靠近并缔合,从而减少水-非极性实体界面面积,此过程是疏水水合的部分逆转,被称为“疏水相互作用”;第四节食品中水的存在状态理解食品中水的存在状态是掌握水在食品中的作用及各种与水相关的加工技术的关键;而水在食品中的存在状态说到底是水在食品中和各类食品物质之间的关系及水的存在量;二、食品中水的存在状态根据食品中水与非水物质之间的相互关系,可以把食品中的水分作体相水和结合水如下页图结合水也称束缚水、固定水;结合水又分为化合水、临近水、多层水;结合水与自由水主要的区别在于:a.结合水的量与食品中所含极性物质的量有比较固定的关系;结合水对食品品质和风味有较大的影响,当结合水被强行与食品分离时,食品质量、风味就会改变b.结合水的蒸气压比体相水低得多,所以在一定温度100℃下结合水不能从食品中分离出来;c.结合水不易结冰,由于这种性质使得植物的种子和微生物的孢子得以在很低的温度下保持其生命力;而多汁的组织在冰冻后细胞结构往往被体相水的冰晶所破坏,解冻后组织不同程度的崩溃;d.结合水不能作为可溶性成分的溶剂,也就是说丧失了溶剂能力;e.体相水可被微生物所利用,结合水则不能;第五节水分活度与吸湿等温曲线一、引言食品的水分含量~食品的腐败性存在相关性;但发现水分含量相同,腐败性显着不同;水分含量不是一个腐败性的可靠指标水分活度Aw水与非水成分缔合强度上的差别;比水分含量更可靠;与微生物生长和许多降解反应具有相关性二、水分活度的定义和测定方法f ——溶剂水的逸度;f0——纯溶剂水的逸度;逸度:溶剂从溶液逃脱的趋势严格差别1% 仅适合理想溶液RVP,相对蒸汽压Aw =P/P0=ERH/100ERH 食品上空已经恒定了的水蒸气的分压与同温下水的饱和蒸汽压的比值用乘以100后的整数表示Aw 是食品内在的品质,与食品的组成结构有关,而ERH则与食品平衡时大气的性质有关;ERH与周围大气的平衡需要一个过程;应用aw =ERH/100时必须注意:①aw 是样品的内在品质,而ERH是与样品中的水蒸气平衡是的大气性质. ②仅当食品与其环境达到平衡时才能应用;Aw 测定方法:冰点测定法;相对湿度传感器测定法;恒定相对湿度平衡法;水分活度测定仪测定冰点以上与冰点以下的Aw的比较:1.冰点以上温度时,水分活度与食品组成和温度有关;冰点以下温度时,水分活度仅与温度有关;2. Aw的意义不同;3.冰点以下的Aw不能预测相同食品冰点以上的Aw;1.食品中非水物质可以分为哪几种类型2.食品中水的存在形式有哪几种主要区别在哪里3.水分活度的定义三、水分吸着等温线在恒定温度下,食品水分含量每克干物质中水的质量与Aw的关系曲线;一定义MSI的实际意义:1、由于水的转移程度与Aw有关,从MSI图可以看出食品脱水的难易程度,也可以看出如何组合食品才能避免水分在不同物料间的转移;2、据MSI可预测含水量对食品稳定性的影响;3、从MSI还可看出食品中非水组分与水结合能力的强弱;MSI上不同区水分特性区Ⅰ的水的性质:最强烈地吸附;最少流动;水-离子或水-偶极相互作用;在-40℃不结冰;不能作为溶剂;看作固体的一部分;构成水和邻近水;占总水量极小部分BET单层:区Ⅰ和Ⅱ接界;H2O/ g干物质;Aw =;相当于一个干制品能呈现最高的稳定性时含有的最大水分含量区Ⅱ的水的性质:通过氢键与相邻的水分子和溶质分子缔合;流动性比体相水稍差;大部分在-40℃不结冰;导致固体基质的初步肿胀;多层水;区Ⅰ和区Ⅱ的水占总水分的5%以下真实单层:区Ⅱ和Ⅲ接界;H2O/ g干物质;Aw =;完全水合所需的水分含量,即占据所有的第一层部位所需的水分含量;区Ⅲ的水的性质:体相水;被物理截留或自由的;宏观运动受阻;性质与稀盐溶液中的水类似;占总水分的95%以上MSI与温度的关系:水分含量一定T↑,Aw↑;Aw一定T↑,水分含量↓二滞后现象1、定义:采用回吸resorption的方法绘制的MSI和按解吸desorption的方法绘制的MSI并不互相重叠的现象称为滞后现象;在一指定的Aw时,解吸过程中试样的水分含量大于回吸过程中的水分含量高糖-高果胶食品空气干燥苹果:总的滞后现象明显;滞后出现在真实单层水区域;Aw>时,不存在滞后高蛋白食品冷冻干燥熟猪肉:Aw<开始出现滞后;滞后不严重;回吸和解吸等温线均保持S形淀粉质食品冷冻干燥大米:存在大的滞后环;Aw=时最严重2、滞后现象产生的原因1解吸过程中一些水分与非水溶液成分作用而无法放出水分;2不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压要抽出需P内>P外, 要填满则需P外>P内;3解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的aw;第六节水与食品的稳定性一、水分活度与食品的稳定性1 水分活度与微生物生命活动的关系食品质量及食品加工工艺的确定与微生物有密切的关系;而食品中微生物的存活及繁殖生长与食品中水分的活度有密切的关系;下表列出了不同微生物生长与食品水分活度的关系;2水分活度与食品劣变化学反应的关系几类重要的反应速度与Aw的关系除非酶氧化在Aw<时有较高反应速度外,其它反应均是逾小反应速度愈小;也就是说愈小有利于食品的稳定性;在Aw=范围内,随Aw↑,反应速度↓的原因:1、水与脂类氧化生成的氢过氧化物以氢键结合,保护氢过氧化物的分解,阻止氧化进行;2、这部分水能与金属离子形成水合物,降低了其催化性;在Aw=范围内,随Aw↑,反应速度↑的原因:1、水中溶解氧增加2、大分子物质肿胀,活性位点暴露,加速脂类氧化3、催化剂和氧的流动性增加当Aw>时,随Aw↑,反应速度增加很缓慢的原因:催化剂和反应物被稀释二、冷冻与食品稳定性冷冻后食品中非水分组分的浓度将比冷冻前变大水结冰后体积比结冰前增大9%;冷冻使溶质的浓度上升即浓缩效应;浓缩效应的结果是增大了反应速度;三、含水食品的水分转移1 水分的位转移影响因素水分的位转移的主要因素有温度和水分活度,其中水分活度对水分的位转移的影响更大;2 水分的相转移水分的蒸发:食品中的水分由液相变成气相而散失的现象称为食品的水分蒸发;水分蒸发主要和空气湿度和饱和湿度差有关系;水蒸气的凝结:空气中的水蒸汽在食品表面凝结成液体水的现象称为水蒸汽的凝结;第七节分子移动性与食品的稳定性一几个概念1 、玻璃态glass stste:是聚合物的一种状态,它既象固体一样有一定的形状,又象液体一样分子间排列只是近似有序,是非晶态或无定形态;处于此状态的聚合物只允许小尺寸的运动,其形变很小,类似于玻璃,因此称~;2 玻璃化温度glass transition temperature, Tg:非晶态食品从玻璃态到橡胶态的转变称玻璃化转变,此时的温度称~;3 无定形Amorphous:是物质的一种非平衡,非结晶的状态;4 分子流动性Mm:是分子的旋转移动和平动移动性的总度量;决定食品Mm值的主要因素是水和食品中占支配地位的非水分;二状态图State diagrams二元体系的状态图分子流动性与食品性质的相关性1大多数物理和部分化学变化由分子流动性控制决定化学反应速度:A:扩散因子D; B:碰撞频率因子A; C:活化能因子Ea2 玻璃化温度对食品的扩散限制性的稳定性有着密切的关系在食品保藏温度低于玻璃化温度时,所有的扩散限制的变化都会收到很好的限制;3 在溶解或融化温度范围内Mm和扩散限制性食品性质和温度的关系Tm-Tg范围内,T下降,Mm减少;在此范围内食品的稳定性也依赖温度,并与T-Tg成反比;4 水含量强烈影响Tg水含量越高,玻璃化温度越低;纯水的Tg最低,为-135摄氏度;若Tg高于环境温度时,则该食品体现在常温下也是稳定的;溶质的种类强烈影响Tg和Tg’:Tg’是最大冷冻浓缩液的玻璃化温度,是Tg的一个特定值;注意:Tg强烈依赖水分含量和溶质的种类,但Tg’只依赖溶质的种类;Aw和Mm方法研究食品稳定性的比较:二者相互补充,非相互竞争;Aw法主要注重食品中水的有效性,如水作为溶剂的能力;Mm法主要注重食品的微观黏度Microviscosity和化学组分的扩散能力;1.简述水的缔合程度与其状态之间的关系;2.将食品中的非水物质可以分作几种类型水与非水物质之间如何发生作用3.水分含量和水分活度之间的关系如何P59 第三章蛋白质一.蛋白质的变性:由于外界因素的作用,使天然蛋白质分子的构象发生了异常变化,从而导致生物活性的丧失以及物理、化学性质的异常变化,不包括一级结构上肽键的断裂;二.蛋白质变性对功能和结构的影响:1疏水基团暴露于外——溶解度下降;2高级结构解散——失去生物活性,杀菌,除去某些有害蛋白质或抗营养物质,提高安全性;3肽键暴露——容易受到蛋白酶的攻击;4与水结合能力下降——溶解度和持水性下降;5分子散开——粘度增大;6酶类失活——提高食品的品质和储藏性;7发生沉淀——固定食品形状、产生良好口感、搅打时稳定气泡等;食品蛋白质变性后通常引起溶解度降低或失去溶解性,从而影响蛋白质的功能特性或加工特性;在某种情况下,变性又是需宜的;例如,①豆类中胰蛋白酶抑制剂的热变性,可能显着高动物食用豆类时的消化率和生物有效性;②部分变性蛋白比天然状态更易消化,或具有更好的乳化性、起泡性和胶凝性;在某些情况下,变性过程是可逆的,例如,有的蛋白质在加热时发生变性,冷却后,又可复原;可逆变性~三级和四级结构变化;不可逆变性~二级结构也发生变化;二硫键的断裂→不可逆变性三、蛋白质的物理变性1加热变性2冷冻变性3机械处理4静高压5辐照6界面作用1.加热变性在加热条件下,肽键产生强烈的热振荡,导致维持蛋白质空间结构的次级键破坏,天然构象解体;变性速率取决于温度;对许多反应来说,温度每升高1℃,转化速率约增加2倍;可是,对于蛋白质变性反应,当温度上升1℃,速率可增加600倍左右,因为维持二级、三级和四级结构稳定性的各种相互作用的能量都很低;蛋白质对热变性的敏感性取决于多种因素,如氨基酸组成、水活性、蛋白质浓度、pH、离子强度等;疏水氨基酸↑,变性↑;水的含量↑,变性↑;变性温度Td:蛋白质溶液在逐渐加热到临界温度以上时,蛋白质的构象从天然状态到变性状态有一个显着地转变,这个转变的中点温度称为熔化温度Tm,或变性温度Td;此时天然状态与变性状态浓度比为1;2.冷冻变性蛋白质可以发生冻结变性,其原因:①是由于蛋白质周围的水与其结合状态发生变化,这种变化破坏了一些维持蛋白原构象的力,同时由于水保护层的破坏,蛋白质的一些基团就可以发生直接的接触和相互作用,导致蛋白质发生聚集或原来的亚基发生重排;②由于大量水形成冰后,剩余的水中无机盐浓度大大提高,这种局部的高浓度盐也会使蛋白质发生变性;3.机械处理机械处理,如揉捏、振动、均质或搅打等高速机械剪切,都能引起蛋白质变性;在加工面包或其他食品的面团时,产生的剪切力使蛋白质变性,主要是因为β—螺旋的破坏导致了蛋白质的网络结构的改变;剪切速率愈高,蛋白质变性程度则愈大;同时受到高温和高剪切力处理的蛋白质,则发生不可逆变性;4.静高压压力诱导蛋白质变性的原因主要是蛋白质的柔性和可压缩性;尽管氨基酸残基是被紧密地包裹在球状蛋白质分子的内部,但是仍然存在一些恒定的空隙空间,这就使蛋白质具有可压缩性;压力引起的蛋白质变性是高度可逆的高压导致的蛋白质变性不会损害蛋白质中的必须氨基酸的风味,也不会导致有毒化合物的形成;高静压在食品加工过程中作为一种工具已经引起食品科学家的广泛关注,例如灭菌和胶凝化;在200--1000 MPa高压下灭菌,使细胞膜遭到不可逆破坏,同时引起微生物中细胞器的解离,从而达到灭菌的目的;关于压力胶凝化作用已有不少报道和应用,如将蛋清、16%大豆球蛋白或3%肌动球蛋白在1OO—700MPa静液压下,于25℃加压30min,则可形成凝胶,其质地比热凝胶柔软;静液压也常用于牛肉的嫩化加工,一般处理压力为100—300 MPa;压力加工,目前是一种较热加工理想的方法,加工过程中不仅必需氨基酸、天然色泽和风味不会损失,特别是一些热敏感的营养或功能成分能得到较好的保持,而且不会产生有害和有毒化合物;但是因为成本关系,尚未得到广泛应用5.辐照芳香族氨基酸残基吸收紫外线;若能量高,能打断二硫键,导致构象变化;食品进行一般的辐射保鲜时,对食品蛋白质的影响极小;原因:1.辐射剂量低;2.食品中水的裂解减少了其他物质的裂解;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1、食品化学:是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、贮存和运销过程中的变化及其对食品品质和食品安全性影响的科学,是为改善食品品质、开发食品新资源、革新食品加工工艺和贮运技术、科学调整膳食结构、改进食品包装、加强食品质量控制及提高食品原料加工和综合利用水平奠定理论基础的学科。

2、食品化学的研究范畴第二章水3、在温差相等的情况下,为什么生物组织的冷冻速率比解冻速率更快?4、净结构破坏效应:一些离子具有净结构破坏效应(net structure-breaking effect),如:K+、Rb+、Cs+、NH4+、Cl- 、I- 、Br- 、NO3- 、BrO3- 、IO3-、ClO4- 等。

这些大的正离子和负离子能阻碍水形成网状结构,这类盐溶液的流动性比纯水更大。

净结构形成效应:另外一些离子具有净结构形成效应(net structure-forming effect),这些离子大多是电场强度大、离子半径小的离子或多价离子。

它们有助于形成网状结构,因此这类离子的水溶液的流动性比纯水的小,如:Li+、Na+、Ca2+、Ba2+、Mg2+、Al3+、F-、OH-等。

从水的正常结构来看,所有离子对水的结构都起到破坏作用,因为它们都能阻止水在0℃下结冰。

5、水分活度目前一般采用水分活度表示水与食品成分之间的结合程度。

aw=f/f0 其中:f为溶剂逸度(溶剂从溶液中逸出的趋势);f0为纯溶剂逸度。

相对蒸气压(Relative Vapor Pressure,RVP)是p/p0的另一名称。

RVP与产品环境的平衡相对湿度(Equilibrium Relative Humidity,ERH)有关,如下:RVP= p/p0=ERH/100注意:1)RVP是样品的内在性质,而ERH是当样品中的水蒸气平衡时的大气性质;2)仅当样品与环境达到平衡时,方程的关系才成立。

6、水分活度与温度的关系:水分活度与温度的函数可用克劳修斯-克拉贝龙方程来表示:dlnaw/d(1/T)=-ΔH/Rlnaw=-ΔH/RT+C图:马铃薯淀粉的水分活度和温度的克劳修斯-克拉贝龙关系7、食品在冰点上下水分活度的比较:①在冰点以上,食品的水分活度是食品组成和温度的函数,并且主要与食品的组成有关;而在冰点以下,水分活度仅与食品的温度有关。

②就食品而言,冰点以上和冰点以下的水分活度的意义不一样。

如在-15℃、水分活度为0.80时微生物不会生长且化学反应缓慢,然而在20℃、水分活度为0.80 时,化学反应快速进行且微生物能较快地生长。

③不能用食品在冰点以下的水分活度来预测食品在冰点以上的水分活度,同样也不能用食品冰点以上的水分活度来预测食品冰点以下的水分活度。

8、水分吸附等温线在恒定温度下,用来联系食品中的水分含量(以每单位干物质中的含水量表示)与其水分活度的图,称为水分吸附等温线曲线(moisture sorption isotherm,MSI)。

意义:(1)测定什么样的水分含量能够抑制微生物的生长;(2)预测食品的化学和物理稳定性与水分含量的关系;(3)了解浓缩和干燥过程中样品脱水的难易程度与相对蒸气压(RVP)的关系;(4)配制混合食品必须避免水分在配料之间的转移;(5)对于要求脱水的产品的干燥过程、工艺、货架期和包装要求都有很重要的作用。

9、MSI图形形态大多数食品的水分吸附等温线呈S型,而水果、糖制品、含有大量糖的其他可溶性小分子的咖啡提取物以及多聚物含量不高的食品的等温线为J型。

图:低水分含量范围食品的水分吸附等温线Ⅰ区:Aw=0~0.25 约0~0.07g水/g干物质作用力:H2O—离子,H2O—偶极,配位键属单分子层水(含水合离子内层水)不能作溶剂,-40℃以上不结冰,对固体没有显著地增塑作用,与腐败无关Ⅱ区:Aw=0.25~0.8(加Ⅰ区,0.07g水/g干物质至0.14~0.33g水/g干物质)作用力:氢键、H2O—H2O、H2O—溶质属多分子层水,加上Ⅰ区约占高水食品的5% 不作溶剂,-40℃以上不结冰,但接近0.8(Aw)的食品,可能有变质现象,起增塑剂的作用,并且使固体骨架开始溶胀Ⅲ区:Aw=0.80~0.99(新增的水为自由水,(截留+流动),最低0.14~0.33g水/g干物质,多者可达20g H2O/g干物质,体相水)可结冰,可作溶剂,有利于化学反应的进行和微生物的生长9、滞后现象向干燥样品中添加水,所得到的吸附等温线与将水从样品中移出所得到的解吸等温线并不相互重叠,这种不重叠性称为滞后现象(hysteresis)。

滞后作用的大小、滞后曲线的形状、滞后曲线的起始点和终止点取决于食品的性质、食品除去或添加水分时所发生的物理变化,以及温度、解吸速度和解吸时的脱水程度等多种因素。

在Aw一定时食品的解吸过程一般比吸附过程水分含量更高。

图12:核桃仁的水分吸附等温线的滞后现象(25℃)10、引起滞后现象的原因1、解吸过程中一些吸水与非水溶液成分作用而无法释放。

2、样品中不规则形状产生的毛细管现象的部位,欲填满或抽空水分需要不同的蒸汽压(要抽出需要P 内>P 外,要填满即吸着时需P 外>P 内)。

3、解吸时,因组织改变,无法紧密结合水分,因此回吸相同水分含量时其水分活度较高11、脂类氧化反应与Aw 的关系影响脂肪品质的化学反应主要为酸败,而酸败过程的化学本质是空气中氧的自动化。

脂类氧化反应与Aw 的关系:在Ⅰ区中,氧化反应的速度随水分的增加而降低;在Ⅱ区中,反应的速度随水分的增加而加快;在Ⅲ区中,反应的速度随水分的增加呈下降趋势。

其原因是脂类氧化反应的本质是水与脂肪自动氧化中形成的氢过氧化合物通过氢键结合,降低了氢过氧化合物分解的活性,从而降低了脂肪的氧化反应的速度。

从没有水开始,随着水量的增加,保护作用增强,因此氧化过程有一个降低的过程。

除了水对氢过氧化物的保护作用外,水与金属的结合还可使金属离子对脂肪氧化反应的催化作用降低。

当含水量超过Ⅰ、Ⅱ区交界时,较大量的通过溶解作用可以有效的增加氧的含量,还可使脂肪分子通过溶胀而更加暴露,氧化速度加快。

当含水量到达Ⅲ区时,大量的水降低了反应物和催化剂图13:水分活度、食品稳定性和吸附等温线之间的关系17、低聚糖的结构(麦芽糖,蔗糖,乳糖)良的稳定性,能在较宽的pH和温度范围内保持稳定,而且与其他低聚糖相比,低聚木糖最难消化吸收,对双歧杆菌的增殖效果最好,有抗龋齿性,是一种优良的功能性食品原料,广泛应用于各类食品中。

多糖(亲水胶体或胶)具有增稠和胶凝的功能,此外还能控制流体食品与饮料的流动性质、质构以及改变半固体食品的变形性等。

在食品中,一般使用度的胶即能产生极大的黏度甚至形成凝胶。

对于带一种电荷的直链多糖(一般是带负电荷,它由羧基、硫酸半酯基或磷酸基电离,由于同种电荷产生静电斥力,引起链伸展,使链长增加,高聚物体积增大,因而溶液的黏度大大增加。

高度支链的多糖分子比具有相同相对分子质量的直链多糖分子占有的体积小得多,多状凝胶结构,典型的三维网状凝胶结构见图3-24。

凝胶具有二重性,既具固体性质,也具液体性质。

21、直链淀粉直链淀粉由D-葡萄糖以α-(1→4)糖苷键缩合而成,在水中并不是直线型分子,而是由分子内的氢键作用使链卷曲成螺旋状,每个回转含有6个葡萄糖残基,相对分子质量为105~106 Da。

图:直链淀粉的结构22、支链淀粉支链淀粉是高度分支的淀粉,葡萄糖残基通过α-(1→4)糖苷键连接构成主链,支链通过α-(1→6)糖苷键与主链相连,分支点的α-(1→6)糖苷键占总糖苷键的4%~5%。

图:支链淀粉分子的链状结构图:支链淀粉的结构23、糊化(1)定义淀粉的糊化,指未受损的淀粉颗粒不溶于冷水,但可逆地吸着水并产生溶胀,淀粉颗粒的直径明显地增加,经过搅拌后淀粉-水体系再进行加热处理,随着温度的升高淀粉分子运动加剧,使淀粉分子间的氢键开始断裂,所裂解的氢键位置就可以同水分子产生氢键,淀粉颗粒的体积增大,失去晶态。

由于水分子的穿透,以及更多、更长的淀粉分子分散而呈糊状,体系的黏度增加,双折射现象消失,最后得到半透明的黏稠体系。

(2)淀粉糊化的三个阶段:①可逆吸水阶段,水分进入淀粉颗粒的非晶质部分,体积略有膨胀,此时冷却干燥,可以复原,双折射现象不变;②不可逆吸水阶段,随着温度的升高,水分进入淀粉微晶间隙,不可逆大量吸水,结晶“溶解”;③无定形状形成阶段,淀粉糊化后继续加热则会使膨胀的淀粉粒继续分离支解,淀粉颗粒成为无定形的袋状,淀粉分子全部进入溶液,溶液的黏度继续增高。

将新鲜的糊化淀粉浆脱水干燥可得易分散于凉水的无定形粉末,即“可溶性α-淀粉”。

(3)影响淀粉糊化的因素①淀粉晶体结构,淀粉分子间的结合程度、分子排列紧密程度、淀粉分子形成微晶区的大小等,影响淀粉分子的糊化难易程度。

②直链淀粉/支链淀粉的比例,直链淀粉在冷水中不易溶解、分散,直链淀粉分子间存在的相对较大作用力,直链淀粉含量越高,淀粉难以糊化,糊化温度越高。

③水分活度,水分活度较低时,糊化就不能发生或者糊化程度非常有限。

④pH值,一般淀粉在pH为4~7时较为稳定,在碱性条件下易于糊化,当pH小于4时,淀粉糊的黏度将急剧下降。

24、老化(1)定义经过糊化后的α-淀粉在室温或低于室温下放置后,会变得不透明甚至凝结而沉淀,这种现象称为淀粉的老化。

(2)影响因素①直链淀粉起作用;②温度也影响淀粉的老化;③淀粉的老化程度还取决于淀粉分子的相对分子质量(链长或聚合度)和淀粉的来源(直连/支链比例不同)。

25、纤维素(1)分布作为细胞壁的主要结构成分,广泛存在于所有高等植物以及若干低等植物中。

(2)结构由1000~14000个D-吡喃葡萄糖通过β-(1→4)糖苷键连接而成的直链多糖。

图:纤维素的结构(3)膳食纤维所谓膳食纤维,是指植物的可食部分或碳水化合物的类似物,它们不在人体小肠内吸收,但可在大肠内完全或部分发酵。

膳食纤维包括多糖、低聚糖、木质素和相关的植物性物质;膳食纤维能提供的有益生理作用包括排便、血胆固醇调节和血糖调节。

26、果胶果胶(pectin)是一种亲水性植物胶,存在于所有的高等植物中,沉积于初生细胞壁和细胞间层,在初生壁中与纤维素、半纤维素、木质素和某些伸展蛋白相互交联,使细胞组织表现出固有形态,水果和蔬菜也因此具有较硬的质地。

(1)三种形态:植物体内的果胶一般有三种形态,即原果胶、果胶和果胶酸。

(2)结构果胶是α-D-吡喃半乳糖醛酸基通过α-1,4-糖苷键连接而成的聚合物,果胶主要由三个结构区域组成,分别是同型半乳糖醛酸聚糖(HG)、鼠李半乳糖醛酸聚糖Ⅰ(RGⅠ)和鼠李半乳糖醛酸聚糖Ⅱ(RGⅡ)。

相关文档
最新文档