三角函数解答题精选

合集下载

三角函数大题专项(含问题详解)

三角函数大题专项(含问题详解)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y =2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。

(1)求角B 的大小;(2)求 C A sin sin +的取值范围。

三角函数练习题及解析

三角函数练习题及解析

三角函数练习题及解析一、单选题1. 已知直角三角形ABC,角A的对边BC=5,斜边AC=13,则角B 的邻边AB等于:A) 5B) 12C) 4D) 3解析:根据勾股定理,$AB=\sqrt{AC^2-BC^2}=\sqrt{13^2-5^2}=\sqrt{144}=12$,因此选项B) 12.2. 在单位圆上,点A的坐标为$(\frac{\sqrt{3}}{2}, \frac{1}{2})$,则角A的度数为:A) 45°B) 60°C) 90°D) 120°解析:单位圆上的点A的坐标$(\frac{\sqrt{3}}{2}, \frac{1}{2})$对应的角A的度数为$60^\circ$,因此选项B) 60°.3. $\sin^2 30^\circ + \cos^2 60^\circ$的值等于:A) 0B) 1C) $\frac{3}{4}$D) $\frac{1}{2}$解析:$\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,$\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,因此$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$,因此选项D)$\frac{1}{2}$.二、填空题4. 对于任意角θ,$\sin(90^\circ - \theta)$的值等于 __________。

答案:$\cos \theta$解析:根据“余角公式”,$\sin (90^\circ - \theta) = \cos \theta$.5. $\cos(\frac{3\pi}{4})$的值等于 __________。

答案:$-\frac{\sqrt{2}}{2}$解析:根据单位圆上角度为 $\frac{3\pi}{4}$ 的点坐标为 $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$,因此 $\cos(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2}$.三、解答题6. 解方程 $\sin x = \frac{1}{2}$,其中 $0 \leq x < 2\pi$。

三角函数计算题期末复习(含答案)

三角函数计算题期末复习(含答案)

三角函数计算题期末复习(含答案)1.解答题1.计算:sin30°+tan60°-cos45°+tan30°。

2.计算:--2tan60°-(-)-。

3.计算:2sin30°+3cos60°-4tan45°。

4.计算:-2sin30°-(π-3)-(-3)。

5.计算:2sin30°-tan60°+cos60°-tan45°。

6.计算:|-3|+(π-2017)-2sin30°+(1-1)/3.7.计算:2-2-2cos30°+tan60°+(π-3.14)。

8.计算:2-1+2sin45°-8+tan260°。

9.计算:2sin30°-2cos45°+8.10.计算:(1)sin260°+cos260°;(2)4cos45°+tan60°-8-(-1)。

11.计算:sin45°+(1-3)-1+cos30°tan60°-3-1/2.12.求值:2+2sin30°-tan60°-tan45°。

13.计算:(sin30°-1)×sin45°+tan60°×cos30°。

14.(1)sin30°+cos30°+tan30°tan60°;(2)tan45°sin45°-2sin30°cos45°/2.15.计算:-4-tan60°+|-2|。

16.计算:-2sin30°-(-3)tan60°+(1-1)/2.17.计算:tan60°-2sin30°-cos45°。

三角函数10道大题(带答案)

三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。

Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。

2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。

Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。

3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。

1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。

4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。

Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。

5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。

1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。

6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。

(完整版)三角函数的运算经典习题

(完整版)三角函数的运算经典习题

(完整版)三角函数的运算经典习题以下是一些关于三角函数运算的经典题,希望能对大家的研究有所帮助。

题一:正弦函数的运算1. 求解 $\sin \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ 的解集。

2. 计算 $\sin \left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)$ 的值。

3. 简化表达式 $\sin \left(\frac{\pi}{2} - x\right)$。

4. 计算 $\sin \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right)$ 的值。

题二:余弦函数的运算1. 求解 $\cos \left(2x - \frac{\pi}{3}\right) = 0$ 的解集。

2. 计算 $\cos \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{3}\right)$ 的值。

3. 简化表达式 $\cos \left(\frac{\pi}{2} + x\right)$。

4. 计算 $\cos \left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)$ 的值。

题三:正切函数的运算1. 求解 $\tan \left(\frac{x}{2}\right) = \sqrt{3}$ 的解集。

2. 计算 $\tan \left(\frac{\pi}{4}\right) \cdot \tan\left(\frac{\pi}{6}\right)$ 的值。

3. 简化表达式 $\tan \left(\frac{\pi}{2} - x\right)$。

4. 计算 $\tan \left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right)$ 的值。

三角函数解答题50道试题(1)

三角函数解答题50道试题(1)

三角函数解答题50道1. 在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知向量m - cos A ,cos B , n = 2c +b ,a ,且 m ⊥ n 。

(Ⅰ) 求角A 的大小;(Ⅱ) 若a =4 3,b +c =8,求△ABC 的面积。

2.已知向量 a =sin x , 32, b =12,cos x ,f (x )= a ⋅ b .(1)求函数y =f (x )的解析式;(2)求函数y =f (x )的单调递增区间.3.已知函数f (x )= 32sin2x -cos 2x - 12,x ∈R .(1)求函数f (x )的最小正周期;(2)设ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,且c =3,f (C )=9,sin B =2sin A ,求a ,b 的值.4.在△ABC 中 ,角 A ,B , C 的对边分别为a ,b ,c 且满足(2c -a )cosB -b cos A =0.(1)若b =7,a +c =13,求此三角形的面积;(2)求3sin A +sin (C - π6)的取值范围。

5.已知 a =(2cos x +23sin x ,1), b =(y ,cos x ),且 a // b .(I )将y 表示成x 的函数f (x ),并求f (x )的最小正周期;(II )记f (x )的最大值为M ,a ,b ,c 分别为△ABC 的三个内角A ,B ,C 对应的边长,若fA2=M ,且a =2,求bc 的最大值.6.在锐角△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3a -2c sin A =0.(Ⅰ)求角C 的大小;(Ⅱ)若c =2,求a +b 的最大值.7.△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c 且a sin A +b sin B =c sin C + 2a sin B(I)求角C;(II)求 3sin A -cosB + π4的最大值.8.在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,锐角B 满足sin B = 53.(1)求sin2B +cos 2 A +C2的值;(2) 若b = 2,当ac 取最大值时,求cosA + π3的值.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知 a 3cos A= c sin C ,(Ⅰ)求y =f (x )的大小;(Ⅱ)若△ABC ,求△ABC 的周长的取值范围.10.设λ∈R ,f (x )=cos x λsin x -cos x +cos 2 π2-x 满足f- π3=f 0.(1) 求函数f (x )的单调递增区间;(2)设△ABC 三内角A ,B ,C 所对边分别为a ,b ,c 且 a 2+c 2-b 2a 2+b 2-c 2= c 2a -c,求f (x )在 0,B 上的值域.11.在锐角△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对边长,且满足sin 2A =sin ( π3+B )⋅sin ( π3-B )+sin 2B .(1)求角A 的大小;(2)若 AB ⋅ AC =12,a =27,求b ,c (b <c )12.函数f (x )=6cos 2ωx 2+ 3sin ωx −3(ω>0)的最小正周期是8(Ⅰ)求ω的值及函数f (x )的值域;(Ⅱ)若f (x 0)= 8 35,且x 0∈(- 103, 23),求f (x 0+1)的值.13.已知△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设向量m =(c -2b ,a ),n =(cos A ,cos C ),且 m ⊥ n .(1)求角A 的大小;(2)若 AB ⋅AC =4,求边长a 的最小值.14.已知向量 m =(sin B ,1-cos B ),向量 n =(2,0),且 m 与 n 所成角为 π3,其中A 、B 、C 是△ABC 的内角(Ⅰ)求角B 的大小;(Ⅱ)求sin A +sin C 的取值范围.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足:c cos B +b cos C =4a cos A .(Ⅰ)求cos A 的值;(Ⅱ)若 AB ⋅AC =b +c ,求△ABC 的面积S 的最小值.16.已知函数f x =cos ωx ( 3sin ωx −cos ωx )+ 12(ω>0)的周期为2π.(Ⅰ)求ω的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足2b cos A =2c −3a ,求f (B )的值.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,C = π3,b =5,△ABC 的面积为10 3.(Ⅰ)求a ,c 的值; (Ⅱ)求sinA + π6的值.18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足 a +c b = sin A −sin Bsin A −sin C.(Ⅰ)求角C ;(Ⅱ)求 a +bc的取值范围.19.已知a =( 12, 12sin x +32cos x ),b =(1,y ),且a//b .设函数y =f (x )(1) 求函数y =f (x )的解析式;(2) 若在锐角△ABC 中,fA − π3= 3,边BC = 3,求△ABC 周长的最大值.20.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 的对边, 2b -c a = cos Ccos A.(Ⅰ)求角A 的大小;(Ⅱ)求函数y = 3sin B +sinC - π6的值域.21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos A cos B= b a ,且∠C = 2π3.(Ⅰ)求角A ,B 的大小;(Ⅱ)设函数f (x )=sin (x +A )+cos x ,求f (x )在- π6, π3上的值域.22.已知向量 a =sin 2 π+2x4,cos x +sin x , b =(4sin x ,cos x -sin x ),f (x )= a ⋅ b (Ⅰ)求f (x )的解析式;(Ⅱ)求由f (x )的图象、y 轴的正半轴及x 轴的正半轴三者围成图形的面积.23.已知向量 a = sin ωx ,1, b =3cos ωx , 12cos2ωx , ω>0,函数f x = a ⋅ b 的最小正周期为π.(1)求ω及函数的单调递减区间;(2)将函数y =f (x )的图象向左平移 π12个单位,再将所得图象上各点的横坐标缩短为原来的 12倍,纵坐标不变,得到函数y =g (x )的图象.求g (x )在 0, 5π24上的值域.24.已知函数f (x )=-2sin x cos x +2cos 2x +1(1)设方程f (x )-1=0在(0,π)内有两个零点x 1、x 2,求x 1+x 2的值;(2)若把函数y =f (x )的图像向左移动m (m >0)个单位,再向下平移2个单位,使所得函数的图象关于y 轴对称,求m 的最小值.25.在△ABC 中,A ,B ,C 所对边分别为a 、b 、c ,且满足cos A 2= 255,b +c =6,AB ⋅AC =3.(Ⅰ)求a 的值;(Ⅱ)求 2sin A + π4sinB +C +π41-cos2A的值.26.已知函数f (x )=sin x 2cos x 2+cos 2 x2-2.(Ⅰ)将函数f (x )化简成A sin ωx +ϕ+B A >0,ω>0,ϕ∈ 0,2π的形式,并指出f (x )的周期;(Ⅱ)求函数f (x )在π, 17π12上的最大值和最小值27.已知函数f (x )=2sin 2π4+x - 3cos2x ,x ∈π4, π2.(I)求f (x )的最大值和最小值;(II)若不等式 f (x )-m <2在x ∈π4, π2上恒成立,求实数m 的取值范围.28.已知函数f (x )=tan13x -π6(I)求f (x )的最小正周期;(II)求f 3π2的值;(III)设f3α+ 7π2=- 12,求 sin (π-α)+cos (α-π) 2sin (α+ π4)的值.29.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知函数f (x )=cos x ∙cos x -A - 12cos Ax ∈R (1)求函数f (x )的最小正周期和最大值;(2)若函数f (x )在x = π3处取得最大值,求 a cos B +cos C b +c sin A的值.30.已知△ABC 的面积为S ,且 AB ⋅AC =S .(1)求tan2A 的值;(2)若B = π4, CB - CA =3,求△ABC 的面积S .31.已知△ABC 的内角A 的大小为120°,面积为3.(1)若AB =22,求△ABC 的另外两条边长;(2)设O 为△ABC 的外心,当BC =21时,求 AO ⋅ BC 的值.32.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C = sin A +sin Bcos A +cos B.(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求a 2+b 2的取值范围.33.已知函数f (x )= 32sin2x -cos 2x - 12,x ∈R .](1)求函数f (x )的最小值和最小正周期;(2)设ΔABC 的内角A 、B 、C 的对边分别为a ,b ,c ,且c =3,f (C )=0,若sin B =2sin A ,求a ,b 的值.34.已知向量 a =(sin x , 34), b =(cos x ,-1).(1)当 a //b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2( a + b )⋅b ,已知在△ ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a = 3,b =2,sin B =63,求f (x )+4cos2A + π6(x ∈ 0, π3)的取值范围.35.△ABC 中角A ,B ,C 所对的边之长依次为a ,b ,c ,且cos A = 255,5(a 2+b 2-c 2)=310ab .(Ⅰ)求cos2C 和角B 的值;(Ⅱ)若a -c =2-1,求△ABC 的面积.36.已知A ,B ,C 是△ABC 的三个内角,a ,b ,c 为其对应边,向量 m = -1,3,n = cos A ,sin A 且 m ∙ n =1(Ⅰ)求角A ;(Ⅱ)若 AB = 2,1, cos B cos C = b c ,求△ABC 的面积S .37.在△ABC 中,角A ,B ,C 所对应的边a ,b ,c 成等比数列.(1)求证:0<B ≤ π3;(2)求y = 1+sin2Bsin B +cos B 的取值范围.38.已知 m = 2 3,1, n =cos 2 A2,sin B +C ,其中A ,B ,C 是△ABC 的内角.(1)当A = π2时,求 n 的值(2)若BC =1, AB = 3,当m ⋅ n 取最大值时,求A 大小及AC 边长.39.设△ABC 的角A ,B ,C 所对的边分别是a , b , c ,向量 m =(a ,b ),n =(sin B ,sin A ),p =(b -2, a -2).(1)若 m //n ,求证:△ABC 为等腰三角形;(2)若 m ⊥ p ,边长c =2,角C = π3,求ΔABC 的面积.40.已知向量 m =sin A -B ,sin π2-A , n = 1,2sin B , m ∙ n =-sin2C ,其中A ,B ,C分别为△ABC 的三边a ,b ,c 所对的角.(Ⅰ)求角C 的大小;(Ⅱ)若sin A +sin B =2sin C ,且S △ABC =3,求边c 的长.41.函数f (x )=M sinωx - π4(M >0,ω>0)的部分图像如右图所示.(Ⅰ)求函数f (x )的解析式;(Ⅱ)ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若fA 2+ π8= 3,其中A ∈0, π2,且a 2+c 2-b 2=ac ,求角A ,B ,C 的大小.42.设f (x )=6cos 2x -3sin2x (x ∈R )..(Ⅰ)求f (x )的最大值及最小正周期;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,锐角A 满足f (A )=3-23,B =π12,求 a c的值.43.已知sin θ+cos θ= 1+ 32,θ∈0, π4,(1)求θ的值;(2)求函数f (x )=sin (x −θ)+cos x 在x ∈[0,π]上的单调递增区间.44.已知函数f (x )= 12sin2x sin ϕ+cos 2x cos ϕ- 12sinπ2+ϕ 0<ϕ<π,其图象过点π6, 12;(1)求ϕ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的 12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在0, π4上的最大值和最小值.45.设函数f (x )=(sin ωx +cos ωx )2+2cos 2ωx (ω>0)的最小正周期为 2π3.(Ⅰ)求ω的值;(Ⅱ)求f x 在区间- π6, π3上的值域;(Ⅲ)若函数y=g(x)的图像是由y=f(x)的图像向右平移 π2个单位长度得到,求y=g(x)的单调增区间.46.已知函数f(x)=sin2x+23sin x cos x+3cos2x,x∈R.求:(I) 求函数f(x)的最小正周期和单调递增区间;(II) 求函数f(x)在区间- π6, π3上的值域.47.已知函数f(x)=A cosωx+ϕ(A>0,ω>0,- π2<ϕ<0)的图像与y轴的交点为0,1,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为x0,2和x0+2π,-2(1)求函数f(x)的解析式;(2)若锐角θ满足cosθ= 13,求f2θ的值.48.已知函数f(x)=sin x cos x sinϕ+cos2x cosϕ+ 12cos(π+ϕ)(0<ϕ<π),其图象过点( π3, 14).(1)求ϕ的值;(2)将函数y=f(x)图象上各点向左平移 π6个单位长度,得到函数y=g(x)的图象,求函数g(x)在- π4, 2π3上的单调递增区间.49.已知函数f(x)=cos( π3+x)cos( π3-x)-sin x cos x+ 14(1)求函数f(x)的最小正周期和最大值;(2)求函数f x单调递增区间50.已知函数f(x)=A sin(ωx+ϕ),x∈R(其中A>0,ω>0,- π2<ϕ< π2),其部分图像如图所示.(1) 求函数f(x)的解析式;(2) 已知横坐标分别为-1.1.5的三点M,N,P都在函数f(x)的图像上,求sin∠MNP的值.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

三角函数典型习题带答案

三角函数典型习题带答案

1、集合M ={x |x =sinnπ3,n ∈Z},N ={x |x =cos nπ2,n ∈N},则M ∩N 等于 ( C ) A.{-1,0,1} B.{0,1} C.{0} D.∅2、已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( A )A.17B.7C.-17D.-7 3、若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( B )A.1B.2C.3+1D.3+2 4、函数f (x )=2sin(2x +π6)在[-π2,π2]上对称轴的条数为 ( B )A.1B.2C.3 D .05、要得到y =sin(2x -π3)的图象,只要将y =sin2x 的图象 ( D )A.向左平移π3个单位B.向右平移π3个单位C.向左平移π6个单位D.向右平移π6个单位6、使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( D )A.-π3B.-π6C.5π6D.2π37、给定函数①y =x cos(3π2+x ),②y =1+sin 2(π+x ),③y =cos(cos(π2+x ))中,偶函数的个数是 ( A )A.3B.2C.1D.0 8、有一种波,其波形为函数y =sin(π2x )的图象,若在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是 ( C ) A.3 B.4 C.5 D.69、设集合M ={平面内的点(a ,b )},N ={f (x )|f (x )=a cos2x +b sin2x ,x ∈R},给出从M 到N 的映射f :(a ,b )→f (x )=a cos2x +b sin2x ,则点(1,3)的象f (x )的最小正周期为( A ) A.π B.π3 C.π2 D.π410、设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则 ( D ) A.f (x )的图象过点(0,12) B.f (x )的图象在[5π12,2π3]上递减C.f (x )的最大值为AD.f (x )的一个对称中心是点(5π12,0)11、函数y =sin(2x -π3)在区间[-π2,π]上的简图是 ( A )12、已知函数f (x )=2sin(ωx +φ)的图象如下图所示,则f (7π12)= 0 .13、下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π; ②终边在y 轴上的角的集合是{α|α=kπ2,k ∈Z};③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点; ④把函数y =3sin(2x +π3)的图象向右平移π6个单位得到y =3sin2x 的图象;⑤函数y =sin(x -π2)在[0,π]上是减函数.其中真命题的序号是 ①④ .14、点A ,B 是单位圆上的两点,A ,B 点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60°=35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435.15、已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:xπ6-π35π6 4π3 11π6 7π317π6y -1131-113(1)根据表格提供的数据求函数f (x )的一个解析式;(2)根据(1)的结果,若函数y =f (kx )(k >0)周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围;解:(1)设f (x )的最小正周期为T ,得 T =11π6 -(-π6)=2π,由T =2πω,得ω=1.又32,.11B A A B A B +==⎧⎧⎨⎨-=-=⎩⎩解得令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3,∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的周期为2π3,又k >0,∴k =3.令t =3x -π3,∵x ∈[0,π3],∴t ∈[-π3,2π3]如图sin t =s 在[-π3,2π3]上有两个不同的解的充要条件是s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解的充要条件是m ∈[3+1,3),即实数m 的取值范围是[3+1,3). 16、把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( C )A.(1-y )sin x +2y -3=0B.(y -1)sin x +2y -3=0C.(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=017、若角α满足条件sin2α<0,cos α-sin α<0,则α在( B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 18、函数y =2sin x 的单调增区间是( A )A.[2k π-2π,2k π+2π](k ∈Z ) B.[2k π+2π,2k π+23π](k ∈Z )C.[2k π-π,2k π](k ∈Z )D.[2k π,2k π+π](k ∈Z ) 19、在(0,2π)内,使sin x >cos x 成立的x 取值范围为( C ) A.(4π,2π)∪(π,45π) B.(4π,π)C.(4π,45π)D.(4π,π)∪(45π,23π) 20、已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f (x )cos x <0的解集是( C ) A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)C.(0,1)∪(2π,3) D.(0,1)∪(1,3)21、列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( B )A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x22、函数y =x +sin|x |,x ∈[-π,π]的大致图象是( C )23、若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在(B )A.第一象限B.第二象限C.第三象限D.第四象限 24、已知sin α>sin β,那么下列命题成立的是( D )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β 25、函数y =-x cos x 的部分图象是( D )26、函数f (x )=M sin (ωx +ϕ)(ω>0),在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +ϕ)在[a ,b ]上( C )A.是增函数B.是减函数C.可以取得最大值MD.可以取得最小值-M 27、若f (x )sin x 是周期为π的奇函数,则f (x )可以是( B ) A.sin x B.cos x C.sin2x D.cos2x 28、已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( B ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π) D.(4π,2π)∪(43π,π) 29、函数y =tan (3121-x π)在一个周期内的图象是( A )30、函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( C )A.6πB.2πC.32πD.3π31、已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( A ) A.322 B.-322 C.32D.-3232、如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( D )A.2B.-2C.1D.-133、若f (x )=2sin ωx (0<ω<1)在区间[0,3π]上的最大值是2,则ω= 3/4 .34、函数y =sin (x -6π)cos x 的最小值是 -43. 35、已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。

高考三角函数经典解答题及答案

高考三角函数经典解答题及答案

31在△ ABC 中,角A 、B C 所对的边分别是 a, b, c,且a 2 + c 2 — b 2 =1ac. 2(1)求 sin 2——— + cos2 B 的值; 2 (2)若b=2,求△ ABC 面积的最大值.1解:(1)由余弦TE 理:conB=-41 +cos2B=- -4一, 1 1 (2)由 cosB = —,得 sin B48 ,S △AB =:acsinB & "15 (a=c 时取等号) 3 23故S AABC 的最大值为 ------32在^ABC 中,角 A, B, C 的对边分别为 a, b, c,且 bcosC = 3acosB -ccosB.(I)求cosB 的值;(II )若BA BC = 2 ,且b = 2/2 ,求a 和c b 的值.解:(I)由正弦定理得 a =2Rsin A,b =2Rsin B,c = 2RsinC , 贝U2Rsin BcosC = 6Rsin AcosB 一 2Rsin C cosB, 故sin B cosC = 3sin AcosB - sinC cosB, 可得 sin BcosC sinCcosB =3sin AcosB, 即sin(B C) =3sin AcosB,可得 sin A = 3sin AcosB.又 sin A = 0,…1因止匕cos B = —. 3(II )解:由 BA BC =2,可得acosB = 2,1 M 一又 cosB = 一,故 ac = 6,3由b 2=a 2c 2-2accosB, 可得 a 2c 2=12, 所以(a -c)2=0,即a =c,所以a= c= . 63已知向重m = (sin B, 1 - cosB ),向重n = ( 2, 0),且m 与n 所成角为—,sin2AB 21/口a 2 + c 2 =2ac+4 > 2ac,得4 已知向量 m=(1,2sinA), n =(sin A,1+cosA),满足 m//n,b+c = V3a. (I小;(II )求 sin( B +f)的值.解:(1)由 m//n 得 2 sin 2A -1 一 cos A = 0 ……2 分 即 2c os2A+8SA —1 =0, cos A 或 cos A = —12: A 是AABC 的内角,cosA=—1舍去. A 「3(2) : b +c =M 3a由正弦定理,sin B - sin C = 3sin A =32其中A 日C 是AABC 的内角。

三角函数的试题及答案

三角函数的试题及答案

三角函数的试题及答案题目:三角函数的试题及答案一、选择题(每题2分,共10题)1. 在三角函数中,sin^2(x) + cos^2(x) = ?A. 0B. 1C. 2D. -12. 以下哪个选项表示sin(π/6)的值?A. √2/2B. √3/2C. 1/2D. 13. 若tan(x) = √3,则x的取值范围是?A. (-∞, -π/3) ∪ (π/3, +∞)B. (-∞, -π/4) ∪ (π/4, +∞)C. (-∞, -π/6) ∪ (π/6, +∞)D. (-∞, -π/2) ∪ (π/2, +∞)4. 若sin(x) = -1/2,且x > 0,则x的值是?A. 3π/2B. π/6C. 7π/6D. π/25. 若cot(x) = 0,且x > 0,则x的值是?A. π/4B. π/2C. πD. 3π/26. 以下哪个选项表示cos^2(x) = 1 - sin^2(x) 的恒等式?A. sin(2x)B. 1/cos(x)C. tan^2(x)D. sec(x)7. 若cos(x) = -√2/2,且x > 0,则x的值是?A. π/4B. π/6C. 5π/4D. π/38. 若sec(x) = 2,且x > 0,则x的值是?A. π/6B. 5π/6C. 6πD. 09. 若sin(2x) = 1/2,且x > 0,则x的值是?A. π/12B. π/6C. π/3D. π/410. 若cot(x) + tan(x) = 1,且x ≠ kπ,其中k为整数,则x的值是?A. 0B. π/4C. π/6D. π/2二、解答题1. 解方程 2sin^2(x) - 3sin(x) + 1 = 0,其中0 ≤ x ≤ 2π。

解答:设sin(x) = t,则方程化简为 2t^2 - 3t + 1 = 0。

解这个二次方程,可以得到 t = 1 或 t = 1/2。

(完整word版)精选三角函数解答题30道带答案

(完整word版)精选三角函数解答题30道带答案

三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。

10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20 (1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将的图象向右平移个单位,得到若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2sin cos cos 2f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1.【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ))的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2 【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()fx 的最小正周期考点:三角恒等变换.12.(I )π=T ,(II【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II )由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)即函数()x g 在区间考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1所以()f x 的单调减区间为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()sin y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值. 试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()sin 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,解出x 的范围所得区间即为增区间,由x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()sin 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k2x2kk ∈Z. 解得kx <kk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1. 考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,和辅助角公式,故周期等于π;(23.试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位. 25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质. 27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围. 试题解析:(1)设sin (1,此时函数f (x )=2sin (+1取最大值3.当u=2kπx=kπsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)

三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。

答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。

根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。

设斜边长度为5,对边长度为3,则邻边长度为4。

因此,cosA = 4/5。

2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。

答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。

由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。

设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。

因此,sinB = 2/根号13。

3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。

答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。

根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。

设斜边长度为2,邻边长度为1,则对边长度为根号3。

因此,tanC = 根号3/1。

4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。

答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。

由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。

设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。

因此,cosD = 根号3/2。

5. 题目:已知tanE = 1,且E为锐角,求sinE的值。

答案解析:由tanE = 1可知,对边与邻边的比值为1。

根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。

设邻边长度为1,对边长度为1,则斜边长度为根号2。

因此,sinE = 1/根号2。

6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。

答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。

三角函数大题专项(含答案解析)

三角函数大题专项(含答案解析)

三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x =sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。

三角函数50题精选题附答案

三角函数50题精选题附答案

1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。

解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。

高中三角函数习题解析精选含详细解答

高中三角函数习题解析精选含详细解答

三角函数题解1.2003上海春;15把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位;再沿y 轴向下平移1个单位;得到的曲线方程是A.1-y sin x +2y -3=0B.y -1sin x +2y -3=0C.y +1sin x +2y +1=0D.-y +1sin x +2y +1=02.2002春北京、安徽;5若角α满足条件sin2α<0;cos α-sin α<0;则α在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.2002上海春;14在△ABC 中;若2cos B sin A =sinC;则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.2002京皖春文;9函数y =2sin x 的单调增区间是 A.2k π-2π;2k π+2πk ∈ZB.2k π+2π;2k π+23πk ∈Z C.2k π-π;2k πk ∈Z D.2k π;2k π+πk ∈Z5.2002全国文5;理4在0;2π内;使sin x >cos x 成立的x 取值范围为 A.4π;2π∪π;45πB.4π;π C.4π;45πD.4π;π∪45π;23π6.2002北京;11已知fx 是定义在0;3上的函数;fx 的图象如图4—1所示;那么不等式fx cos x <0的解集是A.0;1∪2;3B.1;2π∪2π;3图4—1C.0;1∪2π;3D.0;1∪1;37.2002北京理;3下列四个函数中;以π为最小正周期;且在区间2π;π上为减函数的是 A.y =cos 2xB.y =2|sin x |C.y =31cos xD.y =-cot x8.2002上海;15函数y =x +sin|x |;x ∈-π;π的大致图象是9.2001春季北京、安徽;8若A 、B 是锐角△ABC 的两个内角;则点P cos B -sin A ;sin B -cos A 在A.第一象限B.第二象限C.第三象限D.第四象限10.2001全国文;1tan300°+cot405°的值是 A.1+3B.1-3C.-1-3D.-1+311.2000全国;4已知sin α>sin β;那么下列命题成立的是 A.若α、β是第一象限角;则cos α>cos β B.若α、β是第二象限角;则tan α>tan β C.若α、β是第三象限角;则cos α>cos β D.若α、β是第四象限角;则tan α>tan β12.2000全国;5函数y =-x cos x 的部分图象是13.1999全国;4函数fx =M sin ωx +ϕω>0;在区间a ;b 上是增函数;且fa =-M ;fb =M ;则函数gx =M cos ωx +ϕ在a ;b 上A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m14.1999全国;11若sin α>tan α>cot α-2π<α<2π);则α∈A.-2π;-4π B.-4π;0C.0;4πD.4π;2π15.1999全国文、理;5若fx sin x 是周期为π的奇函数;则fx 可以是 A.sin x B.cos x C.sin2x D.cos2x16.1998全国;6已知点P sin α-cos α;tan α在第一象限;则在0;2π内α的取值范围是 A.2π;43π∪π;45πB.4π;2π∪π;45π C.2π;43π∪45π;23πD.4π;2π∪43π;π 17.1997全国;3函数y =tan 3121-x π在一个周期内的图象是18.1996全国若sin 2x >cos 2x ;则x 的取值范围是 A.{x |2k π-43π<x <2k π+4π;k ∈Z } B.{x |2k π+4π<x <2k π+45π;k ∈Z }C.{x |k π-4π<x <k π+4π;k ∈Z }D.{x |k π+4π<x <k π+43π;k ∈Z }19.1995全国文;7使sin x ≤cos x 成立的x 的一个变化区间是A.-43π;4πB.-2π;2πC.-4π;43πD.0;π20.1995全国;3函数y =4sin3x +4π+3cos3x +4π的最小正周期是A.6πB.2πC.32πD.3π21.1995全国;9已知θ是第三象限角;若sin 4θ+cos 4θ=95;那么sin2θ等于 A.322 B.-322 C.32D.-32 22.1994全国文;14如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;那么a 等于A.2B.-2C.1D.-123.1994全国;4设θ是第二象限角;则必有 A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θ D.sin2θ-cos 2θ 24.2002上海春;9若fx =2sin ωx 0<ω<1)在区间0;3π上的最大值是2;则ω= .25.2002北京文;13sin 52π;cos 56π;tan 57π从小到大的顺序是 .26.1997全国;18︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.1996全国;18tan20°+tan40°+3tan20°·tan40°的值是_____.28.1995全国理;18函数y =sin x -6πcos x 的最小值是 .29.1995上海;17函数y =sin 2x +cos 2x在-2π;2π内的递增区间是 .30.1994全国;18已知sin θ+cos θ=51;θ∈0;π;则cot θ的值是 .31.2000全国理;17已知函数y =21cos 2x +23sin x cos x +1;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到32.2000全国文;17已知函数y =3sin x +cos x ;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到33.1995全国理;22求sin 220°+cos 250°+sin20°cos50°的值. 34.1994上海;21已知sin α=53;α∈2π;π;tan π-β=21; 求tan α-2β的值.35.1994全国理;22已知函数fx =tan x ;x ∈0;2π;若x 1、x 2∈0;2π;且x 1≠x 2;证明21fx 1+fx 2>f 221x x +.36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f x =121log cos()34x π+的单调递增区间38. 已知fx =5sin x cos x -35cos 2x +325x ∈R ⑴求fx 的最小正周期; ⑵求fx 单调区间;⑶求fx 图象的对称轴;对称中心..39若关于x 的方程2cos 2π + x - sin x + a = 0 有实根;求实数a 的取值范围..参考答案1.答案:C解析:将原方程整理为:y =x cos 21+;因为要将原曲线向右、向下分别移动2π个单位和1个单位;因此可得y =)2cos(21π-+x -1为所求方程.整理得y +1sin x +2y +1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解;可直接化为:y +1cos x -2π+2y +1-1=0;即得C 选项.2.答案:B解析:sin2α=2sin αcos α<0 ∴sin αcos α<0 即sin α与cos α异号;∴α在二、四象限; 又cos α-sin α<0 ∴cos α<sin α由图4—5;满足题意的角α应在第二象限3.答案:C解析:2sin A cos B =sin A +B +sin A -B 又∵2sin A cos B =sin C ; ∴sin A -B =0;∴A =B 4.答案:A解析:函数y =2x 为增函数;因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.5.答案:C解法一:作出在0;2π区间上正弦和余弦函数的图象;解出两交点的横坐标4π和45π;由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线;由正弦线、余弦线知应选C.如图4—7 6.答案:C图4—5解析:解不等式fx cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <3 7.答案:B解析:A 项:y =cos 2x =22cos 1x+;x =π;但在区间2π;π上为增函数.B 项:作其图象4—8;由图象可得T =π且在区间2π;π上为减函数.C 项:函数y =cos x 在2π;π区间上为减函数;数y =31x 为减函数.因此y =31cos x 在2π;π区间上为增函数.D 项:函数y =-cot x 在区间2π;π上为增函数. 8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |;x ∈-π;π为非奇非偶函数. 选项A 、D 为奇函数;B 为偶函数;C 为非奇非偶函数. 9.答案:B解析:∵A 、B 是锐角三角形的两个内角;∴A +B >90°; ∴B >90°-A ;∴cos B <sin A ;sin B >cos A ;故选B. 10.答案:B 解析:tan300°+cot405°=tan360°-60°+cot360°+45°=-tan60°+cot45°=1-3.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反;所以可排除A 、C;在第二象限内正弦函数与正切函数的增减性也相反;所以排除B.只有在第四象限内;正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y =-x cos x 是奇函数;它的图象关于原点对称;所以排除A 、C;当 x ∈0;2π时;y =-x cos x <0.13.答案:C图4—8解法一:由已知得M >0;-2π+2k π≤ωx +ϕ≤2π+2k πk ∈Z ;故有gx 在a ;b 上不是增函数;也不是减函数;且当ωx +ϕ=2k π时gx 可取到最大值M ;答案为C.解法二:由题意知;可令ω=1;ϕ=0;区间a ;b 为-2π;2π;M =1;则gx 为cos x ;由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin ωx +ϕ的性质;兼考分析思维能力.要求对基本函数的性质能熟练运用正用逆用;解法二取特殊值可降低难度;简化命题. 14.答案:B解法一:取α=±3π;±6π代入求出sin α、tan α、cot α之值;易知α=-6π适合;又只有-6π∈-4π;0;故答案为B.解法二:先由sin α>tan α得:α∈-2π;0;再由tan α>cot α得:α∈-4π;0评述:本题主要考查基本的三角函数的性质及相互关系;1995年、1997年曾出现此类题型;运用特殊值法求解较好.15.答案:B解析:取fx =cos x ;则fx ·sin x =21sin2x 为奇函数;且T =π. 评述:本题主要考查三角函数的奇偶与倍角公式. 16.答案:B解法一:P sin α-cos α;tan α在第一象限;有tan α>0; A 、C 、D 中都存在使tan α<0的α;故答案为B.解法二:取α=3π∈2,4ππ;验证知P 在第一象限;排除A 、C;取α=65π∈43π;π;则P 点不在第一象限;排除D;选B.解法三:画出单位圆如图4—10使sin α-cos α>0是图中阴影部分;又tan α>0可得24παπ<<或π<α<45π;故选B. 评述:本题主要考查三角函数基础知识的灵活运用;突出考查了转化思想和转化方法的选择;采用排除法不失为一个好办法.17.答案:A解析:y =tan 3121-x π=tan 21x -32π;显然函数周期为T =2π;且x =32π时;y =0;故选A.评述:本题主要考查正切函数性质及图象变换;抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x =cos 2x -sin 2x <0;所以2k π+2π<2x <2k π+23π;k ∈Z .解得k π+4π<x <k π+43π;k ∈Z 注:此题也可用降幂公式转化为cos2x <0. 解析二:由sin 2x >cos 2x 得sin 2x >1-sin 2x ;sin 2x >21.因此有sin x >22或sin x <-22.由正弦函数的图象或单位圆得2k π+4π<x <2k π+43π或2k π+45π<x <2k π+47πk ∈Z ;2k π+45π<x <2k π+47π可写作2k +1π+4π<x <2k +1π+43π;2k 为偶数;2k +1为奇数;不等式的解可以写作n π+4π<x <n π+43π;n ∈Z . 评述:本题考查三角函数的图象和基本性质;应注意三角公式的逆向使用. 19.答案:A 解法一:由已知得:2 sin x -4π≤0;所以2k π+π≤x -4π≤2k π+2π;2k π+45π≤x ≤2k π+49π;令k =-1得-43π≤x ≤4π;选A. 解法二:取x =32π;有sin 2132cos ,2332-==ππ;排除C 、D;取x =3π;有sin3π=213cos ,23=π;排除B;故选A. 解法三:设y =sin x ;y =cos x .在同一坐标系中作出两函数图象如图4—11;观察知答案为A.解法四:画出单位圆;如图4—12;若sin x ≤cos x ;显然应是图中阴影部分;故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象;属基本求范围题;入手容易;方法较灵活;排除、数形结合皆可运用.20.答案:C图4—12图4—11解析:y =4sin3x +4π+3cos3x +4π=554sin3x +4π+53cos3x +4π=5sin3x +4π+ϕ其中tan ϕ=43所以函数y =sin3x +4π+3cos3x +4π的最小正周期是T =32π. 故应选C.评述:本题考查了a sin α+b cos α=22b a +sin α+ϕ;其中sinϕ=22ba b +;cos ϕ=22ba a +;及正弦函数的周期性.21.答案:A解法一:将原式配方得sin 2θ+cos 2θ2-2sin 2θcos 2θ=95 于是1-21sin 22θ=95;sin 22θ=98;由已知;θ在第三象限; 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π 故2θ在第一、二象限;所以sin2θ=322;故应选A. 解法二:由2k π+π<θ<2k π+23π;有4k π+2π<4k π+3πk ∈Z ;知sin2θ>0;应排除B 、D;验证A 、C;由sin2θ=322;得2sin 2θcos 2θ=94;并与sin 4θ+cos 4θ=95相加得sin 2θ+cos 2θ2=1成立;故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;表明:当x =-8π时;函数取得最大值12+a ;或取得最小值-12+a ;所以有sin -4π+a ·cos -4π2=a 2+1;解得a =-1.评述:本题主要考查函数y =a sin x +b cos x 的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角;则2k π+2π<θ<2k π+πk ∈Z ;即2θ为第一象限角或第三象限角;从单位圆看是靠近轴的部分如图4—13;所以tan2θ>cot 2θ. 解法二:由已知得:2k π+2π<θ<2k π+π;k π+4π<2θ< k π+2π;k 为奇数时;2n π+45π<2θ<2n π+23πn ∈Z ; k为偶数时;2n π+4π<2θ<2n π+2πn ∈Z ;都有tan 2θ>cot 2θ;选A.评述:本题主要考查象限角的概念和三角函数概念;高于课本.24.答案:43 解析:∵0<ω<1 ∴T =ωπ2>2π ∴fx 在0;3π区间上为单调递增函数∴fx max =f3π即2sin23=ωπ又∵0<ω<1 ∴解得ω=4325.答案:cos56π<sin 52π<tan 57π 解析:cos56π<0;tan 57π=tan 52π ∵0<x <2π时;tan x >x >sin x >0 ∴tan 52π>sin 52π>0 ∴tan 57π>sin 52π>cos 56π26.答案:2-3解析:︒︒︒︒=︒︒-︒-︒︒︒+︒-︒=︒︒-︒︒︒+︒8cos 15cos 8cos 15sin 8sin 15sin )815cos(8sin 15cos )815sin(8sin 15sin 7cos 8sin 15cos 7sin图4—133230sin 30cos 115tan -=︒︒-=︒=.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ;∴tan20°+tan40°=3-3tan20°tan40°;∴tan20°+tan40°+3tan20°tan40°=3.28.答案:-43 解析:y =sin x -6πcos x =21sin2x -6π-sin 6π=21sin2x -6π-21当sin2x -6π=-1时;函数有最小值;y 最小=21-1-21=-43. 评述:本题考查了积化和差公式和正弦函数有界性或值域.29.答案:2,23ππ-解析:y =sin2x +cos 2x =2sin 42π+x ;当2k π-2π≤2x +4π≤2k π+2πk ∈Z 时;函数递增;此时4k π-23π≤x ≤4k π+2πk ∈Z ;只有k =0时;-23π;2π-2π;2π. 30.答案:-43 解法一:设法求出sin θ和cos θ;cot θ便可求了;为此先求出sin θ-cos θ的值. 将已知等式两边平方得1+2sin θcos θ=251 变形得1-2sin θcos θ=2-251;即sin θ-cos θ2=2549 又sin θ+cos θ=51;θ∈0;π 则2π<θ<43π;如图4—14 所以sin θ-cos θ=57;于是 sin θ=54;cos θ=-53;cot θ=-43. 解法二:将已知等式平方变形得sin θ·cos θ=-2512;又θ∈0;π;有cos θ<0<sin θ;且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根;故有cos θ=-53; sin θ=54;得cot θ=-43. 评述:本题通过考查三角函数的求值考查思维能力和运算能力;方法较灵活. 31.解:1y =21cos 2x +23sin x cos x +1=412cos 2x -1+41+432sin x cos x +1 =41cos2x +43sin2x +45=21cos2x ·sin 6π+sin2x ·cos 6π+45=21sin2x +6π+45y 取得最大值必须且只需2x +6π=2π+2k π;k ∈Z ;图4—14即x =6π+k π;k ∈Z .所以当函数y 取得最大值时;自变量x 的集合为{x |x =6π+k π;k ∈Z }.2将函数y =sin x 依次进行如下变换: ①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②把得到的图象上各点横坐标缩短到原来的21倍纵坐标不变;得到函数 y =sin2x +6π的图象;③把得到的图象上各点纵坐标缩短到原来的21倍横坐标不变;得到函数 y =21sin2x +6π的图象;④把得到的图象向上平移45个单位长度;得到函数y =21sin2x +6π+45的图象;综上得到函数y =21cos 2x +23sin x cos x +1的图象.评述:本题主要考查三角函数的图象和性质;考查利用三角公式进行恒等变形的技能以及运算能力.32.解:1y =3sin x +cos x =2sin x cos6π+cos x sin6π=2sin x +6π;x ∈Ry 取得最大值必须且只需x +6π=2π+2k π;k ∈Z ;即x =3π+2k π;k ∈Z .所以;当函数y 取得最大值时;自变量x 的集合为{x |x =3π+2k π;k ∈Z }2变换的步骤是:①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②令所得到的图象上各点横坐标不变;把纵坐标伸长到原来的2倍;得到函数 y =2sin x +6π的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.评述:本题主要考查三角函数的图象和性质;利用三角公式进行恒等变形的技能及运算能力.33.解:原式=211-cos40°+211+cos100°+21sin70°-sin30° =1+21cos100°-cos40°+21sin70°-41=43-sin70°sin30°+21sin70° =43-21sin70°+21sin70°=43. 评述:本题考查三角恒等式和运算能力.34.解:由题设sin α=53;α∈2π;π; 可知cos α=-54;tan α=-43又因tan π-β=21;tan β=-21;所以tan2β=34tan 1tan 22-=-ββtan α-2β=2471134432tan tan 12tan tan =++-=+-βαβα 35.证明:tan x 1+tan x 2=2121212211cos cos sin cos cos sin cos sin cos sin x x x x x x x x x x +=+ 2121cos cos )sin(x x x x +=)cos()cos()sin(2212121x x x x x x -+++=因为x 1;x 2∈0;2π;x 1≠x 2;所以2sin x 1+x 2>0;cos x 1cos x 2>0;且0<cos x 1-x 2<1; 从而有0<cos x 1+x 2+cos x 1-x 2<1+cos x 1+x 2; 由此得tan x 1+tan x 2>)cos(1)sin(22121x x x x +++;所以21tan x 1+tan x 2>tan 221x x +即21fx 1+fx 2>f 221x x +.36.解1x 必须满足sin x -cos x >0;利用单位圆中的三角函数线及52244k x k ππππ+<<+;k ∈Z ∴函数定义域为)45k 2,4k 2(π+ππ+π;k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时;0sin()14x π<-≤∴0sin cos x x <-∴121log 2y -≥∴ 函数值域为+∞-,213∵()f x 定义域在数轴上对应的点关于原点不对称;∴()f x 不具备奇偶性4∵ fx+2π=fx ∴ 函数fx 最小正周期为2π 注;利用单位圆中的三角函数线可知;以Ⅰ、Ⅱ象限角平分线为标准;可区分sin x -cos x 的符号;以Ⅱ、Ⅲ象限角平分线为标准;可区分sin x +cos x 的符号37.解:∵f x =121log cos()34x π+令431π+=x t ;∴y=t cos log 21;t 是x 的增函数;又∵0<21<1;∴当y=t cos log 21为单调递增时;cost 为单调递减 且cost>0;∴2k π≤t<2k π+2πk ∈Z;∴2k π≤431π+x <2k π+2π k ∈Z ;6k π-43π≤x<6k π+43π k ∈Z;∴f x =)431cos(log 21π+x 的单调递减区间是6k π-43π;6k π+43πk ∈Z38.解: 1T=π 2增区间k π-12π;k π+125π;减区间k π+]1211k ,125π+ππ 3对称中心62k π+π;0;对称轴π+π=1252k x ;k ∈Z39.解:原方程变形为:2cos 2x - sin x + a = 0 即 2 - 2sin 2x - sin x + a = 0;∴817)41(sin 22sin sin 222-+=-+=x x x a ;∵- 1≤sin x ≤1 ;∴81741sin m in -=-=a x 时,当; 11sin m ax ==a x 时,当; ∴a 的取值范围是1,817-。

三角函数解答题精选16道-带答案

三角函数解答题精选16道-带答案
详解:(1)∵函数 的图象的最高点的坐标为 , ,
依题意,得 的周期为
(2)由(2)得
∵ ,且 ,
点睛:三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
由已知,有
的最小正周期 .
(2)∵ 在区间 上是减函数,在区间 上是增函数, , ,∴函数 在闭区间 上的最大值为 ,最小值为 .
考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.
视频
11.(1)π(2)最大值为f( )=2 ;最小值为f(0)=﹣2.
【解析】(1)∵sinxcosx= sin2x,cos2x= (1+cos2x)
故 的最小正周期为
(Ⅱ)


.
14.(1) , ;(2)增区间为 ,减区间为 .
【解析】
试题分析:(1)依据题设条件和三角变换公式先化简,再用周期公式求解;(2)借助题设条件运用正弦函数的单调性进行求解.
试题解析:
(1)
,
的最小正周期 , 的最大值为 .
(2)由(1)可知, 在区间 上单调递增,在区间 上单调递减.
试题解析:(1)由题意可得
∴ 的最小正周期为 ;
(2)∵ ,∴ ,
∴ ,
∴ 在区间 上的最大值为 ,最小值为-2.

三角函数解答题精选16道-带答案!!!

三角函数解答题精选16道-带答案!!!
由此可得,f(x)在区间 上的最大值为f( )=2 ;最小值为f(0)=﹣2.
视频
12.(1) (2)
【解析】试题分析:(Ⅰ)根据二倍角公式及辅助角公式可将函数化为 即可求得周期;(Ⅱ)根据三角函数的有界性不,求出函数的最值,列方程求解即可.
试题解析:(Ⅰ)
(Ⅱ)因为 ,所以
当 ,即 时, 单调递增
(Ⅰ)求 最小正周期;
(Ⅱ)求 在区间 上的最大值和最小值.
10.已知函数 , .
(Ⅰ)求 的最小正周期;
(Ⅱ)求 在 上的最小值和最大值.
11.(2013•天津)已知函数 .
(1)求f(x)的最小正周期;
(2)求f(x)在区间 上的最大值和最小值.
12.已知函数 .
(Ⅰ)求 的最小正周期;
(Ⅱ)若 在区间 上的最大值与最小值的和为2,求 的值.
详解:(1)
令 , ,
所以, 的单调递增区间为 , .
(2) ,
∵ ∴ ∴

.
点睛:该题属于三角函数的问题,在解题的过程中,需要利用诱导公式、倍角公式和辅助角公式化简函数解析式,之后应用正弦型函数的解决思路解题,在第二问求 值的时候需要结合题中的条件,对角进行配凑,利用和角公式求解.
5.(1) ;(2)当 时, ;当 时, 。
(2)求函数 在区间 上的值域.
参考答案
1.(1) ;(2) .
【解析】分析:(Ⅰ)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数 化为 ,利用正弦函数的周期公式可得函数的周期;(II)利用正弦函数的单调性解不等式,可得到函数 的单调区间,由 的范围结合函数的单调性,求得函数 的最大值和最小值.
详解:(1)∵函数 的图象的最高点的坐标为 , ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数解答题精选1.已知函数2()cos cos f x x x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)当[0, ]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值.2.已知函数2())2sin ()().612f x x x x R ππ=-+-∈(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求使函数()f x 取得最大值的x 集合.3.已知函数()2cos (sin cos )1f x x x x =-+,x R ∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.4.设2()6cos 2f x x x =.(Ⅰ)求()f x 的最大值及最小正周期;(Ⅱ)若锐角α满足()3f α=-4tan 5α的值.5.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.6.已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 求:(Ⅰ)函数()f x 的最小正周期;(Ⅱ)函数()f x 的单调增区间.7.已知向量(2sin ,cos )42x x m =,(cos 4xn =,函数()f x m n =⋅(1)求()f x 的最小正周期;(2)若0x ≤≤π,求()f x 的最大值和最小值.8.已知函数1cos sin 32sin cos )(22++-=x x x x x f .(Ⅰ)已知:⎥⎦⎤⎢⎣⎡-∈3,2ππx ,求函数)(x f 单调减区间; (Ⅱ)若函数)(x f 按向量平移后得到函数)(x g ,且函数x x g 2cos 2)(=,求向量。

9. 已知A ,B ,C 为锐角ABC ∆的三个内角,向量(22sin ,cos sin )A A A =-+,(1sin ,cos sin )A A A =+-,且⊥.(Ⅰ)求A 的大小; (Ⅱ)求222sin cos(2)3y B B π=+-取最大值时角B 的大小.10.已知(cos ,23cos ),(2cos ,sin )a x x b x x ==,且b a x f∙=)((1)求()f x 的最小正周期及单调递增区间。

(2)在△ABC 中,a,b,c,分别是A,B,C 的对边,若2)cos cos a c B b A +=-(成立 ,求f(A)的取值范围。

11.已知2()sin(2)2cos 16f x x x π=-+- (Ⅰ)求函数f(x)的单调增区间(Ⅱ)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且a=1,b+c=2,f(A)=12,求△ABC 的面积.12.已知向量)3,cos 2(2x a = ,)2sin ,1(x b = ,函数f(x)=a ·b .(1)求函数f(x)的单调递增区间.(2)在△A BC 中,c b a ,,分别是角A 、B 、C 的对边,1=a 且3)(=A f ,求△A BC 面积S 的最大值.13.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(2sin B,2-cos2B ),n =(2sin 2(4π+B2),-1),m ⊥n .(1)求角B 的大小; (2)若a =3,b =1,求c 的值.14.(本小题满分12分)已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫ ⎪⎝⎭. (1)求实数a 和b 的值;(2)当x 为何值时,()f x 取得最大值.15.(本题满分12分)已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-,设()f x a b =⋅.(1)求函数()f x 的最小正周期;(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值及最小值.16.(本题满分14分)已知函数x x x x f cos sin sin 3)(2+-= (I )求函数)(x f 的最小正周期;(II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域.17.(本小题满分12分)已知(sin ,a x = 1)-, (3,b =cos )x ,()f x a b =⋅ (1)若()0f x =且0x π<<,求x 的值;(2)求()f x 的最小正周期和单调增区间.18.已知向量(3sin ,cos ),(cos ,cos )a x x b x x == ,函数()21f x a b =⋅- (1)求()f x 的最小正周期; (2)当[, ]62x ππ∈时, 若()1,f x =求x 的值 19.(本题满分12分)已知函数()sin(),(0)f x x ωϕω=+>,()f x 图像相邻最高点和最低点的横坐标相差2π,初相为6π. (Ⅰ)求()f x 的表达式; (Ⅱ)求函数()f x 在[0,]2π上的值域.(2)当[, ]62x ππ∈时, 若()1,f x =求x 的值.20.(本题满分12分)设平面向量)sin ,(cos x x a =,)21,23(=b ,函数1)(+⋅=b a x f 。

( I )求函数)(x f 的值域; ( II )求函数)(x f 的单调增区间. (III)当9()5f α=,且263ππα<<时,求2sin(2)3πα+的值.21.(本题满分12分)已知函数()cos()cos()2f x x x ππ=-+-.(1)求函数()f x 的最小正周期、最大值和最小值; (2)若3()4f α=,求sin 2α的值。

22.(本小题满分12分)已知函数x x x f 2sin 21)12(cos )(2++=π. (1)求)(x f 的最值;(2)求)(x f 的单调增区间.23.已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。

24.(本小题满分12分)已知α为锐角,且3 cos5α=.(1)求sin2α的值;(2)求5tan()4πα-的值.25.(2006安徽卷)已知4 0,sin25παα<<=(Ⅰ)求22sin sin2cos cos2αααα++的值;(Ⅱ)求5tan()4πα-的值.26.(2006北京卷)已知函数1)4()cosxf xxπ-=,(Ⅰ)求()f x的定义域;(Ⅱ)设α是第四象限的角,且4tan3α=-,求()fα的值.27.(2006福建卷)已知函数f (x )=sin 2x +3sin x cos x +2cos 2x ,x ∈R .(I )求函数f (x )的最小正周期和单调增区间;(Ⅱ)函数f (x )的图象可以由函数y =sin2x (x ∈R)的图象经过怎样的变换得到?28.(2006广东卷)已知函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期; (II)求()f x 的的最大值和最小值; (III)若3()4f α=,求sin 2α的值.29.(2006湖南卷)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.30.(2006辽宁卷)已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间.31.(2006陕西卷)已知函数f (x )=3sin(2x -π6)+2sin 2(x -π12) (x ∈R )(Ⅰ)求函数f (x )的最小正周期;(II)求使函数f (x )取得最大值的x 的集合.32.(2006上海卷)求函数y =2)4cos()4cos(ππ-+x x +x 2sin 3的值域和最小正周期.33.(2006上海卷)已知α是第一象限的角,且5cos 13α=,求()sin 4cos 24πααπ⎛⎫+ ⎪⎝⎭+的值.34.(2006天津卷)已知15tan tan 2a α+=,ππ42α⎛⎫∈ ⎪⎝⎭,.求cos 2α和πsin(2)4α+的值.35.(2007安徽理)已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 14αβ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,,a (cos 2)α=,b ,且a b m =.求22cos sin 2()cos sin ααβαα++-的值.36.(2007广东理)已知ABC △顶点的直角坐标分别为(34)A ,,(00)B ,,(0)C c ,. (1)若5c =,求sin A ∠的值;(2)若A ∠是钝角,求c 的取值范围.37.(2007湖北文)已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.38.(2007湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间.39.(2007全国卷1理)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.40.(2007山东文)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .41.(2007陕西理)设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.42.(2007四川理)已知0,1413)cos(,71cos 且=β-α=α<β<α<2π, (Ⅰ)求α2tan 的值.(Ⅱ)求β.43.(2007天津文)在ABC △中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.44.(2007浙江理)已知ABC △1,且sin sin A B C +. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.。

相关文档
最新文档