最新-第1课实数的有关概念(含答案)1- 精品

合集下载

实数知识点及典型例题

实数知识点及典型例题

实数知识点及典型例题一、实数知识点。

(一)实数的分类。

1. 有理数。

- 整数:正整数、0、负整数统称为整数。

例如:5,0,-3。

- 分数:正分数、负分数统称为分数。

分数都可以表示为有限小数或无限循环小数。

例如:(1)/(2)=0.5,(1)/(3)=0.333·s。

- 有理数:整数和分数统称为有理数。

2. 无理数。

- 无理数是无限不循环小数。

例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。

3. 实数。

- 有理数和无理数统称为实数。

(二)实数的相关概念。

1. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 实数与数轴上的点是一一对应的关系。

2. 相反数。

- 只有符号不同的两个数叫做互为相反数。

a的相反数是-a,0的相反数是0。

例如:3与-3互为相反数。

- 若a、b互为相反数,则a + b=0。

3. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。

例如:| 5| = 5,| -3|=3。

4. 倒数。

- 乘积为1的两个数互为倒数。

a(a≠0)的倒数是(1)/(a)。

例如:2的倒数是(1)/(2)。

(三)实数的运算。

1. 运算法则。

- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。

2. 运算律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

知识点1实数的有关概念及习题

知识点1实数的有关概念及习题

知识点1实数的有关概念一、实数定义:有理数和无理数统称为实数二、实数分类:1.按照正负分:正实数、0、负实数2.按照定义分:有理数、无理数3.有理数相关知识(1)有理数定义:整数和份数统称为有理数(2)整数可分为:正整数、0、负整数正整数和0成为非负整数;负整数和0成为非正整数(3)分数可分为正分数和负分数。

(4)分数都可化为有限小数或无限循环小数;反之有限小数或无限循环小数都可化为分数4.无理数的相关知识(1)无理数定义:无线不循环小数(2)无理数常见的几种类型a:含π的数,比如3π,π+2等b.开放开不尽的数C.有特殊规律的数,比如0.1001000100001........注意:有理数之间的加减乘除运算的结果一定是有理数。

有理数×无理数的结果既可以是有理数也可以是无理数。

举例____________________________________________________________________ 有理数÷无理数的结果既可以是有理数也可以是无理数。

举例____________________________________________________________________ 无理数÷有理数的结果是无理数。

举例____________________________________________________________________ 无理数+无理数的结果既可以是有理数也可以是无理数。

举例____________________________________________________________________ 无理数-无理数的结果既可以是有理数也可以是无理数。

举例____________________________________________________________________ 以上问题请学生自己举例进行验证。

八年级上册数学《实数》(含答案)

八年级上册数学《实数》(含答案)

第1节 实数、平方根【基本知识】1、 有理数 包括有限小数和循环小数,有理数都可以表示为分数形式;2、 无限不循环小数,成为 无理数 ;3、平方根:(1)定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

(2)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)算术平方根:正数a 的正的平方根叫做a 。

(4)一个非负数x 有两个平方根a 和b ,则a+b = 0(5)运算:2a = ||a 2)(a = a ;2)(a -= a类型1A :【求下列各数的平方根】(1)324 (2)9624 (3)3.61 (4)971 (5)289【答案】(1)18± (2)21± (3)9.1± (4)34± (5)17±类型1B :【求下列各数的算术平方根】(1)64 (2)2)3(- (3)49151(4) 21(3)- 【答案】(1)8 (2)3 (3)78 (4)31类型2:【已知平方数或平方根,求数】(1)平方等于256的数是 16±(2)若3是x 的一个平方根,则x = 9(3)若一个正数的平方根为12-a 和a -4,则a = -3 ,这个正数为 49 .(4)一个数的平方等于9,则这个数是 3±(5)一个负数的平方等于100,则这个负数是 10-(6)已知2a -1的平方根是3±,3a+b -1的平方根是4±,则a = ,b = 2 5类型3:【开平方,求下列各式中x 的值】(1)09252=-x (2)x 2-144 = 0 (3)(2x )2 = 16【解】 (1)53±=x (2)12±=x (3)2±=x(4)32-=x (5)32=x (6)225360x -=【解】(4)无实根 (5)3±=x (6)56±=x(7)9x 2-1= 0 (8)16)1(2=+x (9)(21x )2 = 1【解】(7)31±=x (8)35或-=x (9)2±=x类型4:【计算】(1)= 3= 5= 7(2) =-2)4( 4 =2)182( 91 =2)5( 5(3)94±=32±-169.= -1.3102-=101(4)81±= 9± 16-= -4 259= 53(5)44.1= 1.2 36-= -6 4925± =75±(6)2)25(-= 25 2)4(-= 4类型5:【化简】(1)已知|x -4|+y x +2= 0,那么x =_______4_,y =________-8(2)=________π-4,)2x ≤=________x -2类型6:【根式的意义】1、如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为 8.类型6:【平方数与平方根相关训练】(1)21++a 的最小值是 ________2,此时a 的取值是 ________-1(2)如果一个正数的两个平方根为1a +和27a -,则这个正数是 9(3)若2+x = 2,则2x + 5的平方根是 3±(4)若14+a 有意义,则a 能取的最小整数为 0类型7:【能力提升训练】(1)已知501.6=x ,650.12 = 422630,则x = 42.263(2)已知2+x =3,则2)2(+x 等于 81(3)已知12++-b a =0,则a +b 的值是 1(4)一个自然数的算术平方根是x(5)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 22+m(6)自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =,有一铁球从19.6米高的建筑物上自由下落,到达地面需要 2 秒(7)若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,则a b +的平方根 为 0或1±类型8:【比较实数大小】1、平方法:(1; (2)534< 11; (3) 2、求差法:215- < 13、求商法:23平方根 (作业)一、写出下列各数的平方根:(1)2)6(- (2)2)36(- (3)8116(4)16 (5)2)7(-【解】(1)6± (2)6± (3)94±(4)2± (5)7± 二、已知平方数或平方根,求数:(1)一个数的平方为719,这个数为 34±(2)一个数x 的平方根为9±,则x = 81(3)若一个正数的平方根是12-a 和2+-a ,则a = -1 ,这个正数是 9三、开平方,求下列各式中x 的值:(1)2732=x (2)2516902x -= (3)()12892-=x【解】(1)3±=x (2)513± (3)1816或-=x(4)(x +5)2 = 144 (5)009.02=-x【解】(4)177-=或x (5)3.0±=x(6)(x +1)2=36 (7)27(x +1)3=64【解】(6)75-=或x (7)31=x四、化简:1、若x <2,化简|3|)2(2x x -+-的正确结果是 x 25-2、当21≤a 时,化简|12|4412-++-a a a = a 42-3、已知实数a 、b 在数轴上表示的点如上图,b a ++2)1(+-b a = 12-b化简五、平方数与平方根相关训练:(1)若2m -10与3m 是同一个数的平方根,则m 的值是 2(2)使3+-x 有意义的x 的取值范围是 3≤x。

实数概念及习题

实数概念及习题

实数概念及习题A、B(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--专题一 实数(一) 实数的有关概念1. 概念:(1)有理数: 和 统称为有理数。

(2)相反数:只有 不同的两个数互为相反数。

若a 、b 互为相反数,则 。

(3)数轴:规定了 、 和 的直线叫做数轴。

(4)倒数:乘积 的两个数互为倒数。

若a (a≠0)的倒数为1a.则 。

(5)绝对值:代数定义:a (a >0 )∣a ∣= 0 (a =0 )-a (a <0)几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

(6)无理数: 小数叫做无理数。

(7)实数: 和 统称为实数。

(8)实数和 的点一一对应。

2.实数的分类:说明:“分类”的原则:1)相称(不重、不漏)实数 无理数(无限不循环小数)有理数正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数正无理数负无理数 0实数负数整数 分数无理数有理数 正数 整数分数 无理数 有理数3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a×10n 的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。

取近似数的原则是“四舍五入”。

(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。

(二) 实数的运算:1. 有理数加、减、乘、除、幂及其混合运算的运算法则 (1)有理数加法法则:①同号两数相加,取__ __的符号,并把__ __②绝对值不相等的异号两数相加,取___ __的符号,并用 ___ ___。

互为相反数的两个数相加得_ _。

③一个数同0相加,__ __。

(2)有理数减法法则:减去一个数,等于加上__ _。

(3)有理数乘法法则:①两数相乘,同号_ _,异号__ __,并把__ 。

实数知识点大题总结归纳

实数知识点大题总结归纳

实数知识点大题总结归纳一、实数概念实数是数学中的一个重要概念,是指包括有理数和无理数在内的数的集合。

实数是所有数的集合,包括正数、负数、零以及所有的小数和分数。

实数的概念是数学分析和代数学的基础,它涉及到数轴上所有点的集合,实数的概念在数学分析和代数学的研究中有广泛的应用。

实数可以用来表示现实生活中的各种量和计算过程,比如长度、时间、温度、速度等等。

实数是一种用来比较、计算和度量现实生活中各种量的数学工具。

在数学的各个分支中,实数都有着重要的作用,比如在代数、几何、微积分、概率论等方面都有着广泛的应用。

实数的概念是从有理数的概念推广而来的,有理数是整数和分数的集合,而实数则包括了有理数以及无理数。

实数的概念比有理数更加广泛,它包括了所有可以用数轴上的点表示出来的数。

数轴是表示实数的一种图形工具,可以用来比较和计算各种实数的大小和关系。

实数的运算规则和性质是数学中的重要内容,实数的加减乘除运算和各种性质都是数学教育的重点。

实数的运算规则和性质是代数学的基础,它们是解决各种数学问题和证明数学定理的基础。

实数的运算规则和性质可以帮助人们更深刻地理解和使用实数,它们是数学分析和代数学的重要内容。

二、实数的分类实数根据其表示形式和特点可以分成不同的种类,比如有理数和无理数。

有理数是可以表示为两个整数的比值的数,它包括整数、分数和各种有限小数。

有理数是数学中比较容易理解和使用的一类数,它们有着严格的运算规则和性质,可以进行加减乘除等各种运算。

无理数是不能表示为两个整数的比值的数,它们是一些特殊的数,比如根号2、圆周率π等。

无理数在数轴上的位置很难准确表示出来,因为它们不能用整数比值的形式表示。

无理数是实数中比较独特和特殊的一类数,它们在数学研究和应用中有着独特的地位。

实数还可以根据其大小和性质进行分类,比如正数、负数、零等。

正数是大于零的实数,负数是小于零的实数,零是一个特殊的实数。

正数、负数和零是实数中的基本分类,它们有着严格的定义和性质,可以用来表示各种计量和度量。

实数概念分类性质讲义(含答案)

实数概念分类性质讲义(含答案)

实数知识点一:无理数1 无理数的概念:无限不循环小数叫做无理数. 注意:(1)所有开方开不尽的方根都是无理数,不是所有带根号的数都是无理数. (2)圆周率π及一些含π的数是无理数. (3)不循环的无限小数是无理数.(4)有理数可化为分数,而无理数则不能化为分数. 2 无理数的性质:设a 为有理数,b 为无理数,则a+b ,a-b 是无理数;3、判断方法:①定义是判断一个数是不是无理数的重要依据;②有理数都可以写成分数的形式,而无理数则不能写成分数的形式(两个整数的商).4等;②含有π一类数,如5π,3+π等;③以无限不循环小数的形式出现的特定结构的数,如0.2020020002…(相邻两个2之间0的个数逐渐加1).二、知识点+例题+练习一、无理数的判断1.判断一个数是不是无理数,必须看它是否同时满足两个条件:无限小数和不循环小数这两者缺一不可.2.带根号的数并不都是无理数,而开方开不尽的数才是无理数. 【例1】0;3227;1.1010010001…,无理数的个数是 A .5B .4C .3D .2【答案】C【解析】因为02273π;1.1010010001…是无限不循环小数,所以无理数有3个,故选C .【变式训练1-1】在,–2018,π这四个数中,无理数是A .B .–2018CD .Π【答案】D1、实数的概念:有理数和无理数统称为实数.2、实数的分类: (1)实数按定义分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数( 2 )按正负分类:227227例题精讲二、实数的概念和分类1.实数的分类有不同的方法,但要按同一标准,做到不重不漏.2.对实数进行分类时,应先对某些数进行计算或化简,然后根据最后结果进行分类.【例1】在5π131401232,,,.,,----中,其中__________是整数,__________是无理数,__________是有理数.【答案】01-;π5131401322,,;,,.,---- 【例2】将这些数按要求填入下列集合中:0.01001001…,4,122-,3.2,0,-1,-(-5),-|-5|负数集合{ …};分数集合{…};非负整数集合{…};无理数集合{…}.【解析】负数集合{122-,-1,-|-5| 分数集合{122-,3.2…}; 非负整数集合{4,0,-(-5)…};无理数集合{0.01001001…,【变式训练2-1】判断正误.(1)实数是由正实数和负实数组成.( ) (2)0属于正实数.( )(3)数轴上的点和实数是一一对应的.( )(4)如果一个数的立方等于它本身,那么这个数是±1.( )(5)若x =x =( )【答案】(1)×;(2)×;(3)√;(4)×;(5)√.【变式训练2-2】下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对 D【答案】D【变式训练2-3】下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数【答案】A【变式训练2-4】 把下列各数填入相应的集合:-1、π、 3.14-、12、7.0、0(1)有理数集合{ }; (2)无理数集合{ }; (3)整数集合{ }; (4)正实数集合{ }; (5)负实数集合{ }.【答案】(1)-1 3.14-、12、7.0、0(2-、(3)-10;(4、π、127.0 ;(5)-1、 3.14-、(1)任何实数a ,都有一个相反数-a .(2)任何非0实数a ,都有倒数1a.(3)正实数的绝对值是它本身,负实数的绝对值是它的相反数,0的绝对值是0.(4)正实数大于0,负实数小于0;两个正实数,绝对值大的数大,两个负实数,绝对值大的反而小.一、相反数与绝对值求一个有理数的相反数和绝对值与求一个实数的相反数和绝对值的意义是一样的,实数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.【例1的相反数是A .BC .D 【答案】A【解析】根据相反数的定义可知:2的相反数是2-,故选A . 【例2】3-π的绝对值是 A .3-π B .π-3 C .3 D .π【答案】B【解析】∵3−π<0,∴|3−π|=π−3,故选B .【例3】 A .相反数 B .倒数 C .绝对值 D .算术平方根【答案】A【解析】A .【变式训练3-1的相反数是________;的倒数是________;35-的绝对值是________.【答案】【变式训练3-2】3.141π-=______;=-|2332|______.【答案】-3.141π;【变式训练3-3】若||x =x =______;若||1x ,则x =______.【答案】1或11 实数与数轴上的点一一对应:即数轴上的每一个点都可以用一个实数来表示,反过来,每个实数都可以在数轴上找到表示它的点. 2、两个实数比较大小:1.数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大;2.正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较,绝对值大的反而小.【例1】如图,数轴上点P 表示的数可能是AB .C .–3.2D .【答案】B≈2.65 3.16,设点P 表示的实数为x ,由数轴可知,–3<x <–2,∴符合题意的数为.故选B .【例2】和数轴上的点成一一对应关系的数是A .自然数B .有理数C .无理数D .实数【答案】D【解析】数轴上的点不仅表示有理数,还表示所有的无理数,即实数与数轴上得点是一一对应的,故选D .【例3】已知实数m 、n 在数轴上对应点的位置如图所示,则下列判断错误的是A .m <0B .n >0C .n >mD .n <m【答案】D【解析】由数轴上的点,得m <0<n ,所以m <0,n >0,n >m 都正确,即选项A ,B ,C 判断正确,选项D 判断错误.故选D .【变式训练4-1】已知数轴上A 、B 两点表示的数分别为–3A 、B 间的距离为__________. 【解析】A 、B 两点表示的数分别为–3和A 、B 间的距离为3),故答案为:.【变式训练4-2】如图,点A 、B 、C 在数轴上,O 为原点,且BO :OC :CA =2:1:5. (1)如果点C 表示的数是x ,请直接写出点A 、B 表示的数; (2)如果点A 表示的数比点C 表示的数两倍还大4,求线段AB 的长.【解析】(1)∵BO :OC :CA =2:1:5,点C 表示的数是x , ∴点A 、B 表示的数分别为:6x ,–2x ;(2)设点C 表示的数是y ,则点A 表示的数为6y , 由题意得,6y =2y +4, 解得:y =1,∴点C 表示的数是1,点A 表示的数是6,点B 表示的数是–2, ∴AB =8. 二、比较大小【例4】 ) A .7~8之间 B .8.0~8.5之间 C .8.5~9.0之间D .9~10之间【答案】C【例5】 实数2.6 ( )A .2.6<<B .2.6C 2.6<D 2.6<【答案】B【变式训练4-3】一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( ) A .4~5cm 之间 B .5~6cm 之间 C .6~7cm 之间 D .7~8cm 之间【答案】A【变式训练4-4】把下列各数按照由大到小的顺序,用不等号连接起来.4,4-,153-,1.414,π,0.6, ,34-,【答案】314 1.4140.64543π>>>>>>->-.1.在进行实数的运算时,有理数的运算法则、运算性质、运算顺序、运算律等同样适用.2.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算. 【例1】计算下列各式:(1)221.【解析】(1=-.(2)原式21=1=.【变式训练5-1】计算题(1)32716949+- (2) 233)32(1000216-++【解析】(1)32716949+-71333=-+=-; (2)233)32(1000216-++226101633=++=. 【答案】(1)3-;(2)2163.1.在下列实数中,属于无理数的是 A .0BC .3D .2.在每两个1之间依次多一个中,无理数的个数是 A .1个 B .2个C .3个D .4个3的值在 A .0和1之间B .1和2之间C .2和3之间D .3和4之间4.下列四个数中,最小的一个数是 A .5的绝对值是A .3B .6.下列说法中,正确的个数有 ①不带根号的数都是有理数; ②无限小数都是无理数;③任何实数都可以进行开立方运算;1313.140.231.131331333133331(3π-,,,,……3)B 3-.C -.D π-.3-1C 3.1D 3-.④不是分数. A .0个B .1个C .2个D .3个7.下列各组数中互为相反数的一组是 A .-|-2|B .-4与C .与D .8.如图,数轴上点P 表示的数可能是AB.C . 3.4-D.92-的相反数是__________,绝对值是__________. 10.计算:+-=__________.11__________. 12=__________(=__________. 13.把下列各数填入相应的集合内:4230.15,-7.5,-π,0,23.. ①有理数集合:{ …}; ②无理数集合:{ …}; ③正实数集合:{ …}; ④负实数集合:{…}.14.已知:x 是|-3|的相反数,y 是-2的绝对值,求2x 2-y 2的值.515.已知ab的小数部分,|c,求a -b +c 的值.16.已知5的小数部分分别是a 、b,则(a +b )(a–b )=__________.17.6的整数部分是a ,小数部分是b .(1)a =__________,b=__________.(2)求3a –b 的值.18.如图,点A ,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B 所表示的数为n .(1)求n的值;(2)求|n +1|+(n –2)的值.答案:1.【答案】B【解析】0、3、是无理数.故选B . 2.【答案】C【解析】,π,1.131331333133331……(每两个1之间依次多一个3)是无理数,故选C . 3.【答案】B【解析】∵<2的值在:1和2之间.故选B .4.【答案】D【解析】∵7<8<9<π2,3<π,∴>–π,∴最小的一个数是–π.故选D . 13<<3--5.【答案】A.–3的绝对值是3.故选A.6.【答案】C【解析】①不带根号的数不一定是有理数,如π,错误;②无限不循环小数是无理数,错误;③任何实数都可以进行开立方运算,正确;不是分数,正确;故选C.8.【答案】B【解析】由图可知,P点表示的数在之间,故选B.9.【答案】22;--2-的相反数是2-,绝对值是2-,故答案为:22;--10.【答案】【解析】(35+-=+-,故答案为.11.【答案】【解析】它们互为相反数,分别是故答案为:121)3(1-13-1.3=-13.【解析】有理数集合:{4,230.15,-7.5,0,23.…};,π-…};4,230.15,23.…}; ④负实数集合:{-7.5,π-…}.14.【解析】∵x 是|−3|的相反数,∴x 是3的相反数−3,即x =−3.∵y 是−2的绝对值,∴y =2.∴22229414x y -=⨯-=.15.【解析】∵<3,∴a =2,b-2,∵|c,∴c当ca -b +c =4;当c =a -b +c =4-.16.【答案】5【解析】∵与5a 、b ,∴a =(–2,b=(5)–2=3,∴(a+b )(a –b )=–2+32–5.故答案为:5.17.【解析】(1)∵,∴<3.∴–23.∴6–2>66–3,∴4>63.∴a =3,b =3(2)3a –b =3×3–(3=9–1. 下列命题中,错误的命题个数是( )(1)2a -没有平方根; (2)100的算术平方根是10,记作10100=± (3)数轴上的点不是表示有理数,就是表示无理数; (4)2是最小的无理数.A .1个B .2个C .3个D .4个【答案】C2. 若22b a =,则下列等式成立的是( )A .33b a =B .b a =C .b a =D . ||||b a =【答案】D3. 已知坐标平面内一点A(2-,3),将点A A ′的坐标为 .【答案】(2--四、课后作业4.已知10<<x ,则21x x x x 、、、的大小关系是__________________________(用“>”连接). 【解析】可以采用特殊值法解题,如14x =.【答案】21x x x>>5.计算:(1(2)2(2)-【解析】(111213333-=- ;(2)2(2)-11433231423=⨯+-⨯=+-=. 【答案】(1) 13- ; (2)4.6.已知一个长方体封闭水箱的容积是1620立方分米,它的长、宽、高的比试5:4:3,则水箱的长、宽、高 各是多少分米?做这个水箱要用多少平方分米的板材?【解析】在列方程解应用题时,要注意见比设k 的应用.【答案】长、宽、高各是15分米,12分米,9分米;846平方分米.7.已知实数a ,满足0a =,求11a a -++的值.【解析】0a ,0a a a ∴++=,20a a +=,0a ∴=,112a a -++=【答案】28.先阅读理解,再回答下列问题:,且12<<的整数部分为1;23<2;=34<的整数部分为3;n 为正整数)的整数部分为______,请说明理由.【解析】n2(1)n n n n +=+,又22(1)(1)n n n n <+<+,1n n ∴<+(n 为正整数),∴整数部分为n .【答案】n9. 计算下列各组算式,观察各组之间有什么关系,请你把这个规律总结出来,然后完成后面的填空.(1(2(3(4(5= ;(6= (0,0)a b ≥≥.【解析】(5(6【答案】(5;(610.若a 为217-的整数部分,1-b 是9的平方根,且a b b a -=-||,求b a +的算术平方根.【解析】161725,45,223,2a <<∴<∴<<∴=,14b b -==或2b =-.又a b b a -=-,b a ∴≥,2,4a b ∴==,.。

(完整版)实数知识点和练习

(完整版)实数知识点和练习

第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类,7等;(1)开方开不尽的数,如32π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等(这类在初三会出现)是有理数,而不是无判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16理数。

3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。

(2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

如果,那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号(1)正数a 的算术平方根,记作“a ”。

(2)a(a ≥0)的平方根的符号表达为。

(3)一个数a 的立方根,用表示,其中a 是被开方数,3是根指数。

4、运算公式4、开方规律小结(1)若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是。

第1课 走进实数世界

第1课 走进实数世界

第1课 走进实数世界一、复习目的(1)知道实数的定义与分类,与实数有关的概念;(2)掌握实数的大小比较,实数的运算法则与运算顺序; (3)能运用实数的运算解决一些简单的实际问题。

二、知识梳理1.实数的分类按定义分:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧等数,如无理数:无限不循环小不能含有无理数注:分数的分子分母中负分数正分数分数负整数正整数整数有理数实数 101001001.0,,20π按正负分:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数既不是正数也不是负数注:正无理数正分数正整数正有理数正实数实数0 02.与实数有关的概念(1)数轴:规定了______,_______,_______的直线,叫做数轴。

数轴上的点和______是一一对应的。

(2)相反数:实数a 的相反数是_____;若b a ,互为相反数,则____=+b a ,反之亦然。

(3)倒数:实数a 的倒数是____;若b a ,互为倒数,则___=⋅b a ,反之亦然。

0没有倒数。

(4)绝对值:在数轴上表示一个数的点到_____的距离叫做这个数的绝对值。

即⎪⎩⎪⎨⎧<=>=)0____()0____()0____(||a a a a(5)科学计数法:把一个表示成),101(10为整数n a a n<≤⨯±的形式 (6)平方根,立方根:若,,若平方根,记作叫做则a a x=±==32xa x a x ,立方根,叫做则a x 3a x =记作。

注:正数有两个平方根,他们互为相反数;0的平方根是0;负数没有平方根;任何数都有唯一的立方根。

(7)近似数和有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这是从左边第一个非零数字起,到末位数字为止,所有的数字都叫做这个近似数的有效数字。

如:0.02033,精确到十万分为,有2,0,3,3四个有效数字。

人教版七年级下册《6.3第1课时实数的概念》同步练习(含答案)

人教版七年级下册《6.3第1课时实数的概念》同步练习(含答案)

6.3实数第1课时实数的有关概念关键问答①无理数有几种常见的表现形式?②数轴上的每一点都可以表示一个什么样的数?1.①2017·滨州下列各数中是无理数的是()A. 2B.0 C.12017D.-12.②如图6-3-1,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr),把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是________,属于__________(填“有理数”或“无理数”).图6-3-1命题点1无理数[热度:90%]3.③下列说法正确的是()A.无理数就是无限小数B.无理数就是带根号的数C.无理数都是无限不循环小数D.无理数包括正无理数、0和负无理数易错警示③(1)无理数的特征:无理数的小数部分位数无限且不循环,不能表示成分数的形式.(2)常见的无理数有三种表现形式:化简后含π的数;有规律的无限不循环小数,如:1.3131131113…;含有根号且开方开不尽的数,如5,36.4.④在下列各数:0.51525354…,0,0.2,3π,227,9,39,13111,27中,是无理数的有________________________.方法点拨④一个数不是有理数就是无理数,识别一个数是不是有理数,只需看其是不是整数或分数即可.5.有一个数值转换器,原理如图6-3-2所示:当输入的x 为256时,输出的y 是________.图6-3-26.⑤在1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有多 少个?方法点拨⑤分别找出1~100这100个自然数的算术平方根和立方根中有理数的个数,即可得出无理数的个数.命题点 2 实数的概念与分类 [热度:95%] 7.⑥下列说法中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数C .实数包括无限小数与无限不循环小数D .实数包括有理数与无理数 易错警示⑥实数包括有理数和无理数,即有限小数、无限循环小数、无限不循环小数. 8.⑦有下列说法:①两个无理数的和还是无理数;②无理数与有理数的积是无理数;③有理数与有理数的和不可能是无理数;④无限小数是无理数;⑤不是有限小数的数不是有理数.其中正确的有( )A .0个B .1个C .2个D .3个 解题突破⑦两个无理数的和或差不一定是无理数.9.⑧实数13,24,π6中,分数有( )A .0个B .1个C .2个D .3个 方法点拨⑧分数是两个整数作商,不能整除的数. 10.下列说法错误的是( ) A.14是有理数 B.2是无理数 C .-3-27是正实数 D.22是分数11.在数轴上,表示实数2与10的点之间的整数点有________个;表示实数2与10之间的实数点有________个.12.将下列各数填在相应的集合里: 3512,π,3.1415926,-0.456,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),0,511,-321,(-13)2,0.1.有理数集合:{_____________________________________________…};无理数集合:{_____________________________________________…};正实数集合:{_____________________________________________…};整数集合:{_______________________________________________…}.命题点3实数与数轴[热度:98%]13.下列说法中正确的是()A.每一个整数都可以用数轴上的点表示,数轴上的每一个点都表示一个整数B.每一个有理数都可以用数轴上的点表示,数轴上的每一个点都表示一个有理数C.每一个无理数都可以用数轴上的点表示,数轴上的每一个点都表示一个无理数D.每一个实数都可以用数轴上的点表示,数轴上的每一个点都表示一个实数14.⑨如图6-3-3,数轴上的A,B,C,D四个点表示的数中,与-3最接近的是()图6-3-3A.点A B.点B C.点C D.点D解题突破⑨-3介于哪两个连续的整数之间?这两个连续的整数中哪个整数的平方与3的差的绝对值小?15.2018·宁晋县期中如图6-3-4,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是()图6-3-4A.π-1 B.-π-1C.-π-1或π-1 D.-π-1或π+116.⑩在同一数轴上表示2的点与表示-3的点之间的距离是________.方法点拨⑩数轴上两点间的距离等于右边的点表示的数减去左边的点表示的数.17.⑪如图6-3-5所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0,1,2)上.先让原点与圆周上0所对应的点重合,再将数轴的正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样数轴的正半轴上的整数就与圆周上的数字建立了一种对应关系.图6-3-5(1)圆周上数字a与数轴上的数字5对应,则a=__________;(2)数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是________.模型建立⑪数轴绕过圆周n圈(n为正整数)后,一个整数落在圆周上数字2所对应的位置,这个整数是3n+2.18.阅读下面的文字,解答问题.大家都知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,所以将2减去其整数部分,差就是其小数部分.(1)你能求出5+2的整数部分和小数部分吗?(2)已知10+3=x +y ,其中x 是整数,且0<y <1,请求出x -y 的相反数.19.⑫定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作是分母为1的有理数;反之为无理数.如2不能表示为两个互质的整数的商,所以2是无理数.可以这样证明:设2=a b ,a 与b 是互质的两个整数,且b ≠0,则2=a 2b 2,a 2=2b 2.因为b 是整数且不为0,所以a 是不为0的偶数.设a =2n (n 是整数),所以b 2=2n 2,所以b 也是偶数,这与a ,b 是互质的两个整数矛盾,所以2是无理数.仔细阅读上文,求证:5是无理数.方法点拨⑫从结论的反向出发,经推理,推得与基本事实、定义、定理或已知条件相矛盾的结果,这样的方法称为反证法.典题讲评与答案详析1.A 2.-2π无理数 3.C4.0.51525354…,3π,39,27[解析] 因为0是整数,0.2可化成分数,9=3,是整数,13111,227是分数,所以这五个数都是有理数.0.51525354…,3π,39,27都是无理数.5.2[解析] 由题图中所给的程序可知,把256取算术平方根,结果为16,因为16是有理数,所以再取算术平方根,结果为4,是有理数.再取4的算术平方根,结果为2,是有理数.再取算术平方根,结果为2,2是无理数,所以y= 2.6.解:∵12=1,22=4,32=9,…,102=100,∴1,2,3,…,100这100个自然数的算术平方根中,有理数有10个,∴无理数有90个.∵13=1,23=8,33=27,43=64,53=125,且64<100,125>100,∴1,2,3,…,100这100个自然数的立方根中,有理数有4个,∴无理数有96个,∴1,2,3,…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186(个).7.D[解析] 正整数、负整数、0统称为整数;有理数分为正有理数、0和负有理数;有理数包括无限循环小数和有限小数;实数包括有理数和无理数.8.B[解析] 两个无理数的和不一定是无理数,如2和-2;无理数与有理数的积也不一定是无理数,如2和0;有理数与有理数的和一定是有理数;无限不循环小数是无理数;有限小数和无限循环小数是有理数.9.B [解析] 分数是两个整数作商,不能整除的数,因此只有13是分数.10.D [解析]A 项,14=12是有理数,故选项正确;B 项,2是无理数,故选项正确;C 项,-3-27=3是正实数,故选项正确;D 项,22是无理数,故选项错误.故选D.11.2 无数12.有理数集合:{3512,3.1415926,-0.456,0,511,(-13)2,…};无理数集合:{π,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),-321,0.1,…};正实数集合:{3512,π,3.1415926,3.030030003…(从左到右相邻的两个3之间0的个数逐渐加1),511,(-13)2,0.1,…};整数集合:{3512,0,(-13)2,…}.13.D [解析] 实数与数轴上的点具有一一对应的关系. 14.B15.C [解析]∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A ′表示的数是-1-π;当圆向右滚动时点A ′表示的数是π-1.16.2+3 [解析] 在同一数轴上表示2的点与表示-3的点之间的距离是2+||-3=2+ 3.17.(1)2 (2)302 [解析] (1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字a 与数轴上的数字5对应时,a =2.(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上的数字0,1,2与数轴的正半轴上的整数0,1,2,3,4,5,6,7,8,…每3个一组分别对应,∴数轴绕过圆周100圈后,一个整数点落在圆周上数字2所对应的位置,这个整数是302.18.解:(1)∵4<5<9,∴2<5<3,∴5的整数部分是2,小数部分是5-2,∴5+2的整数部分是2+2=4,小数部分是5-2.(2)∵3的整数部分是1,小数部分是3-1,∴10+3的整数部分是10+1=11,小数部分是3-1,∴x=11,y=3-1,∴x-y的相反数是y-x=3-12.19.证明:设5=ab,a与b是互质的两个整数,且b≠0,则5=a2b2,a2=5b2.因为b是整数且不为0,所以a不为0且为5的倍数.设a=5n(n是整数),所以b2=5n2,所以b也为5的倍数,这与a,b是互质的两个整数矛盾,所以5是无理数.【关键问答】①无理数有三种常见的表现形式:一是含有根号且开方开不尽的数;二是化简后含π的数;三是人为创造的一些无限不循环小数.②数轴上的每一点都可以表示一个实数.。

初中数学复习实数的概念及运算(含答案)

初中数学复习实数的概念及运算(含答案)

第1讲实数概念与运算一、知识梳理实数的概念1、实数、有理数、无理数、绝对值、相反数、倒数的概念。

(1)_____________叫有理数,_____________________叫无理数;______________叫做实数。

(2)相反数:①定义:只有_____的两个数互为相反数。

实数a的相反数是______0的相反数是________②性质:若a+b=0 则a与b互为______, 反之,若a与b 互为相反数,则a+b= _______(3)倒数:①定义:1除以________________________叫做这个数的倒数。

②a 的倒数是________(a≠0)(4)绝对值:①定义:一般地数轴上表示数a的点到原点的_______, 叫数a的绝对值。

②2、平方根、算术平方根、立方根(1)平方根:一般地,如果_________________________,这个数叫a的平方根,a的平方根表示为_________.(a≥0)(2)算术平方根:正数a的____的平方根叫做a的算术平方根,数a的算术平方根表示为为_____(a≥0)(3)立方根:一般地,如果_________,这个数叫a的立方根,数a的立方根表示为______。

注意:负数_________平方根。

实数的运算1、有效数字、科学记数法(1)有效数字:从一个数的_____边第一个_____起到末位数字止,所有的数字都是这个数的有效数字。

(2)科学记数法:一个数M 可表示为a ⨯10n 或a ⨯10-n形式,其中1//10a ≤∠,n 为正整数,当/M/≥10时,可表示为__________形式,当/M/<1时,可表示为____________形式。

2、实数的运算:(1)运算顺序:在进行混合运算时,先算______,再算_______,在最后算_________;有括号时,先算括号里面的。

(2)零指数:0a =__________(a≠0),负指数:p a -=________(a≠0,p 是正整数)。

专题01 实数(重点+难点)(解析版)

专题01 实数(重点+难点)(解析版)

专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。

专题 实数的概念及性质(含答案)

专题  实数的概念及性质(含答案)

第六讲 实数的概念及性质数是随着客观实际与社会实践的需要而不断扩充的.从有理数到无理数,经历过漫长曲折的过程,是一个巨大的飞跃,由于引入无理数后,数域就由有理数域扩充到实数域,这样,实数与数轴上的点就建立了一一对应的关系. 由于引入开方运算,完善了代数的运算.平方根、立方根的概念和性质,是学习二次根式、一元二次方程等知识的基础.平方根、立方根是最简单的方根,建立概念的方法,以及它们的性质是进一步学习偶次方根、奇次方根的基础.有理数和无理数统称为实数,实数有下列重要性质:1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数pq 的形式;无理数是无限不循环小数,不能写成分数pq 的形式,这里p 、q 是互质的整数,且0≠p .2.有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;无理数对四则运算不具有封闭性,即两个无理数的和、差、积、商不一定是无理数. 例题求解【例1】若a 、b 满足ba 53+3=7,则S =ba 32-的取值范围是 . (全国初中数学联赛试题)思路点拨 运用a 、b 的非负性,建立关于S 的不等式组.注: 古希腊的毕达哥拉斯学派认为,宇宙间的一切现象都能归结为整数或整数之比.但是该学派的成员希伯索斯发现边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示,这严重地冲击了当时希腊人的传统见解,这一事件在数学史上称为第一次数学危机.希伯索斯的发现没有被毕达哥拉斯学派的信徒所接受,相传毕氏学派就因这一发现而把希伯索斯投入海中处死.【例2】 设a 是一个无理数,且a 、b 满足ab -a -b+1=0,则b 是一个( )A .小于0的有理数B .大于0的有理数C .小于0的无理数D .大于0的无理数(武汉市选拔赛试题)思路点拨 对等式进行恰当的变形,建立a 或b 的关系式. 【例3】已知a 、b 是有理数,且032091412)121341()2331(=---++b a ,求a 、b 的值.思路点拔 把原等式整理成有理数与无理数两部分,运用实数的性质建立关于a 、b 的方程组.【例4】(1) 已知a 、b 为有理数,x ,y 分别表示75-的整数部分和小数部分,且满足axy+by 2=1,求a+b 的值. (南昌市竞赛题)(2)设x 为一实数,[x]表示不大于x 的最大整数,求满足[-77.66x]=[-77.66]x+1的整数x 的值.(江苏省竞赛题)思路点拨 (1)运用估算的方法,先确定x ,y 的值,再代入xy+by 2=1中求出a 、b 的值;(2)运用[x]的性质,简化方程.注: 设x 为一实数,则[x]表示不大于x 的最大整数,[x]]又叫做实数x 的整数部分,有以下基本性质:(1)x -1<[x]≤x (2)若y< x ,则[y]≤[x] (3)若x 为实数,a 为整数,则[x+a]= [x]+ a .【例5】 已知在等式sdcx b ax =++中,a 、b 、c 、d 都是有理数,x 是无理数,解答:(1)当a 、b 、c 、d 满足什么条件时,s 是有理数; (2) 当a 、b 、c 、d 满足什么条件时,s 是无理数.( “希望杯”邀请赛试题)思路点拨 (1)把s 用只含a 、b 、c 、d 的代数式表示;(2)从以下基本性质思考: 设a 是有理数,r 是无理数,那么①a+r 是无理数;②若a ≠0,则a r 也是无理数;③ r 的倒数r 1也是无理数,解本例的关键之一还需运用分式的性质,对a 、b 、c 、d 取值进行详细讨论.注:要证一个数是有理数,常证这个数能表示威几十有理数的和,差,积、商的形式;要证一个数是无理数,常用反证法,即假设这个数是有理数,设法推出矛盾.学力训练1.已知x 、y 是实数,96432=+-++y yx ,若yx axy=-3,则a= .(2002年个数的平方根是22b a +和1364+-b a ,那么这个数是 . 3.方程185=++-+y y x 的解是 .4.请你观察思考下列计算过程:∵112=121,∴11121=;同样∵1112=12321,∴11112321=;…由此猜想=76543211234567898 .(济南市中考题)5.如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C所表示的数是( )A .12-B .21-C .22-D .22-(江西省中考题) 6.已知x 是实数, 则πππ1-+-+-x x x 的值是( )A .π11-B .π11+C .11-πD .无法确定的( “希望杯”邀请赛试题)7.代数式21-+-+x x x 的最小值是( ) A .0 B .21+ C .1 D .不存在的 ( “希望杯”邀请赛试题) 8.若实数a 、b 满足032)2(2=+-+-+a b b a ,求2b+a -1的值.(山西省中考题)9.细心观察图形,认真分析各式,然后解答问题.21)1(2=+,211=S ;31)2(2=+,222=S ;41)3(2=+,233=S ;…(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S l 2+S 22+S 32+…+S 210的值. (烟台市中考题) 10.已知实数 a 、b 、c 满足412212=+-+++-c c c b b a ,则a(b+c)= .11.设x 、y 都是有理数,且满足方程04)231()321(=--+++πππy x ,那么x -y 的值是 .( “希望杯’邀请赛试题)12.设a 是一个无理数,且a 、b 满足ab+a -b =1,则b= . (四川省竞赛题)13.已知正数a 、b 有下列命题:①若a=1,b =1,则1≤ab ; ②若25,21==b a ,则23≤ab ;③若a =2,b=3,则25≤ab ; ④若a=1,b=5,则3≤ab .根据以上几个命题所提供的信息,请猜想,若a=6,b=7,则≤ab . (黄冈市竞赛题) 14.已知:11=-a a,那么代数式aa +1的值为( )A .25 B .25-C .5-D .5(重庆市竞赛题)15.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[21⨯]+[32⨯]+[43⨯]+…+[101100⨯]的值为( )A .5151B .5150C .5050D .5049( “五羊杯”邀请赛试题) 16.设a<b<0,ab b a 422=+,则ba b a -+的值为( )A .3B .6C .2D .3 (全国初中数学竞赛题)17.若a 、b 、c 为两两不等的有理数,求证:222)(1)(1)(1a c c b b a -+-+-为有理数.18.某人用一架不等臂天平称一铁块a 的质量,当把铁块放在天平左盘中时,称得它的质量为300克,当把铁块放在天平的右盘中时,称得它的质量为900克,求这一铁块的实际质量. (安徽省中考题).19.阅读下面材料,并解答下列问题:在形如a b =N 的式于中,我们已经研究过两种情况:①已知a 和b ,求N ,这是乘方运算,②已知b 和N ,求a ,这是开方运算. 现在我们研究第三种情况;已知a 和N ,求b ,我们把这种运算叫做对数运算. 定义:如果a b=N (a>0,a ≠1,N>0),则b 叫做以a 为底的N 的对数,记作b=log a N . 例如:因为23=8,所以log 28=3;因为2-3=81,所以log 281=-3.(1)根据定义计算:①log 3 81= ;②log 33= ;③log 3l= ;④如果log x 16=4,那么x= . (2)设a x=M ,a y=N ,则log a M=x ;log a N =y(a>0,a ≠1,N>0,M ,N 均为正数). 用log A M ,log A N 的代数式分别表示log a MN 及log a NM ,并说明理由.(泰州市中考题) 20.设dcx b ax y++=,a 、b 、c 、d 都是有理数,x 是无理数.求证:(1)当bc=ad 时,y 是有理数;(2)当bc ≠ad 时,y 是无理数.21.设△ABC 的三边分别是a 、b 、c ,且0448222=--++bc ab b c a ,试求AABC 的形状.。

第1课实数的有关概念

第1课实数的有关概念

第1课 实数的有关概念一、 本课学习目标:1. 正确理解实数的有关概念。

2. 了解数轴、相反数、绝对值、倒数、近似数、有效数字、科学记数法的概念。

3. 会比较数的大小。

二、 课前小测(限时5分钟):1. 若零上5℃记作 +5℃,则零下3℃记作 。

2. 5的倒数是 。

3. 计算:3243- = 。

3. 比较大小:3221--用科学记数法表示:23500 = 。

4. 计算:3 ÷ 2 ×⎪⎭⎫⎝⎛-21 = 计算:32- = 。

5. 计算:3 – 2- = 。

化简:8 = 。

6. 40°的余角等于 。

三、 本课主要知识点: 1. 实数的分类:注:零既不是正数,也不是负数。

练习: (1)把下列各数填在相应的大括号:–18,1377,3.1416, 0,2001,53-,–0.142857正数集合{ },负数集合{ }整数集合{ },分数集合{ }(2)在数722,π,3.14,0,8,364-,sin60°,tan45°,2-7,0.303030……,0.010010001……中,无理数共有 个。

2. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

练习:下面图中,表示数轴的是( )A .B .C .D .3. 相反数:只有符号不同的两个数称互为相反数。

零的相反数是零。

若a 和b 互为相反数,则a + b = 0;反之,若a + b = 0,则a 和b 互为相反数。

数轴上,互为相反数的两个数所对应的点关于原点对称。

练习:(1) 12的相反数是 ;(2) –22的相反数是 ;(3)0的相反数是 ; (4)若m + 1与m – 3互为相反数,则m = ;(5)在数轴上表示:用点A 表示3,用点B 表示它的相反数.4. 绝对值:在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . 正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

第1课时 实数的有关概念(含答案)

第1课时 实数的有关概念(含答案)

c a 第1课时《 实数的有关概念》◆知识讲解 1.实数的分类实数⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数整数零负整数有理数正分数分数有限小数或无限循环小数负分数正无理数无理数无限不循环小数负无理数 实数还可分为⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数零负整数负有理数负实数负分数负无理数 2.数轴(1)数轴的三要素:原点、正方向和单位长度. (2)数轴上的点与实数一一对应.3.相反数 实数a 的相反数是-a ,零的相反数是零. (1)a 、b 互为相反数⇔a+b=0.(2)在数轴上表示相交数的两点关于原点对称.4.倒数 乘积是1的两个数互为倒数,零没有倒数. a 、b 互为倒数⇔ab=1.5.绝对值 │a│=(1)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩6.非负数像│a│、a 2a≥0)形式的数都表示非负数.7.科学记数法 把一个数写成a×10n的形式(其中1≤│a│<10,n 为整数),•这种记数法叫做科学记数法.(1)当原数大于或等于1时,n 等于原数的整数位数减1.(2)当原数小于1时,n 是负整数,•它的绝对值等于原数中左起第一个非零数字前零的个数(含小数点前的零). 8.近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字. ◆经典例题 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74◆强化训练一、选择题 1..0.31,3π,17,0.80108中,无理数的个数为( ) A .1个 B .2个 D .3个 D .4个2.据2005年6月9日中央电视台东方时空栏目报道:•由于人类对自然资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约每45min •就有一个物种灭绝.照此 速度,请你预测,再过10年(每年以365天计算)将有大约多少个物种灭绝( ) A .5.256×106 B .1.168×105 C .5.256×105 D .1.168×1043.近似数0.03020的有效数字的个数和精确度分别是( )A .四个,精确到万分位 B .三个,精确到十万分位 C .四个,精确到十万分位 D .三个,精确到万分位4.(2006,哈尔滨)下列命题正确的是( )A .4的平方根是2B .a 的相反数是-aC .任何数都有倒数D .若│x│=2,则x=2 5.若│a│=-a ,则a 的取值范围是( )A .a>0 B .a<0 C .a≥0 D .a ≤06.(2007,乐山)如下左图所示,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若C 表示的数为1,则点A 表示的数为( ) A .7 B .3 C .-3 D .-27.已知实数a ,b 在数轴上的对应点的位置如上右图所示,且│a│>│b│,则│a│-│a+b│-│b -a│化简后得( ) A .2b+a B .2b -a C .a D .b8.如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A .112B .1.4 CD二、填空题9.已知实数a ,b 在数轴上对应的点在原点两旁,且│a│=│b│,那么a a+b =_____. 10.已知│x│=3,│y│=2,且xy<0,则x+y 的值等于______.11.(2008,山东)在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿Pa 的钢材.4.581亿Pa 用科学记数法表示为______Pa (保留两位有效数字)12.(2007,烟台)如图所示,在数轴上点A 和点B 之间表示整数的点有_____个. 13.若│a -b+1│a -b )2008=_______. 14.(2006,四川乐山)若2x -3与-13互为倒数,则x=______. 15.(2007,陕西)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,•则这列数的第8个数是_______.16.如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余正方形内分别填上-1,-2,按虚线折成正方形,相对而上的两数互为相反数,则A 处应填_________. 17.有若干个数,第一个数记为a 1,第2个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-12,从第2个数起,每个数都等于“1与前面的那个数的差的倒数”. (1)试计算:a 2=_______,a 3=________,a 4=______.(2)根据以上计算结果,请你写出:a 2008=_______,a 2010=________. 三、解答题18.已知a ,b 互为相反数,c ,d互为倒数,求2222a b a b-+19和│8b -3│互为相反数,求(ab )-2-27的值.20.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2.试求:x 2-(a+b+cd )x+(a+b )2003+(-cd )2003的值.c a第1课时《 实数的有关概念》(答案)◆例题解析 例1在实数-23,03.14,2π0.1010010001…(每两个1之间依次多1个0),sin30°这8个实数中,无理数有( ) A .1个 B .2个 C .3个 D.4个【分析】 2π,-0.1010010001…这三个数是无理数,其他五个数都是有理数.【解答】C【点拨】 对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的是有理数,关键在于这个形式上带根号的数的最终结果是不是无限不循环小数.同样,用三角符号表示的数也不一定就是无理数,如sin30°、tan45°等.而-0.1010010001…尽管有规律,•但它是无限不循环小数,是无理数.2π是无理数,而不是分数. 例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e a+b )+12cd -2e 0的值; (2)实数a,b ,c 在数轴上的对应点如图所示,化简a+│a+b││b -c│. 【解答】(1)依题意,有a+b=0,cd=1,e≠0a+b )+12cd -2e 0=0+12-2=-32.(2)由图知a>0,b<c<0,且│b│>│a│,∴a+b<0,b -c<0,∴a+│a+b││b -c│=a -a -b -│c│-(c -b )=a -a -b+c -c+b=0.【点评】 相反数、倒数、绝对值都是主要的概念,解答时应从概念蕴含着的数学关系式入手.含有绝对值的代数式的化简,首先要确定绝对值符号内的数或式的值是正、负还是零,然后再根据绝对值的意义把绝对值的符号去掉,第(2)•题是数形结合的题目,解题的关键在于通过观察数轴,弄清数轴上各点所表示的正负性及各实数之间的大小关系,从而才能正确地去掉绝对值符号,达到化简的目的.例3 (2007,枣庄)2007年4月,全国铁路进行了第六次大提速,•提速后的线路速度达200km/h ,共改造约6000km 的提速线路,总投资约296亿元人民币.那么,平均每千米提速线路的投资约为________亿元人民币(用科学记数法表示,保留两个有效数字).【分析】 本题既考查有理数的除法运算,又考查近似数和科学记数法以及分析问题的能力. 【解答】 296÷6000≈4.9×10-2例4 已知x 、y (y 2-6y+9)=0,若axy -3x=y ,则实数a 的值是( ) A .14 B .-14 C .74 D .-74【分析】 y -3)2均为非负数,它们的和为零,只有3x+4=0,且y -3=0,由此可求得x ,y 的值,将其代入axy -3x=y 中,即求得a 的值.【解答】(y -3)2=0∴3x+4=0,y -3=0 ∴x=-43,y=3. ∵axy -3x=y , ∴-43×3a -3×(-43)=3 ∴a=14∴选A 【点拨】 若几个非负数之和等于零,则每个非负数均等于零.这是非负数具有的一个重要性质. ◆◆强化训练答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.1 10.1或-1 11.4.6•×108 •12.4 13.1 14.0 15.21 16.-2 17.(1)23 3 -12 (2)-123 18.-1 19.•由已知得a=13,b=38,原式的值为37 20.1或5。

实数 相关概念难点及答案解析

实数 相关概念难点及答案解析

实数1算术平方根1.1算术平方根的概念(1)一般的,如果一个正数x的平方等于a,即,那么这个正数x叫做a的;(2)a的算数平方根记作,读作“根号a”,其中a叫做被开方数; (3)规定:0的算数平方根是【答案】(1)x2=a,算术平方根;(2)√a(3)00的算数平方根是【答案】x,算术平方根,01.3算术平方根的性质(1)算术平方根√a的非负性:①一定是非负数,即a≥0;②(2)只有和有算术平方根,没有算术平方根【答案】(1)被开方数,√a≥0;(2) 正数,0,负数1.4算术平方根的应用算术平方根在实际生活中的应用考察形式为根据几何图形面积或体积进行方程设列,考虑到其实际意义,舍去负数根,取正数或0,该正数或0即为算术平方根。

例如:能否剪出一个长方形的长、宽之比为3:2,且面积为12平方厘米?长、宽分别是多少呢?【答案】解:设长方形纸片的长为3xcm,宽为2xcm,则3x·2x=12,解得:x=√2(负值舍去)则长为3√2cm,宽为2√2cm2 平方根2.1平方根的概念一般地,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的或二次方根.【答案】平方根2.2开平方如果一个数的平方等于a,那么这个数叫做a的或二次方根.也就是说,如果x2=a,那么x叫做a的平方根,平方根2.3平方根的性质平方根的性质:(1)正数有平方根,它们互为;(2)的平方根是0;(3)没有平方根【答案】(1)两个,相反数;(2) 0;(3)负数3 立方根3.1立方根的概念(1)a的立方根:一般地,如果一个数x的立方等于a,即x³=a,那么这个数x就叫做a的 .a是,3是;(2)每个数a都有立方根,记作,读作“三次根号a”【答案】(1)立方根,被开方数,根指数;(2)一个,√a33.2 开立方开立方:求一个数a的的运算,这个数a叫做 .(求一个数a的立方根的方法:找一个数x,使了x³=a)开立方是一种运算,开立方与立方互为逆运算,开立方所得的结果是立方根. 根据开立方与立方互为逆运算的关系,可以利用开立方求一个数的立方根,也可以利用立方来检验一个数是不是某个数的立方根.【答案】立方根,被开方数注意:(1)任何一个数都有且只有个立方根;(2)求一个带分数的立方根时,首先要把带分数化为,然后再求它的立方根;(3)立方根等于它本身的数有【答案】(1)1;(2)假分数;(3)0和±13.3 立方根的性质【答案】(1)正数;(2)负数;(3)0;(4)越大;(5)也同样互为相反数4无理数4.1无理数的概念无理数: 叫做无理数.如π(3.1415926······)是无理数【答案】无限不循环小数4.2常见的无理数的形式:(1)开方开不尽的数的方根;(2)π及化简后含π的数;(3)具有特殊结构的数,如0. 303 003 000 3…(两个3之间依次多一个0) 4.3无理数与有理数的区别(1)任何有理数都能写成分数的形式(整数可以看成分母是1的分数),无理数不能写成分数的形式;(2)任何一个有理数都可以写成有限小数(把整数看成小数点后是0的小数)或无限循环小数的形式,无理数是无限不循环小数注意:(1)无理数都是无限小数,但无限小数不一定是无理数,只有无限不循环小数才是无理数;(2)某些数的平方根或立方根是无理数,但带根号的数不一定都是无理数 5实数5.1实数的概念与分类5.1.1实数的概念和 统称为实数【答案】有理数,无理数5.1.2实数的分类(1)按实数数的定义进行分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负有理数0正有理数有理数实数(2)按实数的性质符号进行分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数05.2实数与数轴当数的范围从有理数扩充到实数后, 与数轴上的点是一一对应的,即每一个 都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个 .与规定有理数的大小一样,对于数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大【答案】实数,实数,实数5.3实数的性质5.3.1相反数数a 的相反数是 ,这里a 表示任意一个【答案】-a ,实数5.3.2绝对值一个正实数的绝对值是 ;一个负实数的绝对值是 ;0的绝对值是 . 即⎪⎩⎪⎨⎧-==时<,当时;,当时;>,当0000a a a a a a【答案】它本身,它的相反数,05.3.3倒数乘积是1的两个数互为 ,一般地,a 的倒数是【答案】倒数, −1a5.4实数的运算5.4.1加法法则(1)同号两数相加,取的符号,并把相加;(2)绝对值不相等的异号两数相加,取的符号,并用减去;(3)互为相反数的两数相加得,一个数与0相加,仍得【答案】(1)相同,绝对值;(2)绝对值较大的加数,较大的绝对值,较小的绝对值;(3)0,这个数5.4.2减法法则减去一个数,等于加上这个数的______,即a-b=a+_____【答案】相反数,(-b)5.4.3乘法法则(1)两数相乘,同号得,异号得,并把绝对值;(2)任何数与0相乘,都得,互为倒数的两数相乘得【答案】(1)正,负,相乘;(2)0,15.4.4除法法则(1)除以一个不等于0的数,等于乘这个数的,即a➗b= (b≠0).(2)两数相除,同号得,异号得,并把绝对值 .0除以任何一个不等于0的数,都得【答案】(1)倒数,a·1;b(2)正,负,相除,05.4.5乘方(1)乘方的意义:求n个相同因数的积的运算叫做,乘方的结果叫做,用式子表示为个nn aaaaa⋅⋅⋅⋅⋅⋅⋅=,其中a叫做,n叫做,a n叫做;(2)乘方的法则:负数的奇次幂是;负数的偶次幂是;正数的任何次幂都是;0的任何正整数次幂都是【答案】(1)乘方,幂,底数,指数,幂;(2)负数,正数,正数,05.4.6运算规律加法交换律:a+b= ;加法结合律:(a+b)+c= ;乘法交换律:ab= ;乘法结合律:(ab)c= ;乘法分配律:a(b+c)=【答案】b+a,a+(b+c),ba,a(bc),ab+ac5.4.7运算顺序(1)先算,再算,最后算;(2)同级运算,进行;(3)如有括号,先做的运算,按,,依次进行【答案】(1)乘方,乘除,加减;(2)从左到右;(3)括号内,小括号,中括号,大括号5.5实数的估算5.5.1估算√a的取值范围之间(注:n为自然数)【答案】n2,(n+1)2,n,n+15.5.2无理数整数部分与小数部分的表示(2)d-√a的整数部分为,小数部分为【答案】(1)n,√a-n;(2)d-n-1,1-( √a-n)5.6实数的大小比较5.6.1数轴比较法在数轴上,右边点对应的实数比左边点对应的实数【答案】大5.6.2代数比较法正实数大于一切,0大于一切,都大于0;两个负实数比较大小,绝对值大的反而【答案】负实数,负实数,正实数,小5.6.3差值比较法-,b=0⇔ab-<0⇔a___a___babba___a->,b0⇔【答案】>,=,<5.6.4平方比较法若a>0,b>0,a2>b2,则a b 【答案】>。

完整版)实数知识点总结

完整版)实数知识点总结

完整版)实数知识点总结第一章实数考点一:实数的概念及分类(3分)实数可以分为以下几类:1.正有理数2.零、有限小数和无限循环小数的有理数3.实数负有理数4.正无理数5.无限不循环小数的无理数6.负无理数7.整数,包括正整数、零和负整数。

8.正整数又称自然数。

9.有理数包括正整数、零、负整数、正分数和负分数。

10.无理数包括开方开不尽的数、有特定意义的数、有特定结构的数和某些三角函数。

考点二:实数的倒数、相反数和绝对值1.相反数是指符号相反的两个数,互为相反数的两个数在数轴上关于原点对称。

2.如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

3.一个数的绝对值是表示这个数的点与原点的距离,|a|≥0.4.零的绝对值是它本身,若|a|=a,则a≥0;若|a|=-a,则a≤0.5.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

6.如果a与b互为倒数,则有ab=1,反之亦成立。

7.倒数等于本身的数是1和-1,零没有倒数。

考点三:平方根、算数平方根和立方根1.如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

2.一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

3.正数a的正的平方根叫做a的算术平方根,记作“a”。

4.正数和零的算术平方根都只有一个,零的算术平方根是零。

5.如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

6.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

7.注意:3-√a=-3√a,这说明三次根号内的负号可以移到根号外面。

考点四:科学记数法和近似数1.一个近似数四舍五入到哪一位,就说它精确到哪一位,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2.科学记数法是将一个数写成n±a×10的形式,其中1≤a<10.1.科学记数法当一个数的绝对值非常大或非常小时,我们可以使用科学记数法来表示。

《实数概念理解》 讲义

《实数概念理解》 讲义

《实数概念理解》讲义一、引入在数学的世界里,实数是我们经常接触和运用的一个重要概念。

无论是在日常生活中的计算,还是在科学研究、工程技术等领域,实数都扮演着不可或缺的角色。

那么,究竟什么是实数呢?让我们一起来深入理解。

二、实数的定义实数,简单来说,就是有理数和无理数的统称。

有理数包括整数和分数,而无理数则是无限不循环小数。

整数,像-3、-2、-1、0、1、2、3 等等,它们可以是正数、负数或者零。

分数,比如 1/2、3/4 等,表示一个整数除以另一个整数的结果。

无理数,比较典型的有圆周率π(约等于 31415926)、自然常数 e (约等于 271828)以及根号 2 等等。

三、实数的性质1、有序性实数是有序的,也就是说,对于任意两个实数a 和b,要么a <b,要么 a = b,要么 a > b,这三种情况必有且仅有一种成立。

2、稠密性实数在数轴上是稠密的。

这意味着在任意两个不相等的实数之间,都存在着无限多个其他的实数。

3、四则运算封闭性实数进行加、减、乘、除四则运算(除数不为 0)的结果仍然是实数。

四、实数与数轴数轴是理解实数的一个重要工具。

我们可以将数轴看作是一条水平的直线,规定了原点、正方向和单位长度。

每一个实数都可以在数轴上找到唯一对应的点,反过来,数轴上的每一个点也都对应着一个唯一的实数。

例如,实数 2 在数轴上对应的点就是距离原点 2 个单位长度且在正方向上的点;而-15 对应的点则是距离原点 15 个单位长度且在负方向上的点。

五、实数的分类1、按符号分类实数可以分为正实数、零和负实数。

正实数是大于零的实数,负实数是小于零的实数。

2、按有理数和无理数分类如前面所提到的,实数分为有理数和无理数。

这种分类方式有助于我们更清晰地认识实数的构成和特点。

六、实数的运算1、加法和减法加法是将两个或多个实数合并在一起的运算。

例如,2 + 3 = 5,-1 + 4 = 3。

减法是加法的逆运算,例如 5 2 = 3。

第1课 实数的有关概念(含答案)1-

第1课  实数的有关概念(含答案)1-

⎧⎨⎩第1章 数与式第1课 实数的有关概念目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、近似数与有效数字.中考基础知识1.实数的分类2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.负数的绝对值等于它的________.│a │=(0)(0)a a a a ≥⎧⎨-<⎩ 4.数轴:0________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的_________,数轴是沟通几何与代数的桥梁.5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b •互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.6.非负数:│a│≥0,a2≥00.若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.备考例题指导例1.填空题(1的倒数为_______,绝对值为________,相反数为_______.(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.(3)在实数18,π0,0.303003……中,无理数有________个.(4)绝对值不大于3的非负整数有________.(5=0,则3x-2y=________.(6)用科学记数法表示-168000=_______,0.0002004=_________.(7)0.0304精确到千分位等于_______,有_______个有效数字,它们是_______.(8)2060000保留两个有效数字得到的近似数为________.答案:(1).,(2)x≤1,x≠-13.(3)5.(4)0,1,2,3.(5)7.(6)-1.68×105,2.004×10-4.(7)0.030;2;3,0 (8)2.1×106.例2.已知1<x<4,化简│x-4│解:∵1<x<4,∴x-4<0,1-x<0.原式=│x-4│-│1-x│=4-x+1-x=5-2x.例3.化简│x-2│+│x+3│.解:令x-2=0得x=2,令x+3=0得x=-3.(1)当x<-3时,原式=2-x-x-3=-2x-1;(2)当-3≤x<2时,原式=2-x+x+3=5;(3)当x≥2时,原式=x-2x+x+3=2x+1.分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习1.(2005,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.3)2与│b-1│互为相反数,则2a b-的值为_______.4.若a2│c-2003│=0,则a b+c=________.5.计算|47-25|+|35-79|-|29-37|=______________.(注意方法)6.计算│1-a│+│2a+1│+│a│,其中a<-2.7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│+果是多少?a8.按要求取下列各数的近似数:(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).9.近似数7.60×105精确到_______位,有______个有效数字,近似数7.6×105精确到_______位,有________个有效数字.10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:1.-3 2.(a-3)℃ 3.20045.原式=47-25+79-35+29-37=17-1+1=17(先去绝对值符号)6.∵a<-2,∴1-a>0,2a+1<0,a<0∴原式=1-a-2a-1-a=-4a7.-2a8.(1)6.286≈6.3 (2)1764000≈1.76×106(3)278160≈28万9.∵7.60×105=760000 ∴近似数7.60×105精确到千位,有三个有效数字7,6,•0;7.6×105精确到万位,有两个有效数字7,610.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0∴a-b=0,b-c=0,a-c=0 ∴a=b=c。

初中数学专题特训第一讲实数(含详细参考答案)

初中数学专题特训第一讲实数(含详细参考答案)

中考数学专题复习第一讲 实数(含详细参考答案)【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【赵老师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【赵老师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 _ 零 正整数 整数 有理数无限不循环小数 ⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数 (a >0) (a <0)0 (a=0)2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【赵老师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧⎨⎩第1章 数与式
第1课 实数的有关概念
目的:复习实数有关概念,相反数、绝对值、倒数、数轴、非负数性质、•科学记数法、
近似数与有效数字.
中考基础知识
1.实数的分类
2.相反数:只有_______不同的两个数,叫做互为相反数,a 的相反数为______,a-b 的相反数是_______,x+y 的相反数是________,0的相反数为_______,若a ,b 互为相反数,则a+b=________.
3.绝对值:几何意义:数a 的绝对值是数a 在数轴上表示的点到_______的距离. 正数的绝对值等于它________. 代数意义 零的绝对值等于________.
负数的绝对值等于它的________.
│a │=(0)(0)
a a a a ≥⎧⎨-<⎩ 4.数轴:0
________与数轴上的点是一一对应的,•数轴上的点表示的数左边的总比右边的
_________,数轴是沟通几何与代数的桥梁.
5.倒数:a (a ≠0)的倒数为________,0_______•倒数,•若a ,•b •互为倒数,•则ab=_____,若a ,b 互为负倒数,则ab=________.
6.非负数:│a│≥0,a2≥00.
若│a+1│+(c+3)2=0,则a=_______,b=_______,c=________.
7.科学记数法:把一个数记作a×10n形式(其中a是具有一位整数的小数,n为自然数).
8.近似数与有效数字:一个经过________而得到的近似数,最后一个数在哪一位,就说这个近似数是精确到哪一位的近似数,对于一个近似数,•从左边第一个______数字开始,到最末一位数字止,都是这个近似数的有效数字.
备考例题指导
例1.填空题
(1的倒数为_______,绝对值为________,相反数为_______.
(2)若│x-1│=1-x,则x的取值范围是_______,若3x+1有倒数,则x的取值范围是_________.
(3)在实数18,π0,0.318018……中,无理数有________
个.
(4)绝对值不大于3的非负整数有________.
(5=0,则3x-2y=________.
(6)用科学记数法表示-168000=_______,0.0018018=_________.
(7)0.1818精确到千分位等于_______,有_______个有效数字,它们是_______.(8)2180000保留两个有效数字得到的近似数为________.
答案:(1).,
(2)x≤1,x≠-1
3
.(3)5.(4)0,1,2,3.
(5)7.(6)-1.68×118,2.018×10-4.(7)0.180;2;3,0 (8)2.1×118.
例2.已知1<x<4,化简│x-4│
解:∵1<x<4,∴x-4<0,1-x<0.
原式=│x-4│-│1-x│=4-x+1-x=5-2x.
例3.化简│x-2│+│x+3│.
解:令x-2=0得x=2,令x+3=0得x=-3.
(1)当x<-3时,原式=2-x-x-3=-2x-1;
(2)当-3≤x<2时,原式=2-x+x+3=5;
(3)当x≥2时,原式=x-2x+x+3=2x+1.
分类讨论思想,零点分段法,一般等号取在大于符号中.备考巩固练习
1.(2018,北京)一个数的相反数是3,则这个数是________.2.气温比a℃低3℃记作________.
3)2与│b-1│互为相反数,则
2
a b
-
的值为_______.
4.若a2│c-2018│=0,则a b+c=________.
5.计算|4
7
-
2
5
|+|
3
5
-
7
9
|-|
2
9
-
3
7
|=______________.(注意方法)
6.计算│1-a│+│2a+1│+│a│,其中a<-2.
7.如果表示a、b两个实数的点在数轴上的位置如图,那么化简│a+b│+果是多少?
a
8.按要求取下列各数的近似数:
(1)6.286(精确到0.1);(2)1764000(保留三个有效数字);(3)278160(•精确到万位).
9.近似数7.60×118精确到_______位,有______个有效数字,近似数7.6×118精确到_______位,有________个有效数字.
10.已知a、b、c为实数,且a2+b2+c2=ab+bc+ac,求证a=b=c.答案:
1.-3 2.(a-3)℃ 3.2018
5.原式=4
7
-
2
5
+
7
9
-
3
5
+
2
9
-
3
7
=
1
7
-1+1
=1
7
(先去绝对值符号)
6.∵a<-2,∴1-a>0,2a+1<0,a<0
∴原式=1-a-2a-1-a=-4a
7.-2a
8.(1)6.286≈6.3 (2)1764000≈1.76×118
(3)278160≈28万
9.∵7.60×118=760000 ∴近似数7.60×118精确到千位,有三个有效数字7,6,•0;
7.6×118精确到万位,有两个有效数字7,6
10.用配方法和非负数性质,将一个方程转化为三个方程,a2+b2+c2-ab-bc+ac=0 2a2+2b2+2c2-2ab-2bc-2ac=0 (a-b)2+(b-c)2+(a-c)2=0
∴a-b=0,b-c=0,a-c=0 ∴a=b=c。

相关文档
最新文档