2017届河北省中考数学模拟试题2及答案

合集下载

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

2017年河北省数学中考模拟试题(2)含答案

2017年河北省数学中考模拟试题(2)含答案

A.m 3
B. m 3
C. m 3
D. m 3
7.已知⊙ O1 和⊙ O2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距
的取值范围在数轴上表示正确的是 ( ▲ )
O1O 2
0
35
A
0
35
B
01
4
C
01
4
D
8 .用 棋 子 按 下 列 方 式 摆 图 形 ,依 此 规 律 ,第 n 个 图 形 比 第( n-1 )个 图 形 多( ▲ )

题号

21
22
23
24
25
26
得分
得 分 评卷人
二、填空题 (本大题共 4 个小题,每小题 3 分,共 12 分.把答案 写在题中横线上)
17.一个不透明的袋中装有除颜色外其他均相同的
2 个红球和
个黄球的概率是 ▲ .
18.若实数 a、b 满足 a+b=5,a2b+ab2=- 10,则 ab 的值是
3. 已知点 A( a,2013)与点 A′( - 2014,b)是关于原点 O 的对称点, 则 a b 的值为 ( ▲ )
A. 1
B. 5
C. 6
D .4
4.如图,已知一商场自动扶梯的长 l 为 13 米,高度 h 为 5 米,自动 扶梯与地面所成的夹角为 θ,则 tan θ的值等于 ( ▲ )
5
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑 卷上无效.
. 考试 . 答在试
一、选择题 (本大题共 16 个小题, 1~ 6 小题,每小题 2 分; 7~ 16 小题,每小题 3 分,共
42 分.在每小题给出的四个选项中,只有一项是符合题目要求的)

2017年河北省石家庄市桥西区中考数学二模试卷带答案解析

2017年河北省石家庄市桥西区中考数学二模试卷带答案解析

2017年河北省石家庄市桥西区中考数学二模试卷一、选择题(本大题共16小题,共42分)1.(3分)与﹣3的和为0的数是()A.3 B.﹣3 C.D.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.3.(3分)下列计算正确的是()A.(a2)3=a5B.a﹣2•a2=a﹣4C.3﹣=3 D.=34.(3分)下列图形中由AB∥CD能得到∠1=∠2的是()A.B.C.D.5.(3分)实数a,b,c在数轴上对应点的位置大致如图所示,则下列式子成立的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b D.a﹣c<b﹣c6.(3分)下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形7.(3分)化简的结果是()A. B.C. D.2x+28.(3分)如图,△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则圆形薄板的圆心应是△ABC的()A.三条高的交点B.三条中线的交点C.三边垂直平分线的交点D.三个内角角平分线的交点9.(3分)下列关于一次函数y=﹣2x+1的说法,其中正确的是()A.图象经过第一、二、三象限B.图象经过点(﹣2,1)C.当x>1时,y<0 D.y随x的增大而增大10.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定...成立的是()A.线段DE是△ABC的中位线B.四边形AFDE是菱形C.MN垂直平分线段AD D.=11.(2分)某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2017年该产品的产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)2C.y=D.y=100+100(1+x)+100(1+x)212.(2分)如图,点B是⊙O的劣弧上一点,连接AB,AC,OB,OC,AC交OB于点D,若∠A=36°,∠C=27°,则∠B=()A.81°B.72°C.60°D.63°13.(2分)如图,一支反比例函数y=的图象经过点A,作AB⊥x轴于点B,连接OA,若S=3,则k的值为()△AOBA.﹣3 B.3 C.﹣6 D.614.(2分)关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A.①②B.①③C.②③D.①②③15.(2分)小华进行了5次射击训练后,计算出这5次射击的平均成绩为8环,方差为s12,随后小华又进行了第6次射击,成绩恰好是8环,并计算出这6此射击成绩的方差为s22,则下列说法正确的是()A.s12=s22B.s12<s22C.s12>s22D.无法确定s12与s22的大小16.(2分)如图1,在等边△ABC中,点D,E分别是BC,AC边上的中点,点P 为AB边上的一个动点,设AP=x,连接PE,PD,PC,DE,其中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.线段PE B.线段PD C.线段PC D.线段DE二、填空题(本大题共3小题,共10分)17.(3分)计算:=.18.(3分)一个n边形的内角和是其外角和的2倍,则n=.19.(4分)如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是,现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标...是.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.21.(9分)如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC 的角平分线BF交DE于△ABC内一点P,连接PC.(1)若∠ACP=24°,求∠ABP的度数;(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:.22.(9分)某校组织甲、乙两队开展“保护生态环境知识竞赛”,满分为10分,得分均为整数,规定得分达到6分及以上为合格,达到9分及以上为优秀,如图是甲、乙两队学生这次竞赛成绩分布条形统计图.根据以上信息,请解答下面的问题:(1)在下面甲、乙两队的成绩统计表中,a=,b=c=.(2)小华同学说:“我在这次比赛中得到了7分,这在我所在的小队成绩中属于中等偏上的位置!”观察(1)中的表格,小华是队的学生;(填“甲”或“乙”)(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为.23.(9分)某营业厅对手机话费业务有如下的优惠:优惠规则:①用户手机账户原有话费不能低于240元;②办理业务时,首先从手机账户中一次性扣除240元,并把这240元抵为300元话费,然后将这300元话费分12次,在每月的15号等额返还到手机账户;③每月1号从手机账户中扣除话费49元,当月不再扣除其他任何费用;④每月1号手机账户的话费余额不足以扣除49元时,视为欠费,则当月不再返还等额的话费.小明的手机账户中原有话费400元,办理了这项优惠业务,设小明的手机账户中每个月末的话费余额是y(元),月数为x(个),则(1)每个月等额返还的话费是元,第2个月末的话费余额是元;(2)求y关于x的函数关系式;(3)若不续费,小明的手机第几个月会欠费?24.(10分)在菱形ABCD中,AB=2,AC是对角线,∠B=60°,点E在BC边上,点F在DC边上,且∠EAF=60°,AE与DC的延长线交于点M,AF与BC的延长线交于点N.(1)如图1,若点E为BC边上的中点.①求证:△ACM≌△ACN;②CM•NC的值是.(2)如图2,若点E为BC边上的任意点(不与点B,C重合),请说明CM•NC 是一个定值.25.(10分)抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是;(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点M在AC边上,点N从点C出发沿折线CB﹣BA运动到点A停止,点P是点C关于直线MN的对称点,连接MP,NP(当点N与点C,A重合时,点P均与点C重合).(1)若CM=2,①又当点N在CB上,MP∥BC时,则CN=,MN=;②又当MN∥AB时,求CN的长;(2)在(1)的条件下,求点P到AB边的距离的最小值,并求出当取得这个最小值时,点P运动路线的长是多少?(参考数据:sin54°=cos36°≈,sin36°=cos54°≈,结果保留π)(3)设MC=a(a>2),其他条件不变,当有且只能有唯一的点P落在线段AB 上时,直接写出a的取值范围.2017年河北省石家庄市桥西区中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.(3分)与﹣3的和为0的数是()A.3 B.﹣3 C.D.【解答】解:﹣3+3=0,∴与﹣3的和为0的数是3.故选:A.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.【解答】解:从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.3.(3分)下列计算正确的是()A.(a2)3=a5B.a﹣2•a2=a﹣4C.3﹣=3 D.=3【解答】解:A、(a2)3=a6,故此选项错误;B、a﹣2•a2=1,故此选项错误;C、3﹣=2,故此选项错误;D、=3,正确.故选:D.4.(3分)下列图形中由AB∥CD能得到∠1=∠2的是()A.B.C.D.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2,故本选项正确;C、根据AB∥CD可得∠BAD=∠CDA,不能推出∠1=∠2,故本选项错误;D、根据AB∥CD不能推出∠1=∠2,故本选项错误;故选B.5.(3分)实数a,b,c在数轴上对应点的位置大致如图所示,则下列式子成立的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b D.a﹣c<b﹣c【解答】解:由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣a>﹣b,a﹣c<b﹣c,故选D6.(3分)下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形【解答】解:A、错误.菱形的对角线互相垂直平分.B、正确.矩形的对角线相等且互相平分.C、错误.对角线互相垂直的四边形不一定是菱形.D、错误.对角线相等的四边形不一定是矩形.故选B.7.(3分)化简的结果是()A. B.C. D.2x+2【解答】解:原式=•(x﹣1)=.故选C.8.(3分)如图,△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则圆形薄板的圆心应是△ABC的()A.三条高的交点B.三条中线的交点C.三边垂直平分线的交点D.三个内角角平分线的交点【解答】解:△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则最大圆的圆心即为三角形的内心,三角形的内心是三个角平分线的交点,故选D.9.(3分)下列关于一次函数y=﹣2x+1的说法,其中正确的是()A.图象经过第一、二、三象限B.图象经过点(﹣2,1)C.当x>1时,y<0 D.y随x的增大而增大【解答】解:A、∵函数y=﹣2x+1中,k=﹣2<0,b=1>0,∴该函数的图象经过一、二、四象限,故本选项错误;B、x=﹣2时,y=﹣2×(﹣2)+1=5,故本选项错误;C、∵函数y=﹣2x+1中,k=﹣2<0,则y随x的增大而减小,直线与x轴的交点为(,0),∴当x>1时,y<0,故本选项正确;D、∵函数y=﹣2x+3中,k=﹣2<0,b=1>0,∴当x值增大时,函数y值减小,故本选项错误;故选C.10.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定...成立的是()A.线段DE是△ABC的中位线B.四边形AFDE是菱形C.MN垂直平分线段AD D.=【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF为菱形,故B,C正确;∵四边形AEDF为菱形,∴DE∥AC,∴=,故D正确.故选A.11.(2分)某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2017年该产品的产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)2C.y=D.y=100+100(1+x)+100(1+x)2【解答】解:根据题意,得:y关于x的函数关系式为y=100(1+x)2,故选:B.12.(2分)如图,点B是⊙O的劣弧上一点,连接AB,AC,OB,OC,AC交OB于点D,若∠A=36°,∠C=27°,则∠B=()A.81°B.72°C.60°D.63°【解答】解:由圆周角定理得:∠BOC=2∠A=72°,∵∠ODA=∠BOC+∠C=72°+27°=99°,∠ODA=∠B+∠A,∴∠B=99°﹣36°=63°;故选:D.13.(2分)如图,一支反比例函数y=的图象经过点A,作AB⊥x轴于点B,连=3,则k的值为()接OA,若S△AOBA.﹣3 B.3 C.﹣6 D.6【解答】解:设A点坐标为A(x,y),由图可知A点在第二象限,∴x<0,y>0,又∵AB⊥x轴,∴|AB|=y,|OB|=|x|,=×|AB|×|OB|=×y×|x|=3,∴S△AOB∴﹣xy=6,∴k=﹣6故选C.14.(2分)关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当m=0时,原方程为﹣4x+5=0,解得:x=,∴当m=0时,方程只有一个实数根;②当m=1时,原方程为x2﹣4x+4=0,∵△=(﹣4)2﹣4×1×4=0,∴当m=1时,方程有两个相等的实数根;③当m=﹣1时,原方程为x2+4x﹣6=0,∵△=42﹣4×1×(﹣6)=40>0,∴当m=﹣1时,方程有两个不相等的实数根.综上所述:正确的说法有①②.故选A.15.(2分)小华进行了5次射击训练后,计算出这5次射击的平均成绩为8环,方差为s12,随后小华又进行了第6次射击,成绩恰好是8环,并计算出这6此射击成绩的方差为s22,则下列说法正确的是()A.s12=s22B.s12<s22C.s12>s22D.无法确定s12与s22的大小【解答】解:6次成绩的平均数为8环,由方差公式得:s12>s22,故选:C.16.(2分)如图1,在等边△ABC中,点D,E分别是BC,AC边上的中点,点P 为AB边上的一个动点,设AP=x,连接PE,PD,PC,DE,其中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.线段PE B.线段PD C.线段PC D.线段DE【解答】解:设等边三角形边长为1,则0≤x≤1,如图1,分别过点E、C、D作AB的垂线,垂足分别为F、G、H,根据等边三角形的性质可知,当x=时,线段PE有最小值;当x=时,线段PC有最小值;当x=时,线段PD有最小值;∵点E、D分别是AC,BC边的中点∴线段DE的长为定值.根据图2可知,当x=时,函数有最小值,故这条线段为PE.故选A.二、填空题(本大题共3小题,共10分)17.(3分)计算:=0.2.【解答】解:==0.2.故答案为:0.2.18.(3分)一个n边形的内角和是其外角和的2倍,则n=6.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;19.(4分)如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是(,1),现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标...是+.【解答】解:∵点A的坐标是(0,1),∠ABO=30°,AB∥x轴,∴AB=,AO=1,∴点B的坐标为(,1),由题可得,A1的横坐标为+,A2的横坐标为+,A3的横坐标为3+,A4的横坐标为3+3,A5的横坐标为+4,A6的横坐标为+,故答案为:(,1),+.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.【解答】解:(1)原式=﹣=﹣3(2)由题意可知:﹣=11﹣(x﹣2)=x1﹣x+2=xx=经检验,x=是原方程的解,21.(9分)如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC 的角平分线BF交DE于△ABC内一点P,连接PC.(1)若∠ACP=24°,求∠ABP的度数;(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:m+3n=120.【解答】解:(1)∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP,∵∠A=60°,∠ACP=24°,∴∠PBC+∠PCB+∠ABP=120°﹣24°,∴3∠ABP=120°﹣24°,∴∠ABP=32°;(2)∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=120°﹣m°,∴3∠ABP=120°﹣m°,∴3n°+m°=120°,故答案为:m+3n=120.22.(9分)某校组织甲、乙两队开展“保护生态环境知识竞赛”,满分为10分,得分均为整数,规定得分达到6分及以上为合格,达到9分及以上为优秀,如图是甲、乙两队学生这次竞赛成绩分布条形统计图.根据以上信息,请解答下面的问题:(1)在下面甲、乙两队的成绩统计表中,a= 6.8,b=7.5c=6.(2)小华同学说:“我在这次比赛中得到了7分,这在我所在的小队成绩中属于中等偏上的位置!”观察(1)中的表格,小华是甲队的学生;(填“甲”或“乙”)(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为.【解答】解:(1)a=×(4×1+6×5+7×1+8×1+9×1+10×1)=6.8,b==7.5,c为6;(2)因为甲的中位数为6,而乙的中位数为7,如果成绩属于中等偏上的位置,则应该为甲组;(3)乙队的平均分高于甲队的平均分;乙的方差小于甲队的方差,乙队的成绩比较稳定;(4)画树状图为:(甲队的优秀学生用A、A表示,乙队的优秀学生用B表示)共有6种等可能的结果数,其中恰好同时选中的两人均为甲队学生的结果数为2,所以恰好同时选中的两人均为甲队学生的概率==.故答案为6.8,7,6;甲;.23.(9分)某营业厅对手机话费业务有如下的优惠:优惠规则:①用户手机账户原有话费不能低于240元;②办理业务时,首先从手机账户中一次性扣除240元,并把这240元抵为300元话费,然后将这300元话费分12次,在每月的15号等额返还到手机账户;③每月1号从手机账户中扣除话费49元,当月不再扣除其他任何费用;④每月1号手机账户的话费余额不足以扣除49元时,视为欠费,则当月不再返还等额的话费.小明的手机账户中原有话费400元,办理了这项优惠业务,设小明的手机账户中每个月末的话费余额是y(元),月数为x(个),则(1)每个月等额返还的话费是25元,第2个月末的话费余额是112元;(2)求y关于x的函数关系式;(3)若不续费,小明的手机第几个月会欠费?【解答】解:(1)300÷12=25(元),400﹣240﹣(49﹣25)×2=160﹣24×2=160﹣48=112(元).答:每个月等额返还的话费是25元,第2个月末的话费余额是112元;(2)依题意有y=400﹣240﹣(49﹣25)x=160﹣24x.故y关于x的函数关系式为y=160﹣24x;(3)若不续费,话费余额不足以扣除49元时,视为欠费,则160﹣24x<49,解得x>4,故第5个月末的话费余额不足以49元,故小明的手机第6个月会欠费.故答案为:25,112.24.(10分)在菱形ABCD中,AB=2,AC是对角线,∠B=60°,点E在BC边上,点F在DC边上,且∠EAF=60°,AE与DC的延长线交于点M,AF与BC的延长线交于点N.(1)如图1,若点E为BC边上的中点.①求证:△ACM≌△ACN;②CM•NC的值是12.(2)如图2,若点E为BC边上的任意点(不与点B,C重合),请说明CM•NC 是一个定值.【解答】(1)①证明,∵AC是菱形ABCD的对角线,∠B=60°,点E为BC边上的中点,∴∠MAC=∠NAC=30°,∠ACD=∠ACB=60°,∴∠ACM=∠ACN=120°.在△ACM与△ACN中,,∴△ACM≌△ACN(ASA);②解:∵∠MAC=30°,∠ACM=120°,∴∠AMC=30°,∴CM=CA=2,∵△ACM≌△ACN,∴CM=CN,∴CM•NC=CM2=12.故答案是:12;(2)证明:∵∠EAF=60°,即∠MAC+∠NAC=60°.又∠ACD=60°,∴∠MAC+∠AMC=60°,∴∠AMC=∠NAC.又∠ACM=∠ACN=120°,∴△ACM∽△NCA,∴=,由题意可知,△ABC是等边三角形,∴AC=AB=2,∴CM•NC=AC2=(2)2=12,即CM•NC是一个定值.25.(10分)抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是(0,3);(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.【解答】解:(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3),(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4∴L的顶点坐标为(﹣1,4);(3)函数图象如图;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≥t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点M在AC边上,点N从点C出发沿折线CB﹣BA运动到点A停止,点P是点C关于直线MN的对称点,连接MP,NP(当点N与点C,A重合时,点P均与点C重合).(1)若CM=2,①又当点N在CB上,MP∥BC时,则CN=2,MN=2;②又当MN∥AB时,求CN的长;(2)在(1)的条件下,求点P到AB边的距离的最小值,并求出当取得这个最小值时,点P运动路线的长是多少?(参考数据:sin54°=cos36°≈,sin36°=cos54°≈,结果保留π)(3)设MC=a(a>2),其他条件不变,当有且只能有唯一的点P落在线段AB 上时,直接写出a的取值范围a=或3<a≤6.【解答】解:(1)①连接CP,如图1所示:由对称的性质得:PM=CM=2,PC⊥MN,∵MP∥BC,∠C=90°,∴∠PMC=90°,∴△PMC是等腰直角三角形,∴∠PCM=45°,∴∠PCN=90°﹣45°=45°,∴∠CNM=45°,∴△CMN是等腰直角三角形,∴CN=CM=2,MN=CM=2;故答案为:2,2;②当MN∥AB时,△MNC∽△ABC,∴,即,∴CN=;(2)P在M为圆心,CM为半径的圆周上运动,作MT⊥AB于T,如图2所示:则PT=MT﹣2,当MT最小时,P在线段MT上最小,∵AB==10,sinA===,∴MT=AM=(6﹣2)=,∴PT=﹣2=,即点P到AB边的距离的最小值为;∵cos∠AMT=sinA=,∴∠AMT=36°,∴∠CMT=180°﹣36°=144°,∴点P运动路线的长==;(3)分情况:①当圆M与AB相切时,sinA=,解得:a=;②当<a≤3时,圆M与AB有2个交点;③当3<a≤6时,圆M与线段AB仅1个交点;综上所述:当a=或3<a≤6时,圆M与线段AB有1个交点;即当有且只能有唯一的点P落在线段AB上时,a的取值范围是a=或3<a≤6;故答案为:a=或3<a≤6.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2017年河北省中考数学试卷含解析(完美打印版)

2017年河北省中考数学试卷含解析(完美打印版)

2017年河北省中考数学试卷(含解析)一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.4+4﹣=6B.4+40+40=6C.4+=6D.4﹣1÷+4=613.(2分)若=____+,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。

2017年河北省中考数学试卷(含答案解析版)

2017年河北省中考数学试卷(含答案解析版)

2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是( )A .(﹣3)2B .﹣3÷2C .0×(﹣2017)D .2﹣32.(3分)把0.0813写成a ×10n (1≤a <10,n 为整数)的形式,则a 为( )A .1B .﹣2C .0.813D .8.133.(3分)用量角器测得∠MON 的度数,下列操作正确的是( )A .B .C .D .4.(3分)2×2×⋯×2︷m 个23+3+⋯+3︸n 个3=( ) A .2m 3n B .2m 3n C .2m n 3 D .m 23n5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A .B .C .D .12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是( )A .4+4﹣√4=6B .4+40+40=6C .4+√4+43=6D .4﹣1÷√4+4=6 13.(2分)若3−2x x−1= +1x−1,则 中的数是( ) A .﹣1 B .﹣2 C .﹣3 D .任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4 5 6 9 户数 4 5 2 1比较5月份两组家庭用水量的中位数,下列说法正确的是( )A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=kx(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5二、填空题(本大题共3小题,共10分。

石家庄市2017年中考数学模拟试卷(2)含答案

石家庄市2017年中考数学模拟试卷(2)含答案

2017年九年级数学中考模拟试卷一、选择题:1.﹣4的相反数是()A.﹣B.C.﹣4D.42.下列计算中正确的是()A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x23.下列各图中,不是中心对称图形的是()4.使分式有意义的x的值为()A.x≠1B.x≠2C.x≠1 且 x≠2D.x≠1或 x≠25.在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()6.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个7.下列二次根式中,与是同类二次根式的是( )A.B.C.D.8.图①是由五个完全相同的小正方休组成的立休图形,将图①中的一个小正方体改变位置后如图②.则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.如图,数轴上点M所表示的数可能是()A.1.5B.﹣1.6C.﹣2.6D.﹣3.412.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A. B. C. D.13.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对14.用因式分解法解方程,下列方法中正确的是( )A.(2x-2)(3x-4)=0,∴2-2x=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x-2)(x-3)=2×3,∴x-2=2或x-3=3D.x(x+2)=0,∴x+2=015.图中的AD是安装在广告架AB上的一块广告牌,AC和DE分别表示太阳光线.若某一时刻广告牌AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,广告牌的顶端A到地面的距离AB=20m,则广告牌AD的高为()A.5mB. mC.15mD. m16.设二次函数y=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数1y=y2+y1的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d二、填空题:17.若m的平方根是5a+1和a-19,则m= .18.分解因式:x2+3x(x-3)-9=19.如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为.三、计算题:20.计算:21.计算:四、解答题:22.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.23.如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是多少?(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是6的倍数的概率.25.如图所示,L,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间1x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.26.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)27.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.参考答案1.D2.D3.B4.B5.A6.A7.A8.A9.C10.C11.C12.D13.A14.A15.A16.B17.答案为:m=256.18.答案为:(x-3)(4x+3)_.19.答案为:3.20.答案为:-1;21.原式= ==22.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.23.(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.24.解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)=0.5;(2)列表如下:由表可知共有16∴P(组成的两位数恰好是6的倍数)=3/16.25.解:(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2.由图可知L1过点(0,2),(500,17),∴∴k1=0.03,b1=2,∴y1=0.03x+2(0≤x≤2000).由图可知L2过点(0,20),(500,26),同理y2=0.012x+20(0≤x≤2000).(2)两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000.∴当x=1000时,两种灯的费用相等.(3)显然前2000h用节能灯,剩下的500h,用白炽灯.26.解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.27.解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DE O.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).。

河北省邯郸市2017年中考第2次模拟考试数学试卷-附答案

河北省邯郸市2017年中考第2次模拟考试数学试卷-附答案

ACDB图2初三第二次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分)1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1 C .-2 D .32.如图1所示的几何体的俯视图是( )A .B .C .D . 3.一元一次不等式x +1<2的解集在数轴上表示为( )A . B.C .D . 4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°,那么∠ACD 的度数为() A .40°B .35°C .50°D .45°5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A .31B .21 C .32 D .61 6.下列计算正确的是( )A .|-a |=aB .a 2·a 3=a 6C .()2121-=-- D .(3)0=07.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A和B 为圆心,大于AB 21的长为半径画弧,两弧相交于C 、D 两点,直线CD即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .无法确定8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2B .3C .4D .59.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD的度数是( ) A .88°B .92°C .106°D .136°10.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+111.下列命题中逆命题是真命题的是( )A .对顶角相等B .若两个角都是45°,那么这两个角相等C .全等三角形的对应角相等D .两直线平行,同位角相等 12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( )A .m <﹣4B .m >﹣4C .m <4D .m >413.如图5所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点,若PD +PE 的和最小,则这个最小值为( )A .32B .62C .3D .614.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛物线2)1(31+=x y 于点B 、C ,线段BC 的长度为6,抛物线b x y +-=22与y 轴交于点A ,则b =( ).A .1B .4.5C .3D .615.已知△ABC 在正方形网格中的位置如图7所示,点A 、B 、C 、P 均在格点上,则点P 叫做△ABC 的( )A .外心B .内心C .重心D .无法确定16.如图8是小李销售某种食品的总利润y 元与销售量x 千克的函数图象(总利润=总销售额-总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中总利润与销售量的函数图像,则分别反映了方案(1)(2)的图象是( ) 图3CBA D 图7AB图图8②④③图11分A .②,③B .①,③C .①,④D .④,②二、填空题(本大题共4小题,每题3分,共12分) 17.太阳的半径约为696 000千米,用科学记数法表示数696 000为_____________。

2017年河北省石家庄市中考数学二模试卷含答案解析

2017年河北省石家庄市中考数学二模试卷含答案解析

2017年河北省石家庄市中考数学二模试卷;一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是();A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160° B.140° C.60°D.50°3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+15.下面的图形中,既是轴对称图形又是中心对称图形的是;()A.B.C.D.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个B.中位数是2.5个C.众数是2个D.众数是5个10.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A . =B . =C . =D . =11.(2分)定义新运算:a※b=,则函数y=3※x 的图象大致是( )A .B .C .D .12.(2分)如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x 轴、y 轴交于A 、B 两点,以A 为圆心,适当长为半径画弧分别交AB 、AO 于点C 、D ,再分别以C 、D 为圆心,大于CD 的长为半径画弧,两弧交于点E ,连接AE 并延长交y 轴于点F ,则下列说法正确的个数是( );①AF 是∠BAO 的平分线;②∠BAO=60°;③点F 在线段AB 的垂直平分线上;④S △AOF :S △ABF =1:2.A.1 B.2 C.3 D.413.(2分)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60°B.65°C.70°D.75°14.(2分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.15.(2分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB 于点D .设BP=x ,BD=y ,则y 关于x 的函数图象大致是( )A .B .C .D .16.(2分)在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ,2n ﹣1)C .(2n ﹣1,2n +1)D .(2n ﹣1,2n)二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为 .18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N 两点间的距离是cm.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本题共69分);20.(4分)计算:(﹣1)0+2﹣1﹣+|1﹣|21.(5分)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)22.(9分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.23.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a 的值为 ; ②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是 .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.24.(10分)四边形ABCD 的对角线交于点E ,有AE=EC ,BE=ED ,以AB 为直径的半圆过点E ,圆心为O .(1)利用图1,求证:四边形ABCD 是菱形.(2)如图2,若CD 的延长线与半圆相切于点F ,已知直径AB=8.①连结OE ,求△OBE的面积.②求扇形AOE 的面积.25.(10分)如图,已知点A (0,2),B (2,2),C (﹣1,﹣2),抛物线F :y=x 2﹣2mx+m 2﹣2与直线x=﹣2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤﹣2,比较y 1与y 2的大小;(3)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.26.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x 天(x 为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y (元)关于x (天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?27.(12分)如图,在矩形ABCD 和矩形PEFG 中,AB=8,BC=6,PE=2,PG=4.PE 与AC 交于点M ,EF 与AC 交于点N ,动点P 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动,伴随点P 的运动,矩形PEFG 在射线AB 上滑动;动点K 从点P 出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE= ,EN= ;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?2017年河北省石家庄市中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【考点】17:倒数.【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160° B.140° C.60°D.50°【考点】JA:平行线的性质.【分析】先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.【解答】解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.5.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°【考点】KH:等腰三角形的性质.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①70°是底角,则顶角为:180°﹣70°×2=40°;②70°为顶角;综上所述,顶角的度数为40°或70°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】因为AB⊥BC,所以∠ABC=90°,则x+y=90°;∠ABD的度数比∠DBC的度数的2倍少15°,则x=2y﹣15;由此联立得出方程组即可.【解答】解:设∠ABD与∠DBC的度数分别为x,y,根据题意得.故选:B.【点评】此题考查二元一次方程组的运用,注意此题的等量关系:第一个等量关系从垂直定义可得∠ABD+∠DBC=90°,第二个是∠ABD的度数=∠DBC的度数×2倍﹣15.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个B.中位数是2.5个C.众数是2个D.众数是5个【考点】VB:扇形统计图;W4:中位数;W5:众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.【点评】本题考查了扇形统计图的知识,通过图形观察出投进2球的人数最多是解题的关键.10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A . =B . =C . =D . =【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵AB ∥CD ∥EF ,∴=,A 错误;=,B 错误;=,∴=,C 正确;=,D 错误,故选:C .【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.定义新运算:a※b=,则函数y=3※x 的图象大致是( )A .B .C .D .【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】先根据新定义运算列出y 的关系式,再根据此关系式及x 的取值范围画出函数图象即可.【解答】解:根据新定义运算可知,y=3※x=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.【点评】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.4【考点】F8:一次函数图象上点的坐标特征;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】根据角平分线的作法可得①正确,再直线的斜率可得∠BAO=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形的性质得出AF=2OF,再由AF=BF 得出BF=2OF,进而可得④正确.【解答】解:由题意可知AF是∠BAO的平分线,故①正确;∵一次函数y=x+1∴k=,∴∠BAO=60°,故②正确;∵∠BAO=60°,∴∠ABO=30°,∵AF是∠BAO的平分线,∴∠BAF=30°,∴∠BAF=∠ABO,∴AF=BF,∴点F在AB的垂直平分线上,故③正确;∵∠OAF=30°,∴AF=2OF.∵AF=BF,∴BF=2OF,∴S△AOF:S△ABF=1:2,故④正确.故选D.【点评】此题考查的是作图﹣基本作图,角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.13.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60°B.65°C.70°D.75°【考点】L3:多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故选D.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.14.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.【考点】G5:反比例函数系数k的几何意义.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(﹣+﹣)×(2m﹣m)=.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及梯形的面积,解题的关键是用m表示出来A、B、E、D四点的坐标.本题属于基础题,难度不大,解决该题型题目时,只要设出一个点的坐标,再由该点坐标所含的字母表示出其他点的坐标即可.15.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n,2n﹣1)C.(2n﹣1,2n+1)D.(2n﹣1,2n)【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标.【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故选A.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“A n(2n﹣1,2n﹣1﹣1)”是解题的关键.二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为3×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30 000 000=3×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N 两点间的距离是5cm.【考点】M4:圆心角、弧、弦的关系.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2 .【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P 在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.三、解答题(本题共69分)20.计算:(﹣1)0+2﹣1﹣+|1﹣|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)0+2﹣1﹣+|1﹣|=1+﹣3+﹣1=﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK 的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)【考点】SD:作图﹣位似变换;KQ:勾股定理.【分析】(1)分别延长BA、BC、BD到A′、C′、D′,使BA′=2BA,BC′=2BC,BD′=2BD,然后顺次连接A′BC′D′即可得解;(2)根据网格图形,重叠部分正好是以格点为顶点的平行四边形,求出两邻边的长的,然后根据平行四边形的周长公式计算即可.【解答】解:(1)如图所示:四边形A′BC′D′就是所要求作的梯形;(2)四边形A′BC′D′与五边形EFGHK重叠部分是平行四边形EFGD′,ED′=FG=1,在Rt△EDF中,ED=DF=1,由勾股定理得EF==,∴D′G=EF=,∴四边形A′BC′D′与五边形EFGHK重叠部分的周长=ED′+FG+D′G+EF,=1+1++,=2+2.故答案为:2+2.【点评】本题考查了利用位似变换作图,关键是根据位似变换的定义找出点A、C、D的对应点的位置.22.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)在Rt△ABE中,由tan60°==,即可求出AB=10•tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC 的交点为点H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.【解答】解:(1)当α=60°时,在Rt△ABE中,∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米.即楼房的高度约为17.3米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF ﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫仍可以晒到太阳.【点评】本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.23.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12 ;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是44% .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)①根据各组频数之和等于总数可得a的值;②由频数分布表即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,②补充完整的频数分布直方图如下图所示,故答案为:12;(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:×100%=44%,故答案为:44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BA、BC、BD,所以小明和小强分在一起的概率为: =.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.24.(10分)(2017•石家庄二模)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.【考点】MR:圆的综合题.【分析】(1)首先利用对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,进而利用菱形的判定方法得出答案;(2)①首先求出△ABD的面积进而得出S△OBE=S△ABD;②首先求出扇形AOE的圆心角,进而利用扇形面积求出答案.【解答】(1)证明:∵AE=EC,BE=ED,∴四边形ABCD是平行四边形,∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)解:①连结OF,∵DC的延长线于半圆相切于点F,∴OF⊥CF,∵FC∥AB,∴OF即为△ABD中AB边上的高,∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4;②过点D作DH⊥AB于点H,∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°,∴四边形OHDF为矩形,即DH=OF=4,∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°,∵D点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°,∴∠AOE=180°﹣∠EOB=150°,∴S扇形AOE==π.【点评】此题主要考查了圆的综合以及菱形、矩形的判定方法、扇形面积求法等知识,正确掌握菱形的判定与性质是解题关键.25.(10分)(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式.【分析】(1)根据抛物线F:y=x2﹣2mx+m2﹣2过点C(﹣1,﹣2),可以求得抛物线F 的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.(10分)(2017•石家庄二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:。

2017年河北省中考数学试卷(含答案解析)

2017年河北省中考数学试卷(含答案解析)

2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。

河北省2017年中考数学模拟试卷(含解析)

河北省2017年中考数学模拟试卷(含解析)

2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。

2017河北数学中考模拟试卷解析(2)

2017河北数学中考模拟试卷解析(2)

2017河北数学中考模拟试卷解析(2)2017河北数学中考模拟试题解析一.选择题(共10小题)1. 的值等于( )A.4B.﹣4C.±4D.【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根.【解答】解:,故选:A.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.函数y= 中,自变量x的取值范围为( )A.x>B.x≠C.x≠ 且x≠0D.x<【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母2x﹣3≠0,解得x的范围.【解答】解:根据题意得:2x﹣3≠0,解得:x≠ .故选B.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列运算正确的是( )A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方和因式分解,掌握合并同类项法则、同底数幂的乘法法则、积的乘方法则和利用平方差公式进行因式分解是解题的关键.5.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3B.4C.5D.6【分析】根据众数的定义先求出x的值,再根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案.【解答】解:∵一组数据3,x,4,5,6的众数是3,∴x=3,把这组数据按照从小到大的顺序排列为:3,3,4,5,6,最中间的数是4,则这组数据的中位数为4;故选B.【点评】本题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )A.﹣4B.0C.1D.3【分析】根据一次函数的性质,若y随x的增大而减小,则k<0.【解答】解:∵y=kx﹣4的函数值y随x的增大而减小,∴k<0,而四个选项中,只有A符合题意,故选A.【点评】本题考查了一次函数的性质,要知道,在直线y=kx+b 中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.7.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是 ( )A.10B.8C.6D.8或10【分析】用因式分解法可以求出方程的两个根分别是2和4,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,∴x1=2,x2=4.由三角形的三边关系可得:(两边之和大于第三边),∴腰长是4,底边是2,所以周长是:4+4+2=10.故选:A.【点评】此题主要考查了因式分解法解一元二次方程以及根据三角形的三边关系求出三角形的周长,此题难度不大,但容易出错,注意三角形三边关系是解决问题的关键.8.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64°B.58°C.72°D.55°【分析】先根据圆周角定理求出∠B及∠BAC的度数,再由等腰三角形的性质求出∠OAB的度数,进而可得出结论.【解答】解:∵BC是直径,∠D=32°,∴∠B=∠D=32°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=32°,∴∠OAC=∠BAC﹣∠BAO=90°﹣32°=58°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )A.3B.6C.3πD.6π【分析】直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr= ×2π×10,解得r=6.故选B.【点评】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B. C. D.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB 的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,如右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.二.填空题(共6小题)11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16200用科学记数法表示为:1.62×104.故答案为:1.62×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.因式分解:m2n﹣6mn+9n= .【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:m2n﹣6mn+9n=n(m2﹣6m+9)=n(m﹣3)2.故答案为:n(m﹣3)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC上A1处,折痕为CD,则∠A1DB= .【分析】根据直角三角形两锐角互余求出∠B,再根据翻折的性质可得∠CA1D=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,由翻折的性质得,∠CA1D=∠A=50°,所以∠A1DB=∠CA1D﹣∠B=50°﹣40°=10°.故答案为:10.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,以及翻折变换的性质,熟记各性质并准确识图是解题的关键.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为 m(结果保留根号).【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60× =30 (m).故答案为:30 .【点评】本题考查的是解直角三角形的应用﹣方向角问题,涉及到三角形外角的性质、等腰三角形的判定与性质、锐角三角函数的定义及特殊角的三角函数值,难度适中.15.不等式组的解集是 .【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x≥3,则不等式组的解集为3≤x<4.故答案为:3≤x<4【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是.【分析】设△ABC面积为S,则△DEF面积为26﹣S,根据题意列方程即可得到结论.【解答】解:设△ABC面积为S,则△DEF面积为26﹣S,∵叠部分的面积是△ABC面积的,是△DEF面积的,∴ S= (26﹣S),解得:S=14,∴重叠部分面积= ×14=4,故答案为:4.【点评】本题考查了三角形的面积的计算,正确识别图形是解题的关键.三.解答题(共3小题)17.解方程: =5.【分析】观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x+3),得x+3+5x2=5x(x+3),解得x= .检验:把x= 代入x(x+3)= ≠0.∴原方程的解为:x= .【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .【分析】直接利用多项式乘法运算法则去括号,进而合并同类项,再将已知数据代入求出答案.【解答】解:原式=2a2+4ab+a2﹣4ab+4b2=3a2+4b2,当a=1,b= 时;原式=3×(﹣1)2+4×( )2=15.【点评】此题主要考查了整式的混合运算,正确合并同类项是解题关键.19.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.【分析】(1)首先以A为圆心,任意长为半径画弧,两弧交AB、AC于M、N两点;再分别以M、N为圆心,大于 MN长为半径画弧,两弧交于一点O,画射线BO交AC于D即可.(2)分别计算出S△DAC和S△ABC的面积,作比值即可.【解答】解:(1)如图所示:(2)解:∵在Rt△ACD中,∠CAD=30°,∴CD= AD.∴BC=CD+BD=CD+AD=3CD.∴S△DAC= ,S△ABC= .∴S△DAC:S△ABC= : =1:3.【点评】本题主要考查了作一个角的角平分线、直角三角形中30°角所对的直角边时斜边的一半的性质以及三角形面积公式的运用,属于基础性题目.四.解答题(共3小题)20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.【分析】(1)直接利用扇形统计图得出体育成绩“良好”所占百分比,进而求出所对扇形圆心角的度数;(2)首先求出体育成绩“优秀”和“良好”的学生数,再利用表格中数据求出答案;(3)直接利用“优秀”和“良好”学生所占比例得出学生中课外体育锻炼时间不少于4小时的学生人数.【解答】解:(1)由题意可得:样本扇形图中体育成绩“良好”所对扇形圆心角的度数为:(1﹣15%﹣14%﹣26%)×360°=162°;(2)∵体育成绩“优秀”和“良好”的学生有:200×(1﹣14%﹣26%)=120(人),∴4≤x≤6范围内的人数为:120﹣43﹣15=62(人);故答案为:62;(3)由题意可得:×14400=7440(人),答:估计课外体育锻炼时间不少于4小时的学生人数为7440人.【点评】此题主要考查了扇形统计图以及利用样本估计总体,正确利用扇形统计图和表格中数据得出正确信息是解题关键.21.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【分析】(1)设该班男生有x人,女生有y人,根据男女生人数的关系以及全班共有42人,可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设招录的男生为m名,则招录的女生为(30﹣m)名,根据“每天加工零件数=男生每天加工数量×男生人数+女生每天加工数量×女生人数”,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得: .∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.【点评】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系列出二元一次方程组;(2)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.22.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.五.解答题(共3小题)23.如图,直线y=mx与双曲线y= 相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.(1)求反比例函数的表达式;(2)根据图象直接写出当mx> 时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.【分析】(1)把A坐标代入一次函数解析式求出m的值,确定出一次函数解析式,把A坐标代入反比例解析式求出k的值,即可确定出反比例函数解析式;(2)由题意,找出一次函数图象位于反比例函数图象上方时x的范围即可;(3)存在,理由为:由四边形ABDC为平行四边形,得到AC=BD,且AC∥BD,由AC与x轴垂直,得到BD与x轴垂直,根据A坐标确定出AC的长,即为BD的长,联立一次函数与反比例函数解析式求出B坐标,即可确定出D坐标.【解答】解:(1)把A(1,2)代入y=mx得:m=2,则一次函数解析式是y=2x,把A(1,2)代入y= 得:k=2,则反比例解析式是y= ;(2)根据图象可得:﹣11;(3)存在,理由为:如图所示,四边形ABDC为平行四边形,∴AC=BD,AC∥BD,∵AC⊥x轴,∴BD⊥x轴,由A(1,2),得到AC=2,∴BD=2,联立得:,消去y得:2x= ,即x2=1,解得:x=1或x=﹣1,∵B(﹣1,﹣2),∴D的坐标(﹣1,﹣4).【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定一次函数解析式以及反比例函数解析式,一次函数与反比例函数的交点,平行四边形的性质,以及坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.【分析】(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;’(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结OD,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴ = ,∵PA=AO,∴PA=AO=BO,∴ = ,即 = ,∴PD=4.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和切线的判定方法;运用相似三角形的判定和性质解决线段之间的关系.通过相似比得到PD的方程可解决(3)小题.25.如图,已知抛物线y=﹣ x2﹣ x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,分E点为抛物线上的普通点和顶点2种情况讨论,即可求出平行四边形的面积.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣ x2﹣ x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣ )或(5,﹣ ),此时点F(﹣1,﹣ ),∴以A,B,E,F为顶点的平行四边形的面积=6× = .②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F 为顶点的平行四边形的面积= ×6× = .(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN= = ,∴点M1坐标(﹣1,2+ ),点M2坐标(﹣1,2﹣ ).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.。

河北省邯郸市2017年中考第6次模拟考试数学试卷(有答案)

河北省邯郸市2017年中考第6次模拟考试数学试卷(有答案)

初三第六次模拟考试数学试卷一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的平方根是( )A.2B. 2C. ±2D. ±22. 函数11+=x y 的自变量x 的取值范围是( ) A. 1->x B. 1-<x C. 1-≠xD. 1≠x3. 一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是( )A. 三棱锥B. 长方体C. 球体D. 三棱柱4. H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是( ) A. 91030-⨯米 B. 8100.3-⨯米 C. 10100.3-⨯米D. 9103.0-⨯米5. 下列计算正确的是( )A. 4222a a a =+B. a a 4)2(2=C. 333=⨯D. 2312=÷6. 如图,点A 的坐标为(﹣1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0)B.(22,22) C.(21-,21-) D. (22-,22-)7. 如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A. 25° B. 50° C. 60° D. 80°8. 如图所示,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC边上F 点处,已知AB =6,AD =10,则tan ∠EFC =( )A.43 B.34 C.53 D.54 9. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶点的影子恰好落在地面的同一点。

此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A. 12m B. 10m C. 8m D. 7m 10. 用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( ) A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形 11. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=42°,则∠2=( )A. 138°B. 142°C. 148°D. 159°12. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB的延长线于点E ,则∠E =( ) A. 70° B. 50° C. 40° D. 20°13. 已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为( )A. B.C. D.14. 化简:444)2(22+--⋅-a a a a 的结果是( )A. a -2B. a +2C. 22-+a aD. 22+-a a15. 如图,圆O 与直线m 相切于点A ,P 、Q 两点同时从A 点以相同的速度出发,点P 沿直线向右运动,点Q 沿圆O 逆时针方向运动,连结OP 、OQ ,图中阴影部分面积分别为S 1,S 2,则S 1,S 2之间的关系是( ) A. S 1> S 2 B. S 1< S 2 C. S 1= S 2 D. 不能确定16. 平面直角坐标系中,有线段MN ,M (1,1),N (2,2),若抛物线2ax y =与线段MN 没有公共点,则a 的取值范围是( ) A.0<aB.1>a 或210<<a C. 0<a 或1>a 或210<<a D.121<<a 二、 填空题(本大题共4小题,每小题3分,共12分)17. 计算=-+0)12(9___________。

2017年石家庄市新华区中考模拟考试数学试卷(2)包括答案

2017年石家庄市新华区中考模拟考试数学试卷(2)包括答案

2017年石家庄市新华区中考模拟考试数学试卷(2)含答案2017年九年级数学中考模拟试卷一、选择题:1.某市2014年1月21日至24日每天的最高气温与最低气温如表:其中温差最大的一天是( )A.1月21日B.1月22日C.1月23日D.1月24日2.下列运算正确的是()A. B.C. D.3.下列图形既是中心对称又是轴对称图形的是()A. B. C. D.4.已知x≠y,下列各式与相等的是()A. B. C. D.5.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度;B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高6.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°7.若式子﹣+1有意义,则x的取值范围是()A.x≥B.x≤C.x=D.以上都不对8.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.9.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A. B. C. D.10.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:511.若a、b为有理数,a>0,b<0,且|a|<|b|,那么a、b、-a、-b的大小关系是( )A.b<-a<-b<aB.b<-b<-a<aC.b<-a<a<-bD.-a<-b<b<a12.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2B.﹣=2C. +=D.﹣=13.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A.3B.4C.5D.614.一元二次方程x2﹣4x+4=0的根的情况是()C.无实数根D.无法确定15.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. = B. C.D.16.二次函数y=ax2+bx+c有最大值为5,若关于x的方程|ax2+bx+c|=t最多有三个不相等的实数根,其中t为常数t≠0,则t的取值范围是()A.t≥5B.t>5C.t<5D.t≤5二、填空题:17.比较大小:.(填“>”、“<”或“=”)18.分解因式:xy-x-y+1=__________________.19.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= .三、计算题:20.计算:(﹣3)2﹣()2×+6÷|﹣|3.21.计算:四、解答:22.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.23.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.24.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m= ;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.25.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.26.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7, =1.7)27.如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.B2.D3.D4.C5.C6.C7.C8.C9.B10.C11.C12.B13.C14.B15.A16.A17.答案为:>18.答案为:(x-1)(y-1);19.答案为:1:3:5;20.原式=9﹣×+6÷=9﹣+=9+=28.21.答案为:-4;22.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即:∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.23.解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.24.25.解:(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=,b=29,∴,又24×60×30=43200(min)∴(0≤x≤43200),同样求得;(2)当y1=y2时,;当y1<y2时,.所以,当通话时间等于96min时,两种卡的收费相等,当通话时间小于mim时,“如意卡便宜”,当通话时间大于min时,“便民卡”便宜.26.解:(1)∵修建的斜坡BE的坡角(即∠BEF)为36°,∴∠BEF=36°,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=0.5BD=15,DF=15≈25.98,EF==≈21.43故:DE=DF﹣EF=4(米);(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=0.5AD=0.5×30=15,PA=AD•cos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9,GH=HM+MG=15+15+9≈45米.答:建筑物GH高约为45米.27.。

2017年河北省中考数学试卷(含解析)

2017年河北省中考数学试卷(含解析)

2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。

1~10小题各3分,11~16小题各2分)1.下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017) D.2﹣32.把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.用量角器测得∠MON的度数,下列操作正确的是()A. B.C. D.4.=()A. B. C. D.5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.① B.② C.③ D.④6.如上图2为张小亮的答卷,他的得分应是()A.100分 B.80分C.60分 D.40分7.若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A. B. C. D.9.求证:菱形的两条对角线互相垂直.已知:如下图1,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④;B.③→④→①→②; C.①→②→④→③;D.①→④→③→②10.如上图2,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55° B.北偏西55° C.北偏东35°D.北偏西35°11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A.B.C.D.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大 B.甲、乙两组相同 C.乙组比甲组大 D.无法判断12.如上图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.若= +,则中的数是()A.﹣1 ;B.﹣2;C.﹣3;D.任意实数15.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。

2017年河北省中考数学模拟试题及答案2

2017年河北省中考数学模拟试题及答案2

2018年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。

考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4的算术平方根是【 】。

A .2B .—2C .±2D .22. 某种微粒子,测得它的质量为0。

00006746克,这个质量用科学计数法表示(保留三个有效数字)应为( ) A .6.75×10-5克B .6.74×10—5克C .6.74×10-6克D .6.75×10—6克3。

26的值A .在3和4之间B .在4和5之间C .在5和6之间D .在6和7之间 4。

下列运算正确的是( )A .a 5+a 5=a 10B .a 3·a 3=a 9C .(3a 3)3=9a 9D .a 12÷a 3=a 95. 如图,在△ABC 中,∠ACB=900,∠A=200,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是( )A .300B .400C .500D .5506.使代数式x2x 1-有意义的x 的取值范围是【 】 A 。

x 0≥ B 。

1x 2≠ C 。

x 0≥且1x 2≠ D 。

一切实数7。

一组数据2,3,6,8,x 的众数是x ,其中x 又是不等式组 的整数解,则这组数据的中位数可能是【 】 240x 70x ->⎧⎨-<⎩A 。

3B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4的算术平方根是【 】。

A .2B .-2C .±2D .22. 某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示(保留三个有效数字)应为( ) A .6.75×10-5克B .6.74×10-5克C .6.74×10-6克D .6.75×10-6克3. 26的值A .在3和4之间B .在4和5之间C .在5和6之间D .在6和7之间 4. 下列运算正确的是( )A .a 5+a 5=a 10B .a 3·a 3=a 9C .(3a 3)3=9a 9D .a 12÷a 3=a 95. 如图,在△ABC 中,∠ACB=900,∠A=200,若将△ABC 沿CD 折叠,使B 点落在AC边上的E 处,则∠ADE 的度数是( ) A .300 B .400 C .500 D .5506.使代数式x2x 1-有意义的x 的取值范围是【 】 A.x 0≥ B.1x 2≠ C.x 0≥且1x 2≠ D.一切实数7. 一组数据2,3,6,8,x 的众数是x ,其中x 又是不等式组 的整数解,则这组数据的中位数可能是【 】 240x 70x ->⎧⎨-<⎩A. 3B. 4C. 6D. 3或6 8.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ) A.229a y +B.229a y -+C.229a y -D.229a y --9.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.24cmB.23cmC.223cmD.23cm10.左图是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确的是( )A.①② B.①③C.②③ D.③11.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )12.下列图形中,既是轴对称图形又是中心对称图形的是( )13.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中1- 0 1 2 A. 1- 0 1 2 B.1- 0 1 2 C. 1- 0 1 2 D.A. B. C. D. ①正视图 ②俯视图 ③左视图 正面正确的是( )A.8625075%x y y x +=⎧⎨=⎩B.8625075%x y x y +=⎧⎨=⎩C.6825075%x y y x +=⎧⎨=⎩ D.6825075%x y x y +=⎧⎨=⎩14.将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知2AB =,30DEC '∠=,则折痕DE 的长为( )A.2B.23C.4D.115.2014年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进行竞猜,统计结果如图.若把认为巴西队将夺冠的这组学生人数作为一组的频数,则这一组的频率为( ) A.0.1 B.0.15 C.0.25 D.0.316.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量Q (升)随时间t (分钟)变化的函数图象是( )第14题图 第15题图320 200O 38(升)(分钟)A. 320 200O311(升)(分钟)B.200O 311 (升)C. 320200O311(升)D.2015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号 二 三21 22 23 24 25 26 得分二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17. 已知圆锥的底面半径为3 cm ,母线长4 cm ,则它的侧面积为 cm 2.18.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为C .若AB =23,OC =1,则OB 的长为 ▲ .19.如图,正方形ABCD 的顶点B 、 C 都在直角坐标系的x 轴上,若点A 的坐标是(-1,4),则点C 的坐标是 .20.在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2 cm ,AB =8 cm ,E 是AB 上一点,连接DE 、CE .若满足∠DEC =90°的点E 有且只有一个,则BC = cm .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)总 分 核分人得 分评卷人(第18题)AOBC ABCDOxy (第19题)21.(本小题满分9分)已知|a-1|+2 b =0,求方程xa+bx=1的解.22.(本小题满分10分)某校九年级男生进行引体向上训练,体育老师随机选择了部分男生,根据训练..前.成绩编组:0~4个的编为第一组,5~8个的编为第二组,9~12个的编为第三组,在训练后制作了如下两幅统计图,请回答下列问题:(1)下列说法正确的是 (填写所有正确的序号). ①训练后,第一组引体向上平均成绩的增长率最大; ②训练前,所选男生引体向上成绩的中位数一定在第二组; ③训练前,所选男生引体向上成绩的众数一定在第二组. (2)估计该校九年级全体男生训练后的平均成绩是多少?得 分 评卷人得 分评卷人109 8652 10 12 8 6 4 2第一组第二组第三组平均成绩/个 每个小组引体向上平均成绩对比统计图 训练前 训练后10%30% 第一组第三组第二组 60%每组人数占所选男生人数的百分比统计图(第22题)①②23.(本小题满分10分)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.已知BC =16km ,∠A =53°,∠B =30°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据:73.13 ,sin53°≈0.80,cos53°≈0.60)得 分评卷人53°30°D CEF BA G H24.(本小题满分11分)如果一条抛物线y =ax2+bx +c (a ≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是____________三角形;(2)若抛物线抛物线:m 2(2)y a x b =-+)0(<ab 的“抛物线三角形”是直角三角形,请求出a ,b 满足的关系式;(3)如图,△OAB 是抛物线:n y =-x2+b ′x (b ′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O 、C 、D 三点的抛物线的表达式;若不存在,说明理由.得 分 评卷人xyB O A25.(本小题满分12分)两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A=60°,AC=1. 固定△ABC 不动,将△DEF 进行如下操作: (1) 如图11(1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图11(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图11(3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sin α的值.得 分 评卷人AB EF C D 图11(1) AB EF C D 图11(2)A B(E )(F )C D 图11(3) E (F ) α26.(本小题满分14分)某市今年在中心城区启动二环路高架桥快速通道建设工程,研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V 是x 的一次函数.函数关系如图所示. (1)求当28<x≤188时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)得 分 评卷人v 千米/时x 辆/千米28801882017年河北省初中毕业生升学文化课模拟考试数学试题参考答案一、选择题题 号 1 2 3 4 5 6 7 8 答 案 A A C D D C D C 题 号 9 10 11 12 13 14 15 16 答 案 CABDACDB二、填空题17.12π 18.2 19.(3,0) 20.8 三、解答题21.解:解:由|a-1|+2+b =0,得a=1,b=-2. 由方程x1-2x=1得2x 2+x-1=0 解之,得x 1=-1,x 2=21. 经检验,x 1=-1,x 2=21是原方程的解. 22.解:(1)①②.(2)5×30%+8×60%+10×10%=7.3(个). 答:估计该校九年级全体男生训练后的平均成绩是7.3个.23.解:23.作DG ⊥AB 于G 、CH ⊥AB 于H 在Rt △BCH 中,Sin ∠B=CBCH,BC =16km ,∠B =30° ∴CH=8; cos ∠B=CBBH∴BH=83 易得DG=CH=8 在△ADG 中,Sin ∠A=ADDG、DG=8 ∴AD=10、AG=6 ∴(AD+DC+CB )-(AG+GH+HB )=20-83≈6.2 24. 解:(1)等腰(2)1ab =-.(3)存在.所求抛物线的表达式为2=+23y x x .25.解:(1)过C 点作CG ⊥AB 于G ,在Rt △AGC 中,∵sin60°=ACCG ,∴23=CG ∵AB=2,∴S 梯形CDBF =S △ABC =2323221=⨯⨯(2)菱形∵CD ∥BF , FC ∥BD ,∴四边形CDBF 是平行四边形∵DF ∥AC ,∠ACD=90°,∴CB ⊥DF∴四边形CDBF 是菱形(判断四边形CDBF 是平行四边形,并证明正确,记2分)(3)过D 点作DH ⊥AE 于H ,则S △ADE =233121EB AD 21=⨯⨯=⋅⋅ ······ 又S △ADE =2321=⋅⋅DH AE ,)721(733或==AE DH ············ ∴在Rt △DHE ’中,sin α=)1421(723或=DE DH 26.解:(1)设函数解析式为V=kx+b , 则, 解得:,故V 关于x 的函数表达式为:V=﹣x+94;(2)由题意得,V=﹣x+94≥50,解得:x≤88,又P=Vx=(﹣x+94)x=﹣x2+94x , A B E FC D 解图11(1) G当0<x≤88时,函数为增函数,即当x=88时,P取得最大,故Pmax=﹣×882+94×88=4400.答:当车流密度达到88辆/千米时,车流量P达到最大,最大值为4400辆/时。

相关文档
最新文档