高考数学(理)(新课标)考前冲刺复习课件:第2部分专题4第1讲空间几何体
高考数学二轮复习专题四立体几何第一讲空间几何体课件理
考点三 空间几何体与球的切、接问题
[悟通——方法结论] 1.解决与球有关的“切”“接”问题,一般要过球心及多面 体中的特殊点或过线作截面,把空间问题转化为平面问题,从 而寻找几何体各元素之间的关系. 2.记住几个常用的结论: (1)正方体的棱长为 a,球的半径为 R. ①正方体的外接球,则 2R= 3a; ②正方体的内切球,则 2R=a; ③球与正方体的各棱相切,则 2R= 2a.
面积是 3=27
1 2
×3×3
B.27
3,故选
3 D.
+
1 2
×3×3
C.27 2
D.27 3
3
+
1 2
×6×3
3
+
1 2
考点二 空间几何体的表面积与体积
[全练——快速解答]
3.(2018·西安八校联考)某几何体的三视图
如图所示,则该几何体的体积是( B )
由三视图可知,该几何体为一个半径为 1 的半球与一个底面 4π A半. 3径为 1,高为 2 的半圆柱组合而成的组合体,故其体积 V B=.53π23π×13+12π×12×2=53π,故选 B. C.2+23π D.4+23π
考点一 空间几何体的三视图
[全练——快速解答]
3.(2018·山西八校联考)将正方体(如图 1)截去三个三棱锥后,得 到将如图图22中所的示几的何几体何放体到,正侧方视体图中的如视图线所方示向,从如侧图 2 所示,则该几 何视体图的的侧视视线图方为向(观D察,) 易知该几何体的侧视图为 选项 D 中的图形,故选 D.
的在表长面、积宽为(、D高分) 别为 3 3,3,3 3的长方体中,由 几何体的三视图得几何体为如图所示的三棱锥
C-BAP,其中底面 BAP 是∠BAP=90˚的直角三角
高考总复习二轮数学精品课件 专题4 立体几何 第1讲 空间几何体的结构、表面积与体积
突破点二 空间几何体的表面积
[例2-1]国家游泳中心(水立方/冰立方)的设计灵感来源于威尔-弗兰泡沫,威
尔-弗兰泡沫是对开尔文胞体的改进,开尔文胞体是一种多面体,它由正六
边形和正方形围成(其中每个顶点处有1个正方形和2个正六边形),已知该
V
1
台体= (S'+
3
'+S)h
V
1
锥体= Sh.
3
2.几个常用结论
(1)若长方体从一个顶点出发的三条棱长分别为 a,b,c,则其体对角线(即外接
球的直径)为 2 + 2 + 2 .
(2)正四面体(棱长都为 a)的几个结论:
6
①高为 3 a;②表面积为
3a
2 3
6
,体积为12 a ;③侧棱与底面所成角的正弦值为 3 ;
该模型的上部分是半球,下部分是圆台.其中半球的体积为144π cm3,圆台的
上底面半径及高均是下底面半径的一半.打印所用原料密度为1.5 g/cm3,不
考虑打印损耗,制作该模型所需原料的质量约为( C )(1.5π≈4.7)
A.3 045.6 g
B.1 565.1 g
C.972.9 g
D.296.1 g
圆锥的底面半径 r'=1,高 h'=1,母线长 l'= 2,
所以圆台的侧面积 S1=π(R+r)l=8 2π,圆锥的侧面积 S2=πr'l'= 2π,
圆台的下底面面积 S3=πR2=9π,所以几何体的表面积 S=9π+9 2π.
(2)(2023·甘肃兰州诊断测试)攒尖是中国古建筑中屋顶的一种结构形式,常
新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面
核心考点2 空间几何体的表面积与体积核心知识·精归纳1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).多维题组·明技法角度1:空间几何体的表面积和侧面积1. (2023·大观区校级三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径AB =12 cm ,圆柱体部分的高BC =6 cm ,圆锥体部分的高CD =4 cm ,则这个陀螺的表面积(单位:cm 2)是( C )A .(144+1213)πB .(144+2413)πC .(108+1213)πD .(108+2413)π【解析】 由题意可得圆锥体的母线长为l =62+42=213,所以圆锥体的侧面积为12·12π·213=1213π,圆柱体的侧面积为12π×6=72π,圆柱的底面面积为π×62=36π,所以此陀螺的表面积为1213π+72π+36π=(108+1213)π(cm 2).故选C.2. (2023·黄浦区校级三模)已知正方形ABCD 的边长是1,将△ABC 沿对角线AC 折到△AB ′C 的位置,使(折叠后)A 、B ′、C 、D 四点为顶点的三棱锥的体积最大,则此三棱锥的表面积为 1+32. 【解析】 根据题意,正方形ABCD 中,设AC 与BD 交于点O ,在翻转过程中,当B ′O ⊥面ACD 时,四棱锥B ′-ACD 的高最大,此时四棱锥B ′-ACD 的体积最大,若B ′O ⊥面ACD ,由于OA =OB ′=OC ,则B ′D =B ′A =B ′C =1,则△DB ′C △DB ′A 都是边长为1的等边三角形,S △DB ′A =S △DB ′C =12×1×1×32=34,△ADC 中,AD =DC =1且AD ⊥DC ,则S △ADC =12×1×1=12,同理:S △AB ′C =S △ABC =S △ADC =12,此时,三棱锥的表面积S =S △DB ′A +S △DB ′C +S △ADC +S △AB ′C =1+32. 角度2:空间几何体的体积3. (2023·福州模拟)已知菱形ABCD 的边长为2,∠BAD =60°,则将菱形ABCD 以其中一条边所在的直线为轴,旋转一周所形成的几何体的体积为( B )A .2πB .6πC .43πD .8π【解析】 根据题意,旋转一周所形成的几何体如图,该几何体上部分为圆锥,下部分为在圆柱内挖去一个与上部分相同的圆锥,其体积等于中间圆柱的体积,且中间圆柱的高h =DC =2,底面圆的半径r =BC sin 60°=2×32=3,故要求几何体的体积V =πr 2h =6π.故选B.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AB ,BC 的中点,则多面体A 1C 1-AEFC 的体积为 53.【解析】 多面体A 1C 1-AEFC 的体积等于三棱柱ABC -A 1B 1C 1的体积与三棱台EBF -A 1B 1C 1的体积之差,其中三棱柱ABC -A 1B 1C 1的体积为12×2×2×2=4,三棱台EBF -A 1B 1C 1的体积为⎝ ⎛⎭⎪⎫12×1×1+12×2×2+12×1×1×12×2×2×2×13=73,所以多面体A 1C 1-AEFC 的体积为4-73=53. 方法技巧·精提炼1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点;(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法(1)公式法:直接根据常见柱、锥、台体等规则几何体的体积公式计算;(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积必等;(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为可计算体积的几何体.加固训练·促提高1. (2023·平罗县校级模拟)已知圆锥的底面半径为1,侧面展开图的圆心角为23π,则该圆锥的侧面积为( C )A .πB .2πC .3πD .4π【解析】 底面圆周长为2π,母线长为2π2π3=3,所以侧面积为12×2π×3=3π.故选C.2. (2023·普陀区校级模拟)如图,在正四棱锥P -ABCD 中,AP =AB =4,则正四棱锥的体积为 3223.【解析】 连接AC 与BD 交于O ,则O 是正方形ABCD 的中心,∴PO ⊥平面ABCD ,∵AB=4,∴AO =22,∵PA =4,∴PO =16-8=22,∴正四棱锥的体积为V =13S 正方形ABCD ·PO=13×16×22=3223.故答案为3223.3. (2023·琼山区四模)三棱锥A -BCD 中,AC ⊥平面BCD ,BD ⊥CD ,若AB =3,BD =1,则该三棱锥体积的最大值为 23.【解析】 如图所示,因为AC ⊥平面BCD ,即AC 为三棱锥A -BCD 的高,设为x ,又因为BC ⊂平面BCD ,所以AC ⊥BC ,在直角△ABC 中,由AB =3,AC =x ,可得BC =9-x 2,因为BD ⊥CD ,且BD =1,可得CD =BC 2-BD 2=8-x 2,所以三棱锥A -BCD 的体积为V =13S △BCD ·AC =13×128-x 2×1×x =168-x2·x 2≤16×8-x 2+x 22=23,当且仅当8-x 2=x 2时,即x =2时,三棱锥A -BCD 的体积取得最大值,最大值为23.。
高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积
专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。
高考数学大二轮复习专题四第1讲空间几何体及三视图课件理
“两小”或“一小”主
要考查三视图,几何体
的表面积与体积,空间
点、线、面的位置关系
(特别是平行与垂直).
1.(2019全国Ⅰ,理12)已知三棱锥P-ABC的四个顶点在球O的球面(qiúmiàn)
上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中
点,∠CEF=90°,则球O的体积为(
1
∴CE 为三棱锥 E-BCD 的底面 BCD 上的高,CE=2CC1,
1
1
1
∴VE-BCD=3 × 2AB·BC·CE=3 ×
1
2
1
1
1
2
12
12
AB·BC· CC1= AB·BC·CC1= ×120=10.
答案(dá àn):10
第十三页,共五十页。
一、空间几何体的三视图
1.几何体的摆放位置不同,其三视图也不同,需要注意(zhùyì)长对正、高平齐、
3
又长方体 ABCD-A1B1C1D1 的体积为 V2=4×6×6=144(cm3),则该模
型的体积为 V=V2-V1=144-12=132(cm3).
故其质量为 0.9×132=118.8(g).
答案(dá àn):118.8
第九页,共五十页。
4.(2019北京(běi jīnɡ),理11)某几何体是由一个正方体去掉一个四棱柱所得,其三视
为
2
.若圆
柱(yuánzhù)的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为
5
四棱锥底面的中心,则该圆柱的体积为
.
1
1
2
2
解析:由底面边长为 2,可得 OC=1.设 M 为 VC 的中点,O1M= OC= ,
高中数学高考数学学习资料:专题4 第1讲 空间几何体
)
答案:C
[悟方法
触类旁通]
该类问题主要有两种类型:一是由几何体确定三视图;二 是由三视图还原成几何体.解决该类问题的关键是找准投影 面及三个视图之间的关系.抓住“正侧一样高,正俯一样长, 俯侧一样宽”的特点作出判断.zxxk
[联知识 串点成面]
常见的一些简单几何体的表面积和体积公式:
圆柱的表面积公式:S=2πr2+2πrl=2πr(r+l)(其中r为 底面半径,l为圆柱的高); 圆锥的表面积公式:S=πr2+πrl=πr(r+l)(其中r为底面 半径,l为母线长);
[答案] B
3.(2011· 北京高考)某四棱锥的三视图如图所示,该四棱锥的表面积 是 ( )
A.32 C.48
B.16+16 2 D.16+32 2
解析:该空间几何体是底面边长为 4、高为 2 的正四棱锥,这个四棱 1 锥的斜高为 2 2,故其表面积是 4×4+4× ×4×2 2=16+16 2. 2
答案:B
4.(2011· 福建高考)三棱锥P-ABC中,PA⊥底面ABC,PA =3,底面ABC是边长为2的正三角形,则三棱锥P-
ABC的体积等于________.
1 1 解析:依题意有,三棱锥 P-ABC 的体积 V= S△ABC· |PA|= 3 3 × 3 ×22×3= 3. 4
答案: 3
[悟方法
圆台的表面积公式:S=π(r′2+r2+r′l+rl)(其中r和
r′分别为圆台的上、下底面半径,l为母线长);
柱体的体积公式:V=Sh(S 为底面面积,h 为高); 1 锥体的体积公式:V= Sh(S 为底面面积,h 为高); 3 1 台体的体积公式: V= (S′+ S′S+S)h(S′、S 分别为上、 3 下底面面积,h 为高); 4 球的表面积和体积公式:S=4πR2,V= πR3(R 为球的半径). 3
高考数学二轮复习专题四立体几何第1讲空间几何体课件
平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC 的体积为 9,则球 O 的表面积为________.
12/11/2021
第二十七页,共三十六页。
【解析】 (1)如图所示,球的半径为 2 3,球心(2,2,2),M(4,0,2), N(0,2,4),MN 的中点(2,1,3),球心到 MN 的距离为 2,所以该直 线被正方体的外接球球面截在球内的线段长是 2 12-2=2 10,故选 B.
12/11/2021
第二十六页,共三十六页。
[典型例题]
(1)(2019·浙江高考冲刺卷)已知一个棱长为 4 的正方体,过正方体中两条互为异面
直线的棱的中点作直线,则该直线被正方体的外接球球面截在球内的线段长是( )
A.2 11
B.2 10
C.6
D.4 2
(2)已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上,SC 是球 O 的直径.若平面 SCA⊥
12/11/2021
第六页,共三十六页。
(2)因为一个四面体的顶点在空间直角坐标系 Oxyz 中的坐标分别是(1, 0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是以正 方体的顶点为顶点的一个正四面体,所以以 zOx 平面为投影面,则得到 正视图为 A.
【答案】 (1)D (2)A
12/11/2021
第八页,共三十六页。
[对点训练] 1.(2019·福州市综合质量检测)如图,网格纸上小正方形的边长为 1,粗线画出的是某几 何体的三视图,则此几何体各面中直角三角形的个数是( )
A.2
B.3
C.4
D.5
12/11/2021
第九页,共三十六页。
解析:选 C.由三视图知,该几何体是如图所示的四棱锥 P-ABCD,易知四 棱锥 P-ABCD 的四个侧面都是直角三角形,即此几何体各面中直角三角形 的个数是 4.
高考数学二轮复习 专题4 第1讲 空间几何体课件(文、理
新课标版 • 二轮专题复习
路漫漫其修远兮 吾将上下而求索
专题四 立体几何
专题四 第一讲 空间几何体
命题角度聚焦
核心知识整合
学方科法素警能示培探养究
命题热点突破
课后强化作业
命题角度聚焦
1.以选择、填空题形式考查空间位置关系的判断,及文字语 言、图形语言、符号语言的转换,难度适中;
名称 圆柱 圆台
球
几何特征
①有两个互相平行的圆面(底面); ②有一个侧面是曲面(母线绕轴旋转一周形侧面是曲面,可以看成母线绕轴旋转一 周形成的
①有一个曲面是球面; ②有一个球心和一条半径长R,球是一个几何体 (包括内部),可以看成半圆以它的直径所在直线 为旋转轴旋转一周形成的
名称
体积
表面积
V 圆柱=πr2h(r 为底面半径,h S 圆柱=2πrl+2πr2(r 为底面半
圆柱
为高)
径,l 为母线长)
圆锥
V 圆锥=13πr2h(r 为底面半径, S 圆锥=πrl+πr2(r 为底面半
h 为高)
径,l 为母线长)
圆台
V 圆台=13πh(r2+rr′+r′2) S 圆台=π(r+r′)l+πr2+ (r、r′为底面半径,h 为高) πr′2
[答案] 3 [解析] 由三视图知该四棱锥底面为正方形,边长为 3,四
棱锥的高为 1,其体积为 V=13×3×3×1=3.
(理)(2013·辽宁理,13)某几何体的三视图如图所示,则该几 何体的体积是________.
[答案] 16π-16 [解析] 由三视图可知,几何体为圆柱中挖去一个正四棱柱,
球
V 球=34πR3(R 为球的半径) S 球=4πR2(R 为球的半径)
高三数学专题四空间几何体.pptx
∵AB=AC,AM=AM,∠A1AB=∠A1AC,
第27页/共45页
题型与方法
第一讲
∴△ABM≌△ACM,∴∠AMC=90° ∴MB=MC= 3b. 又∵MB⊥A1A,MC⊥A1A, MB∩MC=M,
∴AA1⊥平面 BMC, ∴直截面△BMC 的周长为 2 3b+2 2b. ∵AA1=l,∴S 侧=l(2 3b+2 2b)=2( 3+ 2)·bl. 又 S△MBC=12BC·MD=12×2 2b· 3b2-2b2= 2b2,
∴V=S△MBC·l= 2b2l.
第28页/共45页
题型与方法
第一讲
题型三 球与多面体的问题 题型概述 多面体的外接球的半径和多面体的棱长之间的关
系是解决这类问题的关键,在解题时要根据多面体和球的 位置关系把多面体的棱长和球的半径之间的关系找出来(主 要是要确定球心的位置),通过这个关系解决相应的问题.
第34页/共45页
小题冲关
第一讲
故 CD⊥AD, 所以 AC= 41且 S△ACD=10. 在 Rt△ABE 中,AE=4,BE=2,故 AB=2 5. 在 Rt△BCD 中,BD=5,CD=4, 故 S△BCD=10,且 BC= 41. 在△ABD 中,AE=4,BD=5,故 S△ABD=10. 在△ABC 中,AB=2 5,BC=AC= 41, 则 AB 边上的高 h=6,故 S△ABC=12×2 5×6=6 5. 因此,该三棱锥的表面积为 S=30+6 5.
考点与考题
第一讲
2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,
那么这个几何体不可以是
A.球
高考数学(文)(新课标版)考前冲刺复习课件第2部分专题四第1讲 空间几何体精选ppt版本
第1讲 空间几何体
空间几何体的三视图
自主练透 夯实双基
1.一个物体的三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一 样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的 高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、 宽相等”. 2.由三视图还原几何体的步骤 一般先由俯视图确定底面,再利用正视图与侧视图确定几何 体.
(2)根据几何体的三视图求其表面积与体积的三个步骤 ①根据给出的三视图判断该几何体的形状. ②由三视图中的大小标示确定该几何体的各个度量. ③套用相应的面积公式与体积公式计算求解.
[题组通关]
1.(2016·高考全国卷甲)如图是由圆柱与圆锥组合而成的几
何体的三视图,则该几何体的表面积为( C )
A.2 C. 3
B.2 2 D.2 3
[解析] 在正方体 ABCD-A1B1C1D1 中还原 出三视图的直观图,其是一个三个顶点在 正方体的右侧面、一个顶点在左侧面的三 棱锥,即为 D1BCB1,如图所示,其四个 面的面积分别为 2,2 2,2 2,2 3,故选 D.
由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面. (2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的 特征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.
在组合体中求球的表面积或体积
(2016·山西高三考前质量检测)三棱锥 P-ABC 中, AB=BC= 15,AC=6,PC⊥平面 ABC,PC=2,则该三棱 锥的外接球的表面积为( D )
25 A. 3 π
25 B. 2 π
83 C. 3 π
83 D. 2 π
【解析】 由题可知,△ABC 中 AC 边上的高为 15-32= 6, 球心 O 在底面 ABC 的投影即为△ABC 的外心 D,设 DA=DB=DC=x,所以 x2=32+( 6-x)2,解得 x=54 6,所 以 R2=x2+P2C2=785+1=883(其中 R 为三棱锥外接球的半 径),所以外接球的表面积 S=4πR2=823π,故选 D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. (2016· 山西省高三考前质量检测)某几何体的三视图如图所
3 7 . 示,当 xy 取得最大值时,该几何体的体积是________
[解析] 分析题意可知,该几何体为如图所示的四棱锥 PABCD, y CD= ,AB=y,AC=5,CP= 7,BP=x, 2 所以 BP2=BC2+CP2,即 x2=25-y2+7, x2+y2=32≥2xy,则 xy≤16,当且仅当 x=y=4 时,等号成立.此时该几何体的体 1 2+4 积 V= × ×3× 7=3 7. 3 2
(1)求解几何体的表面积及体积的技巧 ①求几何体的表面积及体积问题,可以多角度、多方位地考 虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是 常用的方法,转化原则是其高易求,底面放在已知几何体的 某一面上. ②求不规则几何体的体积,常用分割或补形的思想,将不规 则几何体转化为规则几何体以易于求解.
空间几何体的表面积与体积
高频考点
多维探明
1.柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch(c 为底面周长,h 为高); 1 (2)S 锥侧= ch′(c 为底面周长,h′为斜高); 2 1 (3)S 台侧= (c+c′)h′(c′, c 分别为上下底面的周长, h′为斜高). 2
2.柱体、锥体、台体的体积公式 (1)V 柱体=Sh(S 为底面面积,h 为高); 1 (2)V 锥体= Sh(S 为底面面积,h 为高); 3 1 (3)V 台= (S+ SS′+S′)h(S,S′分别为上下底面面积,h 为 3 高)(不要求记忆).
由三视图求空间几何体的表面积与体积 (1)(2016· 高考全国卷甲)如图是由圆柱与圆锥组合而成 的几何体的三视图,则该几何体的表面积为(
C)A.20π C Nhomakorabea28πB.24π D.32π
(2)(2016· 高考四川卷)已知某三棱锥的三视图如图所示,则该 3 三棱锥的体积是__________ . 3
B
)
A.36 cm3 C.60 cm3
B.48 cm3 D.72 cm3
[解析] 由三视图可知,该几何体的上面是个长为 4,宽为 2, 高为 2 的长方体,下面是一个放倒的四棱柱,高为 4,底面 是个梯形,梯形的上、下、底分别为 2、6,高为 2.长方体的 2+6 体积为 4×2×2=16.四棱柱的体积为 4× ×2=32, 所以 2 该几何体的体积为 32+16=48(cm3),选 B.
2. (2016· 昆明市两区七校调研)一个正三棱柱被平面截去一部 分后,剩余部分的三视图如图,则截去部分体积和剩余部分 体积的比值为(
A
)
1 A. 5 1 C. 7
1 B. 6 1 D. 8
[ 解析 ] 依题意,剩余部分所表示的几何体是从正三棱柱 ABCA1B1C1(其底面边长是 2)中截去三棱锥 EA1B1C1(其中 E 是侧棱 BB1 的中点),因此三棱锥 EA1B1C1 的体积为 1 3 3 2 VEA1B1C1= × ×2 ×1= ,剩余部分的体积为 3 4 3 3 3 5 3 2 V=VABCA1B1C1-VEA1B1C1= ×2 ×2- = , 4 3 3 1 因此截去部分体积与剩余部分体积的比值为 ,选 A. 5
由空间几何体的结构特征计算表面积与体积 如图,在棱长为 6 的正方体 ABCD A1B1C1D1 中,E,F 分别在 C1D1 与 C1B1 上, 且 C1E=4,C1F=3,连接 EF,FB,DE, BD,则几何体 EFC1DBC 的体积为( A.66 C.70
A
)
B.68 D.72
【解析】 如图,连接 DF,DC1,那么 几何体 EFC1 DBC 被分割成三棱锥 DEFC1 及四棱锥 D CBFC1,那么几何 体 EFC1DBC 的体积为 1 1 1 1 V= × ×3×4×6+ × ×(3+6)×6×6=12+54=66. 3 2 3 2 故所求几何体 EFC1DBC 的体积为 66.
专题四
立体几何
第1讲 空间几何体
空间几何体的三视图
自主练透
夯实双基
1.一个物体的三视图的排列规则 俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样, 侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一 样, 宽度与俯视图的宽度一样. 即“长对正、 高平齐、 宽相等”. 2.由三视图还原几何体的步骤 一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.
【解析】 (1)该几何体是圆锥与圆柱的组合体, 由三视图可知 圆柱底面圆的半径 r=2,底面圆的周长 c=2πr=4π,圆锥的 母线长 l= 22+(2 3)2=4,圆柱的高 h=4,所以该几何体 1 的表面积 S 表=πr +ch+ cl=4π+16π+8π=28π,故选 C. 2
2
1 (2)根据三视图可知该三棱锥的底面积 S= ×2 3×1= 3, 高 2 1 3 为 1,所以该三棱锥的体积 V= × 3×1= . 3 3
[题组通关] 1. (2016· 高考天津卷)将一个长方体沿相邻三个面的对角线截 去一个棱锥,得到的几何体的正视图与俯视图如图所示,则 该几何体的侧(左)视图为(
B
)
[解析] 由几何体的正视图和俯视图可知该几何体为图①,故 其侧(左)视图为图②.
2.已知长方体的底面是边长为 1 的正方形,高为 2,其俯 视图是一个面积为 1 的正方形,侧视图是一个面积为 2 的矩 形,则该长方体的正视图的面积等于( A.1 C.2
(2)根据几何体的三视图求其表面积与体积的三个步骤 第一步:根据给出的三视图判断该几何体的形状. 第二步:由三视图中的大小标示确定该几何体的各个度量. 第三步:套用相应的面积公式与体积公式计算求解.
[题组通关] 1. (2016· 河南省八市重点高中质量检测)若某几何体的三视图 (单位:cm)如图所示,则此几何体的体积是(
C
)
B. 2 D.2 2
[解析] 依题意得,题中的长方体的侧视图的高等于 2,正视 图的长是 2,因此相应的正视图的面积等于 2× 2=2,故 选 C.
由三视图还原到直观图的思路 (1)根据俯视图确定几何体的底面. (2)根据正 (主)视图或侧(左)视图确定几何体的侧棱与侧面的 特征,调整实线和虚线所对应的棱、面的位置. (3)确定几何体的直观图形状.