中考数学复习第四章几何初步与三角形第一节几何的初步认识随堂演练

合集下载

2020年中考数学一轮复习第4章几何初步与三角形(付)

2020年中考数学一轮复习第4章几何初步与三角形(付)

第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·浙江金华中考)如图,∠B的同位角可以是( )A.∠1 B.∠2C.∠3 D.∠42.(2018·江苏宿迁中考)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C =24°,则∠D的度数是( )A.24° B.59°C.60° D.69°3.(2018·山东枣庄中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20° B.30°C.45° D.50°4.(2018·湖南益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是( )A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°5.(2018·山东聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )A.110° B.115°C.120° D.125°6.(2018·浙江金华模拟)若∠α=35°,则∠α的补角为__________度.7.(2018·湖南衡阳中考)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC 的度数为__________.8.(2018·湖南永州中考)一副透明的三角板,如图叠放,直角三角板的斜边AB,CE相交于点D,则∠BDC=__________.9. (2018·重庆中考B卷)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.10.(2017·湖北十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=( )A.40° B.50°C.60° D.70°11.如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm.如果点C是OB上一个动点,则PC的最小值为( )A.2 cm B.2 3 cm C.4 cm D.4 3 cm12.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°13.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F =____________.14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 的长是______.15.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B=__________.16.(2018·湖北鄂州中考)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E,F分别为DB,BC的中点,连结AE,EF,AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.17.已知O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,∠COF和∠BOE之间有何数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明.18.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数;(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC 的数量关系,并说明理由.参考答案【基础训练】1.D 2.B 3.D 4.C 5.C 6.145 7.75° 8.75°9.解:∵∠EFG=90°,∠E=35°, ∴∠FGH=55°.∵GE 平分∠FGD,AB∥CD, ∴∠FHG=∠HGD=∠FGH=55°. ∵∠FHG 是△EFH 的外角, ∴∠EFB=55°-35°=20°. 【拔高训练】 10.B 11.C 12.C 13.9.5° 14.3 15.95°16.(1)证明:∵点E ,F 分别为DB ,BC 的中点, ∴EF 是△BCD 的中位线,∴EF=12CD.又∵DB=DC ,∴EF=12DB.在Rt△ABD 中,∵点E 为DB 的中点, ∴AE 是斜边BD 上的中线, ∴AE=12DB ,∴AE=EF.(2)解:如图,∵AE=EF ,AF =AE ,∴AE=EF =AF , ∴△AEF 是等边三角形,∴∠AEF=60°. ∵EF 是△BCD 的中位线, ∴EF∥CD,∴∠BEF=∠CDB=β,∴β+∠2=60°.又∵∠2=∠1+∠ADB=∠1+α,∴∠1+α+β=60°,∴∠1=60°-α-β. ∵AE 是斜边BD 上的中线, ∴AE=DE ,∴∠1=∠ADB=α, ∴α=60°-α-β,∴2α+β=60°. 17.解:(1)∠BOE=2∠COF.理由如下: ∵∠COE=90°, ∴∠BOE=90°-∠AOC,∠COF=∠AOF-∠AOC=12(90°+∠AOC)-∠AOC=12(90°-∠AOC),∴∠BOE =2∠COF.(2)不发生变化.证明如下:∵∠COE=90°,∴∠COF=90°-∠EOF,∠BOE=180°-2∠EOF. ∴∠BOE=2∠COF. (3)∠BOE+2∠COF=360°.证明如下:∵∠COE=90°,∴∠COF=90°+∠EOF,∠BOE=90°+∠BOC=90°+90°-2∠EOF=180°-2∠EOF. ∴∠BOE+2∠COF=360°. 【培优训练】18.解:(1)∵OM 平分∠BOC, ∴∠MOC=∠MOB.又∵∠BOC=110°,∴∠MOB=55°. ∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°. (2)11或47(3)∠AOM-∠NOC=20°.理由如下:∵∠MON=90°,∠AOC=70°, ∴∠AOM=90°-∠AON,∠NOC=70°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,∴∠AOM与∠NOC的数量关系为∠AOM-∠NOC=20°.第二节三角形的基础姓名:________ 班级:________ 用时:______分钟1.(2018·广西柳州中考)如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个2.已知,如图,在△ABC中,BO和CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.83.(2018·湖北黄石中考)如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°4.(2017·四川巴中中考)若a,b,c为三角形的三边,且a,b满足a-9+(b-2)2=0,第三边c为奇数,则c=______.5.(2017·四川乐山中考)点A,B,C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是_________.6.如图,在△ABC 中,AB =AC ,AD⊥BC,垂足为点D ,AD =18,点E 在AC 上,且CE =12AC ,连结BE ,与AD 相交于点F.若BE =15,则△DBF 的周长是________.7.(2018·湖北宜昌中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E. (1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.8. (2019·易错题)如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上.若点C 也在网格格点上,以A ,B ,C 为顶点的三角形面积为2,则满足条件的点C 个数是( )A .2B .3C .4D .59.如图,在△ABC 中,AB =AC =5,BC =8,点P 是BC 边上的动点,过点P 作PD⊥AB 于点D ,PE⊥AC 于点E ,则PD +PE 的长是( )A .4.8B .4.8或3.8C .3.8D .510.(2017·辽宁大连中考)如图,在△ABC 中,∠ACB=90°,CD⊥AB,垂足为点D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为( )A .2aB .22aC .3aD.433a11.如图,在四边形ABCD 中,∠ABC=90°,AB =BC =22,E ,F 分别是AD ,CD 的中点,连结BE ,BF ,EF.若四边形ABCD 的面积为6,则△BEF 的面积为( )A.2 B.94C.52D.312.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连结EF交AP于点G.给出以下五个结论:①∠B=∠C=45°;②AE=CF;③AP=EF;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是( )A.只有① B.①②④C.①②③④ D.①②④⑤13.(2017·四川达州中考)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是______________.14.(2019·改编题)已知点G是面积为27 cm2的△ABC的重心,那么△AGC的面积等于______cm2.15.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点.若S△BFC=1,则S△ABC=______.16.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设该组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.17.(2017·山东德州中考)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9 s.已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80 km/h,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)18.如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=________;若∠A=a°,则∠BEC=________.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC =________;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.参考答案【基础训练】1.C 2.D 3.A 4.9 5.3556.247.解:(1)∵在Rt△ABC 中,∠ACB=90°,∠A=40°, ∴∠ABC=90°-∠A=50°, ∴∠CBD=130°. ∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°, ∴∠CEB=90°-65°=25°. ∵DF∥BE,∴∠F=∠CEB=25°. 【拔高训练】8.C 9.A 10.B 11.C 12.D 13.1<m<4 14.9 15.416.解:(1)设三角形的第三边长为x. ∵每个三角形有两条边的长分别为5和7, ∴7-5<x<5+7,即2<x<12,∴其中一个三角形的第三边的长可以为10(不唯一). (2)∵2<x<12,它们的边长均为整数, ∴x=3,4,5,6,7,8,9,10,11, ∴该组中最多有9个三角形,∴n=9.(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.17.解:(1)如图,过点A 作AD⊥BC 于点D ,则AD =10 m.∵在Rt△ACD 中,∠C =45°, ∴Rt△ACD 是等腰直角三角形. ∴CD=AD =10 m.在Rt△ABD 中,tan B =ADBD,∵∠B=30°,∴BD=3AD , ∴BD=10 3 m.∴BC=BD +DC =(10+103)m. 答:B ,C 之间的距离是(10+103)m. (2)这辆汽车超速.理由如下: 由(1)知BC =(10+103)m. 又3≈1.7,∴BC≈27 m, ∴汽车速度v =270.9=30(m/s).又∵30 m/s=108 km/h , 此地限速为80 km/h ,且108>80, ∴这辆汽车超速. 【培优训练】18.解:131° 90°+12a°【探究】 (1)60°+23a°(2)∠BOC=12∠A.理由如下:由三角形的外角性质得,∠ACD =∠A+∠ABC, ∠OCD=∠BOC+∠OBC,∵O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点, ∴∠ABC=2∠OBC,∠ACD=2∠OCD, ∴∠A+∠ABC=2(∠BOC+∠OBC), ∴∠A=2∠BOC,∴∠BOC=12∠A.(3)∠BOC=90°-12∠A.理由如下:∵O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC=12(180°-∠ABC)=90°-12∠ABC,∠OCB=12(180°-∠ACB)=90°-12∠ACB,在△OBC 中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠ABC)-(90°-12∠ACB)=12(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,∴∠BOC=12(180°-∠A)=90°-12∠A.第三节 全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( ) A .两个等边三角形一定全等 B .腰对应相等的两个等腰三角形全等 C .形状相同的两个三角形全等 D .全等三角形的面积一定相等2.如图,在▱ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A .BE =DFB .BF =DEC .AE =CFD .∠1=∠23.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个4.(2017·四川眉山中考)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB =4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.9.(2018·陕西中考)如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连结AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥CD,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF.在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.1816.证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF=90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC ,∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠ACD=90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC ,∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD =180°-∠ABC-∠BAO-∠CAE =180°-60°-60°=60°. 【培优训练】19.解:(1)∵AM⊥BM, ∴∠AMB=∠AMC=90°. ∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM. ∵AB=32,∴AM=BM =3. ∵BC=5,∴MC=2,∴AC=AM 2+CM 2=13.(2)证明:如图,延长EF 到点G ,使得FG =EF ,连结BG.∵DM=MC ,∠BMD=∠AMC=90°,BM =AM , ∴△BMD≌△AMC,故AC =BD. 又CE =AC ,因此BD =CE.∵点F 是线段BC 的中点, ∴BF=FC ,由BF =FC ,∠BFG=∠EFC,FG =FE , ∴△BFG≌△CFE,故BG =CE ,∠G=∠CEF, ∴BD=CE =BG ,∴∠BDG=∠G,∴∠BDF=∠CEF.第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.(2017·四川南充中考)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. (2018·四川绵阳中考)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.(2018·黑龙江绥化中考)已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.(2018·湖南娄底中考)如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.(2018·浙江嘉兴中考)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. (2018·江苏镇江中考)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.(2019·易错题)在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.(2018·辽宁葫芦岛中考)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.(2018·浙江绍兴中考)数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. (2018·青海中考)请认真阅读下面的数学小探究系列,完成所提出的问题. (1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C, ∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x 2≠x,即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°. 又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中, ∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30第五节 直角三角形与勾股定理姓名:________ 班级:________ 用时:______分钟1.(2018·海南中考)如图,在△ABC 中,AB =8,AC =6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°,得到△AB 1C 1,连结BC 1,则BC 1的长为( )A .6B .8C .10D .122.(2019·改编题)下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.(2017·贵州毕节中考)如图,在Rt △ABC 中,∠ACB=90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .124.(2018·山东德州中考)如图,OC 为∠AOB 的平分线,CM⊥OB,OC =5,OM =4,则点C 到射线OA 的距离为______.5.(2018·浙江宁波中考)如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1 200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为_____________________米(结果保留根号).6.(2017·湖南常德中考)如图,已知在Rt△ABE中,∠A=90°,∠B=60°,BE=10,D 是线段AE上的一动点,过点D作CD交BE于点C,并使得∠CDE=30°,则CD长度的取值范围是________________.7.(2018·湖北襄阳中考)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为__________.8.(2018·四川广安中考)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个一边长为22,面积为6的等腰三角形.9.已知直角三角形的周长为14,斜边上的中线长为3,则该直角三角形的面积为( ) A.5 B.6 C.7 D.810.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100C.110 D.12111.(2018·江苏无锡中考)已知△ABC中,AB=10,AC=27,∠B=30°,则△ABC的面积等于______________.12.(2017·湖北襄阳中考)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=8,AB=10,则CD的长为_______.13.如图,在平面直角坐标系中,将含30°角的三角尺的直角顶点C落在第二象限,其斜边两端点A ,B 分别落在x 轴、y 轴上,且AB =12 cm .(1)若OB =6 cm , ①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2)点C 与点O 的距离的最大值=________cm .14.如图,在Rt △ABC 中,∠ACB=90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.15.某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图1△ABC 中,M 是BC 的中点,P 是射线MA 上的点,设APPM=k ,若∠BPC=90°,则称k 为勾股比.(1)如图1,过B,C分别作中线AM的垂线,垂足为E,D.求证:CD=BE.(2)①如图2,当k=1,且AB=AC时,AB2+AC2=________BC2(填一个恰当的数).②如图1,当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;③对任意锐角或钝角三角形,如图1,3,请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).参考答案【基础训练】1.C 2.D 3.A 4.3 5.1 200(3-1) 6.0<CD≤5 7.23或27 8.解:(1)如图(1)所示. (2)如图(2)所示. (3)如图(3)所示. (4)如图(4)所示.【拔高训练】 9.C 10.C11.153或10 3 12.25813.解:(1)①如图,过点C 作y 轴的垂线,垂足为点D ,在Rt△AOB 中,AB =12,则BC =6.∵OB=6=BC ,AB =AB , ∴Rt△ABC≌Rt△ABO, ∴∠BAO=30°,∠ABO=60°. 又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°, ∴BD=3,CD =33, ∴OD=BD +OB =3+6=9,∴点C 的坐标为(-33,9).②如图,设点A 向右滑动的距离为x ,根据题意得点B 向上滑动的距离也为x.∴A O =AB·cos∠BAO=12×cos 30°=6 3. ∴A′O=63-x ,B′O=6+x ,A′B′=AB =12. 在△A′OB′中,由勾股定理,得 (63-x)2+(6+x)2=122, 解得x 1=0(舍去),x 2=6(3-1). ∴滑动的距离为6(3-1)cm. (2)12 【培优训练】 14.1815.(1)证明:∵M 是BC 的中点,∴BM=CM. ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°. 在△BME 和△CMD 中, ⎩⎪⎨⎪⎧∠E=∠CDM=90°,∠BME=∠CMD,BM =CM ,∴△BME≌△CMD(AAS),∴CD=BE. (2)①AB 2+AC 2=2.5BC 2②结论仍然成立.设EM =DM =a ,则AE =AM +a ,AD =AM -a.在Rt△ABE 中,AB 2=AE 2+BE 2=(AM +a)2+BE 2=AM 2+2AM·a+a 2+BE 2, 在Rt△ACD 中,AC 2=AD 2+CD 2=(AM -a)2+CD 2=AM 2-2AM·a+a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2). ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2.∵APPM=1,∴AP=PM. ∵∠BPC=90°,AM 是△ABC 的中线, ∴PM=12BC.若△ABC 是锐角三角形,则AM =AP +PM =PM +PM =2PM =BC , ∴AB 2+AC 2=2BC 2+12BC 2=52BC 2,即AB 2+AC 2=2.5BC 2.③结论:锐角三角形:AB 2+AC 2=k 2+2k +22BC 2,钝角三角形:AB 2+AC 2=k 2-2k +22BC 2.第六节 尺规作图姓名:________ 班级:________ 用时:______分钟1.(2018·湖北宜昌中考)尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )2.(2018·河北中考)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2018·山东潍坊中考)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连结BD,BC.下列说法不正确的是( )A .∠CBD=30°B .S △BDC =34AB 2 C .点C 是△ABD 的外心 D .sin 2A +cos 2D =14. (2018·吉林中考)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为________________.5.(2018·内蒙古通辽中考)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连结AD.若AB =BD ,AB =6,∠C=30°,则△ACD 的面积为______.6.(2018·辽宁抚顺中考)如图,▱ABCD 中,AB =7,BC =3,连结AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连结AE ,则△AED 的周长是________.7.(2018·北京中考)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(________)(填推理的依据).8.如图,∠BAC内有一点P,过点P作直线L∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q,R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连结EF;②过P作直线l2∥EF,分别交两直线AB,AC于Q,R两点,则Q,R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q,R即为所求.下列判断正确的是( )A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确9.如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A,D为圆心,A到C的距离为半径画弧,两弧交于E,以A为圆心,O到E的距离为半径画弧,交⊙O于F,则△ACF面积是__________.10.(2018·四川自贡中考)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)11.(2018·山东济宁中考)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图;(保留画图痕迹,不写画法)(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10 m,请你求出这个环形花坛的面积.参考答案【基础训练】 1.B 2.D 3.D4.(-1,0) 5.9 3 6.10 7.(1)解:直线PQ 如图所示.(2)AP CQ 三角形中位线定理 【拔高训练】 8.A 9.3+3410.解:(1)⊙O 如图所示.(2)如图,作OH⊥BC 于H. ∵AC 是⊙O 的切线, ∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形, ∴OE=CH =52,BH =BC -CH =32.在Rt△OBH 中,OH =(52)2-(32)2=2, ∴EC=OH =2,BE =EC 2+BC 2=2 5. ∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴DE EC =BD BE ,∴DE 2=525, ∴DE= 5.【培优训练】11.解:(1)如图,点O即为所求.(2)如图,设EF与小圆切点为C,连结OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5 m,∴OM2-OC2=CM2=25,∴S圆环=π·OM2-π·OC2=25π(m2).。

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

中考数学 考点系统复习 第四章 三角形 第一节 几何初步及相交线与平行线

4.下列命题中是真命题的是①① ③.(选填序号) ①两点之间,线段最短; ③ ②相等的角是对顶角; ③同角(或等角)的余角相等; ④两个锐角的和是钝角; ⑤同旁内角相等,两直线平行.
5.(RJ 七上 P128 练习 T3 改编)如图,点 C 为线段 AB 上一点,点 D 是线
段 AC 的中点,点 E 是线段 CB 的中点.若 AC=5 cm, BC=4 cm,则 AD=
补角为11202°0 ; (2)若EF°=3,则点E到OC的距离为 3 ;
(3)线段EG,EF,EH,EO中长度最短的是EEFF ; (4)若点F是GH的中点,EG=3,则EH=3 3 .
3.如图,已知 a∥b,∠1=∠2=50°,∠4=70°,则∠3=7700°°,∠5
=5500°°,∠6=112200°,a 与 c 的位置关系是 aa∥∥cc. °
∥b, 则∠1的大小为 A.45°
( C)
B.60°
C.75°
D.105°
7.★(2021·湘西州第17题4分)如图,将一条对边互相平行的纸带进行 两次折叠,折痕分别为AB,CD,若CD∥BE,∠1=20°,则∠2的度数是 4040°°.
命题点 3:命题与定理(2022 年考查 2 次,2021 年考查 4 次,2020 年
(B )
=80°,则∠2的度数为
( C)
A.20°
B.80°
C.100°
D.120°
5.(2022·郴州第7题3分)如图,直线a∥b,且直线a,b被直线c,d所
截,则下列条件中不能判定直线c∥d的是
( C)
A.∠3=∠4
B.∠1+∠5=180°
C.∠1=∠2
D.∠1=∠4
6.(2021·岳阳第5题3分)将一副直角三角板按如图方式摆放,若直线a

2020年中考数学一轮复习第4章几何初步与三角形(付)

2020年中考数学一轮复习第4章几何初步与三角形(付)

第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:________ 班级:________ 用时:______分钟1.(2018·浙江金华中考)如图,∠B的同位角可以是( )A.∠1 B.∠2C.∠3 D.∠42.(2018·江苏宿迁中考)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C =24°,则∠D的度数是( )A.24° B.59°C.60° D.69°3.(2018·山东枣庄中考)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )A.20° B.30°C.45° D.50°4.(2018·湖南益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是( )A.∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°5.(2018·山东聊城中考)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是( )A.110° B.115°C.120° D.125°6.(2018·浙江金华模拟)若∠α=35°,则∠α的补角为__________度.7.(2018·湖南衡阳中考)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC 的度数为__________.8.(2018·湖南永州中考)一副透明的三角板,如图叠放,直角三角板的斜边AB,CE相交于点D,则∠BDC=__________.9. (2018·重庆中考B卷)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE 交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.10.(2017·湖北十堰中考)如图,AB∥DE,FG⊥BC于点F,∠CDE=40°,则∠FGB=( )A.40° B.50°C.60° D.70°11.如图,已知点P是∠AOB的平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm.如果点C是OB上一个动点,则PC的最小值为( )A.2 cm B.2 3 cm C.4 cm D.4 3 cm12.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°13.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F =____________.14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 的长是______.15.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN.若MF∥AD,FN∥DC,则∠B=__________.16.(2018·湖北鄂州中考)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E,F分别为DB,BC的中点,连结AE,EF,AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系.17.已知O为直线AB上的一点,OC⊥OE于点O,射线OF平分∠AOE.(1)如图1,∠COF和∠BOE之间有何数量关系?并说明理由;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并加以证明.18.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数;(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC 的数量关系,并说明理由.参考答案【基础训练】1.D 2.B 3.D 4.C 5.C 6.145 7.75° 8.75°9.解:∵∠EFG=90°,∠E=35°, ∴∠FGH=55°.∵GE 平分∠FGD,AB∥CD, ∴∠FHG=∠HGD=∠FGH=55°. ∵∠FHG 是△EFH 的外角, ∴∠EFB=55°-35°=20°. 【拔高训练】 10.B 11.C 12.C 13.9.5° 14.3 15.95°16.(1)证明:∵点E ,F 分别为DB ,BC 的中点, ∴EF 是△BCD 的中位线,∴EF=12CD.又∵DB=DC ,∴EF=12DB.在Rt△ABD 中,∵点E 为DB 的中点, ∴AE 是斜边BD 上的中线, ∴AE=12DB ,∴AE=EF.(2)解:如图,∵AE=EF ,AF =AE ,∴AE=EF =AF , ∴△AEF 是等边三角形,∴∠AEF=60°. ∵EF 是△BCD 的中位线, ∴EF∥CD,∴∠BEF=∠CDB=β,∴β+∠2=60°.又∵∠2=∠1+∠ADB=∠1+α,∴∠1+α+β=60°,∴∠1=60°-α-β. ∵AE 是斜边BD 上的中线, ∴AE=DE ,∴∠1=∠ADB=α, ∴α=60°-α-β,∴2α+β=60°. 17.解:(1)∠BOE=2∠COF.理由如下: ∵∠COE=90°, ∴∠BOE=90°-∠AOC,∠COF=∠AOF-∠AOC=12(90°+∠AOC)-∠AOC=12(90°-∠AOC),∴∠BOE =2∠COF.(2)不发生变化.证明如下:∵∠COE=90°,∴∠COF=90°-∠EOF,∠BOE=180°-2∠EOF. ∴∠BOE=2∠COF. (3)∠BOE+2∠COF=360°.证明如下:∵∠COE=90°,∴∠COF=90°+∠EOF,∠BOE=90°+∠BOC=90°+90°-2∠EOF=180°-2∠EOF. ∴∠BOE+2∠COF=360°. 【培优训练】18.解:(1)∵OM 平分∠BOC, ∴∠MOC=∠MOB.又∵∠BOC=110°,∴∠MOB=55°. ∵∠MON=90°,∴∠BON=∠MON-∠MOB=35°. (2)11或47(3)∠AOM-∠NOC=20°.理由如下:∵∠MON=90°,∠AOC=70°, ∴∠A OM =90°-∠AON,∠NOC=70°-∠AON,∴∠AOM-∠NOC=(90°-∠AON)-(70°-∠AON)=20°,∴∠AOM与∠NOC的数量关系为∠AOM-∠NOC=20°.第二节三角形的基础姓名:________ 班级:________ 用时:______分钟1.(2018·广西柳州中考)如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个2.已知,如图,在△ABC中,BO和CO分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若DE=8,则线段BD+CE的长为( )A.5 B.6 C.7 D.83.(2018·湖北黄石中考)如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75° B.80° C.85° D.90°4.(2017·四川巴中中考)若a,b,c为三角形的三边,且a,b满足a-9+(b-2)2=0,第三边c为奇数,则c=______.5.(2017·四川乐山中考)点A,B,C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是_________.6.如图,在△ABC 中,AB =AC ,AD⊥BC,垂足为点D ,AD =18,点E 在AC 上,且CE =12AC ,连结BE ,与AD 相交于点F.若BE =15,则△DBF 的周长是________.7.(2018·湖北宜昌中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E. (1)求∠CBE 的度数;(2)过点D 作DF∥BE,交AC 的延长线于点F ,求∠F 的度数.8. (2019·易错题)如图,在长方形网格中,每个小长方形的长为2,宽为1,A,B两点在网格格点上.若点C也在网格格点上,以A,B,C为顶点的三角形面积为2,则满足条件的点C个数是( )A.2 B.3 C.4 D.59.如图,在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A.4.8 B.4.8或3.8C.3.8 D.510.(2017·辽宁大连中考)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E 是AB的中点,CD=DE=a,则AB的长为( )A.2a B.22aC.3a D.43 3a11.如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E,F分别是AD,CD的中点,连结BE,BF,EF.若四边形ABCD的面积为6,则△BEF的面积为( )A.2 B.94C.52D.312.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连结EF交AP于点G.给出以下五个结论:①∠B=∠C=45°;②AE=CF;③AP=EF;④△EPF是等腰直角三角形;⑤四边形AEPF的面积是△ABC面积的一半.其中正确的结论是( )A.只有① B.①②④C.①②③④ D.①②④⑤13.(2017·四川达州中考)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是______________.14.(2019·改编题)已知点G是面积为27 cm2的△ABC的重心,那么△AGC的面积等于______cm2.15.如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点.若S△BFC=1,则S△ABC=______.16.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设该组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.17.(2017·山东德州中考)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10 m的A处,测得一辆汽车从B处行驶到C处所用时间为0.9 s.已知∠B=30°,∠C=45°.(1)求B,C之间的距离;(保留根号)(2)如果此地限速为80 km/h,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)18.如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=________;若∠A=a°,则∠BEC=________.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC =________;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.参考答案【基础训练】1.C 2.D 3.A 4.9 5.3556.247.解:(1)∵在Rt△ABC 中,∠ACB=90°,∠A=40°, ∴∠ABC=90°-∠A=50°, ∴∠CBD=130°. ∵BE 是∠CBD 的平分线, ∴∠CBE =12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°, ∴∠CEB=90°-65°=25°. ∵DF∥BE,∴∠F=∠CEB=25°. 【拔高训练】8.C 9.A 10.B 11.C 12.D 13.1<m<4 14.9 15.416.解:(1)设三角形的第三边长为x. ∵每个三角形有两条边的长分别为5和7, ∴7-5<x<5+7,即2<x<12,∴其中一个三角形的第三边的长可以为10(不唯一). (2)∵2<x<12,它们的边长均为整数, ∴x=3,4,5,6,7,8,9,10,11, ∴该组中最多有9个三角形,∴n=9.(3)∵当x =4,6,8,10时,该三角形周长为偶数, ∴该三角形周长为偶数的概率是49.17.解:(1)如图,过点A 作AD⊥BC 于点D ,则AD =10 m.∵在Rt△ACD 中,∠C =45°, ∴Rt△ACD 是等腰直角三角形. ∴CD=AD =10 m.在Rt△A BD 中,tan B =ADBD,∵∠B=30°,∴BD=3AD , ∴BD=10 3 m.∴BC=BD +DC =(10+103)m. 答:B ,C 之间的距离是(10+103)m. (2)这辆汽车超速.理由如下: 由(1)知BC =(10+103)m. 又3≈1.7,∴BC≈27 m, ∴汽车速度v =270.9=30(m/s).又∵30 m/s=108 km/h , 此地限速为80 km/h ,且108>80, ∴这辆汽车超速. 【培优训练】18.解:131° 90°+12a°【探究】 (1)60°+23a°(2)∠BOC=12∠A.理由如下:由三角形的外角性质得,∠ACD =∠A+∠ABC, ∠OCD=∠BOC+∠OBC,∵O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点, ∴∠ABC=2∠OBC,∠ACD=2∠OCD, ∴∠A+∠ABC=2(∠BOC+∠OBC), ∴∠A=2∠BOC,∴∠BOC=12∠A.(3)∠BOC=90°-12∠A.理由如下:∵O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC=12(180°-∠ABC)=90°-12∠ABC,∠OCB=12(180°-∠ACB)=90°-12∠ACB,在△OBC 中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠ABC)-(90°-12∠ACB)=12(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,∴∠BOC=12(180°-∠A)=90°-12∠A.第三节 全等三角形姓名:________ 班级:________ 用时:______分钟1.下列说法正确的是( ) A .两个等边三角形一定全等 B .腰对应相等的两个等腰三角形全等 C .形状相同的两个三角形全等 D .全等三角形的面积一定相等2.如图,在▱ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE≌△CDF,那么添加的条件不能为( )A .BE =DFB .BF =DEC .AE =CFD .∠1=∠23.如图,在方格纸中,以AB 为一边作△ABP,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个4.(2017·四川眉山中考)如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F.若▱ABCD 的周长为18,OE =1.5,则四边形EFCD 的周长为( )A.14 B.13 C.12 D.105.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.6.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.7.(2019·易错题)如图,在平面直角坐标系中,A,B两点分别在x轴、y轴上,OA=3,OB =4,连结AB.点P在平面内,若以点P,A,B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为_______________________.8.(2018·广西桂林中考)如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.9.(2018·陕西中考)如图,AB∥CD,E,F分别为AB,CD上的点,且EC∥BF,连结AD,分别与EC,BF相交于点G,H,若AB=CD,求证:AG=DH.10.如图,△ABC≌△ADE且BC,DE交于点O,连结BD,CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE.其中一定成立的有( )A.1个B.2个C.3个D.4个11.在平面直角坐标系内,点O为坐标原点,A(-4,0),B(0,3).若在该坐标平面内有以点P(不与点A,B,O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为( )A.9 B.7C.5 D.312.如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长为( )A.2 B.3C.1 D.813.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列结论:①AM=CN;②∠AME=∠BNE;③BN-AM=2;④S△EMN=2cos2α.上述结论中正确的个数是( )A.1 B.2 C.3 D.414.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________(请写出正确结论的序号).15.(2017·陕西中考)四边形ABCD中,AD=AB,∠BAD=∠BCD=90°,连结AC.若AC=6,则四边形ABCD的面积为________.16.(2017·四川广安中考)如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为点G.求证:AF=BE.17.(2017·江苏常州中考)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.18.(2017·湖北恩施州中考)如图,△ABC,△CDE均为等边三角形,连结BD,AE交于点O,BC与AE交于点P.求证:∠AOB=60°.19.(2017·重庆中考)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M.点C是BM延长线上一点,连结AC.(1)如图1,若AB=32,BC=5,求AC的长.(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连结ED并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF.参考答案【基础训练】 1.D 2.C 3.C 4.C5.4 6.1 7.(3,4)或(-2125,2825)或(9625,7225)8.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF , ∴AC=DF.在△ABC 和△DEF 中,∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC≌△DEF(SSS).(2)解:由(1)可知,∠F=∠ACB, ∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°, ∴∠F=∠ACB=37°. 9.证明:∵AB∥CD,EC∥BF,∴四边形BFCE 是平行四边形,∠A=∠D, ∴∠BEC=∠BFC,BE =CF , ∴∠AEG=∠DFH. ∵AB=CD ,∴AE=DF.在△AEG 和△DFH 中, ∵⎩⎪⎨⎪⎧∠A=∠D,AE =DF ,∠AEG=∠DFH, ∴△AEG≌△DFH(ASA), ∴AG=DH. 【拔高训练】10.C 11.A 12.A 13.C 14.①② 15.1816.证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠A=∠ABC=90°, ∴∠AFB+∠ABF=90°.∵BF⊥CE,∴∠BEC+∠ABF=90°, ∴∠AFB=∠BEC(等角的余角相等). 在△AFB 和△BEC 中, ∵⎩⎪⎨⎪⎧∠A=∠EBC,∠AFB=∠BEC,AB =BC ,∴△AFB≌△BEC(AAS), ∴AF=BE.17.(1)证明:∵∠BCE=∠ACD=90°, ∴∠BCA=∠ECD. 在△BCA 和△ECD 中, ∵⎩⎪⎨⎪⎧∠BCA=∠ECD,∠BAC=∠D,BC =EC ,∴△BCA≌△ECD,∴AC=CD. (2)解:∵AC=AE ,∴∠AEC=∠ACE. 又∵∠ACD=90°,AC =CD , ∴△ACD 是等腰直角三角形, ∴∠DAC=45°,∴∠AEC=12(180°-∠DAC)=12(180°-45°)=67.5°,∴∠DEC=180°-∠AEC=180°-67.5°=112.5°. 18.证明:在△ACE 和△BCD 中, ∵⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD , ∴△ACE≌△BCD, ∴∠CAE=∠CBD,∴∠AOB=180°-∠BAO-∠ABO =180°-∠BAO-∠ABC-∠CBD =180°-∠ABC-∠BAO-∠CAE =180°-60°-60°=60°. 【培优训练】19.解:(1)∵AM⊥BM, ∴∠AMB=∠AMC=90°. ∵∠ABM=45°,∴∠ABM=∠BAM=45°,∴AM=BM. ∵AB=32,∴AM=BM =3. ∵BC=5,∴MC=2,∴AC=AM 2+CM 2=13.(2)证明:如图,延长EF 到点G ,使得FG =EF ,连结BG.∵DM=MC ,∠BMD=∠AMC=90°,BM =AM , ∴△BMD≌△AMC,故AC =BD. 又CE =AC ,因此BD =CE.∵点F 是线段BC 的中点, ∴BF=FC ,由BF =FC ,∠BFG=∠EFC,FG =FE , ∴△BFG≌△CFE,故BG =CE ,∠G=∠CEF, ∴BD=CE =BG ,∴∠BDG=∠G,∴∠BDF=∠CEF.第四节 等腰三角形姓名:________ 班级:________ 用时:______分钟1.如图,在△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,大于12AB 长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于D ,连结AD.若AD =AC ,∠B=25°,则∠C=( )A .70° B.60° C.50° D.40°2.(2017·四川南充中考)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .(3,1)C .(3,3)D .(1,3)3.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有( ) A .4个 B .3个 C .2个D .1个4. (2018·四川绵阳中考)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB的顶点A 在△ECD 的斜边DE 上,若AE =2,AD =6,则两个三角形重叠部分的面积为( )A. 2B .3- 2 C.3-1D .3- 35.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD⊥AC 于点D ,下列四个结论:①EF=BE +CF ; ②∠BOC=90°+12∠A;③点O 到△ABC 各边的距离相等; ④设OD =m ,AE +AF =n ,则S △AEF =mn. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①③④6.(2018·黑龙江绥化中考)已知等腰三角形的一个外角为130°,则它的顶角的度数为__________________.7.(2018·湖南娄底中考)如图,△ABC 中,AB =AC ,AD⊥BC 于点D ,DE⊥AB 于点E ,BF⊥AC 于点F ,DE =3 cm ,则BF =______cm .8.(2018·浙江嘉兴中考)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE⊥AB,DF⊥BC,垂足分别为点E ,F ,且DE =DF.求证:△ABC 是等边三角形.9. (2018·江苏镇江中考)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.10.如图,△ABC是等边三角形,点P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为Q.若BF=2,则PE的长为( )A.2 B.2 3C. 3 D.311.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44° B.66° C.88° D.92°12.(2019·易错题)在一张长为8 cm,宽为6 cm的矩形纸片上,要剪下一个腰长为5 cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形的边上),这个等腰三角形的剪法有( )A.1种B.2种C.3种D.4种13.如图,等腰△ABC纸片(AB=AC)可按图中所示方法折成一个四边形,点A与点B重合,点C与点D重合,则在原等腰△ABC中,∠B=__________.14.(2018·辽宁葫芦岛中考)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1的右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM,ON于点B2,A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM,ON于点B3,A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为__________________.(用含正整数n的代数式表示)15.(2018·浙江绍兴中考)数学课上,张老师举了下面的例题:例1. 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2. 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.16. (2018·青海中考)请认真阅读下面的数学小探究系列,完成所提出的问题. (1)探究1:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.求证:△BCD 的面积为12a 2;(提示:过点D 作BC 边上的高DE ,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt △ABC 中,∠ACB=90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.请用含a 的式子表示△BCD 的面积,并说明理由;(3)探究3:如图3,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连结CD.试探究用含a 的式子表示△BCD 的面积,要有探究过程.17.如图,已知AG⊥BD,AF⊥CE,BD ,CE 分别是∠ABC 和∠ACB 的平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为________.参考答案【基础训练】1.C 2.D 3.B 4.D 5.A 6.50°或80° 7.68.证明:∵DE⊥AB,DF⊥BC,垂足分别为点E ,F , ∴∠AED=∠CFD=90°. ∵D 为AC 的中点,∴AD=DC. 在Rt△ADE 和Rt△CDF 中,∵⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt△ADE≌Rt△CDF,∴∠A=∠C, ∴BA=BC ,∵AB=AC ,∴AB=BC =AC , ∴△ABC 是等边三角形.9.(1)证明:∵AB=AC ,∴∠B=∠ACF. 在△ABE 和△ACF 中,∵⎩⎪⎨⎪⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)75 【拔高训练】 10.C 11.D 12.C13.72° 14.(32)2n -2×3315.解:(1)若∠A 为顶角,则∠B=(180°-∠A)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B=180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B=80°. 故∠B=50°或20°或80°. (2)分两种情况:①当90≤x<180时,∠A 只能为顶角, ∴∠B 的度数只有一个; ②当0<x <90时,若∠A 为顶角,则∠B=(180-x2)°;若∠A 为底角,∠B 为顶角,则∠B=(180-2x)°; 若∠A 为底角,∠B 为底角,则∠B=x°. 当180-x 2≠180-2x 且180-2x≠x 且180-x 2≠x,即x≠60时,∠B 有三个不同的度数.综上所述,可知当0<x <90且x≠60时,∠B 有三个不同的度数. 16.(1)证明:过点D 作DE⊥CB 交CB 的延长线于点E , ∴∠BED=∠ACB=90°.由旋转知AB =BD ,∠ABD=90°, ∴∠ABC+∠DBE=90°. 又∵∠A+∠ABC=90°, ∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴DE=a =BC , ∴S △BCD =12BC·DE=12a 2.(2)解:过点D 作DE⊥CB,交CB 的延长线于点E ,由(1)得∠BED=∠ACB=90°.∵线段AB 绕点B 顺时针旋转90°得到线段BD , ∴AB=BD ,∠ABD=90°. ∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE. 在△ABC 和△BDE 中, ∵⎩⎪⎨⎪⎧∠ACB=∠BED,∠A=∠DBE,AB =BD ,∴△ABC≌△BDE(AAS), ∴BC=DE =a.∵S △BCD =12BC·DE,∴S △BCD =12a 2.(3)解:如图,过点A 作AF⊥BC 于点F ,过点D 作DE⊥CB,交CB 的延长线于点E ,∴∠AFB=∠E=90°,BF =12BC =12a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD. ∵线段BD 是由线段AB 旋转得到的, ∴AB=BD.在△AFB 和△BED 中, ∵⎩⎪⎨⎪⎧∠AFB=∠E,∠FAB=∠EBD,AB =BD ,∴△AFB≌△BED,∴BF=DE =12a.∵S △BCD =12BC·DE,∴S △BCD =12a·12a =14a 2.∴△BCD 的面积为14a 2.【培优训练】 17.30第五节 直角三角形与勾股定理姓名:________ 班级:________ 用时:______分钟1.(2018·海南中考)如图,在△ABC 中,AB =8,AC =6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°,得到△AB 1C 1,连结BC 1,则BC 1的长为( )A .6B .8C .10D .122.(2019·改编题)下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.(2017·贵州毕节中考)如图,在Rt △ABC 中,∠ACB=90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .124.(2018·山东德州中考)如图,OC 为∠AOB 的平分线,CM⊥OB,OC =5,OM =4,则点C 到射线OA 的距离为______.5.(2018·浙江宁波中考)如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1 200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为_____________________米(结果保留根号).6.(2017·湖南常德中考)如图,已知在Rt△ABE中,∠A=90°,∠B=60°,BE=10,D 是线段AE上的一动点,过点D作CD交BE于点C,并使得∠CDE=30°,则CD长度的取值范围是________________.7.(2018·湖北襄阳中考)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为__________.8.(2018·四川广安中考)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形;(2)画一个底边长为4,面积为8的等腰三角形;(3)画一个面积为5的等腰直角三角形;(4)画一个一边长为22,面积为6的等腰三角形.9.已知直角三角形的周长为14,斜边上的中线长为3,则该直角三角形的面积为( ) A.5 B.6 C.7 D.810.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.90 B.100C.110 D.12111.(2018·江苏无锡中考)已知△ABC中,AB=10,AC=27,∠B=30°,则△ABC的面积等于______________.12.(2017·湖北襄阳中考)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=8,AB=10,则CD的长为_______.13.如图,在平面直角坐标系中,将含30°角的三角尺的直角顶点C落在第二象限,其斜边两端点A ,B 分别落在x 轴、y 轴上,且AB =12 cm .(1)若OB =6 cm , ①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2)点C 与点O 的距离的最大值=________cm .14.如图,在Rt △ABC 中,∠ACB=90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 同侧作正方形ABEF ,ACPQ ,BDMC ,记四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.15.某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图1△ABC 中,M 是BC 的中点,P 是射线MA 上的点,设APPM=k ,若∠BPC=90°,则称k 为勾股比.(1)如图1,过B,C分别作中线AM的垂线,垂足为E,D.求证:CD=BE.(2)①如图2,当k=1,且AB=AC时,AB2+AC2=________BC2(填一个恰当的数).②如图1,当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;③对任意锐角或钝角三角形,如图1,3,请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).参考答案【基础训练】1.C 2.D 3.A 4.3 5.1 200(3-1) 6.0<CD≤5 7.23或27 8.解:(1)如图(1)所示. (2)如图(2)所示. (3)如图(3)所示. (4)如图(4)所示.【拔高训练】 9.C 10.C11.153或10 3 12.25813.解:(1)①如图,过点C 作y 轴的垂线,垂足为点D ,在Rt△AOB 中,AB =12,则BC =6.∵OB=6=BC ,AB =AB , ∴Rt△ABC≌Rt△ABO, ∴∠BAO=30°,∠AB O =60°. 又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°, ∴BD=3,CD =33, ∴OD=BD +OB =3+6=9,∴点C 的坐标为(-33,9).②如图,设点A 向右滑动的距离为x ,根据题意得点B 向上滑动的距离也为x.∴AO=AB·cos∠BAO=12×cos 30°=6 3. ∴A′O=63-x ,B′O=6+x ,A′B′=AB =12. 在△A′OB′中,由勾股定理,得 (63-x)2+(6+x)2=122, 解得x 1=0(舍去),x 2=6(3-1). ∴滑动的距离为6(3-1)cm. (2)12 【培优训练】 14.1815.(1)证明:∵M 是BC 的中点,∴BM=CM. ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°. 在△BME 和△CMD 中, ⎩⎪⎨⎪⎧∠E=∠CDM=90°,∠BME=∠CMD,BM =CM ,∴△BME≌△CMD(AAS),∴CD=BE. (2)①AB 2+AC 2=2.5BC 2②结论仍然成立.设EM =DM =a ,则AE =AM +a ,AD =AM -a.在Rt△ABE 中,AB 2=AE 2+BE 2=(AM +a)2+BE 2=AM 2+2AM·a+a 2+BE 2, 在Rt△ACD 中,AC 2=AD 2+CD 2=(AM -a)2+CD 2=AM 2-2AM·a+a 2+CD 2, ∴AB 2+AC 2=2AM 2+(a 2+BE 2)+(a 2+CD 2). ∵BE⊥AM 于E ,CD⊥AM 于D , ∴∠E=∠CDM=90°,∴a 2+BE 2=BM 2=14BC 2,a 2+CD 2=CM 2=14BC 2,∴AB 2+AC 2=2AM 2+12BC 2.∵APPM=1,∴AP=PM. ∵∠BPC=90°,AM 是△ABC 的中线, ∴PM=12BC.若△ABC 是锐角三角形,则AM =AP +PM =PM +PM =2PM =BC , ∴AB 2+AC 2=2BC 2+12BC 2=52BC 2,即AB 2+AC 2=2.5BC 2.③结论:锐角三角形:AB 2+AC 2=k 2+2k +22BC 2,钝角三角形:AB 2+AC 2=k 2-2k +22BC 2.第六节 尺规作图姓名:________ 班级:________ 用时:______分钟1.(2018·湖北宜昌中考)尺规作图:经过已知直线外一点作这条直线的垂线.下列作图中正确的是( )2.(2018·河北中考)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ3.(2018·山东潍坊中考)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连结BD,BC.下列说法不正确的是( )A .∠CBD=30°B .S △BDC =34AB 2 C .点C 是△ABD 的外心 D .sin 2A +cos 2D =14. (2018·吉林中考)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为________________.5.(2018·内蒙古通辽中考)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交BC 于点D ,连结AD.若AB =BD ,AB =6,∠C=30°,则△ACD 的面积为______.6.(2018·辽宁抚顺中考)如图,▱ABCD 中,AB =7,BC =3,连结AC ,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连结AE ,则△AED 的周长是________.7.(2018·北京中考)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(________)(填推理的依据).8.如图,∠BAC内有一点P,过点P作直线L∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q,R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连结EF;②过P作直线l2∥EF,分别交两直线AB,AC于Q,R两点,则Q,R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q,R即为所求.下列判断正确的是( )A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确9.如图,在半径为1的⊙O上任取一点A,连续以1为半径在⊙O上截取AB=BC=CD,分别以A,D为圆心,A到C的距离为半径画弧,两弧交于E,以A为圆心,O到E的距离为半径画弧,交⊙O于F,则△ACF面积是__________.10.(2018·四川自贡中考)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)11.(2018·山东济宁中考)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图;(保留画图痕迹,不写画法)(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10 m,请你求出这个环形花坛的面积.参考答案【基础训练】 1.B 2.D 3.D4.(-1,0) 5.9 3 6.10 7.(1)解:直线PQ 如图所示.(2)AP CQ 三角形中位线定理 【拔高训练】 8.A 9.3+3410.解:(1)⊙O 如图所示.(2)如图,作OH⊥BC 于H. ∵AC 是⊙O 的切线, ∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO 是矩形, ∴OE=CH =52,BH =BC -CH =32.在Rt△OBH 中,OH =(52)2-(32)2=2, ∴EC=OH =2,BE =EC 2+BC 2=2 5. ∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴DE EC =BD BE ,∴DE 2=525, ∴DE= 5.【培优训练】11.解:(1)如图,点O即为所求.(2)如图,设EF与小圆切点为C,连结OM,OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5 m,∴OM2-OC2=CM2=25,∴S圆环=π·OM2-π·OC2=25π(m2).。

中考数学基础过关复习第四章几何图形初步第1课时几何图形初步课件新人教版

中考数学基础过关复习第四章几何图形初步第1课时几何图形初步课件新人教版

长方形 绕一边 旋转成 圆柱体
考 点 2 直线 线段 射线
名称 概念
图形
线段
连结两个端点之 间的笔直的线
Aa B
端点 长度 表示方法
延展性
有两个端点

线段 AB(
a BA)或线段
可延长或反 向延长
射线
将线段向一个方向无 限延长就得到了射线
直线
将线段向两个方向无 限延长就形成了直线
A B
有一个端点
A Bl
无端点


射线AB
直线AB(BA)或直线l
向一方无限延伸 向两方无限延伸 (可反向延长) (不可延长)
2.基本事实
(1)经过两点有一条直线,并且只有一条直线.
即两点确定一条直线.
(2)两点的所有连线中,线段最短.
. 即两点之间,线段最短.
经过两点有一条直线,并且只有一条直线。
存在
唯一
3.线段的和差
(3)与一条线段两个端点距离相等的点,在这条线段的垂l 直平分线上. P
A
C
B
考点3 角
1.角的基本概念 有公共端点的两条射线组成的图形叫做角.
考点3 角 有公共端点的两条射线组成的图形叫做角
角的顶点
B
角的边
角的边
O
角的顶点

A
角的边
如果一个角的两边成一条直线,那么这个角叫做平角;
平角的一半叫直角;
B.中
C.国
D.梦
6.如图所示是某个几何体的展开图,这个几何体是三棱柱.
A.40°
B4.(2015·钦州)如图,直线AB和OC相交于点O,
∠AOC=100°,则∠1= 80 度.

中考数学复习第四章几何初步与三角形第一节几何的初步认识随堂演练

中考数学复习第四章几何初步与三角形第一节几何的初步认识随堂演练

几何的初步认识随堂演练1.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A.35° B.45° C.55° D.70°2.(2017·日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于( )A.120° B.30° C.40° D.60°3.(2017·滨州)如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等4.(2017·枣庄)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A.15° B.22.5° C.30° D.45°5.(2017·东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于( )A.100° B.135° C.155° D.165°6.(2016·漳州)下列尺规作图,能判断AD是△ABC边上的高的是( )7.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿C D折叠,两条折痕的交点为O,测得OA=OB,OC=OD8.(2017·德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是.9.(2017·威海)如图,直线l1∥l2,∠1=20°,则∠2+∠3=.10.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.参考答案1.C 2.D 3.D 4.A 5.D 6.B7.C8.同位角相等,两直线平行9.200°10.解:AC∥OB,BC∥OA.理由如下:∵∠1=∠2,∴AC∥OB.∵∠2+∠3=180°,∴BC∥OA.。

山东省济南市中考数学一轮复习 随堂演练 第四章 几何初步与三角形 第一节 基本平面图形和相交线与平行

山东省济南市中考数学一轮复习 随堂演练 第四章 几何初步与三角形 第一节 基本平面图形和相交线与平行

第一节基本平面图形和相交线与平行线随堂演练1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )A.140° B.160°C.170° D.150°2.(2017·日照)如图,AB∥CD,直线l交AB于点E,交CD于点F.若∠1=60°,则∠2等于( ) A.120° B.30°C.40° D.60°3.(2017·安顺)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )A.100° B.110° C.120° D.130°4.(2016·漳州)下列尺规作图,能判断AD是△ABC边上的高的是( )5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD6.(2017·德州)如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是_________________.7.(2017·威海)如图,直线l1∥l2,∠1=20°,则∠2+∠3=_______ .8.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.参考答案1.B 2.D 3.D 4.B 5.C6.同位角相等,两直线平行7.200°8.解:AC∥OB,BC∥OA.理由如下:∵∠1=∠2,∴AC∥OB.∵∠2+∠3=180°,∴BC∥OA.。

2024年中考数学总复习第一部分考点梳理第四章三角形第1节几何初步

2024年中考数学总复习第一部分考点梳理第四章三角形第1节几何初步

第四章三角形第1节几何初步考情分析导航命题点年份题型、题序考查内容分值考查热度角的识别2023 选择题第4题内错角识别3分★★★2022 选择题第4题内错角识别3分2021 选择题第11题内错角识别3分平行线的性质及平行线的性质与判定的综合2023 选择题第4题平行线的性质3分★★★★2022 解答题第23题平行线判定4分2021 选择题第11题平行线的性质3分知识清单必备知识点知识点解读直线和线段两个基本事实:①直线的基本事实:两点确定一条直线;②线段的基本事实:两点之间,线段最短.线段的中点:如图,点M把线段AB分成两部分.若AM=MB,则M为线段AB的中点,且AM=MB=12AB.线段的和与差:如图,B是线段AC上的一点,则有AB=AC-BC ,BC=AC-AB ,AC=AB+BC .角及角的平分线度分秒换算:度、分、秒之间是60进制.1°=60',1'=60″.余角:如果∠1+∠2=90°,则∠1与∠2互为余角.补角:如果∠1+∠2=180°,则∠1与∠2互为补角.性质:同角(或等角)的余角相等,同角(或等角)的补角相等. 角平分线性质定理:角平分线上的点到角两边的距离相等.角平分线判定定理:角的内部到角的两边距离相等的点在角平分线上.相交线对顶角:∠1与∠3是对顶角,∠2与∠4是对顶角,∠5与∠7是对顶角,∠6与∠8是对顶角,对顶角相等.邻补角:∠1的邻补角是∠2或∠4,∠5的邻补角是∠6或∠8,邻补角之和等于180°.同旁内角:∠4与∠5,∠3与∠6;同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角:∠4与∠6,∠3与∠5.平行线在同一平面内,永不相交的两条直线叫做平行线.知识点知识点解读平行公理①经过直线外一点有且只有一条直线与已知直线平行;②如果两条直线都和第三条直线平行,那么这两条直线互相平行.垂线的性质和垂直平分线垂线的性质:①基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短;③点到直线的距离:直线外一点到这条直线的垂线段的长度.垂直平分线:性质:线段垂直平分线上的点到线段两端点的距离相等;判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.平行线的性质与判定①两直线平行⇔同位角相等;②两直线平行⇔内错角相等;③两直线平行⇔同旁内角互补.命题①判断一件事情的语句叫命题,命题由题设和结论两部分组成;②命题分为真命题和假命题两种形式.③如果题设成立,那么结论一定成立是真命题;如果题设成立,不能保证结论一定成立是假命题.高频考点研析考点一角的识别与计算【例1】(2022·青海)数学课上老师用双手形象地表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示(D)A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【考法揭秘】“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.【变式】1.(2015·贵阳)如图,∠1的内错角是(D)A.∠2B.∠3C.∠4D.∠52.(2020·贵阳)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是(A)A.150°B.120°C.60°D.30°3.(2023·北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为(C)A.36°B.44°C.54°D.63°4.(2023·江西)如图,平面镜MN放置在水平地面CD上,墙面PD⊥CD于点D,一束光线AO照射到镜面MN上,反射光线为OB,点B在PD上,若∠AOC=35°,则∠OBD的度数为(C)A.35°B.45°C.55°D.65°考点二平行线的性质【例2】(2023·贵州)如图,已知直线AB∥CD,AC与BD相交于点E.若∠C=40°,则∠A的度数是(B) A.39°B.40° C.41° D.42°【考法揭秘】平行线的性质,熟知:两直线平行,同位角相等、内错角相等、同旁内角互补.【变式】1.(2023·雅安)如图,AB∥CD,AC⊥BC于点C,∠1=65°,则∠2的度数为(B)A.65°B.25°C.35°D.45°2. (2023·日照)在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得∠1=23°,则∠2的度数是(B)A.23°B. 53°C.60°D. 67°3.(2023·深圳)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB= (A)A.70°B.65°C.60°D.50°考点三平行线的判定与性质的综合运用【例3】(2023·金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是 (C)A.120°B.125°C.130°D.135°【考法揭秘】考查平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.【变式】1.(2019·遵义)如图,∠1+∠2=180°,∠3=104°,则∠4的度数是(B)A.74°B.76°C.84°D.86°2.(2022·武汉)如图,在四边形ABCD中,AD∥BC,∠B=80°.(1)求∠BAD的度数;(2)AE平分∠BAD交BC于点E,∠BCD=50°.求证:AE∥DC.【解析】(1)∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=80°,∴∠BAD=100°;(2)∵AE平分∠BAD,∴∠DAE=50°,∵AD∥BC,∴∠AEB=∠DAE=50°,∵∠BCD=50°,∴∠AEB=∠BCD,∴AE∥DC.考点四角平分线的性质【例4】(2023·扬州)如图,△ABC中,∠A=90°,AB=8,AC=15,以点B为圆心,适当长为半径画MN的长为半径画弧,两弧交于点E,弧,分别交BA,BC于点M,N,再分别以点M,N为圆心,大于12.作射线BE交AC于点D,则线段AD的长为245【考法揭秘】本题考查作图——基本作图,解直角三角形等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.【变式】1.(2023·乐山)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD的度数为20°.2.(2023·东营)如图,在△ABC中,以点C为圆心,任意长为半径作弧,分别交AC,BC于点D,E;DE的长为半径作弧,两弧交于点F;作射线CF交AB于点G.若分别以点D,E为圆心,大于12AC=9,BC=6,△BCG的面积为8,则△ACG的面积为12.考点五垂直平分线的性质AC的长为半径作弧【例5】 (2023·天津)如图,在△ABC中,分别以点A和点C为圆心,大于12(弧所在圆的半径都相等),两弧相交于M,N两点,直线MN分别与边BC,AC相交于点D,E,连接AD.若BD=DC,AE=4,AD=5,则AB的长为(D)A.9B.8C.7D.6【考法揭秘】本题考查了勾股定理、线段垂直平分线的性质、等腰三角形的性质、三角形内角和定理,熟练掌握勾股定理,以及线段垂直平分线的性质是解题的关键.【变式】BC长为半径画弧,两弧相交于(2022·宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于12点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为(C)A.25B.22C.19D.18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何的初步认识
随堂演练
1.如图,OA⊥OB,∠1=35°,则∠2的度数是( )
A.35° B.45° C.55° D.70°
2.如图,AB∥CD,直线l交AB于点E,交CD于点F.若∠1=60°,则∠2等于( )
A.120° B.30° C.40° D.60°
3.(2017·临沂)如图,将直尺与含30°角的三角尺摆放在一起.若∠1=20°,则∠2的度数是( )
A.50° B.60° C.70° D.80°
4.下列尺规作图,能判断AD是△ABC边上的高的是( )
5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A.如图1,展开后测得∠1=∠2
B.如图2,展开后测得∠1=∠2且∠3=∠4
C.如图3,测得∠1=∠2
D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是________________.
7.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________.
8.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.
参考答案
1.C 2.D 3.A 4.B 5.C
6.同位角相等,两直线平行7.200°
8.解:AC∥OB,BC∥OA.理由如下:
∵∠1=∠2,∴AC∥OB.
∵∠2+∠3=180°,∴BC∥OA.。

相关文档
最新文档