人教版八年级数学第十六章分式导学案

合集下载

第十六章分式全章导学案

第十六章分式全章导学案

第十六章分式从分数到分式主备人:初审人:终审人:【导学目标】1.能用分式表示实际问题中的数量关系,感悟分式的模型思想;了解分式的概念,明确整式与分式的区别.2.理解并掌握判断一个分式有意义、无意义及值为零的方法.3.经历用字母表示实际问题中的数量关系的过程,进一步发展符号感,在此基础上掌握分式中字母取值的方法.【导学重点】理解并掌握分式的概念,体会其内涵.【导学难点】对分式中字母取值范围的认识.【课前准备】明确整式的概念.【学法指导】类比,延伸.【导学流程】一、呈现目标、明确任务1.分式的概念.2.分式中的分母应满足什么条件.二、检查预习、自主学习1.课本第2页思考(1)、(2).2.分式中的分母应满足什么条件时分式才有意义?分式无意义的条件是: .分式的值为零的条件是: .三、教师引导1.对思考(1),引导学生温故,采用先讨论再个别提问的方法,回顾分数、整式.并探索思考(2),找出异同点.(按小组思考、交流).通过观察类比形成分式的概念.2.区分整式与分式,在考虑为什么分数的分母不能为0,从而知道分式中的分母应满足什么条件时分式才有意义.四、问题导学、展示交流例1 下列各式中,哪些是整式,哪些是分式?(1)1a (2)6x(3)27xx(4)24a b + (5)22x y x y -+ (6)2213x x -+- 例2 当x 取什么数时,下列分式有意义?(1)23x(2)1x x - (3)153b - (4)x y x y +-五、点拨升华、当堂达标1.课本P4练习1、2、3.2.当x 为何值时,分式232xx -+无意义? 3.当x 为何值时,分式232xx -+无意义?4.当x 为何值时,分式232xx x -+的值为0?5.当x 为何值时,分式56x -的值为1?6.当x 为何值时,分式23x+的值为负数?六、布置预习1.当x 取何值时,下列分式有意义? (1)32x + (2)532x x +- (3)2254x x --2.当x 为何值时,分式的值为0?(1)75x x + (2)7213x x - (3)221x x x--【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.继续了解分式、有理式的概念.2.继续理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 【导学重点】理解分式有意义的条件,分式的值为零的条件.【导学难点】能熟练地求出分式有意义的条件,分式的值为零的条件. 【课前准备】分式的意义. 【学法指导】类比. 【导学流程】一、呈现目标、明确任务1.继续了解分式、有理式的概念.2.继续理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、检查预习、自主学习1.当x 取何值时,下列分式有意义?(1)32x + (2)532x x +- (3)2254x x --2.当x 为何值时,分式的值为0?(1)75x x + (2) 7213x x - (3)221x x x--三、教师引导分式的值为0时,必须同时满足两个条件:一是分母不能为零;二是分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.四、问题导学、展示交流1.思考第1页的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?小组讨论设未知数,列方程.设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为10020v +小时,逆流航行60千米所用时间6020v-小时,所以10020v +=6020v-. 2.判断下列各式哪些是整式,哪些是分式?x7 , 209y+, 54-m , 238y y -,91-x五、点拨升华、当堂达标1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义?3.当x 为何值时,分式21x x x--的值为0? 六、布置预习1.下列分数是否相等?可以进行变形的的依据是什么?23 46 812 1624 32482.分数的基本性质是什么?试着用字母表示分数的基本性质. 3.课本第4—5页内容. 【课后反思】分式的基本性质(1)主备人: 初审人: 终审人:【导学目标】1.了解分式的基本性质2.灵活运用分式的基本性质进行分式的变形 【导学重点】1.了解分式的基本性质2.灵活运用分式的基本性质进行分式的变形 【导学难点】灵活运用分式的基本性质进行分式的化简 【课前准备】分数的基本性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务 1.理解分式的基本性质.2.运用分式的基本性质进行分式的化简. 二、检查预习、自主学习1.下列分数是否相等?可以进行变形的的依据是什么?23 46 812 1624 32482.分数的基本性质是什么?试着用字母表示分数的基本性质.3.类比分数的基本性质,你能猜想出分式有什么性质吗? 三、教师引导1.通过具体例子引导学生回忆分数的通分、约分的依据——分数的基本性质,再用类比方法得出分式的基本性质.2.联想分数的约分,再联想例2,引导学生怎样对分式进行约分.(约分何时为止?)四、问题导学、展示交流1.P5例2.填空(学生先独立思考,然后分小组讨论).应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. 2.不改变分式的值,使下列分式的分子和分母都不含“—”号.(1)23a b -- (2)32x y - (3)22x a--五、点拨升华、当堂达标1.课本第8页练习1及习题第4、5、6题.2.利用分式的基本性质,将下列各式化为更简单的形式.(1)2bcac (2)()2x y y xy + (3)()22x xy x y ++六、布置预习阅读教材P6-P8相关内容,思考,讨论,交流下列问题. 1.分数怎么约分?与分数的约分类似,你能把分式248aa b约分吗?分式约分的依据是什么?分式约分约去的是什么?2.什么叫分数的通分? 类似于分数的通分,你能说出分式的通分吗?什么叫做最简公分母?【课后反思】分式的基本性质(2)主备人: 初审人: 终审人:【导学目标】1.类比分数的约分、通分,理解分式约分通分的意义.2.类比分数的约分、通分,掌握分式约分通分的方法与步骤. 【导学重点】运用分式的基本性质正确的进行分式的约分通分. 【导学难点】通分时最简公分母的确定;运用通分法则将分式进行变形. 【课前准备】分数的基本性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务运用分式的基本性质进行分式的通分. 二、检查预习、自主学习1.小学学过的约分通分应注意些什么?2.你预习后对分式的约分通分有什么体会?怎样确定最大公约数与最小公倍数? 三、教师引导阅读教材P6-P8相关内容,思考,讨论,交流下列问题. 1.做下列各题: (1)464(2)20128你做这些题目的根据是什么?我们称为什么运算? 2.与分数的约分类似,你能把分式248aa b约分吗?分式约分的依据是什么?分式约分约去的是什么?3.什么叫做分式的约分?什么叫做最简分式?4.把分数12,34,56通分.什么叫分数的通分? 5.类似于分数的通分,你能说出分式的通分吗?什么叫做最简公分母? 四、问题导学、展示交流 P6例3.约分.为约分要先找出分子和分母的公因式. P7例4.通分.通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.五、点拨升华、当堂达标1.课本第8页练习2及习题第7题.2.约分:(1) 22220ab a b (2) 22244x x x x --+ (3)22969x x x --+ (4)222248422x xy y x y -+- 3.通分:(1)26x ab ,29x a bc (2) 2121a a a -++,261a - (3) 223a a +,332a -,221549a a +-六、布置预习(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.继续类比分数的约分、通分,理解分式约分通分的意义.2.继续类比分数的约分、通分,掌握分式约分通分的方法与步骤. 【导学重点】做一些练习. 【导学难点】熟练通分和约分. 【课前准备】通分和约分. 【导学流程】一、呈现目标、明确任务1.继续类比分数的约分、通分,理解分式约分通分的意义.2.继续类比分数的约分、通分,掌握分式约分通分的方法与步骤. 二、检查预习、自主学习 填空:(1) x x x 3222+= ()3+x (2) 32386b b a =()33a(3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x - 三、教师引导要在上节课的基础上更加熟练地进行通分约分的计算. 四、问题导学、展示交流 1.约分:(1)cab ba 2263 (2)2228mn n m (3)532164xyz yz x - (4)x y y x --3)(2 3.通分: (1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a- (4)11-y 和11+y五、点拨升华、当堂达标1.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233abyx -- (2) 2317b a --- (3) 2135x a -- (4) m b a 2)(-- 2.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1 (3)nm nm ++=0 3.通分: (1)231ab 和b a 272 (2)x x x --21和xx x +-21 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32六、布置预习1.阅读教材P10-P12内容,完成下列问题.2.用语言描述分数的乘除法法则,并用字母表示出来. 【课后反思】分式的乘除(1)主备人: 初审人: 终审人:【导学目标】1.通过类比分数的乘除运算法则,探究得出并掌握分式的乘除法法则.2.会进行简单分式的乘除运算,具有一定的代数划归能力.3.能解决一些与分式有关的简单实际问题.【导学重点】分式的乘除法法则. 【导学难点】运用分式的乘除法法则对分子、分母是多项式的分式进行乘除运算和符号变化. 【课前准备】分数的乘除运算. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务分式的乘除法法则,用法则会进行计算. 二、检查预习、自主学习1.分数乘除法计算法则内容你还清楚吗?2.P10问题1 的由来依据是_______________,水面的高的由来依据是__________. 3.问题2的数量关系是什么?4.猜一猜,可以用分数乘除法的法则来推广分式的乘除法法则吗?三、教师引导阅读教材P10-P12内容,思考、讨论、交流完成下列问题. 1.用语言描述分数的乘除法法则,并用字母表示出来.2.类比分数的乘除法法则,用语言描述分式的乘除法法则,并用字母表示出来.3.在进行分式的乘除运算时,如果分式的分子、分母是多项式时,应该怎么办?分式的乘除法对运算结果有什么要求?四、问题导学、展示交流 P11例1,这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.P11例2,这道例题分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P12例3,这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是( )( ),还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a >1,因此()22121a a a -=--<221a -+,即()21a -<21a -,可得出“丰收2号”单位面积产量高.五、点拨升华、当堂达标1.课本13页练习第2、3题;2.课本22页习题16.2第1、2(1)(2)题. 六、布置预习 复习旧知:1.分式的乘除法法则.2.乘方的意义. 【课后反思】分式的乘除(2)主备人: 初审人: 终审人:【导学目标】1.经历探索分式的乘方过程,并结合具体情境说明其合理性. 2.会进行简单分式的乘除乘方的混合计算,具有一定的化归能力. 【导学重点】熟练地进行分式的乘方运算. 【导学难点】熟练地进行分式的乘、除、乘方的混合运算. 【课前准备】乘方的意义. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务 1.分式的乘方法则;2.分式的乘、除、乘方混合运算法则. 二、检查预习、自主学习分式的乘除法法则;2.乘方的意义;3.分数的乘方法则. 三、教师引导问题1:美术课上需要一张边长为bacm 的正方形卡纸,你能算出它的面积吗? 问题2:一个正方体的容器,它的棱长为ba,你能求出它的容积吗?根据乘方的意义和分式乘法的法则,计算:=⎪⎭⎫ ⎝⎛2b a . =⎪⎭⎫⎝⎛3b a =⎪⎭⎫⎝⎛10b a ==b a b a b a b a n .)( 分式的乘方法则: .四、问题导学、展示交流 例5.计算:(1)2223a b c ⎛⎫- ⎪⎝⎭; (2)3223322a b a c cd d a ⎛⎫⎛⎫÷⋅ ⎪ ⎪-⎝⎭⎝⎭ 分式乘除乘方的混合运算解题步骤是: . 计算:(1)()22222xy x xy x x xy y x y-⋅÷-+- (2)()()222142y x x y xy x y x +-÷⋅- (3)已知()2490a b ++-=,求22222a ab a abb a b +-⋅-的值. 五、点拨升华、当堂达标课本15页练习1、2及课本22页习题16.2第2、3题. 六、布置预习什么叫通分?通分的关键是什么?什么叫最简公分母? 分数的加减运算法则是什么? 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.通过类比分数的乘除运算法则,探究得出并掌握分式的乘除法法则.2.会进行简单分式的乘除运算,具有一定的代数划归能力.3.能解决一些与分式有关的简单实际问题. 【导学重点】熟练地进行分式的乘方运算. 【导学难点】熟练地进行分式的乘、除、乘方的混合运算. 【课前准备】分式的乘除法和分式的乘方. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务1.会进行简单分式的乘除运算,具有一定的代数划归能力. 2.能解决一些与分式有关的简单实际问题. 二、检查预习、自主学习什么叫通分?通分的关键是什么?什么叫最简公分母? 分数的加减运算法则是什么?计算下列各式:(1)1255+ (2)1255- (3)1123+ (4)1123- 三、教师引导分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.四、问题导学、展示交流(1))4(3)98(23232b x b a xy y x ab -÷-⋅=xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算)=xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 五、点拨升华、当堂达标(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 六、布置预习 计算1123-,并回忆分数的加减法法则: . 类比分数的加减法,你能猜想出分式的加减法法则吗?分别用语言和式子表示分式的加减法法则. . 【课后反思】分式的加减(1)主备人: 初审人: 终审人:【导学目标】1.知道分式加,减的一般步骤,能熟练进行分式的加减运算. 2.进一步渗透类比思想、化归思想. 【导学重点】异分母分式的加减运算. 【导学难点】分式的通分.【课前准备】分数的加减法.【学法指导】类比、迁移.【导学流程】一、呈现目标、明确任务掌握分式的加减法法则,并能够熟练的运用.二、检查预习、自主学习计算1123-,并回忆分数的加减法法则:.类比分数的加减法,你能猜想出分式的加减法法则吗?分别用语言和式子表示分式的加减法法则..三、教师引导阅读教材P15-P16相关内容,思考,讨论,交流后完成下列问题.1.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?2.同学们能说出最简公分母的确定方法吗?3.通分: .分式通分时,要注意:4.归纳:(1)同分母的分式加减法.(2)异分母的分式加减法.四、问题导学、展示交流教材P16例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子是个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号.五、点拨升华、当堂达标课本16页练习1、2及习题第4、5题已知13aba b=+,14bcb c=+,15cac a=+,求abcab bc ac++的值.六、布置预习1.我们已经学习了分式的哪些运算.2.分式的乘除运算主要是通过进行的,分式的加减运算主要是通过进行的.3.分数的混合运算法则是什么?【课后反思】分式的加减(2)主备人:初审人:终审人:【导学目标】明确分式混合运算的顺序,熟练地进行分式的混合运算. 【导学重点】熟练地进行分式的混合运算. 【导学难点】熟练地进行分式的混合运算. 【课前准备】分数的四则混合运算. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、检查预习、自主学习1.我们已经学习了分式的哪些运算?2.分式的乘除运算主要是通过 进行的,分式的加减运算主要是通过 进行的.3.分数的混合运算法则是什么? 三、教师引导一、认真阅读P17例7,例8.学习例题的解题方法和步骤. 二、合作探究,生成总结 1.计算:(1)22211()x yx y x y x y +÷-+- (2)2121()a a a a a-+-÷ 归纳:1.分式的混合运算步骤为:(1) ,(2) ,(3) .四、问题导学、展示交流1.计算22224xx x x x x ⎛⎫⋅÷ ⎪+--⎝⎭; 2211xy x y x y x y ⎛⎫+÷ ⎪-+-⎝⎭. 2.课本P18页练习第2题 五、点拨升华、当堂达标 1.课本第23页习题第6题. 2.若()()353131x A Bx x x x -=+-+-+,求A 、B 的值.六、布置预习1.回忆正整数指数幂的运算性质.2.回忆0指数幂的规定.3.完成P18页练习2. 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.明确分式混合运算的顺序.2.熟练地进行分式的混合运算. 【导学重点】熟练地进行分式的混合运算. 【导学难点】熟练地进行分式的混合运算. 【课前准备】分数的四则混合运算. 【学法指导】类比 迁移. 【导学流程】一、呈现目标、明确任务 1.明确分式混合运算的顺序. 2.熟练地进行分式的混合运算. 二、检查预习、自主学习(1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 三、教师引导 (1)x xx x x x x x -÷+----+4)44122(22这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:x xx x x x x x -÷+----+4)44122(22=)4(])2(1)2(2[2--⋅----+x xx x x x x =)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x =)4()2(4222--⋅-+--x xx x x x x =4412+--x x (2)2224442yx x y x y x y x y y x x +÷--+⋅- 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442y x x y x y x y x y y x x +÷--+⋅- =22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y x y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-四、问题导学、展示交流 (1) )1)(1(yx x y x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+ (3) zxyz xy xyz y x ++⋅++)111(五、点拨升华、当堂达标 计算24)2121(aa a ÷--+,并求出当=a -1的值. 六、布置预习1.回忆正整数指数幂的运算性质.2.回忆0指数幂的规定.3.完成P21页练习题. 【课后反思】整数指数幂(1)主备人: 初审人: 终审人:【导学目标】1.知道负整数指数幂na-=na 1(0a ≠,n 是正整数). 2.掌握整数指数幂的运算性质. 【导学重点】掌握整数指数幂的运算性质. 【导学难点】掌握整数指数幂的运算性质. 【课前准备】熟悉正整数指数幂的运算性质. 【学法指导】类比、迁移. 【导学流程】一、呈现目标、明确任务引入负整数指数幂后,前面学习的正整数指数幂的运算性质可推广到整数指数幂. 二、检查预习、自主学习1.回忆正整数指数幂的 算性质.2.回忆0指数幂的规定. 三、教师引导 1.前置自学探索负整数指数幂的运算性质,仿照同底数幂的除法公式来计算:2555÷= 371010÷=(2)利用约分计算这两个式子:22553515555÷== 3377410110101010÷==由此,我们得到35-= 410-=整数指数幂的运算法则: . 归纳:一般地,当n 是正整数时,()0_______≠=-a an,这就是说,()0≠-a a n 是na 的倒数.2.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3=3.计算 (1)()232x y- (2)()3222x yx y --⋅ (3)()()232223x y x y --÷四、问题导学、展示交流 1.教学P20例9、10题.2.将下列各式写成只含有正整数指数幂的形式. (1)()2221a bc --- (2)()()3223x y y z ---(3)()225xy z --- (4)()231x y x y -五、点拨升华、当堂达标 1.课本第21页练习1、2.2.已知327x-=,2439y⎛⎫= ⎪⎝⎭,251x +=,求x ,y ,z 的值.六、布置预习用科学记数法表示下列各数:(1)光的速度是300000000米/秒;(2)银河系中的恒星约有160000000000个. 【课后反思】整数指数幂(2)主备人: 初审人: 终审人:【导学目标】学会小于1的正数用科学记数法表示的方法. 【导学重点】掌握小于1的正数用科学记数法表示.【导学难点】学会正数指数与负整数指数用于科学记数法的区别. 【课前准备】熟悉用科学记数法表示较大数的方法. 【学法指导】知识迁移.【导学流程】一、呈现目标、明确任务会用科学记数法表示小于1的正数. 二、检查预习、自主学习 用科学记数法表示:8684000000= ;-8080000000= .三、教师引导1.填空: 10-1=0.1;10-2= ;10-3= ;10-4= ;10-5= ;10-6= ;10-n= ;你发现用10的负整数指数幂表示0.00…01这样较小的数有什么规律吗?请说出你总结的结论:____________________________________________________2、用科学记数法表示下列各数:(1)0.001 (2) -0.000001 (3)0.001357 (4)-0.000000034 想一想:从上题的解题过程中你发现了什么?3.归纳:用科学计数法表示绝对值较小的数可写成10na -⨯的形式,其中a 要求1≤│a │<10,n 为正整数.其中n 的值等于___________.四、问题导学、展示交流1.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒= 秒 (2)1毫克= 千克(3)1米是1微米的1000000倍,则1微米= 米 (4)1纳米= 微米 (5)1平方厘米= 平方米 (6)1毫升= 升 2.用科学记数法表示下列结果:(1)地球上陆地的面积为149000000平方公里,用科学记数法表示为 .(2)一本200页的书厚度约为 1.8厘米,用科学记数法表示一页纸的厚度约等于 .3、用科学计数法表示下列各数:0.00004, -0.034, 0.00000045, 0.003009 五、点拨升华、当堂达标 1.课本第22页练习1、22.用科学计数法表示下列各数并保留2个有效数字: 0.000665; 0.0000896 六、布置预习完成P22页练习题. 【课后反思】练习课主备人: 初审人: 终审人:【导学目标】1.理解负整数指数幂na-=n a1(0a ≠,n 是正整数). 2.熟练掌握整数指数幂的运算性质.3.复习小于1的正数用科学记数法表示的方法. 【导学重点】做练习. 【导学难点】掌握整数指数幂的运算性质. 【课前准备】负整数指数幂和科学计数法. 【导学流程】一、呈现目标、明确任务1.熟练掌握整数指数幂的运算性质.2.复习小于1的正数用科学记数法表示的方法. 二、检查预习、自主学习1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:nm n m a a a +=⋅(,m n 是正整数);(2)幂的乘方:mnnm aa =)((,m n 是正整数);(3)积的乘方:nnn b a ab =)((n 是正整数); (4)同底数的幂的除法:nm nmaa a -=÷(0a ≠,,m n 是正整数,m n >);(5)商的乘方:n nn ba b a =)((n 是正整数);2.回忆0指数幂的规定,即当0a ≠时,10=a . 3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当0a ≠时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(0a ≠,,m n 是正整数,m n >)中的m n >这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(0a ≠),就规定负整数指数幂的运算性质:当n 是正整数时,na-=n a1(0a ≠). 三、教师引导类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.四、问题导学、展示交流 1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2 -3= (6)(-2) -3= 2.计算 (1)()232x y- (2)()3222x yx y --⋅ (3)()()232223x y x y --÷五、点拨升华、当堂达标1. 用科学计数法表示下列各数:0.00004, -0.034, 0.000 00045, 0. 0030092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3六、布置预习阅读教材P26-P29相关内容完成下列问题.1.什么是分式方程?它与我们学过的整式方程有何不同?2.我们已经会解整式方程,对于我们新学的分式方程,我们能否把它转化成我们会解的整式方程来做呢?应该怎样转化呢?3.完成P29页练习中(1)(2)题. 【课后反思】分式方程(1)主备人: 初审人: 终审人:【导学目标】1.理解分式方程的意义.2.了解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握分式方程验根的方法.【导学重点】解分式方程的基本思路和解法. 【导学难点】解分式方程时可能无解的原因. 【学法指导】理解、运用. 【课前准备】列方程解应用题的步骤. 【导学流程】一、呈现目标、明确任务 会解分式方程.二、检查预习、自主学习1.完成本章引言的问题,小组议一议:方程的特征,然后概括出分式方程的概念__________________________________.3.分式方程与整式方程的区别是___________________________________. 三、教师引导 (一)自学质疑 1.分式方程的定义.( )叫分式方程.分式方程与整式方程的区别是( ).2.练习:判断下列各式哪个是分式方程.(1)5x y +=;(2)2253x y z +-=;(3)1x ;(4)05yx =+.3.解分式方程的基本思想是( ),基本方法是去分母( ).而正是这一步有可能使方程产生增根.(二)合作探究解方程:(1)2110525x x =--. 通过解上面两方程(1)、(2),特别是通过检验你发现了什么? 四.问题导学、展示交流 1.课本第28页例1、2.2.指出下列方程中哪些是分式方程?哪些不是分式方程?为什么?(1)21632x x -+= (2) 12x x -= (3)11021x -=+ (4)11523x x-=3.关于x 的方程4332=-+x a ax 的根为1x =,则a 应取值( ) A.1 B.3 C.-1 D.-34.方程xx x -=++-1315112的根是( )A.x =1B.x =-1C.x =83D.x =2五、点拨升华、当堂达标 1.课本第29页练习.2.已知3x =是方程112x k -=-的解,求k 的值. 六、布置预习1.什么叫分式方程?2.解分式方程的一般步骤是什么?3.预习分式方程的应用,完成P31页练习题. 【课后反思】分式方程(2)主备人: 初审人: 终审人:【导学目标】1.列分式方程解应用题的一般步骤;2.学会用等量关系列分式方程解应用题; 【导学重点】学会用等量关系列分式方程解应用题. 【导学难点】用等量关系列分式方程解应用题. 【学法指导】类比、迁移. 【课前准备】列一元一次方程解应用题的步骤. 【导学流程】一、呈现目标、明确任务学会找等量关系列分式方程解应用题. 二、检查预习、自主学习 1.解分式方程的步骤是什么? 2.列方程解应用题的步骤是什么?3.我们学过哪几种类型的应用题?每种类型的基本公式是什么? 行程问题、数字问题、工程问题、顺水逆水问题、利润问题. 三、教师引导探讨1. 两个工程队共同参与一项筑路工程,甲队单独施工完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.求乙队单独完成需要的时间.归纳:解工程问题的基本思路是(1) .(2) .(3) .探讨2. 从2004年5月起某列车平均提速V 千米/时,用相同的时间,列车提速前行驶S 千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?归纳:行程问题的基本思路是。

八年数学下册导学案

八年数学下册导学案

第十六章:分式16.1分式的基本性质 (1)16.2.1分式——分式乘除法(1) (2)16.2.2分式——分式乘除法(2) (3)16.2.3分式——分式的乘方 (4)16.2.4分式——分式加减法(1)………………………………………………16.2.5分式——分式加减法(2)………………………………………………16.2.6分式——分式加减法(3)………………………………………………16.2.7分式——分式的四则运算………………………………………………16.2.9分式——整数指数幂………………………………………………16.3.1分式——分式方程(1) (5)16.3.2分式——分式方程(2)……………………………………………………16.3.2分式——分式方程(3)……………………………………………………16.3.2分式——列方程解应用题(1)……………………………………………16.3.2分式——列方程解应用题(2)……………………………………………第十七章:函数17.1.1 反比例函数的意义 (6)17.1.2 反比例函数的图象和性质 (7)17.1.2 反比例函数的图象和性质的应用…………………………………………17.2.1 实际问题与反比例函数…………………………………………………17.2.2 实际问题与反比例函数…………………………………………………17.2.3 实际问题与反比例函数…………………………………………………第十八章:勾股定理18.1.1 勾股定理 (10)18.1.2 勾股定理的应用 (11)18.1.3 勾股定理的应用………………………………………………………18.2.1 勾股定理的逆定理……………………………………………………18.2.2 勾股定理的逆定理……………………………………………………第十九章:平等四边形19.1.1平行四边形的性质 (12)19.1.2平行四边形的性质 (13)19.1.3平行四边形的判定1 (14)19.2.1矩形的性质 (15)19.2.1 矩形的判定 (16)19.2.2 菱形的性质 (17)19.2.2 菱形的判定 (18)19.2.3 正方形……………………………………………………………………19.3.1 梯形………………………………………………………………………19.3.2 等腰梯形的判定………………………………………………………19.4 课题学习重心………………………………………………………第二十章:数据20.1 数据的代表 (19)20.1.1 平均数 (20)………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………八年级数学下册导学案导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计导学案设计。

人教版八年级初二下册导学案-第16章_分式全章导学案

人教版八年级初二下册导学案-第16章_分式全章导学案

,把分子
;
即用式子表示为: a b a b
cc c
1
; ; 分式.
②异分母分式相加减,先
,变为同分母的分式,再
.
即用式子表示为: a c ad bc ad bc
b d bd bd bd
4. m 2 , 5 的最简公分母是
.
m2 m2
5、在括号内填入适当的代数式:
⑴2( )
(⑵
xy 2ax2 y2
2a 2b ab2c
⑵x, y 6ab2 9a2bc
3
解:
2a2b
ab ab2c
2、通分:⑴ 2x 与 3x ;
x5 x5
解:
2x x5
3x x5
★⑵ a 1 , 6 . a2 2a 1 a2 1
四、课堂测控:
1、分式 3c 和 a 的最简公分母是
. 分式 1 和 1 的最简公分母是
.
2ab2
⑵ ab3 5a 2b2 2c 2 4cd
2、计算:
⑴ a2 4a 4 • a 1 ; a2 2a 1 a2 4
3、计算: 2x 3 • x . 5x 3 25x2 9 5x 3
⑵ 11. 49 m2 m2 7m
4、计算:⑴
2a 3c
2
b
2

a 2b cd 3
3
2a d3
5x2 2x 3
5x2 2x 3
5x2 2x 3
) )
8、通分:
⑴ 2c 与 3ac bd 4b2
⑵ 2xy 与 x (x y)2 x2 y2
⑶x, y 6ab2 9a2bc
⑷ a 1 , 6 a2 2a 1 a2 1
§16.2.1 分式的乘除 自主合作学习

人教版八年级初二下册导学案-第16章_分式全章导学案

人教版八年级初二下册导学案-第16章_分式全章导学案

§16.1.1从分数到分式 自主合作学习1~4页二、 独立完成下列预习作业: 1、单项式和多项式统称 . 2、32表示 ÷ 的商,)()2(n m b a +÷+可以表示为 . 3、长方形的面积为102cm ,长为7cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 . 4、把体积为203cm 的水倒入底面积为332cm 的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .5、一般地,如果A 、B 表示两个整式,并且B 中含有 ,那么式子BA叫做分式. ◆◆分式和整式统称有理式◆◆三、合作交流,解决问题:分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B ≠0时,分式BA才有意义. 1、当x 时,分式x32有意义; 2、当x 时,分式1-x x有意义; 3、当b 时,分式b351-有意义; 4、当x 、y 满足 时,分式yx yx -+有意义; 四、课堂测控:1、下列各式x 1,3x ,a π,5342+b ,352-a ,22y x x -,11x +,n m n m -+,15x+y ,22a b a b --,121222+-++x x x x ,)(3b a c -,23x -,0中,是分式的有 ; 是整式的有 ; 是有理式的有 . 2、下列分式,当x 取何值时有意义.⑴a 2; ⑵2323x x +- ⑶2132x x ++ ⑷11-+x x⑸y x -1 ⑹122-x ⑺22+x x⑻13-x3、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 4、当x 时,分式2212x x x -+-的值为零5、当x 时,分式43x +的值为1;当x 时,分式43x +的值为-1.4~7页二、 独立完成下列预习作业:1、分式的分子与分母同乘(或除以)一个不为0的整式,分式的值 .即C B C A B A ⋅⋅=或 CB CA B A ÷÷=(C ≠0) 2、填空:⑴222-=-x x x x ;yx x xy x +=+22633 ⑵b a ab b a 2=+ ;ba ab a 222=- (b ≠0) 3、利用分式的基本性质:将分式x x x 22-的分子和分母的公因式x 约去,使分式xx x 22-变为21-x ,这样的分式变形叫做分式的 ;经过约分后的分式21-x ,其分子与分母没有 ,像这样的分式叫做 . 三、合作交流,解决问题: 将下列分式化为最简分式:⑴c ab bc a 2321525- ⑵96922++-x x x ⑶y x y xy x 33612622-+-四、课堂测控:1.分数的基本性质为: .用字母表示为: . 2.把下列分数化为最简分数:(1)812= ;(2)12545= ;(3)2613= . 分式的基本性质为: .3、填空:①3222=+xx x ②)(3863323----=a b b a ③)()(222-----=+-yx y x y x ④)01≠=++n c a b ( ) ( )( ) ( )4、分式434y x a+,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个 5、约分:⑴ac bc 2 ⑵2)(xy y y x + ⑶22)(y x xyx ++⑷222)(y x y x -- ★ ⑸22699x x x ++-; ★ ⑹2232m m m m -+-.7~8页二、 独立完成下列预习作业:1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的 .2、根据你的预习和理解找出: ①x 1与y 3的最简公分母是 ; ②a x 与aby 的最简公分母是 ; ③ab b a +与22a b a -最简公分母是 ;④231yz x 与22xy 的最简公分母是 .★★如何确定最简公分母?一般是取各分母的所有因式的最高次幂的积 三、合作交流,解决问题: 1、通分:⑴b a 223与cab b a 2- ⑵26x ab ,29ya bc2、通分:⑴52-x x 与53+x x ; ★⑵2121a a a -++,261a -.四、课堂测控:1、分式223ab c 和28bc a -的最简公分母是 . 分式11-y 和11+y 的最简公分母是 .2、化简:._______44422=++-a a a 3、分式a x y 434+,1142--x x ,y x y xy x ++-22,2222bab aba -+中已为最简分式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 4、化简分式2b ab b+的结果为( )A 、b a +1 B 、b a 11+ C 、21b a + D 、b ab +15、若分式 的分子、分母中的x 与y 同时扩大2倍,则分式的值( ) A 、扩大2倍 B 、缩小2倍 C 、不变 D 、是原来的2倍6、不改变分式的值,使分式 的各项系数化为整数,分子、分母应乘以( ) 解: =ba 223=-cab ba 2=-52x x =+53x x解: y x y x 1110151+- )0,0(≠≠+y x yx xyA 、10B 、9C 、45D 、907、不改变分式的值,使分子、分母最高次项的系数为整数,正确的是( ) A 、3252322-+++x x x x B 、3252322-++-x x x x C 、3252322+--+x x x x D 、3252322+---x x x x8、通分: ⑴bd c 2与243bac⑵2)(2y x xy +与22y x x - ⑶bc a y ab x 229,6 ⑷16,12122-++-a a a a一、10~14页二、 独立完成下列预习作业: 1、观察下列算式: ⑴2910452515321553==⨯⨯=⨯ ⑵ 252756155231525321553==⨯⨯=⨯=÷ 请写出分数的乘除法法则:乘法法则: ; 除法法则: . 2、分式的乘除法法则:(类似于分数乘除法法则)乘法法则:;除法法则: .即:ac c a c b a =∙=∙ 即: bcad c b d a c d b a d c b a =∙∙=∙=÷3253232-+-+-x x x x3、分式乘方:n n nb a b a =⎪⎭⎫⎝⎛ 即分式乘方,是把分子、分母分别 .三、合作交流,解决问题: 1、计算:⑴ 3234x yy x ∙; ⑵ cd b a cab 4522223-÷2、计算:⑴ 411244222--∙+-+-a a a a a a ; ⑵ mm m 7149122-÷-. 3、计算:3592533522+∙-÷-x xx x x .4、计算:⑴ 2232⎪⎪⎭⎫ ⎝⎛-c b a ⑵ 2333222⎪⎭⎫⎝⎛∙÷⎪⎪⎭⎫ ⎝⎛-a c d a cd b a四、课堂测控: 1、计算:⑴q mnpmnq p pq n m 3545322222÷∙; ⑵228241681622+-∙+-÷++-a a a a a a a .2、计算:⑴23x x +-·22694x x x -+-; ⑵23a a -+÷22469a a a -++.3、计算:⑴32432⎪⎪⎭⎫⎝⎛-z y x ; ⑵3234223362⎪⎭⎫ ⎝⎛-∙÷⎪⎪⎭⎫⎝⎛-b c b a d c ab .一、15~18页二、 独立完成下列预习作业: 1、填空: ①15与35的 相同,称为 分数,15+35= ,法则是 ; ②12与23的 不同,称为 分数,12+23= ,•运算方法为 ; 2、b a 与c a 的 相同,称为 分式;ma与n b 的 不同,称为 分式. 3、分式的加减法法则同分数的加减法法则类似 ①同分母分式相加减,分母 ,把分子 ;②异分母分式相加减,先 ,变为同分母的分式,再 . 即用式子表示为:cba cbc a ±=± 即用式子表示为:bdbcad bd bc bd ad d c b a ±=±=±4.22m m +-,52m +的最简公分母是 . 5、在括号内填入适当的代数式:三、合作交流,解决问题: 1、计算:⑴x x y ++y y x + ⑵32b a -32a a ⑶32ab +214a2、计算:⑴2222235y x x y x y x ---+ ⑵21a -+21(1)a -⑶q p q p 321321-++ ⑷2129m -+23m -+23m +3、计算:4122b b a b a b a ÷--∙⎪⎭⎫ ⎝⎛四、课堂测控: 1、计算:⑴x x x 11-+ ⑵13121+-+++b ab a b a⑴222()2xy ax y = (⑵322()()x xy x x y x y -=--2、计算:⑴223121cdd c + ⑵2)2(223n m n m n m ---- ⑶ba b a a +--122 ⑷222x x x +--2144x x x --+3、计算:⑴x y y x x y y x 222222÷-∙⎪⎪⎭⎫ ⎝⎛ ⑵⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛+∙+11111212x x x x x x一、18~22页二、 独立完成下列预习作业: 1、回顾正整数幂的运算性质:⑴同底数幂相乘:=∙nma a . ⑵幂的乘方:()=nma .⑶同底数幂相除:=÷nm a a . ⑷积的乘方:()=nab .⑸=⎪⎭⎫ ⎝⎛nb a . ⑹ 当a 时,10=a . 2、根据你的预习和理解填空:3、一般地,当n 是正整数时,4、归纳:1题中的各性质,对于m,n 可以是任意整数,均成立. 三、合作交流,解决问题:)(5353---==÷a a a a=∙==÷--)(335353a a a a a a a)(1--a)0(1≠=-a aan n即n a -(a ≠0)是n a 的倒数1、计算:⑴()321b a - ⑵()32222---∙b a b a2、计算:⑴()3132y x y x -- ⑵()()322322b a c ab ---÷四、课堂测控: 1、填空:⑴____30=;____32=-. ⑵()____30=-;()___32=--.⑶____310=⎪⎭⎫ ⎝⎛;____312=⎪⎭⎫ ⎝⎛-.⑷____0=b ;____2=-b (b ≠0).2、纳米是非常小的长度单位,1纳米=910-米,把1纳米的物体放到乒乓球上,如同将乒乓球放到地球上,1立方毫米的空间可以放 个1立方纳米的物体,(物体间的间隙忽略不计). 3、用科学计数法表示下列各数:①0.000000001= ;②0.0012= ; ③0.000000345= ;④-0.0003= ; ⑤0.0000000108= ;⑥5640000000= ; 4、计算:⑴2223--∙ab b a ⑵()313--ab ⑶()3322232n m n m --∙5、计算: ⑴()()36102.3102⨯⨯⨯- ⑵()()342610102--÷⨯一、26~28页二、 独立完成下列预习作业:1、问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,则轮船顺流航行速度为 千米/时,逆流航行速度为 千米/时;顺流航行100千米所用时间为 小时,逆流航行600千米所用时间为 小时.根据两次航行所用时间相等可得到方程:方程①的分母含有未知数v ,像这样分母中含有未知数的方程叫做 . 我们以前学习的方程都是整式方程,分母中不含未知数.★★2、解分式方程的基本思路是: . 其具体做法是: . 三、合作交流,解决问题: 1、试解分式方程: ⑴v v -=+206020100 ⑵2510512-=-x x 解:方程两边同乘)20)(20(v v -+得: 解:方程两边同乘 得:去括号得: 移项并合并得:解得:经检验:5=v 是原方程的解. 经检验:5=x 不是原方程的解,即原方程无解 分式方程为什么必须检验?如何检验?. 2、小试牛刀(解分式方程)vv -=+206020100 ①)20(60)20(100v v +=-⑴x x 332=- ⑵12112-=-x x四、课堂测控:1、下列哪些是分式方程? ⑴1=+y x ; ⑵3252z y x -=+; ⑶21-x ; ⑷053=+-x y ; ⑸11=+x x ; ⑹523xx +=-π. 2、解下列分式方程: ⑴3221+=x x ⑵14122-=-x x ⑶13321++=+x x x x ⑷01522=--+xx x x ⑸)2)(1(311+-=--x x x x ⑹2212=-+-xx x一、29~31页二、 独立完成下列预习作业:问题:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快? 分析:甲队1个月完成总工程的31,若设乙队单独施工1个月能完成总工程的x1. 则甲队半个月完成总工程的 ;乙队半个月完成总工程的 ;两队半个月完成总工程的 ;解:设乙队单独施工1个月能完成总工程的1,则有方程: 方程两边同乘 得:解得:x =经检验:x = 符合题设条件. ∴ 队施工速度快. 三、合作交流,解决问题:问题:一项工程要在限定期内完成,如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成;如果两组合做3天后,剩下的工程由第二组单独做,正好在规定日期内完成。

八年级下册数学第十六章分式导学案(学生用)

八年级下册数学第十六章分式导学案(学生用)

第十六章 分式【学习课题】 16.1.1 从分数到分式 【学习目标】1、能判断一个代数式是否为分式 2、能说出一个分式有意义的条件 3、会求分式值为零时,字母的取值【学习重点】会求分式有意义时,字母的取值范围 【学习难点】求分式值为零时,字母的取值 (一) 自学展示:1. 什么是整式?2.自主探究:完成P2页思考后回答问题:一般的,整式A 除以整式B ,可以写成____的形式。

如果B 中含有____,式子B A就叫____,其中A 叫___ _,B 叫__ __。

4.分式有意义的条件是什么?分式的值为O 的条件是什么?5.我的疑惑: (二)合作学习:1.下列哪些代数式是整式,哪些代数式是分式? ①a b 2 ②2a+b ③-x 32 ④32x ⑤πa ⑥x-32 ⑦5x -y z 整式有: ;分式有:2.(对照例1)解答:已知:分式432+-x x1) 当x 取何值时,分式没有意义? 2)当x 取何值时,分式有意义? 3.当x 为何值时,下列各式有意义? 4.当x 取何值时,分式的值为0?422+x x ,12-x x ,152+x x . x x --22||,392+-x x ,1-x x .归纳小结:1.判别分式的方法:(1) __ (2)___ (3)____2、分式有意义的条件_____3.分式的值为零所需要的条件为(1) _ (2) _。

(三 ) 质疑导学:1.判断下列各式哪些是整式,哪些是分式? 9x+4,x 7 , 209y +, 54-m , 238yy -,91-x 2.当x 取什么值时,下列分式有意义? (1)x 1 ;(2)x 2 ;(3)32-x x;(4)21+-x x ;3.当x 取什么值时,下列分式无意义?(1)12+x x ;(2)412-x 。

4.当x 取什么值时,下列分式的值为零?(1)x x 12- ;(2)1212+-x x ;(3)33++x x 。

人教版八年级数学上册《分式》导学案:分式的基本性质

人教版八年级数学上册《分式》导学案:分式的基本性质

人教版八年级数学上册《分式》导学案分式的基本性质【学习目标】1.理解和掌握分式的基本性质,并会利用分式的基本性质进行简单的恒等变形;2.理解约分与最简分式的概念, 能利用分式的 基本性质进行约分、通分,并化简分式.【知识梳理】1.分式的分子与分母都 同一个不等于零的整式,分式的 不变,这个性质叫做分式的基本性质.用式子表示为 (其中 不等于0的整式).2.在下面的括号内填上适当的整式,使等式成立:(1))0()(663≠=+b ab a a (2) y x x 24y -x ) (322+=)( )(347.05.03.04.04y x y x y x +=-+)( 3.分式的约分.最简分式的概念(1)利用 ,把一个分式的分子和分母中 约去,叫做分式的约分.(2)当一个分式的分子与分母, 时,这样的分式叫做最简分式.【典型例题】知识点一 分式的基本性质1.如果把分式yx x +中的分子和分母中的y x 、都同时变成原来的3倍,那么分式的值( )A.不变 B.扩大3倍 C.缩小为原来的31 D.缩小为原来的91 2.不改变分式x y y x 41315221-+的值,把分子与分母中各项的系数化为整数,其结果是 知识点二 分式的约分(化简)642961.3ab b a )( 996222-+-x x x )( 2233223y xy x xy --)( 222)4(ba ab a --知识点三 分式的符号法则4.在分式本身、分子、分母的三个符号中,同时改变其中 ,分式的值 即ab a b a b a b )()()(--=-== 2)2)(3(92+=+--x x x x )(5.不改变分式的值,使下列分式的分子与分母都不含负号.(1)y x 43-- (2)ba 2- (3)n m -3 (4)x y 56--- 【巩固训练】1. 在括号内填上适当的整式,使等式成立:(1)) () () (25323-=⋅-=-ab a c ab c (2))(2) (6) (46422=÷÷=y x xy y x xy (3)2)() () ()() ()(b a b a b a b a b a +=⋅+⋅-=+-(4)m m m 21) ()12() () )( (12m 412-=÷+÷=+- 2. 若分式的x 和y 均扩大为原来各自的10倍,则分式的值( ) A .不变 B .缩小到原分式值的C .缩小到原分式值的D .缩小到原分式值的 3.分式434y x a + 2411x x -- 22x xy y x y -++2222a ab ab b +-中是最简分式的有( )A.1个B.2个C.3个D.4个4.化简下列分式:(每小题2分,共4分)121122+--x x x )( 232239616)2(bc a z b a -- 969)3(22+--a a a 2236322)4(b ab a b a +++5.已知211=-b a ,求b ab a b ab a -+--22的值.6. (1)已知2310x x ++= 求221x x +的值(2) 已知13x x += 求2421x x x ++的值。

【人教版】2020八年级数学下册 第16章 分式复习导学案

【人教版】2020八年级数学下册 第16章 分式复习导学案

16 分式【学习目标】1.理解分式的基本性质,能熟练地进行分式的约分、通分。

2.能熟练地进行分式的运算,会解可化为一元一次方程的分式方程。

3.体会类比的思想方法并会解决实际生活中的问题。

【重点】分式的基本性质及分式的运算。

【难点】分式方程在实际生活中的应用。

【复习注意事项】1. 分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数情形进行类比,以加深对新知识的理解.2. 解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验.学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验.3. 由于引进了零指数幂与负整指数幂,绝对值较小的数也可以用科学记数法来表示.知识梳理1、下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -.2、当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .3、学习完本章内容,相信同学们都有很大的收获。

请你画出本章知识树(即知识体系图)二、我的疑惑______________________________________________________________________探 究 案探究点一:分式的基本性质。

例1 约分(1)4322016xyy x -; (2)44422+--x x x例2 通分(1)b a 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21探究点二:分式方程的应用。

例3 购一年期债券,到期后本利只获2700元,如果债券年利率12.5%,那么利息是多少元?(提示:债券年利率=利息÷本金)训练案1.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.2.当m为何值时,关于x的方程有增根?3.解方程:.4.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.。

新人教版八年级第十六章分式教学案(全章)

新人教版八年级第十六章分式教学案(全章)

新人教版八年级第十六章分式教学案§16.1.1 从分数到分式一.教学目标(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。

(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。

(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。

二.教学重难点重点:分式的概念难点:识别分式有无意义;用分式描述数量关系三.教法与学法基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

四.教学过程《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。

”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。

(一)发现新知在这儿我对教材进行了处理,课本引例是“土地沙化、固沙造林”问题,设问是“这一问题中有哪些等量关系?”我将引课方式改为通过学生自己构造代数式去发现分式,创设了这样的情境:1.创设情境:教师给出探究要求:“代数式”庄园的果树上挂满了“整式”的果子:t,300,s,n,a-x,0,180(n-2),请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。

其中有新的一类代数式吗?请说一说。

作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。

针对我校学生的实际情况,我认为在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。

八年级下册数学第十六章分式导学案(老师用)

八年级下册数学第十六章分式导学案(老师用)

本学期我们的数学学习对同学提出了新的要求: 一是要认真完成预习。

老师已经把课本上需要学习和掌握的知识以导学案的形式印出来,发到了同学们手中。

仔细阅读你会发现数学也挺轻松的,容易懂、容易学。

做好预习的目的一是为课堂上的讲解作好准备,以免笑场;二是为课堂上的讨论作好思维铺垫;三是为深入学习垫定基础。

二是人人参与课堂讲解,人人当好小老师。

检查预习的主要方法就是看你能不能讲出来,讲得清楚不,老师和同学们对你的认可程度如何。

这是锻炼同学表达能力的重要手段,也是学好数学的最好方法。

三是团队意识更强了。

你的课堂表现不仅仅代表个人,还代表了你所在的小组。

你的学习态度、你的成绩、你的各方面表现都与小组紧密联系在一起,所以,有更多的同学在关心你、关注你、期望你;反过来你也会更多地关注你小组内的每一个同学为。

一个小组就是一个团队。

四是同学们的地位得到了显著提升。

老师把工作的重点放在了你们的成长上,放在了对你的关心上,放在了对你的尊重上。

老师将变成你数学学习方面真正意义上的服务者。

你不感到高兴吗,亲爱的同学!人教版八年级下第十六章分式教材分析与教学建议一、 学目的1、使学生掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分通分。

2、使学生能准确地进行分式的乘除、加减以及混合运算。

3、使学生学会用科学记数法表示绝对值小于1的数,并能进行有关负整数指数幂的运算。

4、使学生掌握解分式方程的步骤,并能列出可化为一元一次方程的分式方程解决简单的实际问题。

二、本章知识结构网络图分式的加减 可能产生增根通分分式运算 分式 分式的基本性质分式方程约分 分式的乘除三、数学思想方法1、类比法:本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程。

人教版八年级数学下册教案第十六章第1课:从分数到分式

人教版八年级数学下册教案第十六章第1课:从分数到分式
(3)x与y的差于4的商是.
2.当x取何值时,分式 无意义?
3.当x为何值时,分式 的值为0?P4 1/2/3
八、答案:
六、1.整式:9x+4, , 分式: , ,
2.(1)x≠-2 (2)x≠ (3)x≠±2
3.(1)x=-7 (2)x=0 (3)x=-1
七、1.18x,,a+b, , ;整式:8x,a+b, ;
中小学导学活动设计
课题
第一单元(章)第1课:从分数到分式
课型
导Hale Waihona Puke 学目标1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
重点
理解分式有意义的条件,分式的值为零的条件.
难点
能熟练地求出分式有意义的条件,分式的值为零的条件.
导学思路及学生活动设计
分式: ,
2.X=3.x=-1
课后作业P8 1/2/3
导学思路及学生活动设计
我的反思




备注
其它:
我的反思
三、课堂引入
1.让学生填写P2[思考],学生自己依次填出: , , , .
2.学生看P1的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .
3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

人教版八年级下册第十六章分式的导学案

人教版八年级下册第十六章分式的导学案

第十六章分式16、1 分式16、1、1 从分数到分式学习目标:1、了解分式产生的背景和分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

重点:分式的概念和分式有意义的条件。

难点:分式的特点和分式有意义的条件。

一、预习新知:1、什么是整式?2、下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2yx ;a1;xy x 2;3a ;5 .3、阅读“引言”,“引言”中出现的式子是整式吗?4、自主探究:完成p 2的“思考”,通过探究发现,a s 、s V 、v 20100、v2060与分数一样,都是的形式,分数的分子A 与分母B 都是,并且B 中都含有。

5、归纳:分式的意义:。

上面所看到的a 1、x y x 2、a s 、s V 、v 20100、v2060都是。

我们小学里学过的分数有意义的条件是。

那么分式有意义的条件是。

二、课堂展示:例1、在下列各式中,哪些是整式?哪些是分式?(1)、5x-7 ;(2)、3x 2-1 ;(3)123a b ;(4)、7)(p n m ;(5)、—5 ;(6)、1222x yxy x。

(7)、72;(8)、cb 54。

例2、p 3的“例1”例3、x 为何值时,下列分式有意义?(1)、1x x ;(2)、15622xx x(3)、242aa;例4、x 为何值时,下列分式的值为0?(1)、11x x ;(2)、392xx;(3)、112aa(4)11x x 三、随堂练习:p 4的“练习”四、课堂检测:1、下列各式中,(1)yxy x (2)132x(3)xx 13(4)22yxy x(5)14.3ba (6)0.整式是,分式是。

(只填序号)2、当x=时,分式2xx 没有意义。

3、当x=时,分式112x x的值为0 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学第十六章分式导学案八年级 数学 114班 教师:课题 从分数到分式 第 1 课时 课型 新课一、学习目标:1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、学习重点:理解分式有意义的条件,分式的值为零的条件.三、学习难点:能熟练地求出分式有意义的条件,分式的值为零的条件.四、问题导学:认真阅读教材2-3页,完成下列问题。

1、完成p2的思考。

2、归纳理解:分式:3、分式有意义的条件:4、分式无意义的条件:5、分式值为0的条件:6、例题初探:疑惑:五、自学反馈1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0?(1) (2) (3)六、反思提升学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 分式的基本性质 第 2 课时 课型 新课一、学习目标:1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、学习重点:理解分式的基本性质.三、学习难点:灵活应用分式的基本性质将分式变形.四、问题导学1、分数的基本性质:(语言描述) 。

(字母表示)2、阅读教材p4-6,完成下列问题(1)分式的基本性质:(语言描述) 。

(字母表示)(2)自学列2疑惑: 。

3、交流解疑五、反思提升学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

x x 57+x x 3217-xx x --221课题分式的约分第 3 课时课型新课一、学习目标1.类比分数的约分,理解分式约分的意义。

2.类比分数的约分,掌握分式约分的方法与步骤。

二、重点难点重点:运用分式的基本性质正确的进行分式的约分。

难点:约分时公因式的确定;运用约分法则将分式进行化简。

三、自学指导阅读教材P6-P7相关内容,思考,讨论,交流下列问题。

1.做下列各题:(1) 4/64 (2)20/1280你做这些题目的根据是什么?我们称为什么运算?2.与分数的约分类似,你能把分式 4a/8a2b 约分吗?分式约分的依据是什么?分式约分约去的是什么?3.什么叫做分式的约分?约分的方法步骤是什么?4. 什么叫做最简分式?5.自学例3,体会约分的方法步骤。

疑惑:交流:6.练习尝试p8 练习1学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 分式的通分 第 4 课时 课型 新课一、学习目标3. 类比分数的通分,理解分式通分的意义。

4. 类比分数的通分,掌握分式约分的方法与步骤。

二、重点难点重点:运用分式的基本性质正确的进行分式的通分。

难点:通分时最简公分母的确定;运用通分法则将分式进行变形。

三、自学指导阅读教材P7-P8相关内容,思考,讨论,交流下列问题。

1.完成下列各题(通分 ):(1)32与43 (2) 43与53通分的根据:2.与分数的通分类似,你能把分式ab c 3与bc41的分母化同吗?3.什么叫做分式的通分?通分的方法步骤是什么?4. 什么叫做最简公分母?如何确定最简公分母?5.自学例4,体会通分的方法步骤。

疑惑:交流:6.练习尝试p8 练习2学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 小结回顾 第 5 课时 课型 复习课一、目标要求1.回顾分式的概念、分式的基本性质。

2.理解分式的约分与通分,利用分式的基本性质进行分式的约分、通分运算。

3.体会类比的学习方法。

二、重难点分式的约分与通分三、复习导学1.理清知识结构(试用框图的形式表示)2.尝试运用约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyzyz x - (4)x y y x --3)(2通分:(1)321ab 和c b a 2252(2)xy a 2和23x b (3)223ab c 和28bc a -(4)11-y 和11+y四、疑惑与交流:学习了知识,记住了知识,学会了基本方法,还有疑问。

课题分式的乘除第 6 课时课型新课一、目标导学1.通过类比分数的乘除运算法则,探究得出并掌握分式的乘除法法则。

2.会进行简单分式的乘除运算,具有一定的代数划归能力。

3.能解决一些与分式有关的简单实际问题。

二、重难点重点:会用分式乘除的法则进行运算.难点:灵活运用分式乘除的法则进行运算 .三、问题导学1. 阅读教材P10-P12内容,思考、讨论、交流完成下列问题。

(1)用语言描述分数的乘法法则,并用字母表示出来。

(2)类比分数的除法法则,用语言描述分式的乘除法法则,并用字母表示出来。

3.在进行分式的乘除运算时,如果分式的分子、分母是多项式时,应该怎么办?分式的乘除法对运算结果有什么要求?四、尝试实践1.自学例题1、2,完成p13练习2.3.2.疑惑:五、反思提升学习了知识,记住了知识,学会了基本方法,还有疑问。

课题分式的乘除混合运算第 7 课时课型新课一、目标导学1.通过类比分数的乘方法则,探索分式的乘方运算法则。

2.会进行分式的乘除及乘方的混合运算。

3.会运用分式的运算解决简单的实际问题。

二、重难点重点:分式的乘除及乘方混合运算难点: 分式的乘除及乘方混合运算三、问题导学1.阅读教材p13-14,思考、探讨、交流。

分式的乘方运算法则:字母表示:2.分式乘除及乘方混合运算的顺序:3.例4.例5探究4.练习尝试:p15 练习1.2.四、疑惑与交流五、反思提升学习了知识,记住了知识,学会了基本方法,还有疑问。

课题 分式的乘除混合运算 第 8 课时 课型 练习课一、目标导学1. 深化分式的乘除及乘方的混合运算。

2.会运用分式的运算解决简单的实际问题。

二、重难点熟练掌握分式的乘除及乘方混合运算三、问题导学1.分式的乘除、乘方知识要点概览2.分式的混合运算的顺序是:3、尝试计算 (1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(xay xy a -÷(4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅-(6)232)23()23()2(ayx y x x y -÷-⋅-四、疑惑与交流五、小结与提升课题 分式的加减运算(1) 第 9 课时 课型 新课一、目标导学1.类比同分母分数的加减法法则,探究同分母分式的加减法法则。

2.熟练进行同分母分式的加减运算。

二、重难点重点:同分母分式的加减运算难点:熟练进行同分母分式的加减运算三、问题导学1.情境导学(计算):1. 15 +25 , 15 - 25,2.同分母分数的加减法法则是什么?3.试计算:111---x x x4.思考:同分母分式的加法法则?5.尝试应用(计算):b a b a b a---22 34x x y -+4x y y x +--74y x y- b a a b b a b a b a b a 22255523--+++ 2222223223y x y x y x y x y x y x --+-+--+6.教材p16练习1四、疑惑与交流五、反思与提升学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 分式的加减运算(2) 第 10 课时 课型 新课一、目标导学1.类比异分母分数的加减法法则,探究异分母分式的加减法法则。

2.熟练进行异分母分式的加减运算。

二、重难点重点:异分母分式的加减运算难点:熟练进行异分母分式的加减运算三、问题导学1.同分母分式的加减法法则是什么?(文字表述): (符号表示):2、异分母分数的加减法法则是什么?(文字表述): (符号表示):3.类比异分母分数的加减法法则计算:1x +12x +13x4.说说异分母分式的加减法法则:(文字表述): (符号表示):5.例题导学(1)96312-++a a (2)3a a --263a a a +-+3a6.疑惑交流7.尝试练习教材p16练习2四、反思提升学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 分式的加减运算(3) 第 10 课时 课型 新课一、目标导学1.熟练掌握分式的加减法法则的基础上,用法则进行分式的混合运算。

2.通过对分式的加减法的进一步学习,提高学生的计算能力和分式的应用能力。

3.在分式运算过程中培养具有一定代数化归的能力,培养乐于探究、合作交流的习惯,进一步培养 “用数学的意识”。

二、学习重点、难点重点:分式的加减法混合运算。

难点:正确熟练进行分式的运算。

三、自主探究1. a cb ÷÷d 的正确顺序是( ) A a ÷b ÷c ÷d B a ⨯c ÷b ÷d C a ÷b ⨯c ⨯d D a ⨯c ÷b ⨯d2.有理数的混合运算的运算顺序是什么?3. 阅读P17例8,体会归纳分式的混合运算需要注意运算顺序,想想分式混合运算与实数的混合运算的区别与联系?4.例题仿解(2a b )2·1a-b -a b ÷b 4 x x x x x x x x -÷+----+4)44122(225.疑惑与交流6.练习尝试p18练习26.反思提升学习了 知识, 记住了 知识, 学会了 基本方法,还有 疑问。

课题 整数指数幂(1) 第 11 课时 课型 新课一、目标导学1.经历探索负整数指数幂和零指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力。

2.了解负整数指数的概念,了解幂运算的法则可以推广到整指数幂。

3、会进行简单的整数范围内的幂运算。

二、学习重点、难点::重点:负整数指数幂的概念难点:认识负整数指数幂的产生过程及幂运算法则的扩展过程。

三、回顾引入1. 你还记得下面这些算式的算式的算法吗?比一比,看一看谁做得又快又好:(1)3533⨯ (2)40a a ∙ (3)33()x(4)4()mn (5)53a a ÷ (6)77x x ÷ (7)7833÷2.回顾正整数指数幂的运算性质四、新课导学1.阅读教材p18-20,思考并回答下列问题(1) 你还记得01(0)a a =≠是怎么得到的吗?(2) 根据除法的意义填空,看看计算结果有什么规律?()781333÷== ()571101010÷== ()351a a a ÷==(3)归纳:(),(),()nm n mn n n nn n a a a a ab a b b b ===在整数指数幂范围内是否适用。

相关文档
最新文档