2011圆锥曲线高考题精选(文科)

合集下载

2011年高考数学(新课标)文科真题及答案

2011年高考数学(新课标)文科真题及答案

2011年高考数学(新课标)文科真题及答案参考答案一、选择题B C B D B AB DC CD A二、填空题1 -6三、解答题解:因为所以所以的通项公式为(18)解:因为,由余弦定理得从而BD2+AD2= AB2,故BD AD又PD 底面ABCD,可得BD PD所以BD 平面PAD. 故PA BD如图,作DE PB,垂足为E。

已知PD 底面ABCD,则PD BC。

由知BD AD,又BC//AD,所以BC BD。

故BC 平面PBD,BC DE。

则DE 平面PBC。

由题设知,PD=1,则BD= ,PB=2,根据BEPB=PDBD,得DE= ,即棱锥DPBC的高为解由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3。

由试验结果知,用B配方生产的产品中优质品的频率为,所以用B 配方生产的产品的优质品率的估计值为0.42由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t94,由试验结果知,质量指标值t94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为(20)解:曲线与y轴的交点为,与x轴的交点为,则有解得t=1. 则圆C的半径为所以圆C的方程为设A,B,其坐标满足方程组:消去y,得到方程由已知可得,判别式因此,从而①由于OAOB,可得又所以②由①,②得,满足故解:由于直线的斜率为,且过点,故即解得,。

由知,所以考虑函数,则所以当时,故当时,当时,从而当解:连接DE,根据题意在△ADE和△ACB中,ADAB=mn=AEAC,即.又DAE=CAB,从而△ADE∽△ACB因此ADE=ACB所以C,B,D,E四点共圆。

m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GH∥AB,HF∥AC. HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5解:设P(x,y),则由条件知M( ).由于M点在C1上,所以即从而的参数方程为曲线的极坐标方程为,曲线的极坐标方程为。

2011-2019高考数学圆锥曲线分类汇编(文)

2011-2019高考数学圆锥曲线分类汇编(文)

2011-2019新课标(文科)圆锥曲线分类汇编一、选择填空【2011新课标】4.椭圆的离心率为( D )A.B.CD【解析】cea===2228111162,be ea=-=-=∴= D.【2011新课标】9.已知直线l过抛物线C的焦点,且与C的对称轴垂直. l与C交于A, B两点,|AB|=12,P为C的准线上一点,则ABP的面积为( C )A.18 B.24 C.36 D.48【解析】易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C.【2012新课标】4.设F1、F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为( C )A.12B.23C.34D.45【解析】∵△F2PF1是底角为30º的等腰三角形,260PF A∴∠=︒,212||||2PF F F c==,∴2||AF=c,322c a∴=,34e∴=,故选C.【2012新课标】10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,||AB=C的实轴长为()A B.C.4 D.8【解析】由题设知抛物线的准线为:4x=,设等轴双曲线方程为:222x y a-=,将4x=代入等轴双曲线方程解得y=||AB=a=2,∴C的实轴长为4,故选C.【2013新课标1】4. 已知双曲线C:2222=1x ya b-(a>0,b>0)C的渐近线方程为( )A.y=±14x B.y=±13x C.y=±12x D.y=±x【解析】∵2e=2ca=,即2254ca=,∵c2=a2+b2,∴2214ba=.∴12ba=.∵双曲线的渐近线方程为by xa=±,∴渐近线方程为12y x=±,故选C。

【2013新课标1】8. O为坐标原点,F为抛物线C:y2=的焦点,P为C上一点,若|PF|=△POF的面积为(C).A.2 B. C..4221168x y+=13122∆【解析】利用|PF |=P x =可得x P=∴y P=±∴S △POF =12|OF |·|y P |= 【2013新课标2】5. 设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( D ) A .6 B . 13 C . 12 D .3【解析】如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||23PF x F F c ==,得3x c =, 而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴3c e a ===【2013新课标2】10. 抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则l 的方程为( C ).A .y =x -1或y =-x +1B .y =(x -1)或y =-(x -1) C .y x -1)或y = x -1) D .y x -1)或y =x -1) 【解析】由题意可得抛物线焦点F(1,0),准线方程为x =-1,当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线, 垂足分别为M ,N ,则由抛物线定义可得,|AM|=|AF|,|BN|=|BF|. 设|AM|=|AF|=3t(t >0),|BN|=|BF|=t ,|BK|=x ,而|GF|=2,在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率k =tan 60°,故直线方程为y 1)x -. 当直线l 的斜率小于0时,如图所示, 同理可得直线方程为y =1)x -,故选C.【2014新课标1】(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( D ) A. 2 B.26 C. 25D. 1 【解析】2=,解得1a =,选D. 【2014新课标2】10. 设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =( C )(A(B )6 (C )12 (D)【2014新课标2】12. 设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值范围是( A )(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )22⎡-⎢⎣⎦, 【2015新课标1】(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=( B ) (A )3 (B )6 (C )9 (D )12【2015新课标1】16. 已知F 是双曲线C :x 2-82y =1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小是,该三角形的面积为 。

2011年山东高考数学文科试卷带详解

2011年山东高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.设集合 {}|(3)(2)0M x x x =+-<,{}|13,N x x=剟 则MN = ( )A.[1,2)B.[1,2]C.( 2,3]D.[2,3] 【测量目标】集合间的交集运算. 【考查方式】集合的表达(描述法),化解,求集合的交集. 【参考答案】A【试题解析】因为{}{}|32,|12M x x M N x x =-<<∴=<…,故选A.2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数的四则运算及复平面.【考查方式】给出复数的除法形式,考查复数的代数四则运算与复数的几何意义. 【参考答案】D【试题解析】因为22i (2i)34i2i 55z ---===+,故复数z 对应点在第四象限,选D. 3.若点(a ,9)在函数3xy =的图象上,则πtan6a 的值为 ( ) A.0 B.33C. 1D. 3 【测量目标】特殊的三角函数值.【考查方式】给出点在函数图象上,求解未知数,通过代入三角函数求解. 【参考答案】D【试题解析】由题意知:93a=,解得a =2,所以π2πtantan 366a ==,故选D. 4.曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A.-9 B.-3 C.9 D.15【测量目标】导数的几何意义.【考查方式】给出函数式与其上一点,用求导的方式求该点的切线与y 轴的焦点纵坐标. 【参考答案】C【试题解析】因为23y x '=,切点为P (1,12),所以切线的斜率为3,故切线方程为390,x y -+=令0,9x y ==5.已知,,a b c ∈R ,命题“若3,a b c ++=则22233,a b c a b c ++++=…”的否命题是( ) A.若3,a b c ++≠则2223a b c ++< B.若3,a b c ++=则2223a b c ++< C.若3,a b c ++≠则2223a b c ++… D.若3,a b c ++…则3a b c ++< 【测量目标】命题的基本关系.【考查方式】考查命题的基本关系,主要考查否命题. 【参考答案】A【试题解析】命题“若p ,则q ”的否命题是“若,p ⌝则q ⌝”,故选A.6.若函数()sin (0)f x x ωω=>在区间π03⎡⎤⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,则ω= ( ) A.23 B.32C. 2D.3 【测量目标】三角函数,函数的单调性.【考查方式】给出函数在某段区间上的单调性,求未知数ω. 【参考答案】B【试题解析】由题意知,函数在π3x =处取得最大值1,所以π1sin 3ω=,故选B.7.设变量,x y 满足约束条件250200x y x y x +-⎧⎪--⎨⎪⎩………,则目标函数231z x y =++的最大值为 ( )A.11B.10C.9D.8.5【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最大值. 【参考答案】B【试题解析】画出平面区域表示的可行域如图所示,当直线231z x y =++平移至点(3,1)A 时, 目标函数231z x y =++取得最大值为10,故选B. 8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 ( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元 【测量目标】回归方程,函数在生活的应用.【考查方式】给出方程的数据,及ˆb,求出回归方程,代入x 求解. 【参考答案】B【试题解析】由表可计算4235749263954,42424x y ++++++==== ,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得ˆ9.1a =,故回归方程为ˆ9.49.1yx =+, 令6x =,得ˆ65.5y =,选B. 9.设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【测量目标】抛物线的简单几何性质,圆锥曲线中的范围问题,两点之间的距离公式. 【考查方式】给出抛物线方程与椭圆的位置关系,求出圆方程,根据准线相交,限定0y 范围.【参考答案】C【试题解析】设圆的半径为r ,因为F (0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4r -,因为点00(,)M x y 为抛物线2:8C x y =上一点,所以有2008x y =,又点00(,)M x y 在圆222(2)x y r +-=,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y …, 所以02y >, 选C.10.函数2sin 2xy x =-的图象大致是 ( )【测量目标】函数图象的判断.【考查方式】给出函数式,给定四张图象,选出正确图象. 【参考答案】C【试题解析】因为12cos 2y x '=-,所以令12cos 02y x '=->,得1cos 4x <,此时原函数是增函数;令12cos 02y x '=-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是第11题图A.3B.2C.1D.0 【测量目标】三视图,命题的概念.【考查方式】给出主视图俯视图,给出三个命题,判断真假. 【参考答案】A【试题解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R ,141211(),2,A A A A μμλμ=∈+=R 则称34,A A 调和分割12,A A ,已知点(,0),C c(,0)D d (,)c d ∈R 调和分割点(0,0),(1,0)A B ,则下面说法正确的是 ( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.,C D 可能同时在线段AB 上D.,C D 不可能同时在线段AB 的延长线上 【测量目标】平面向量的线性运算及向量的坐标运算.【考查方式】给出向量满足的数量关系,求向量的位置关系. 【参考答案】D【试题解析】由13121412(),()A A A A A A A A λλμμ=∈=∈R R 知:四点1234,,,A A A A 在同一条直线上(步骤1)因为,C D 调和分割点,A B ,所以,,,A B C D 四点在同一直线上,且112c d+=, 故选D.(步骤2)第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题按比例求解. 【参考答案】16【试题解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为8401620⨯=. 14.执行右图所示的程序框图,输入12,=3,5m n ==,则输出的y 的值是 .【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环y 的值. 【参考答案】68【试题解析】由输入12,3,5m n ===,计算得出278y =,第一次得新的173y =;第二次得新的68105y =<,输出y .15.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .【测量目标】双曲线的简单几何性质、椭圆的简单几何性质. 【考查方式】给出椭圆方程,及双曲线的离心率与椭圆的离心率的数量关系,求双曲线方程.【参考答案】22143x y -= 【试题解析】由题意知双曲线的焦点为(7,0),(7,0),-即7c =,(步骤1)又因为双曲线的离心率为27,4c a =所以2,a =故23b =,(步骤2) 双曲线的方程为22143x y -=(步骤3) 16.已知函数()log (0,1)a f x x x b a a =+->≠且当234a b <<<<时,函数()f x 的零点*0(,1),,x n n n ∈+∈N 则n = .【测量目标】函数的零点,对数函数的图象与性质.【考查方式】给出函数式,限定函数式里的未知数,求零点位于的区间. 【参考答案】5【试题解析】方程log (0,1)=0a x x b a a +->≠且的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n ∈+∈N (步骤1) 结合图象,因为当(24)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;(步骤2) 当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,(步骤3)故所求的5n =.(步骤4)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=.(I)求sin sin CA的值;(II)若1cos ,4B ABC =△的周长为5,求b 的长. 【测量目标】余弦定理正弦定理,利用正余弦定理解决有关长度问题.【考查方式】给出三角形三边与三角满足的关系式,求解两角正弦值的比值;给出三角形的周长,求边长.【试题解析】(1)由正弦定理得2sin ,2sin ,2sin ,a R A b R B c R C ===所以cos 2cos 22sin sin ,cos sin A C c a C AB b B---==(步骤1)即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin sin 2sin ,2sin CC A A==所以.(步骤2) (2)由(1)知sin 2sin C A =,所以有2ca=,即2c a =,(步骤3) 又因为ABC △的周长为5,所以53,b a =-(步骤4) 由余弦定理得:222222212cos ,(53)(2)44b c a ac B a a a a =+--=+-⨯,解得1a =,所以2b =.(步骤5) 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【测量目标】随机事件与概率,古典概型.【考查方式】给出每个学校的人员具体情况,求从中选出一定人员的概率.【试题解析】(1) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;(步骤1)选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、(甲女1, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(步骤2) (2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;(步骤3)选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62155=.(步骤4) 19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11,60AD A B BAD =∠=.(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:1CC 平面1A BD .【测量目标】线面平行的判断,平行与垂直关系的综合问题.【考查方式】利用余弦定理求直线数量关系,线面垂直推出线线垂直;线线平行推出线面平行 【试题解析】(Ⅰ)证明:因为2AB AD =,所以设AD a =,则2AB a =(步骤1) 又因为60BAD ∠=,所以在ABD △中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以3BD a =(步骤2)所以222AD BD AB +=,故BD AD ⊥,(步骤3) 又因为1D D ⊥平面ABCD ,所以1D D BD ⊥,(步骤4) 又因为1ADD D D =, 所以11BD ADD A ⊥平面,故1AA BD ⊥.(步骤5)(2)连结,AC 设AC BD O =, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点(步骤6)由四棱台1111ABCD A B C D -知:平面ABCD 平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为11,AC A C ,故11ACA C (步骤7)又因为2,AB a BC a ==, 120ABC ∠=,所以可由余弦定理计算得7AC a =(步骤8)又因为11113,2A B a B C a ==, 111120A B C ∠=,所以可由余弦定理计算得1172A C a =(步骤9)所以11A C OC 且11A C OC =,故四边形11OCC A 是平行四边形,所以11CC A O (步骤10)又1CC Ü平面11,A BD AO ⊂平面1A BD . 1CC ∴平面1A BD (步骤11)20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【测量目标】等比数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】将数值放在图象中,求解通项公式;给出n n b a 与的关系,求和. 【试题解析】(Ⅰ)由题意知1232,6,18a a a ===,(步骤1)因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=.(步骤2) (Ⅱ)因为11(1)ln 23(1)ln 23,n n n n n b a a --=+-=+-所以21n n S b b b =+++=1212122(13)()(ln ln ln )ln()13n n n n a a a a a a a a a -+++-+++=--=-(1)121231ln(21333)31ln(23)n n nnn nn--=--⨯⨯⨯⨯=--(步骤3)2(21)2222231ln(23)912ln 2(2)ln 3.n n nnn n S n n n -∴=--=----(步骤4)21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【测量目标】球的表面积公式,圆柱的体积公式,导数在实际问题中的应用【考查方式】给出图象,将所给关系表达为函数表达式,根据函数式,求出最小值【试题解析】(Ⅰ)因为容器的体积为80π3立方米,所以324π80ππ33r r l +=,解得280433rl r =-,所以圆柱的侧面积为22804160π8π2π2π()3333r r rl r r r =-=-,两端两个半球的表面积之和为24πr ,所以22160π8π4πy r cr r =-+,定义域为(0,)2l. (Ⅱ)因为3228(2)20160π16π8πc r y r cr r r π⎡⎤--⎣⎦'=-+=,所以令0y '>得:3202r c >-; 令3320200,0,22y r r c c '<<<∴=--米时, 该容器的建造费用最小. 22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于,A B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD OE =,(i )求证:直线l 过定点; (ii )试问点,B G 能否关于x 轴对称?若能,求出此时ABG △的外接圆方程;若不能,请说明理由.【测量目标】直线与椭圆的位置关系,韦达定理,圆的简单几何性质, 【考查方式】给出椭圆方程及图象,求俩数据和的最小值;给出向量的数量关系,求直线过定点和外接圆问题.【试题解析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠, 由2213y kx n x y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330,k x knx n +++-=(步骤1) 1122(,),(,)A x y B x y AB 设,的中点00(,)E x y ,则由韦达定理得: 122613kn x x k -+=+, 即00022233,131313kn kn n x y kx n k n k k k--==+=⨯+=+++ , 所以中点E 的坐标为223(,)1313kn n E k k-++(步骤2) 因为,,O E D 三点在同一直线上,所以,OE OD k k =即1,33m k -=- 解得222211,2m m k k k k =∴+=+…(步骤3) 当且仅当1k =时取等号,即22m k +的最小值为2.(步骤4)(Ⅱ)(i )证明:由题意知:0n >,因为直线OD 的方程为,3m y x =- 所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+(步骤5) 又因为2,13E D n y y m k==+ ,且2OG OD OE =,所以222313m n m m k =++(步骤6) 又由(Ⅰ)知: 1m k=,所以解得k n =, 所以直线l 的方程为:,l y kx k =+即有:(1)l y k x =+,(步骤7)令1,x =-得0y =与实数k 无关,所以直线l 过定点(-1,0).(步骤8)(ii )假设点,B G 关于x 轴对称,则有ABG △的外接圆的圆心在x 轴上,又在线段AB 的中垂线上,(步骤9)由(i )知点223(,),33m G m m -++所以点223(,)33m B m m --++,(步骤10)又因为直线l 过定点(-1,0),所以直线l 的斜率为223,313mm k m -+=-++,(步骤11) 又因为1m k=所以解得21m =或6(步骤12) 又因为230,m ->所以26m =舍去,21m =(步骤13)此时311,1,(,)44k m E ==-,AB 的中垂线为2210x y ++=,圆心坐标为131(,0),(,)222G --,圆半径为52,圆的方程为2215().24x y -+=(步骤14) 综上所述, 点,B G 关于x 轴对称,此时ABG △的外接圆的方程为2215().24x y -+=(步骤15)。

2011年高考文科数学试题汇编__五、解析几何

2011年高考文科数学试题汇编__五、解析几何

解析几何(一)选择题(辽宁文)(7)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为C (A )34(B )1 (C )54(D )74(重庆文)9.设双曲线的左准线与两条渐近线交于,A B 两点,左焦点在以A B 为直径的圆内,则该双曲线的离心率的取值范围为BA .B .C . 2D .,)+∞(全国新课标文)(4)椭圆221168xy+=的离心率为D(A )13(B )12(C 3(D 2(全国新课标文)(9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则A B P ∆的面积为C(A )18 (B )24 (C ) 36 (D ) 48(全国大纲文)11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =CA .4B .C .8D .(福建文)11.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2P F =4:3:2,则曲线I 的离心率等于A A .1322或 B .223或C .122或D .2332或(天津文)6.已知双曲线22221(0,0)x y a b ab-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】B 【解析】双曲线22215x ya-=的渐近线为b y x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p -==,即4p =,又∵42=+a p ,∴2a =,将(-2,-1)代入b y x a=得1b =,∴c ===即22c =(浙江文)(9)已知椭圆22122:1x y C ab+=(a >b >0)与双曲线222:14yC x -=有公共的焦点,C 2的一条渐近线与C 1C 2的长度为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则(A )a 2=132(B )a 2=13 (C )b 2=12(D)b 2=2【答案】C【解析】由双曲线422yx -=1知渐近线方程为x y 2±=,又∵椭圆与双曲线有公共焦点,∴椭圆方程可化为22x b +()225y b +=()225b b +,联立直线与椭圆方程消y 得,()20552222++=b bbx,又∵1C 将线段AB 三等分,∴()3220552212222a b bb=++⨯+,解之得212=b .(四川文)3.圆22460x y x y +-+=的圆心坐标是(A )(2,3) (B )(-2,3) (C )(-2,-3) (D )(2,-3)答案:D解析:圆方程化为22(2)(3)13x y -++=,圆心(2,-3),选D .(陕西文)2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是 ( ) (A )28y x =- (B )24y x =- (C )28y x = (D )24y x = 【分析】由准线确定抛物线的位置和开口方向是判断的关键. 【解】选 C 由准线方程2x =-得22p -=-,且抛物线的开口向右(或焦点在x 轴的正半轴),所以228y px x ==.(山东文)9.设M(0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是(A)(0,2) (B)[0,2] (C)(2,+∞) (D)[2,+∞) 【答案】C【解析】设圆的半径为r,因为F(0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4<r,因为点M(0x ,0y )为抛物线C :28x y =上一点,所以有2008x y =,又点M(0x ,0y )在圆222(2)x y r +-= ,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y ≥, 所以02y >, 选C.的距离为02y +,(广东文)8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆8.(A ).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线(湖南文)6.设双曲线2221(0)9x ya a-=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

高考数学真题解析分项版圆锥曲线 文

高考数学真题解析分项版圆锥曲线 文

2011年高考试题解析数学(文科)分项版10 圆锥曲线一、选择题:1. (2011年高考山东卷文科9)设M(0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 (A)(0,2) (B)[0,2] (C)(2,+∞) (D)[2,+∞) 【答案】C3. (2011年高考海南卷文科9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12,P 为C 的准线上一点,则ABP ∆的面积为( ) A.18 B.24 C.36 D.48 【答案】C【解析】因为AB 过抛物线的焦点且与对称轴垂直,所以线段AB 是抛物线的通径,长为212p =,所以6p =,又点P 到AB 的距离为焦参数p ,所以ABP ∆的面积为212362p p p ⨯==,故选C.4. (2011年高考安徽卷文科3) 双曲线x y 222-=8的实轴长是(A )2(B) (C) 4【答案】C【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 5.(2011年高考广东卷文科8)设圆C 与圆外切,与直线0y =相切.则C 的圆心轨迹为( )A . 抛物线B . 双曲线C . 椭圆D . 圆6.(2011年高考浙江卷文科9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与1C 2C 的长度为直径的圆相交于,A B 两点.若1C 恰好将线段AB 三等分,则 (A )2132a = (B )213a = (C )212b = (D) 22b = 【答案】 C【解析】:由1c 恰好将线段AB 三等分得133A A x x x x =⇒=由222,A y x x x y=⎧⇒=⎨+⎩,1515x y a ∴==222222)521515(,)111a a b a b ∴+=⇒=在椭圆上, 又22215,2a b b -=∴=,故选C.7. (2011年高考天津卷文科6)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A.【答案】B【解析】由题意知,抛物线的准线方程为2x =-,所以4p =,又42pa +=,所以2a =,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为12y x =±,即12b a =,所以1b =,即25c =,2c =选B.8. (2011年高考福建卷文科11)设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于A. 1322或B. 223或 C. 122或 D. 2332或【答案】A【解析】由1PF :12F F :2PF = 4:3:2,可设14PF k =,123F F k =,22PF k =,若圆锥曲线为椭圆,则26a k =,23c k =,12e =;若圆锥曲线为双曲线,则22a k =,23c k =,32e =,故选A. 9. (2011年高考四川卷文科11)在抛物线y=x 2+ax-5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆225536x y +=相切,则抛物线的顶点坐标是( )(A ) (-2,-9) (B )(0,-5) (C) (2,-9) (D )(1,6)10. (2011年高考陕西卷文科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B ) 24y x =- (C) 28y x = (D) 24y x = 【答案】C【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒=故选C 11.(2011年高考湖南卷文科6)设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

2011圆锥曲线高考题精选(文科)

2011圆锥曲线高考题精选(文科)

圆锥曲线高考题精选
(每小题10分,共100分)
一、选择题
1、设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是
A .28y x =-
B .24y x =-
C .28y x =
D .24y x =
2、椭圆22
1168
x y +=的离心率为
A .13
B .12
C
D .2
3、双曲线x y 222-=8的实轴长是
(A )2 (B ) (C ) 4 (D ) 4、设双曲线22
21(0)9
x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1
5、已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为
A .18
B .24
C . 36
D . 48
二、填空题:
1、双曲线22
16436
x y -=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____. 2、已知双曲线2
2
21y x b -=(b >0)的一条渐近线的方程为2y x =,则b = 3、若双曲线22
116y x m
-=的离心率e=2,则m = 4、已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22
x y =1169
+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .
5、设椭圆C: ()22
2210x y a b a b +=>>过点(0,4),离心率为35,则C 的方程为。

江西省各地市2011年高考数学最新联考试题分类大汇编第10部分 圆锥曲线

江西省各地市2011年高考数学最新联考试题分类大汇编第10部分 圆锥曲线

江西省各地市2011年高考数学最新联考试题分类大汇编第10部分:圆锥曲线一、选择题:10.(江西省九校2011年高三联合考试文科)已知F 1,F 2是双曲线221169x y -=的左、右焦点,P 是双曲线一点,且2||6,(0,)PF Q m =点12||3,()m PQ PF PF ≥⋅-则的值是( B )A .40B .80C .160D .与m 的值有关9.(江西省“八校” 2011年4月高三联合考试理科)已知抛物线22y px =(0)p >与双曲线22221x y a b-=(0,0)a b >>有相同的焦点F ,点A是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线的一条渐近线,则l 的倾斜角所在的区间可能是( D )A .(0,)6πB .(,)64ππC .(,)43ππD .(,)32ππ9.(江西省吉安市2011届高三第二次模拟理科)若椭圆221x y m n+=与双曲线221x y p q-=(,,,m n p q 均为正数)有共同的焦点F 1、F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅ ( C )A .22pm - B .p m - C .m p - D .22mp -7. (江西省九江市六校2011年4月高三第三次联考理科)已知1F 、2F 分别是双曲线的左、右焦点,以坐标原点O 为圆心,为半径的圆与双曲线在第一象限的交点为P,则当的面积等于时,双曲线的离心率为( A )A.2 B 。

3 C 。

26 D.210. (江西省九江市六校2011年4月高三第三次联考文科)已知双曲线C :12222=-b y a x 的右支上存在一点P ,使得点P 到双曲线右焦点的距离等于它到直线ca x 2-=(其中222b a c+=)的距离,则双曲线C 离心率的取值范围是( C ) A 。

(1,2]B. [2,)+∞C. (1,21]+D. [21,)++∞.6。

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

2011年高考数学圆锥曲线配套试卷及答案

2011年高考数学圆锥曲线配套试卷及答案

2011年最新高考+最新模拟——圆锥曲线1. 【2010•浙江理数】设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A.340x y ±=B.350x y ±=C.430x y ±=D.540x y ±= 【答案】C【解析】利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,可知答案选C ,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题2. 【2010•全国卷2理数】已知椭圆2222:1(0)x y C a b a b +=>>过右焦点F且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )2 【答案】B【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.3. 【2010•陕西文数】已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为 ( )A.12B.1C.2D.4【答案】C【解析】本题考查抛物线的相关几何性质及直线与圆的位置关系法一:抛物线y 2=2px (p>0)的准线方程为2px -=,因为抛物线y 2=2px (p>0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p>0)的准线与圆(x -3)2+y 2=16相切与点(-1,0)所以2,12=-=-p p4. 【2010•辽宁文数】设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )12 D.12【答案】D【解析】选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b-=>>,则一个焦点为(,0),(0,)F c B b 一条渐近线斜率为:b a ,直线FB 的斜率为:bc -,()1b ba c∴⋅-=-,2b ac ∴=220c a ac --=,解得12c e a ==.5. 【2010•辽宁文数】设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为PF =( )A.【答案】B【解析】利用抛物线定义,易证PAF ∆为正三角形,则4||8sin30PF ︒== 6. 【2010•辽宁理数】设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )D. 【答案】D【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=bxa垂直,所以1b bc a-=-,即b2=ac所以c2-a2=ac,即e2-e-1=0,所以12e=或12e-=(舍去).7. 【2010•辽宁理数】设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为,那么|PF|=( )A. B.8C. D.16【答案】B【解析】抛物线的焦点F(2,0),直线AF的方程为2)y x=-,所以点(A-、P,从而|PF|=6+2=88. 【2010•全国卷2文数】已知椭圆C:22221x ya b+=(a>b>0)的离心率为2,过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若3AF FB=。

2011年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2011年全国统一高考数学试卷(文科)(大纲版)(含解析版)
参考答案与试题解析
一、选择题(共 12 小题,每小题 5 分,满分 60 分)
1.(5 分)设集合 U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩
N)=( )
A.{1,2}
B.{2,3}
C.{2,4}
D.{1,4}
【考点】1H:交、并、补集的混合运算. 菁优 网版权所有
定义域是原函数的值域.
3.(5 分)设向量 、 满足| |=| |=1, • =﹣ ,| +2 |=( )
A..
B.
C.、
D..
【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算. 菁优 网版权所有
【专题】11:计算题.
【分析】由| +2 |=
=
,代入已知可求
【解答】解:∵| |=| |=1, • =﹣ ,
=f(﹣ )=﹣f( ),代入已知条件进行运算.
【解答】解:∵f(x)是周期为 2 的奇函数,当 0≤x≤1 时,f(x)=2x(1﹣x),

=f(﹣ )=﹣f( )=﹣2× (1﹣ )=﹣ ,
故选:A. 【点评】本题考查函数的周期性和奇偶性的应用,以及求函数的值.
11.(5 分)设两圆 C1、C2 都和两坐标轴相切,且都过点(4,1),则两圆心的距 离|C1C2|=( )
13.(5 分)(1﹣x)10 的二项展开式中,x 的系数与 x9 的系数之差为:

14.(5 分)已知 a∈(π, ),tanα=2,则 cosα=

15.(5 分)已知正方体 ABCD﹣A1B1C1D1 中,E 为 C1D1 的中点,则异面直线 AE
与 BC 所成的角的余弦值为

2011年湖北高考真题数学文科试卷及答案解析

2011年湖北高考真题数学文科试卷及答案解析

2011年普通高等学校招生全国统一考试(湖北卷)数学试题(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5U A B ===则()UA B = ( )A .{}6,8B .{}5,7C .{}4,6,7D .{}1,3,5,6,8【测量目标】集合的补集和并集.【考查方式】用列举法表示集合的全集和两个子集,求两个子集并集的补集. 【参考答案】A 【试题解析】先求出AB ={1,2,3,4,5,7},再求()UA B ={}6,82.若向量()()1,2,1,1==-a b ,则2+a b 与-a b 的夹角等于 ( )A .π4-B .π6C .π4D .3π4【测量目标】平面向量的夹角.【考查方式】给定两个向量,求两向量相加和向量相减的夹角. 【参考答案】C【试题解析】分别求出2+a b 与-a b 的坐标,再求出,()23,3+=a b ,()0,3-=a b 求2+=a b =3-=a b 得cos 2-a +b,a b =()()22+-+-a b a b a b a b=2,所以2+a b 和-a b 得夹角为π4,故选C. 3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=,则()g x = ( ) A .e e xx-- B .()1e e 2x x -+ C .()1e e 2x x -- D .()1e e 2x x -- 【测量目标】函数的奇偶性的综合应用.【考查方式】一个奇函数和一个偶函数,给出奇函数和偶函数和的表达式求解奇函数的表达式.【参考答案】D 【试题解析】()f x 为定义域在R 上的偶函数,∴()()f x f x -=又()g x 为定义在R上的奇函数()()g x g x ∴-=-由()()e xf xg x +=()()f x g x ∴-+-=e x-()()1e e 2x x g x -∴=- 4.将两个顶点在抛物线()220y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则 ( ) A .n =0B .n =1C .n =2D .3n【测量目标】抛物线的简单几何性质. 【考查方式】三角形的两点在抛物线上,一点在焦点上求三角形是正三角形的个数. 第4题图 【参考答案】C【试题解析】根据抛物线的对称性,正三角形的两个顶点一定关于x 轴对称,且过焦点的两条直线倾斜角分别为30和150,这时过焦点的直线与抛物线最多只有两个交点,所以正三角形的个数记为n ,n =2,所以选C .5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[)10,12内的频数为( )A .18B .36C .54D .72 【测量目标】频率分布直方图.【考查方式】给出样本频率直方图,计算某区间内的频数.【参考答案】B 【试题解析】因为组距为2,所以[)10,12的频率为0.18,所以频数为200×0.18=36 第5题图 6.已知函数()3sin cos ,f x x x x =-∈R ,若()1f x ,则x 的取值范围为 ( )A .π|2π+2π+π,k 3x k xk ⎧⎫∈⎨⎬⎩⎭ZB .π|π2ππ,3x k xk k ⎧⎫++∈⎨⎬⎩⎭ZC .π5π|2π2π,66x k xk k ⎧⎫++∈⎨⎬⎩⎭Z D .π5π|ππ,66x k xk k ⎧⎫++∈⎨⎬⎩⎭Z 【测量目标】三角函数的定义域、值域.【考查方式】给定三角函数的表达式和函数的值域求函数的定义域. 【参考答案】A3cos 1x x-得π1sin 62x ⎛⎫- ⎪⎝⎭,则π5π2π2π66k x k ++,解得π2π2ππ,3k x k k ++∈Z ,所以选A .7.设球的体积为1V ,它的内接正方体的体积为2V ,下列说法中最合适的是 ( ) A .1V 比2V 大约多一半 B .1V 比2V 大约多两倍半C .1V 比2V 大约多一倍D .1V 比2V 大约多一倍半【测量目标】球的体积公式和正方体的体积公式【考查方式】有圆和圆的内接正方体,求圆与正方体的体积比. 【参考答案】D【试题解析】设球的半径为r ,所以球的体积为1V =34π3r ,球的内接正方体的对角线就是球的直径,所以正方体的棱长为3正方体的体积为323V = ⎪⎝⎭,123πV V =≈2.6 8.直线2100x y +-=与不等式组0024320x y x y x y ⎧⎪⎪⎨--⎪⎪+⎩表示的平面区域的公共点有 ( )A .0个B .1个C .2个D .无数个【测量目标】线性规划 【考查方式】给出目标函数和可行域方程组求目标函数与可行域的公共点.【参考答案】B【试题解析】如图直线2x +y -10=0与不等式组表示的平面区域只有一个公共点9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 ( )A .1升B .6766升 C .4744升 D .3733升 【测量目标】等差数列通项公式【考查方式】给出前四项和5,6,7三项的和求第5项. 【参考答案】B【试题解析】由题意 143432a d ⨯+=, 11986596422a d a d ⨯⨯⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭解得11322a =,d =766,所以易求a 5=6766.10.若实数a ,b 满足0,0a b,且0ab =,则称a 与b 互补,记(),,a b a b ϕ=-那么(),0a b ϕ=是a 与b 互补的 ( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件 【测量目标】命题的充分,必要条件.【考查方式】给出一新的命题和一条件,判断命题和条件的关系. 【参考答案】C【试题解析】若(),a b a b ϕ=-(a +b )两边平方解得ab =0,故a ,b 至少有一为0,不妨令a =0则可得|b |-b =0,故b0,即a 与b 互补,而当a 与b 互补时,易得ab =0a b -=0,即(),a b ϕ=0,故(),a b ϕ=0是a 与b 互补的充要条件.二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分.11.某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家. 【测量目标】分层抽样【考查方式】分层抽样中从某一层中应该抽取的样本数. 【参考答案】20【试题解析】大型超市200家、中型超市400家、小型超市1400家. 共有超市200+400+1400=2000按分层抽样方法抽取一个容量为100样本,每个个体被抽到的概率是1002000=120,中型超市要抽取400×120=20家12.18x ⎛ ⎝的展开式中含15x 的项的系数为__________.(结果用数值表示) 【测量目标】二项式定理.【考查方式】给定二项式,求展开式中某项的系数. 【参考答案】17【试题解析】二项展开式的通项为1r T +=3182181C 3rrr x -⎛⎫- ⎪⎝⎭,令18-32r =15得r =2,所以展开式中含x 15的项的系数为22181C 173⎛⎫-= ⎪⎝⎭.13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示) 【测量目标】事件发生的概率【考查方式】产品中有次品,求随机抽样抽到次品的概率. 【参考答案】28145【试题解析】227230C 281C 145p =-=. 14.过点(—1,—2)的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 的斜率为__________.【测量目标】直线和圆的位置关系【考查方式】过定点的直线与圆相交且弦长确定求直线的斜率. 【参考答案】1或177【试题解析】设直线斜率是k ,直线方程为()21y k x +=+,由题意得圆心到直线的距离为d==2,得k =1或17715.里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍. 【测量目标】对数运算,函数模型.【考查方式】由实际生活引出对数函数,并提出实际问题. 【参考答案】6,10000【试题解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.01,则M =lg A -lg A 0=lg1000-lg0.001=3-(-3)=6. 设9级地震的最大振幅是x ,5级地震最大振幅是y ,9=lg x +3,5=lg y +3,解得x =106,y =102,所以62101000010x y ==.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知11,2,cos 4a b C === (I ) 求△ABC 的周长; (II )求()cos A C -的值.【测量目标】余弦定理,两角差的余弦,同角三角函数的基本关系.【考查方式】给出三角形两边和一角的余弦值,求三角形周长和两角差的余弦值.【试题解析】(Ⅰ)22212cos 14444c a b ab C =+-=+-⨯= 2.c ∴=(步骤1)ABC ∴△的周长为122 5.a b c ++=++=(步骤2)(Ⅱ)1cos ,sin 4C C =∴===sin 4sin 28a C A c ∴===(步骤3),a c A C <∴<,故A 为锐角,7cos .8A ∴===(步骤4)7111cos()cos cos sin sin .848416A C A C A C ∴-=+=⨯+=(步骤5)17.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{}n b 中的345b b b 、、.(I ) 求数列{}n b 的通项公式;(II ) 数列{}n b 的前n 项和为n S ,求证:数列54n S ⎧⎫+⎨⎬⎩⎭是等比数列. 【测量目标】等差数列等比数列的通项公式和等比数列的前n 项和公式【考查方式】由等差数列的等差中项得等比数列中的三项,求等比数列的通项和关于前n 项和的证明.【试题解析】(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+ 依题意,得15, 5.a d a a d a -+++==解得(步骤1) 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的第3项为5,公比为2.(步骤2)由22311152,52,.4b b b b ===即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --==(步骤3)(Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==--,即25524n n S -+=(步骤4)所以1112555524, 2.542524n n n nS S S -+-++===+ 因此55{}42n S +是以为首项,公比为2的等比数列.(步骤5)18.(本小题满分12分)如图,已知正三棱柱111ABC A B C -的底面边长2,侧棱长为32,点E 在侧棱1AA 上,点F 在侧棱1BB 上,且22AE =,2BF =.(I ) 求证:1CF C E ⊥; (II ) 求二面角1E CF C --的大小.【测量目标】两条直线的位置关系和二面角.【考查方式】正三棱柱中给出底边和侧棱长侧棱上点的位置,证明线线垂直和求二面角大小. 【试题解析】(Ⅰ)由已知可得221132,2(22)23CC CE C F ===+=222221(),2(2)6EF AB AE BF EF C E =+-==+=(步骤1)于是有2222221111,EF C E C F CE C E CC +=+=所以11,C E EF C E CE ⊥⊥又1,.EF CE E C E CEF =⊥所以平面由1,.CF CEF CF C E ⊂⊥平面故(步骤2)(Ⅱ)在△CEF 中,由(Ⅰ)可得6,23EF CF CE ===于是有EF 2+CF 2=CE 2,所以.CF EF ⊥(步骤3) 又由(Ⅰ)知CF ⊥C 1E ,且1EFC E E =,所以CF ⊥平面C 1EF ,又1C F ⊂平面C 1EF ,故CF ⊥C 1F .于是1EFC ∠即为二面角E —CF —C 1的平面角.(步骤4)由(Ⅰ)知△1C EF 是等腰直角三角形,所以145BFC ∠=︒,即所求二面角E —CF —C 1的大小为45︒.(步骤5) 19.(本小题满分12分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当20200x 时,车流速度v 是车流密度x 的一次函数.(I )当0200x 时,求函数v (x )的表达式;(II )当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =可以达到最大,并求出最大值.(精确到1辆/小时).【测量目标】分段函数模型.【考查方式】从实际问题中提出问题,求函数表达式,在特定的定义域内求解函数的最大值.【试题解析】(Ⅰ)当020,()60x v x =时;当20200,()x v x ax b =+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得(步骤1)故函数()v x 的表达式为60,020,()1(200),202003x v x x x ⎧⎪=⎨-⎪⎩(步骤2)(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x <⎧⎪=⎨-⎪⎩(步骤3)当020,()x f x 时为增函数,故当20x =时,其最大值为60×20=1200;(步骤4)当20200x时,211(200)10000()(200)[]3323x x f x x x +-=-=当且仅当200x x =-,即100x =时,等号成立.(步骤5)所以,当100,()x f x =时在区间[20,200]上取得最大值10000.3(步骤6) 综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈.即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.(步骤7)20.(本小题满分13分)设函数()()3222,32f x x ax bx a g x x x =+++=-+,其中x ∈R ,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l . (I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x mx +=有三个互不相同的实根0、12x x 、,其中12x x <,且对任意的[]12,x x x ∈,()()()1f x g x m x +<-恒成立,求实数m 的取值范围. 【测量目标】导数的几何意义,利用导数解决不等式问题.【考查方式】给出两函数的表达式,某点切线相同求该店切线方程.构造新的函数求解不等式.【试题解析】(Ⅰ)2()34,()2 3.f x x ax b g x x ''=++=-由于曲线()()y f x y g x ==与在点(2,0)处有相同的切线,故有(2)(2)0,(2)(2) 1.f g f g ''====(步骤1)由此得8820,2,1281, 5.a b a a a b b +++==-⎧⎧⎨⎨++==⎩⎩解得所以2,5a b =-=,切线l 的方程为20x y --=(步骤2)(Ⅱ)由(Ⅰ)得32()452f x x x x =-+-,所以32()()32.f x g x x x x +=-+ 依题意,方程2(32)0x x x m -+-=有三个互不相同的实数120,,x x , 故12,x x 是方程2320x x m -+-=的两相异的实根.(步骤3) 所以194(2)0,.4m m ∆=-->>-即又对任意的12[,],()()(1)x x x f x g x m x ∈+<-成立,(步骤4) 特别地,取1x x =时,111()()f x g x mx m +-<-成立,得0.m < 由根与系数的关系,可得12121230,20,0.x x x x m x x +=>=-><<故 对任意的1221[,],0,0,0x x x x x x x x ∈-->有(步骤5) 则12111()()()()0,()()0f x g x mx x x x x x f x g x mx +-=--+-=又所以函数12()()[,]f x g x mx x x x +-∈在的最大值为0.(步骤6)于是当0m <时,对任意的12[,],()()(1)x x x f x g x m x ∈+<-恒成立,综上,m 的取值范围是1(,0).4-(步骤7)21.(本小题满分14分)平面内与两定点()1,0A a -、()()2,00A a a >连线的斜率之积等于非零常数m 的点的轨迹,如上12,A A 两点所成的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值的关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的),0()0,1(+∞-∈ m ,对应的曲线为2C ,设12,F F 是2C 的两个焦点.试问:在1C 上,是否存在点N ,使得△12F NF 的面积2S m a =.若存在,求12tan F NF 的值;若不存在,请说明理由.【测量目标】圆锥曲线的轨迹问题.【考查方式】由圆锥曲线的定义命题,讨论a 范围不同时圆锥曲线的形状,当圆锥曲线为圆和焦点为12((F F -的曲线下的综合证明. 【试题解析】(I )设动点为M ,其坐标为(,)x y ,当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a =⋅==-+- 即222()mx y ma x a -=≠±,(步骤1)又12(,0),(,0)A a A a -的坐标满足222,mx y ma -= 故依题意,曲线C 的方程为222.mx y ma -=(步骤2)当1,m <-时曲线C 的方程为22221,x y C a ma+=-是焦点在y 轴上的椭圆;(步骤3) 当1m =-时,曲线C 的方程为222x y a +=,C 是圆心在原点的圆;(步骤4)当10m -<<时,曲线C 的方程为22221x y a ma +=-,C 是焦点在x 轴上的椭圆;(步骤5)当0m >时,曲线C 的方程为22221,x y a ma -=C 是焦点在x 轴上的双曲线.(步骤6)(II )由(I )知,当m =-1时,C 1的方程为222;x y a +=当(1,0)(0,)m ∈-+∞时,C 2的两个焦点分别为12((F F -对于给定的(1,0)(0,)m ∈-+∞,(步骤7) C 1上存在点000(,)(0)N x y y ≠使得2||S m a =的充要条件是22200020,0,12|||.2x y a y y m a ⎧+=≠⎪⎨⋅=⎪⎩ 由①得00||,y a <由②得0||y =当150,0,2a m -<<即或1502m +<时,存在点N ,使S =|m|a 2;(步骤8) 1,2a m >即-1<<或12m +>时, 不存在满足条件的点N ,(步骤9)当115,00,22m ⎡⎫⎛+∈⎪ ⎢⎪ ⎣⎭⎝⎦时,由100200(1),(1,)NF a m x y NF a x y =-+--=+-, 可得22221200(1),NF NF x m a y ma =-++=-(步骤10)令112212||,||,NF r NF r F NF θ==∠=,则由22121212cos ,cos ma NF NF r r ma r r θθ==-=-可得, 从而22121sin 1sin tan 22cos 2ma S r r ma θθθθ==-=-, 于是由2||S m a =,可得2212||tan ||,tan .2m ma m a mθθ-==-即(步骤11) 综上可得:① ②当1,02m ⎡⎫∈⎪⎢⎪⎣⎭时,在C 1上,存在点N ,使得212||,tan 2;S m a F NF ==且当10,2m ⎛∈ ⎝⎦时,在C 1上,存在点N ,使得212||,tan 2;S m a F NF ==-且当115(1,(,)22m +-+∞时,在C 1上,不存在满足条件的点N .(步骤12)。

2011年高考试题——数学文(新课标卷)解析版

2011年高考试题——数学文(新课标卷)解析版

2011年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}===则P的子集共有0,1,2,3,4,1,3,5,,M N P M N(A)2个(B)4个(C)6个(D)8个解析:本题考查交集和子集概念,属于容易题。

显然P={}3,1,子集数为22=4故选B(2)复数512ii=- (A )2i - (B )12i - (C )2i -+ (D )12i -+ 解析:本题考查复数的运算,属容易题。

解法一:直接法512ii =-()()()i i i i i +-=+-+22121215,故选C 解法二:验证法 验证每个选项与1-2i 的积,正好等于5i 的便是答案。

(3)下列函数中,即是偶数又在()0,+∞单调递增的函数是 A. 3y x = B. 1y x =+ C. 21y x =-+ D. 2x y -= 解析:本题考查函数的奇偶性和单调性,属于简单题可以直接判断:A 是奇函数,B 是偶函数,又是()0,+∞的增函数,故选B 。

(4).椭圆221168x y +=的离心率为A. 13B. 12C.3D. 2解析;本题考查椭圆离心率的概念,属于容易题,直接求e=22422==ac,故选D 。

广东2011高三数学圆锥曲线(文科)

广东2011高三数学圆锥曲线(文科)

广州市2011届高三数学圆锥曲线练习题(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1椭圆错误!未找到引用源。

上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .10 2双曲线1422=-yx的焦点坐标为( )A .)0,3(±B .)3,0(±C .)0,5(±D .)5,0(±3抛物线24y x =的准线方程是( )A .1y =B .1y =- C.116y = D. 116y =-4若R k ∈,则3>k 是方程22133xyk -=-表示双曲线的( )条件A .充分不必要B .必要不充分C .充要条件D .既不充分也不必要5双曲线22221x y ba-=的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .236抛物线212y x =的准线与双曲线22193xy-=的两条渐近线所围成的三角形面积等于A 3B 3 C.2 37过抛物线24y x =的焦点的直线l 交抛物线于11(,)P x y 、22(,)Q x y 两点,如果126x x +=, 则PQ = ( ) A .9 B .8C .7D .68以椭圆2212449xy +=的焦点为顶点、顶点为焦点的的双曲线方程是( )A.2212524xy-= B.2212425xy-= C.2212524yx-= D.2212425yx-=9如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道I 和Ⅱ的长轴的长,给出下列式子:①1122;a c a c +=+②1122;a c a c -=-③1212;c a a c >④1212.cc a a <其中正确式子的序号是( )A .①③B .②③C .①④D .②④10竖在地面上的两根旗杆的高分别为10米和15米,相距20米,则地面上到两旗杆顶点的仰角相等的点的轨迹是( )A . 圆 B.椭圆 C.双曲线 D.抛物线二、填空题:本大题共6小题,每小题5分,共30分. 11已知双曲线112222=-yax 的离心率2e = ,则双曲线的焦距为12以双曲线2213yx -=的一个焦点为圆心,离心率为半径的圆的方程是___________13椭圆221259xy+=上一点M 到左焦点1F 的距离是2,N 是1M F 的中点,O 为坐标原点,则ON = .14设斜率为2的直线l 过抛物线2(0)y ax a =>的焦点F ,且和y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为____________三、解答题:本大题共6小题,共80分。

高考数学全国卷2011-2019圆锥曲线分类汇编(文科)

高考数学全国卷2011-2019圆锥曲线分类汇编(文科)

高考数学全国卷2011-2019圆锥曲线分类汇编(文科)一、选择填空【2011新课标】4.椭圆的离心率为( D )A.B.CD【解析】cea===2228111162,be ea=-=-=∴=,故选D.【2011新课标】9.已知直线l过抛物线C的焦点,且与C的对称轴垂直. l与C交于A, B两点,|AB|=12,P为C的准线上一点,则ABP的面积为( C )A.18 B.24 C.36 D.48【解析】易知2P=12,即AB=12,三角形的高是P=6,所以面积为36,故选C.【2012新课标】4.设F1、F2是椭圆E:22221x ya b+=(a>b>0)的左、右焦点,P为直线32ax=上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为( C )A.12B.23C.34D.45【解析】∵△F2PF1是底角为30º的等腰三角形,260PF A∴∠=︒,212||||2PF F F c==,∴2||AF=c,322c a∴=,34e∴=,故选C.【2012新课标】10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,||AB=,则C的实轴长为()A B.C.4 D.8【解析】由题设知抛物线的准线为:4x=,设等轴双曲线方程为:222x y a-=,将4x=代入等轴双曲线方程解得y=||AB=a=2,∴C的实轴长为4,故选C.【2013新课标1】4. 已知双曲线C:2222=1x ya b-(a>0,b>0)C的渐近线方程为( )A.y=±14x B.y=±13x C.y=±12x D.y=±x【解析】∵2e=2ca=,即2254ca=,∵c2=a2+b2,∴2214ba=.∴12ba=.∵双曲线的渐近线方程为by xa=±,∴渐近线方程为12y x=±,故选C。

2011年高考数学一轮精品题集:圆锥曲线

2011年高考数学一轮精品题集:圆锥曲线

2011届高考数学一轮复习精品题集圆锥曲线第2章 圆锥曲线与方程考纲总要求:①了解圆锥曲线的实际背景,了解在刻画现实世界和解决实际问题中的作用. ②掌握椭圆的定义、几何图形、标准方程及简单几何性质.③了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. ④理解数形结合的思想. ⑤了解圆锥曲线的简单应用.§2.1-2椭圆重难点:建立并掌握椭圆的标准方程,能根据已知条件求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的几何性质处理一些简单的实际问题.经典例题:已知A 、B 为椭圆22a x +22925a y =1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.[:.]当堂练习:1.下列命题是真命题的是 ( ) A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线c a x 2=和定点F(c ,0)的距离之比为a c的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线c a x 2=和定点F(c ,0)的距离之比为ca(a>c>0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x 3.若方程2+y2=2表示焦点在y 轴上的椭圆,则实数的取值范围为 ( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F1(0,-3)、F2(0,3),动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+b y a x 和k b y a x =+2222()0>k 具有 ( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( ) A .41B .22C .42D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离( )A .516B .566C .875D .877[:学|||||]8.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P1,P2,线段P1P2的中点为P ,设直线m 的斜率为1(01≠k ),直线OP 的斜率为2,则12的值为 ( )A .2B .-2C .21D .-2111.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ .12.与椭圆4 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________. 13.已知()y x P ,是椭圆12514422=+y x 上的点,则y x +的取值范围是________________ .14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于__________________.15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程.16.过椭圆4:),(148:220022=+=+y x O y x P y x C 向圆上一点引两条切线PA 、PB 、A 、B 为切点,如直线AB 与轴、y 轴交于M 、N 两点. (1)若0=⋅,求P 点坐标; (2)求直线AB 的方程(用00,y x 表示);(3)求△MON 面积的最小值.(O 为原点)17.椭圆12222=+b y a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a+的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.18.一条变动的直线L 与椭圆42x +2y 2=1交于P 、Q 两点,M 是L 上的动点,满足关系|MP|·|MQ|=2.若直线L 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.第2章 圆锥曲线与方程 §2.3双曲线重难点:建立并掌握双曲线的标准方程,能根据已知条件求双曲线的标准方程;掌握双曲线的简单几何性质,能运用双曲线的几何性质处理一些简单的实际问题.经典例题:已知不论b 取何实数,直线y=+b 与双曲线1222=-y x 总有公共点,试求实数的取值范围.[:.]当堂练习:1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是 ( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( )A .4B .22C .8D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m -y+n=0与n2+my2=mn 所表示的曲线可能是A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( )A .23B .3C .34D . 3 6.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-b y a x 有( )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点8.过双曲线191622=-y x 左焦点F1的弦AB 长为6,则2ABF ∆(F2为右焦点)的周长是( )A .28B .22C .14D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L的条数共有 ( )A .4条B .3条C .2条D .1条10.给出下列曲线:①4+2y -1=0; ②2+y2=3; ③1222=+y x ④1222=-y x ,其中与直线y=-2-3有交点的所有曲线是 ( )A .①③B .②④C .①②③D .②③④11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.14.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).17.已知动点P 与双曲线2-y2=1的两个焦点F1,F2的距离之和为定值,且cos ∠F1PF2的最小值为-13.(1)求动点P 的轨迹方程; (2)设M(0,-1),若斜率为(≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA|=|MB|,试求的取值范围.18.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).第2章 圆锥曲线与方程 §2.4抛物线重难点:建立并掌握抛物线的标准方程,能根据已知条件求抛物线的标准方程;掌握抛物线的简单几何性质,能运用抛物线的几何性质处理一些简单的实际问题.经典例题:如图, 直线y=21与抛物线y=812-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A 、B )的动点时, 求ΔOPQ 面积的最大值.当堂练习:[:学**]1.抛物线22x y =的焦点坐标是 ( )A .)0,1(B .)0,41(C .)81,0(D .41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为( )A .y x 82=B .y x 42= C .y x 42-= D .y x 82-=3.抛物线xy 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .yx 292-=或x y 342= B .x y 292-=或y x 342= C .y x 342=D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,,成等差数列,则 ( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列 C .321,,y y y 成等差数列 D .231,,y y y 成等差数列7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp 11+ ( )A .a 2B .a21C .a 4D .a410.若AB 为抛物线y2=2p (p>0)的动弦,且|AB|=a (a>2p),则AB 的中点M 到y 轴的最近距离是 ( )A .21aB .21pC .21a +21pD .21a -21p 11.抛物线xy =2上到其准线和顶点距离相等的点的坐标为 ______________.12.已知圆7622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p___________.13.如果过两点)0,(aA和),0(aB的直线与抛物线322--=xxy没有交点,那么实数a的取值范围是.14.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y轴上;(2)焦点在轴上;(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y2=10的条件是(要求填写合适条件的序号)______.15.已知点A(2,8),B(1,y1),C(2,y2)在抛物线pxy22=上,△ABC的重心与此抛物线的焦点F重合(如图)(1)写出该抛物线的方程和焦点F的坐标;(2)求线段BC中点M的坐标;(3)求BC所在直线的方程.16.已知抛物线y=a2-1上恒有关于直线+y=0对称的相异两点,求a的取值范围.[:学]17.抛物线2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以AF、BF 为邻边作平行四边形FARB,试求动点R的轨迹方程.18.已知抛物线C :2742++=x x y ,过C 上一点M ,且与M 处的切线垂直的直线称为C在点M 的法线.(1)若C 在点M 的法线的斜率为21-,求点M 的坐标(0,y0);(2)设P (-2,a )为C 对称轴上的一点,在C 上是否存在点,使得C 在该点的法线通过点P ?若有,求出这些点,以及C 在这些点的法线方程;若没有,请说明理由.[:学]第2章 圆锥曲线与方程 §2.5圆锥曲线单元测试1)如果实数y x ,满足等式3)2(22=+-y x ,那么x y的最大值是( ) A 、21 B 、33 C 、23D 、32)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为( ) A 、1,1- B 、2,2- C 、1 D 、1-3)已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF的周长为( ) (A )10 (B )20 (C )241(D ) 4144)椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A )15 (B )12 (C )10 (D )85)椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF⊥,则△21PF F 的面积为( )(A )9 (B )12 (C )10 (D )86)椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )(A )3(B )11(C )22(D )107)以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A )222=-y x (B )222=-x y (C )422=-y x 或422=-x y (D )222=-y x 或222=-x y8)双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为( )(A )6 (B )8 (C )10 (D )129)过双曲线822=-y x 的右焦点F2有一条弦PQ ,|PQ|=7,F1是左焦点,那么△F1PQ 的周长为( )(A )28 (B )2814-(C )2814+(D )2810)双曲线虚轴上的一个端点为M,两个焦点为F1、F2,︒=∠12021MF F ,则双曲线的离心率为( )(A )3(B )26(C )36(D )33[:++.]11)过抛物线2y ax =(a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则11p q +等于( )(A )2a (B )12a (C )4a(D )4a12) 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A )02=-y x (B )042=-+y x (C )01232=-+y x (D )082=-+y x13)与椭圆22143x y +=具有相同的离心率且过点(2,14)离心率35=e ,一条准线为3=x 的椭圆的标准方程是 。

2011广东高考大解密之圆锥曲线大题.doc000

2011广东高考大解密之圆锥曲线大题.doc000

2011广东高考大解密之圆锥曲线大题一、2000——2010圆锥大题呈现 ①类模型——椭圆模型21.(本小题满分14分)(2001年)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC∥x 求证直线AC 经过线段EF 的中点. 21.(本小题满分14分)(2003年)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22、本小题14分(2004年)设直线l 与椭圆2212516x y +=相交于,A B 两点,l 又与双曲线221x y -=相交于C 、D 两点,,C D 三等分线段AB ,求直线l 的方程。

18. (本小题满分14分)(2007年)在平面直角坐标系xoy中,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由②类模型——双曲线型22.(本小题满分14分)(2000年)如图,已知梯形ABCD 中|AB|=2|CD|,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为伪点,当4332≤≤λ时,求双曲线离心率c 的取值范围20、(本题满分14分)(2002年)20.(本小题满分14分)(2010年)已知双曲线212xy -=的左、右顶点分别为12,A A ,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点。

2011高考数学真题考点分类新编考点28圆锥曲线的综合问题(大纲版地区)

2011高考数学真题考点分类新编考点28圆锥曲线的综合问题(大纲版地区)

考点28 圆锥曲线的综合问题一、选择题1、(2011·重庆高考文科·T9)设双曲线的左准线与两条渐近线交于A B 、两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为 ( ) (A) ()20, (B) ()21,(C) ) (D) ()∞+,2【思路点拨】先设出双曲线的标准方程,写出左准线的方程和渐近线的方程,根据左焦点与圆的位置关系求解离心率的范围.【精讲精析】选 B.设双曲线的方程为)0,0(12222>>=-b a by a x ,则左准线的方程为ca x 2-=渐近线方程为x a by ±=,故可求得⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-c ab ca B c abc a A ,,,22,所以,以AB 为直径的圆的方程为222222c b a y ca x =+⎪⎪⎭⎫ ⎝⎛+,因为左焦点)0,(c -在圆内,所以 22222c b a c a c <⎪⎪⎭⎫ ⎝⎛+-,即2222442b a c a c a <-+, 根据222c b a =+化简得, 0322244<-+c a c a 即02324<+-e e 解得212<<e ,又因为双曲线的离心率1>e ,所以21<<e . 二、解答题2、(2011·湖北高考理科·T20)(本小题满分14分)平面内与两定点1(,0)A a -,2(,0)A a (0)a >连续的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的(1,0)(0,)m ∈-+∞,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点.试问:在1C 上,是否存在点N ,使得△1F N 2F的面积2||S m a =.若存在,求tan 1F N 2F 的值;若不存在,请说明理由.【思路点拨】(1)设M (x,y ),利用12MA MA k k m ⋅=可得,x y 的方程为222mx y ma -=,再根据m 与0,-1的大小分类讨论;(2)设00(,)N x y ,由N 在C 1上可得00y a <≤,再由122F NF s m a =可将0y 用m 表示,由此可求点N 存在时,m 的取值范围,设12F NF θ∠=,又121212111sin sin tan ,22cos 2NF NF s NF NF NF NF θθθθ⋅===⋅⋅先求出12NF NF ⋅后,即可求出tan .θ【精讲精析】可设动点为M ,其坐标为(x ,y),当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a⋅=⋅==-+-即()222,mx y ma x a -=≠± 又1(,0)A a -、2(,0)A a 的坐标满足222,mx y ma -= 故依题意,曲线C 的方程为222mx y ma -=.当1m <-时,曲线C 的方程为22221,x y a ma +=-C 是焦点在y 轴上的椭圆; 当1m =-时,曲线C 的方程为222x y a +=,C 是圆心在原点的圆;当10m -<<时,曲线C 的方程为22221,x y a ma +=-C 是焦点在x 轴上的椭圆; 当0m >时,曲线C 的方程为22221,x y a ma-=C 是焦点在x 轴上的双曲线.⑵由⑴知,当1m =-时,C 1的方程为222x y a +=.当(1,0)(0,)m ∈-⋃+∞时, C2的两个焦点分别为1(F -2(F 对于给定的(1,0)(0,)m ∈-⋃+∞, C 1上存在点000(,)(0)x y y ≠使得2||S m a =的充要条件是22200020,0,12.2x y a y a m ⎧+=≠⎪⎨⋅=⎪⎩①② 由①得00y a <≤,由②得0y =,当0a <≤,即10,2m ≤≤或102m <≤时, 存在点N ,使2||S m a =;a >,即112m -<<故12m >时, 不存在满足条件的点N.当m ⎫⎛∈⋃⎪ ⎪ ⎣⎭⎝⎦时,由100(,)NF x y =--,200(,)NF x y =-,可得22221200(1).NF NF x m a y ma ⋅=-++=-令11r NF =,22r NF =,12F NF θ∠=,则由21212cos ,NF NF rr ma θ⋅==-可得212,cos ma r r θ=- 从而22121sin 1sin tan ,22cos 2ma s r r ma θθθθ==-=-于是由2||S m a =, 可得221tan ,2ma a m θ-=即2tan .m mθ=-综上:当m ⎫∈⎪⎪⎣⎭时,在C 1上,存在点N ,使得2||S m a =,且12tan 2;F NF =当10,2m ⎛+∈ ⎝⎦时,在C 1上,存在点N ,使得2||S m a =,且12tan 2;F NF =-m ⎛∈-⋃ ⎝⎦⎫+∞⎪⎪⎣⎭时,在C 1上,不存在满足条件的点N.3、(2011·全国高考理科·T21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y轴正半轴上的焦点,过F 且斜率为的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【思路点拨】方程联立利用韦达定理是解决这类问题的基本思路,注意把0.OA OB OP ++=用坐标表示后求出P 点的坐标,然后再结合直线方程把P 点的纵坐标也用A 、B 两点的横坐标表示出来.从而求出点P 的坐标,代入椭圆方程验证即可证明点P 在C 上.(II)此问题证明有两种思路:思路一:关键是证明,APB AQB ∠∠互补.通过证明这两个角的正切值的和为零即可,在求正切值时要注意利用倒角公式.思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N ,然后证明N 到四个点A 、B 、P 、Q 的距离相等即可.【精讲精析】 (I)设1122(,),(,)A x y B x y直线:1l y =+,与2212y x +=联立得2410x --=12,44x x ==1212124x x x x +==- 由0.OA OB OP ++=得1212((),())P x x y y -+-+12()x x -+=, 121212()(11))21y y x x -+=-+++=+-=-22(1)(12-+= 所以点P 在C 上.(II)方法一:1222tan 11PA PBPA PBk k APB k k -∠==+214()3x x -==同理21)22tan 11QB QA QA QBk k AQB k k -∠==++214()3x x -==-所以,APB AQB ∠∠互补,因此A 、P 、B 、Q 四点在同一圆上. 方法二:由(1)P -和题设知,Q ,PQ 的垂直平分线1l的方程为y x =…①设AB 的中点为M ,则1)2M ,AB 的垂直平分线2l 的方程为14y x =+…②由①②得1l 、2l 的交点为1()8N||8NP ==,21||||2AB x x =-=||4AM =,||MN ==,||NA ==故||||NP NA =.||||,||||NP NQ NA NB == 所以A 、P 、B 、Q 四点在同一圆圆N 上.4、(2011·上海高考理科·T23)已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ;(2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==,,,,A B C D 是下列三组点中的一组.对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D .【思路点拨】本题考查解析几何知识,第(1)问比较简单,可以直接求出,注意的是已知的是线段:30(35)l x y x --=≤≤,不能直接使用点到直线距离公式,第(2)问是为最后一问做铺垫的,稍有难度,第三问非常好,设计了多种情况,开拓了学生的思维,锻炼了学生的解题能力。

【备战】高考数学 6年高考母题精解精析 专题10 圆锥曲线03 文

【备战】高考数学 6年高考母题精解精析 专题10 圆锥曲线03 文

备战2013高考数学(文)6年高考母题精解精析专题10 圆锥曲线03一、选择题:1. (2011年高考山东卷文科9)设M(0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 (A)(0,2) (B)[0,2] (C)(2,+∞) (D)[2,+∞) 【答案】C3. (2011年高考海南卷文科9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A,B 两点,|AB|=12,P 为C 的准线上一点,则ABP ∆的面积为( ) A.18 B.24 C.36 D.484. (2011年高考安徽卷文科3) 双曲线x y 222-=8的实轴长是(A )2 (B)【答案】C【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. 5.(2011年高考广东卷文科8)设圆C 与圆外切,与直线0y =相切.则C 的圆心轨迹为( )A . 抛物线B . 双曲线C . 椭圆D . 圆6.(2011年高考浙江卷文科9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与1C 2C 的长度为直径的圆相交于,A B 两点.若1C 恰好将线段AB 三等分,则 (A )2132a = (B )213a = (C )212b = (D) 22b = 【答案】 C【解析】:由1c 恰好将线段AB 三等分得133A A x x x x =⇒=由222,A y x x x y=⎧⇒=⎨+⎩,1515x y a ∴==222222)521515(,)111a a b a b ∴+=⇒=在椭圆上, 又22215,2a b b -=∴=,故选C.7. (2011年高考天津卷文科6)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A.【答案】B【解析】由题意知,抛物线的准线方程为2x =-,所以4p =,又42pa +=,所以2a =,又因为双曲线的一条渐近线过点(-2,-1),所以双曲线的渐近线方程为12y x =±,即12b a =,所以1b =,即25c =,2c =选B.8. (2011年高考福建卷文科11)设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于A. 1322或B. 223或 C. 122或 D. 2332或【答案】A【解析】由1PF :12F F :2PF = 4:3:2,可设14PF k =,123F F k =,22PF k =,若圆锥曲线为椭圆,则26a k =,23c k =,12e =;若圆锥曲线为双曲线,则22a k =,23c k =,32e =,故选A. 9. (2011年高考四川卷文科11)在抛物线y=x 2+ax-5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆225536x y +=相切,则抛物线的顶点坐标是( )(A ) (-2,-9) (B )(0,-5) (C) (2,-9) (D )(1,6)10. (2011年高考陕西卷文科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B ) 24y x =- (C) 28y x = (D) 24y x = 【答案】C【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒=故选C 11.(2011年高考湖南卷文科6)设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年圆锥曲线高考题精选(11陕西2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .24y x =-C .28y x =D .24y x =(11四川14)双曲线2216436xy-=上一点P 到双曲线右焦点的距离是4,那么P 到左准线的距离是____.(11新课标4)椭圆221168xy+=的离心率为A .13B .12C 3D 2(11新课标9)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则A B P ∆的面积为A .18B .24C . 36D . 48(11四川11)在抛物线25(0)y x ax a =+-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- (11广东8)设圆C 与圆x 2+(y-3)2=1外切,与直线y =0相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆(11福建11)设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2P F =4:3:2,则曲线I 的离心率等于A .1322或B .223或C .122或D .2332或(11福建本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。

(I )求实数b 的值; (11)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程. (11北京10)已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = .(11安徽3)双曲线x y 222-=8的实轴长是(A )2 (B ) (C ) 4 (D )(11全国16)已知F 1、F 2分别为双曲线C :29x-227y=1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .(11辽宁7)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .74(11江西12)若双曲线22116yxm-=的离心率e=2,则m=____.(11湖南6)设双曲线2221(0)9x ya a-=>的渐近线方程为320,x y ±=则a 的值为( )A .4B .3C .2D .1 (11天津6)已知双曲线22221(0,0)x y a b ab-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .(11新课标本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.(11浙江9)已知椭圆22122:1x y C ab+=(a >b >0)与双曲线222:14yC x -=有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于,A B 两点.若C 1恰好将线段A B 三等分,则A .a 2 =132B .a 2=13C .b 2=12D .b 2=2(11重庆9)设双曲线的左准线与两条渐近线交于,A B 两点,左焦点在以A B 为直径的圆内,则该双曲线的离心率的取值范围为A .B .C . (,1)2D .,)+∞(11山东9)设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)(11山东15)已知双曲线22221(0b 0)x y a ab-=>,>和椭圆22xy=1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程 为 .(11天津本小题满分13分)设椭圆22221(0)x y a b ab+=>>的左、右焦点分别为F 1,F 2。

点(,)P a b 满足212||||.PF F F = (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆22(1)(16x y ++-=相交于M ,N 两点,且5||||8M N A B =,求椭圆的方程。

(11四川21本小题共l2分)过点C (0,1)的椭圆22221(0)x y a b ab+=>>2,椭圆与x 轴交于两点(,0)A a 、(,0)A a -,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(I )当直线l 过椭圆右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:O P O Q ⋅为定值. (11北京19本小题共14分)已知椭圆2222:1(0)x y G a b ab+=>>的离心率为3),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (I )求椭圆G 的方程;(II )求P A B ∆的面积.(11安徽17)设直线.02,,1:,1:21212211=+-=+=k k k k x k y l x k y l 满足其中实数(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上.(11江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12422=+yx的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO=∠AOP (1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知T (1,-1),设H 是E 上动点,求H O +HT 的最小值,并给出此时点H 的坐标;(3)过点T (1,-1)且不平行与y 轴的直线l 1与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围。

(11全国22本小题满分l2分)已知O 为坐标原点,F 为椭圆22:12yC x +=在y 轴正半轴上的焦点,过F 且斜率为的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(II )设点P 关于O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上。

(11重庆本小题满分12分。

(Ⅰ)小问4分,(Ⅱ)小问8分)如题(21)图,椭圆的中心为原点0,离心率e=2,一条准线的方程是2x = (Ⅰ)求该椭圆的标准方程;(Ⅱ)设动点P 满足:2OP OM ON =+,其中M 、N 是椭圆上的点,直线OM 与ON的斜率之积为12-,问:是否存在定点F ,使得P F 与点P 到直线l :x =的距离之比为定值;若存在,求F 的坐标,若不存在,说明理由。

(11陕西本小题满分12分)设椭圆C: ()222210x y a b ab+=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标。

(11上海16分)已知椭圆222:1x C y m+=(常数1m >),点P 是C 上的动点,M 是右顶点,定点A 的坐标为(2,0)。

⑴ 若M 与A 重合,求C 的焦点坐标;⑵ 若3m =,求||PA 的最大值与最小值; ⑶ 若||PA 的最小值为||M A ,求m 的取值范围。

(11辽宁本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求B C 与A D 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. (11江西19本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.(11湖南21)已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的等等于1. (I )求动点P 的轨迹C 的方程;(II )过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求AD EB ∙的最小值.(11湖北本小题满分14分)平面内与两定点()1,0A a -、()2,0A a (0a >)连线的斜率之积等于非零常数m 的点的轨迹,加上A 、A 2两点所成的曲线C 可以是圆、椭圆或双曲线。

(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值的关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的),0()0,1(+∞-∈ m ,对应的曲线为2C ,设1F 、2F 是2C 的两个焦点。

试问:在1C 上,是否存在点N ,使得△1F N 2F 的面积2||S m a =。

若存在,求tan 1F N 2F 的值;若不存在,请说明理由。

(11浙江22)(本小题满分15分)如图,设P 是抛物线1C :2x y =上的动点。

过点P 做圆2C 1)3(:22=++y x 的两条切线,交直线l :3y =-于,A B 两点。

(Ⅰ)求2C 的圆心M 到抛物线 1C 准线的距离。

(Ⅱ)是否存在点P ,使线段A B 被抛物线1C 在点P 处得切线平分,若存在,求出点P 的坐标;若不存在,请说明理由。

(11山东本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13xC y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段A B 的中点为E ,射线O E 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值; (Ⅱ)若2OGOD =∙O E ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时A B G 的外接圆方程;若不能,请说明理由.。

相关文档
最新文档