2021届深圳中学高考物理一轮复习专题22带电粒子在复合场中的运动
带电粒子在复合场中的运动计算题-2021届高考一轮复习
一.解答题(共8小题)1.如图所示,竖直虚线MN左侧有一电场强度大小E1=E的匀强电场,方向水平向左,在两条平行的虚线MN和PQ之间存在着宽为L、电场强度大小E2=E的匀强电场,方向竖直向下。
在虚线PQ右侧距PQ为L处有一足够大的竖直屏。
现将一电子无初速度地放入电场E1中的A点,最后电子打在右侧的屏上的R点,R点到O点的距离为,AO 连线与屏垂直,不计电子受到的重力。
(1)求A点到虚线MN的距离;(2)若在虚线PQ与屏之间再加一竖直向上的匀强电场E3,使电子打到屏上的位置在O 点下方,且到O点的距离也为,求所加电场的电场强度大小E3。
2.如图,在xOy平面的第一象限内存在方向垂直纸面外的匀强磁场,磁场的磁感应强度大小为B;在第四象限内存在沿﹣x轴方向的匀强电场,电场强度大小为E.两个质量均为m、电量均为+q的粒子从y轴上的P点,以相同大小的速度进入第一象限(速度方向之间的夹角θ=60°),两粒子离开第一象限后均垂直穿过x轴进入电场,最后分别从y轴上的M、N点离开电场。
两粒子的重力及粒子之间的相互作用不计,求(1)粒子在P点的速度大小;(2)M、N两点间的距离△y。
3.如图所示,在平面直角坐标系xoy的第二、三、四象限内存在竖直向上的匀强电场,其中第二象限的匀强电场的电场强度为E1,第三、四象限内匀强电场的电场强度为E2,x 轴下方同时存在垂直纸面向外的匀强磁场。
一带电小球从x轴上的A点以初速度v0垂直x轴向上射出,小球沿竖直光滑的绝缘圆形轨道内壁运动到y轴上的C点,以速度3v0垂直y轴进入第一象限,接着以与x轴正方向成θ=53°速度方向斜射入x轴下方的电磁场区域,小球做匀速圆周运动,再次回到x轴时恰好经过原点O。
已知小球的质量为m,带电量为q,重力加速度为g,已知sin37°=0.60,cos37°=0.80。
求:(1)圆形轨道的半径R和第二象限内匀强电场的电场强度大小E1;(2)第三、四象限内匀强电场的电场强度大小E2;(3)匀强磁场的磁感应强度大小B。
高考物理一轮复习讲义带电粒子在复合场中的运动
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
带电粒子在复合场中的运动大题专题(详细解答)
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
2021届高考物理三轮冲刺专练:带电粒子在复合场中的运动 (解析版)
带电粒子在复合场中的运动【原卷】1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P点,第二次穿过MN时的位置记为Q点,P、Q两点间的距离记为d,从P点运动到Q点的时间记为t.不计粒子的重力,若增大v0,则()A.t不变,d不变B.t不变,d变小C.t变小,d变小D.t变小,d不变2.如图所示,在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小m/s,接着沿直线CD运球沿轨道AC下滑,至C点时速度为v C=1007动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.7.如图所示,两平行金属板A、B间的电势差为U=5×104 V.在B板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d1=d2=6.25 m,磁感应强度分别为B1=2.0 T、B2=4.0 T,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?8.如图所示,三块挡板围成截面边长L=1.2 m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N/C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外,磁感应强度大小为B2=3B1的=108C/kg的帯正电的粒子,从O点由静止匀强磁场.现将一比荷qm释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,6求该粒子的比荷及其从M点运动到N点的时间.10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒时刻通过S2垂直于边界进入子在电场力的作用下向右运动,在t=T02右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.11.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.12.(2020山东潍坊一模)如图所示为竖直平面内的直角坐标系xOy,x轴水平且上方有竖直向下的匀强电场,场强大小为E;在x轴下方有一圆形有界匀强磁场,与x轴相切于坐标原点,半径为R.已知质量为m、电量为q的粒子,在y轴上的(0,R)点无初速度释放,R,-R)点,粒子重力不计,求:粒子恰好经过磁场中(√33(1)磁场的磁感强度B;(2)若将该粒子的释放位置沿y=R直线向左移动一段距离L,将粒子无初速度释放,当L为多大时粒子在磁场中运动的时间最长,最长时间多大?带电粒子在复合场中的运动1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P 点,第二次穿过MN 时的位置记为Q 点,P 、Q 两点间的距离记为d ,从P 点运动到Q 点的时间记为t.不计粒子的重力,若增大v 0,则 ( )A .t 不变,d 不变B .t 不变,d 变小C .t 变小,d 变小D .t 变小,d 不变【答案】 D【解析】 粒子在电场中做类平抛运动,设第一次到达P 点时竖直速度为v 1(大小不变),则粒子进入磁场的速度大小为v=√v 02+v 12,速度方向与MN 的夹角θ的正切值为tan θ=v1v 0;粒子进入磁场后做匀速圆周运动,半径R=mv qB ;第二次经过MN 上的Q 点时,由几何关系可得:d=2R sin θ,又sin θ=√2=1√v 02+v 12,联立解得:d=2mv 1qB ,即当增大v 0时d 不变;运动的时间t=θ2π·2πm qB =θmqB ,则当增大v 0时,tan θ减小,θ减小,t 减小,故D 正确.2.如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.【答案】(1)√3BRE (2)qBRm【解析】(1)设粒子第一次在磁场中运动的速度为v,粒子在磁场中受到的洛伦兹力提供向心力,即:qvB=2√3R解得:v=√3qBRm粒子在电场中受到的电场力为qE,设运动的时间为t,则:qEt=mv-0联立可得:t=√3BRE(2)粒子在磁场中做匀速圆周运动的过程中,其周期T=2πmqB,可知粒子在磁场中运动的周期与其速度、半径都无关;根据t0T =θ2π,可知粒子在磁场中运动的时间由轨迹的圆弧对应的圆心角有关,圆心角越小,则时间越短;所以当轨迹与内圆相切时,所用的时间最短,设粒子此时的半径为r,如图所示.由几何关系可得:(r-R)2+(√3R)2=r2设粒子进入磁场时速度的方向与ab的夹角为θ,则圆弧所对的圆心角为2θ,由几何关系可得:tan θ=√3Rr-R粒子从Q点抛出后做类平抛运动,在电场方向上的分运动与从P 释放后的情况相同,所以粒子进入磁场时,沿竖直方向的分速度同样也为v,在垂直于电场方向的分速度始终为v0,则:tan θ=vv0联立可得:v0=qBRm.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.【答案】(1)√2v0,方向与x轴正方向成45°角斜向上(2)v02【解析】(1)在电场中,粒子做类平抛运动,设Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,有at22L=v0t,L=12设粒子到达O点时沿y轴方向的分速度为v y,有v y=at设粒子到达O点时速度方向与x轴正方向夹角为α,有tan α=v yv0联立可得α=45°即粒子到达O点时速度方向与x轴正方向成45°角斜向上.设粒子到达O点时速度大小为v,由平行四边形定则有v=√v02+v y2联立可得v=√2v0.(2)设电场强度的大小为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma又F=qE由于v y2=2aL解得E=mv022qL设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有qvB=m v 2R 由几何关系可知R=√2L联立可得EB =v0 2.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为v C=1007m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为G 点(未标出),求G 点到D 点的距离.【答案】 (1)正电荷 (2)27.6 J (3)2.26 m【解析】 (1)依题意可知小球在CD 间做匀速直线运动,在CD 段受重力、电场力、洛伦兹力且合力为零.若小球带负电,小球受到的合力不为零,因此带电小球应带正电荷. (2)小球在D 点时的速度为v D =v C =1007m/s设重力与电场力的合力为F 1,如图所示,则:F 1=F 洛=qv C B 又F 1=mg cos37°=5 N解得:qB=F1v C =720C·T在F 处由牛顿第二定律可得:qv F B+F 1=mv F 2R把qB=720 C·T 代入得R=1 m设小球在DF 段克服摩擦力做功W f ,从D 到F 的过程由动能定理可得:-W f -2F 1R=12m v F 2-12m v D 2解得:W f≈27.6 J.(3)小球离开F点后做类平抛运动,其加速度为a=F1m由2R=at 22解得:t=√4mRF1=2√25s交点G与D点的距离GD=v F t=8√25m≈2.26 m.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.【答案】(1) 10 V/m,方向竖直向上(2) π2s(3)N点右侧3 m和N点左侧√55m的范围内【解析】(1)小球在叠加场中做匀速圆周运动,则电场力与重力平衡,即:qE=mg解得:E=10 V/m,方向竖直向上.(2)当小球以速度v=3 m/s在磁场中做匀速圆周运动时,由洛伦兹力提供向心力得:qvB=m v 2r解得:r=3 m=h对应小球运动的轨迹如图所示.在0<v0≤3 m/s的速度范围内,此轨迹所对的圆心角最小,即小球在磁场中运动的时间最短.小球做圆周运动的周期:T=2πrv=2π s小球在磁场中运动的最短时间:t1=14T=π2s(3)当小球以3 m/s的速度进入磁场后落在N点的右侧最远,x1=r=3 m当小球的速度较小时,小球会在磁场中运动半周,然后从MN离开磁场而做平抛运动.设小球在磁场中运动的轨道半径为R,则:竖直方向:h-2R=12gt2水平方向:x=vt粒子做圆周运动的轨道半径:R=mvqB解得:x2=√2(h-2R)R2g当R=1 m时x2有最大值,解得:x2max=√55m所以,小球落在N点右侧3 m和N点左侧√55m的范围内.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.【答案】(1)mgq (2)mq√gl(3)(3π4+1)√lg【解析】 (1)微粒到达A (l ,l )之前做匀速直线运动,对微粒受力分析如图甲,可知:Eq=mg 解得:E=mg q.甲 乙(2)由平衡条件得:qvB=√2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙,则有:qvB=m v 2r由几何知识可得:r=√2l 联立解得:v=√2gl ,B=m q √gl.(3)微粒做匀速直线运动的时间:t 1=√2lv =√l g做匀速圆周运动的时间:t 2=34π·√2l v=3π4√lg故微粒在复合场中的运动时间:t=t 1+t 2=(3π4+1)√lg.7.如图所示,两平行金属板A 、B 间的电势差为U=5×104 V .在B 板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d 1=d 2=6.25 m ,磁感应强度分别为B 1=2.0 T 、B 2=4.0 T ,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?s(3)60°(4)9.375 m 【答案】(1)4.0×103 m/s(2)π1 920【解析】(1)粒子在电场中做匀加速直线运动,由动能定理mv2-0,解得v=4.0×103 m/s.有:qU=12(2)粒子运动轨迹如图甲.设粒子在磁场区域Ⅰ中做匀速圆周运动的半径为r,由洛伦兹力提,代入数据解得r=12.5 m供向心力得:qvB1=mv2r设粒子在Ⅰ区内做圆周运动的圆心角为θ,则 sin θ=d1r =6.25m 12.5m =12,所以θ=30°粒子在Ⅰ区运动的周期T=2πm qB 1则粒子在Ⅰ区运动时间t=θ360°T ,解得t=π1 920s(3)设粒子在Ⅰ区做圆周运动的轨道半径为R ,则qvB 2=mv 2R解得R=6.25 m如图甲所示,由几何关系可知△MO 2P 为等边三角形,所以粒子离开Ⅰ区域时速度方向与边界面的夹角为α=60°.(4)要使粒子不能从Ⅰ区右边界飞出磁场,粒子运动的轨迹与磁场边界相切时,由图乙可知Ⅰ区磁场的宽度至少为:d 2=R+R cos 60°=1.5R=9.375 m .8.如图所示,三块挡板围成截面边长L=1.2 m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E=4×10-4 N/C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外,磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷qm =108 C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).×10-5【答案】(1)6.6×10-6T(2)2.85×10-2s(3)B2'=4k+23T,k=0,1,2,3,….mv2【解析】(1)粒子从O点加速到C点,由动能定理得:qEx=12解得:v=400 m/s带电粒子经内部磁场偏转后直接垂直AN经过Q点进入外部磁场=0.6 m由几何关系可知R1=L2知磁感应强度B1=6.6×10-6T.由qvB1=m v2R1(2)由题可知B2=3B1=2×10-5 T,由qvB2=m v2R2可知:R2=R13=0.2 m粒子从O点出发,到再次回到O点的轨迹如图所示,则粒子进入电场做匀加速运动,则x=12vt1得到t1=0.01 s粒子在磁场B1中的周期为T1=2πmqB1则在磁场B1中的运动时间为t2=T13=3×10-3s在磁场B2中的运动周期为T2=2πmqB2在磁场B2中的运动时间为t3=180°+300°+180°360°T2=5.5×10-3s则粒子从O点出发,到再次回到O点经历的时间t=2t1+t2+t3=2.85×10-2s.(3)设挡板外磁场变为B2',粒子在磁场中的轨迹半径为r,则有qvB2'=m v2r粒子可以垂直于MA经孔P回到O点需满足条件:L2=(2k+1)r,k=0,1,2,3,…解得B2'=4k+23×10-5T,其中k=0,1,2,3,…9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.【答案】(1)见解析(2)2El'Bl (3)4√3El'B2l2BlE(1+√3πl18l')【解析】(1)粒子在电场中的轨迹为抛物线,在磁场中的轨迹为圆弧,整个轨迹上下对称,故画出粒子运动的轨迹,如图所示.(2)粒子从电场下边界入射后在电场中做类平抛运动,设粒子从M点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度大小为a ,粒子的电荷量为q 、质量为m ,粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图所示, 根据牛顿第二定律可得:Eq=ma Ⅰ 速度沿电场方向的分量为:v 1=at Ⅰ 垂直电场方向有:l'=v 0t Ⅰ 根据几何关系可得:v 1=v cos θ Ⅰ粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力可得:qvB=m v 2R Ⅰ根据几何关系可得:l=2R cos θ Ⅰ联立ⅠⅠⅠⅠⅠⅠ式可得粒子从M 点入射时速度的大小:v 0=2El 'BlⅠ(3)根据几何关系可得速度沿电场方向的分量:v 1=v 0tanπ6Ⅰ联立ⅠⅠⅠⅠⅠ式可得该粒子的比荷:q m =4√3El 'B 2l 2Ⅰ粒子在磁场中运动的周期:T=2πR v=2πm qBⅠ粒子由M 点到N 点所用的时间:t'=2t+2(π2-π6)2π·T联立ⅠⅠⅠ式可得:t'=BlE (1+√3πl18l').10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=T02时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.【答案】(1)√2qU0m T04√2qU0m(2)B<4L√2mU0q(3)74T08πm 7qT0【解析】(1)粒子由S1到S2的过程,根据动能定理得qU0=12mv2Ⅰ由Ⅰ式得v=√2qU0mⅠ设粒子的加速度大小为a,由牛顿第二定律得q U0d=maⅠ由运动学公式得d=12a(T02)2Ⅰ联立ⅠⅠ式得d=T04√2qU0mⅠ(2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R对粒子在磁场中由牛顿第二定律得qvB=m v 2RⅠ要使粒子在磁场中运动时不与极板相撞,应满足2R>L2Ⅰ联立ⅠⅠⅠ式得B<4L √2mU0qⅠ(3)设粒子在两边界之间无场区向左匀速运动的过程用时为t1,有d=vt1Ⅰ联立ⅠⅠⅠ式得t1=T04Ⅰ若粒子再次到达S2时速度恰好为零,粒子回到极板间做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得d=v2t2联立ⅠⅠ式得t2=T02-t1-t2设粒子在磁场中运动的时间t=3T0-T02联立式得t=7T04则粒子在匀强磁场中做匀速圆周运动的周期为T,由Ⅰ式结合运动学公式得T=2πmqB由题意可知T=t=7T04.联立式得B=8πm7qT011.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.【答案】(1)(0,12L)(2)mv022qL√2mv02qL(3)Lv0+√2(1+π)L2v0【解析】(1)粒子在电场中的运动为类平抛运动的逆运动水平方向:L=v0cos θ·t1竖直方向:y=v0 sin θ·t1解得:y=12L粒子从y轴上射出电场的位置坐标为(0,12L).(2)粒子在电场中的加速度:a=qEm竖直分位移:y=12a t12解得:E=mv022qL.粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子的运动轨迹如图所示,由几何知识得:AC与竖直方向的夹角为45°,且AD=√2y=√22L,因此AC刚好为有界磁场边界圆的直径,则粒子在磁场中做圆周运动的轨道半径:r=L粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m v2r,其中粒子的速度:v=v0cos θ解得:B=√2mv02qL.。
专题拓展课二 带电粒子在复合场中的运动
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
高三物理一轮复习教案:带电粒子在复合场中的运动
专题:带电粒子在复合场中的运动一、复合场的分类:1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、叠加场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。
二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛伦兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。
带电粒子在复合场中的运动
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
高考物理带电粒子在复合场中的运动压轴难题知识点及练习题含答案解析
高考物理带电粒子在复合场中的运动压轴难题知识点及练习题含答案解析一、带电粒子在复合场中的运动压轴题1.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm 此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO Rr '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动 【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(962)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(962)22h x -≥,()2211x r h r =--, 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 962)qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.4.在场强为B 的水平匀强磁场中,一质量为m 、带正电q 的小球在O 静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z 轴距离的2倍,重力加速度为g .求:(1)小球运动到任意位置P (x ,y)的速率v ; (2)小球在运动过程中第一次下降的最大距离y m ; (3)当在上述磁场中加一竖直向上场强为E (mgE q>)的匀强电场时,小球从O 静止释放后获得的最大速率m v 。
高考物理一轮复习课件:专题 带电粒子在复合场中的运动
6.在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向 垂直于纸面向外。一带正电的粒子从静止开始经电压U加速后,沿平行 于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴 的方向射出。已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为 30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不
4.第一、第四象限内的磁感应强度大小相等,方向如图。现有一 个质量为m,电量为+q的带电粒子在该平面内从x轴上的P点,以 垂直于x轴的初速度v0进入匀强电场,恰好经过y轴上的Q点且与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入第四 象限的磁场。已知OP之间的距离为d(不计重力)。求: (1)O点到Q点的距离;(2)磁感应强度B的大小; (3)带电粒子自进入电场至在磁场中第二次经过x轴所用的时间。
(2)电场强度和磁感应强度的大小之比。
12.如图,在直角坐标系xOy的第一象限中分布着沿y轴负方向的匀强电场,在 第四象限中分布着方向垂直纸面向里的匀强磁场。一个质量为m、电荷量 为+q的微粒,在A点(0,3)以初速度v0=120 m/s平行x轴正方向射入电场区 域,然后从电场区域进入磁场,又从磁场进入电场,并且先后只通过x轴上 的P点(6,0)和Q点(8,0)各一次。已知该微粒的比荷为q/m=102 C/kg,微粒 重力不计,求:(1)微粒从A到P所经历的时间和加速度的大小;
(2)求出微粒到达P点时速度方向与x轴正方向的夹角,并画出带电微粒在电场 和磁场中由A至Q的运动轨迹; (3)电场强度E和磁感应强度B的大小。
13.如图,在地面附近一个范围足够大的相互正交的匀强电场和匀强 磁场。匀强磁场的磁感应强度为B,方向水平并垂直纸面向外。一 质量为m、带电荷量为-q的带电微粒在此区域恰好做速度大小为v 的匀速圆周运动。(重力加速度为g)(1)求此区域内电场强度的大小和 方向;
2021届深圳中学高考物理一轮复习专题21带电粒子在组合场中的运动
专题二十一—带电粒子在组合场的运动知识点总结一带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,电场、磁场交替出现.2.分析思路(1)划分过程:将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理.(2)找关键:确定带电粒子在场区边界的速度(包括大小和方向)是解决该类问题的关键.(3)画运动轨迹:根据受力分析和运动分析,大致画出粒子的运动轨迹图,有利于形象、直观地解决问题.二组合场中运动的实例分析1.质谱仪的原理和分析1.作用测量带电粒子质量和分离同位素的仪器.2.原理(如图所示)(1)加速电场:qU =12mv 2;(2)偏转磁场:qvB =mv 2r,l =2r ;由以上两式可得r =1B2mU q,m =qr 2B 22U ,q m =2U B 2r 2.2.回旋加速器的原理和分析1.构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.2.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次.3.粒子获得的最大动能:由qv m B =mv m 2R 、E km =12mv m 2得E km =q 2B 2R 22m,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.专题练习1. (多选)如图所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .极板M 比极板N 的电势高B .加速电场的电压U =ERC .直径PQ =2B qmERD .若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷 【答案】 AD【解析】 粒子在静电分析器内沿电场线方向偏转,说明粒子带正电荷,极板M 比极板N 的电势高,选项A 正确;由Uq =12mv 2和Eq =mv 2R可得U =ER2,选项B 错误;在磁场中,由牛顿第二定律得qvB =m v 2r,即r =mv qB ,直径PQ =2r =2mv Bq=2ERmB 2q,可见只有比荷相同的粒子才能打在胶片上的同一点,选项C 错误,D 正确.2.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图3所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .144 【答案】 D【解析】 由qU =12mv 2得带电粒子进入磁场的速度为v =2qU m,结合带电粒子在磁场中运动的轨迹半径R =mv Bq,联立得到R =1B2mU q,由题意可知,该离子与质子在磁场中具有相同的轨道半径和电荷量,故离子和质子的质量之比m 离子m 质子=144,故选D.3.如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在x ≥0 区域,磁感应强度的大小为B 0;x <0区域,磁感应强度的大小为λB 0(常数λ>1).一质量为m 、电荷量为q (q >0)的带电粒子以速度v 0从坐标原点O 沿x 轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x 轴正向时,求:(不计重力)(1)粒子运动的时间; (2)粒子与O 点间的距离.【答案】 (1)πm B 0q (1+1λ) (2)2mv 0B 0q (1-1λ)【解析】 (1)在匀强磁场中,带电粒子做匀速圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R 2.由洛伦兹力公式及牛顿运动定律得qB 0v 0=m v 20R 1①q λB 0v 0=m v 2R 2②设粒子在x ≥0区域运动的时间为t 1,则 t 1=πR 1v 0③粒子在x <0区域运动的时间为t 2,则 t 2=πR 2v 0④联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1λ)⑤(2)由几何关系及①②式得,所求距离为d =2(R 1-R 2)=2mv 0B 0q (1-1λ)4.如图所示,在无限长的竖直边界AC 和DE 间,上、下部分分别充满方向垂直于平面ADEC 向外的匀强磁场,上部分区域的磁感应强度大小为B 0,OF 为上、 下磁场的水平分界线.质量为 m 、带电荷量为+q 的粒子从 AC 边界上与 O 点相距为 a 的 P 点垂直于 AC 边界射入上方磁场区域,经 OF 上的 Q 点第一次进入下方磁场区域,Q 与 O 点的距离为 3a .不考虑粒子重力.(1)求粒子射入时的速度大小;(2)要使粒子不从AC 边界飞出,求下方磁场区域的磁感应强度B 1应满足的条件;(3)若下方区域的磁感应强度 B =3B 0,粒子最终垂直 DE 边界飞出,求边界 DE 与AC 间距离的可能值.【答案】 (1)5aqB 0m (2)B 1>8B 03 (3)4na (n =1,2,3,…)【解析】 (1)粒子在OF 上方的运动轨迹如图所示,设粒子做圆周运动的半径为R ,由几何关系可知R 2-(R -a )2=(3a )2,R =5a由牛顿第二定律可知:qvB 0=m v 2R ,解得:v =5aqB 0m(2)当粒子恰好不从AC 边界飞出时,运动轨迹如图所示,设粒子在OF 下方做圆周运动的半径为r 1,由几何关系得:r 1+r 1cos θ=3a ,cos θ=35,所以r 1=15a8,根据qvB 1=mv 2r 1,解得:B 1=8B 03,当B 1>8B 03时,粒子不会从AC 边界飞出;(3)当B =3B 0时,粒子的运动轨迹如图所示,粒子在OF 下方的运动半径为:r =53a ,设粒子的速度方向再次与射入磁场时的速度方向一致时的位置为P 1,则P 与P 1的连线一定与OF 平行,根据几何关系知:PP 1=4a ,所以若粒子最终垂直DE 边界飞出,边界DE 与AC 间的距离为:L =n PP 1=4na (n =1,2,3,…).5.如图,从离子源产生的甲、乙两种离子,由静止经加速电压U 加速后在纸面内水平向右运动,自M 点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v 1,并在磁场边界的N 点射出;乙种离子在MN 的中点射出;MN 长为l .不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比.【解析】:(1)设甲种离子所带电荷量为q 1、质量为m 1,在磁场中做匀速圆周运动的半径为R 1,磁场的磁感应强度大小为B ,由动能定理有q 1U =12m 1v 21①由洛伦兹力公式和牛顿第二定律有q 1v 1B =m 1v 21R 1②由几何关系知2R 1=l ③ 由①②③式得B =4Ulv 1④(2)设乙种离子所带电荷量为q 2、质量为m 2,射入磁场的速度为v 2,在磁场中做匀速圆周运动的半径为R 2.同理有q 2U =12m 2v 22⑤q 2v 2B =m 2v 22R 2⑥由题给条件有2R 2=l2⑦由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为q 1m 1∶q 2m 2=1∶4⑧ 6.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间. 【答案】 (1)见解析图 (2)2El ′Bl (3)43El ′B 2l2Bl E ⎝ ⎛⎭⎪⎪⎫1+3πl 18l ′ 【解析】 (1)粒子运动的轨迹如图(a)所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M 点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度的大小为a ;粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图(b),速度沿电场方向的分量为v 1.根据牛顿第二定律有qE =ma ①式中q 和m 分别为粒子的电荷量和质量. 由运动学公式有v 1=at ② l ′=v 0t ③ v 1=v cos θ④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤由几何关系得l =2R cos θ⑥联立①②③④⑤⑥式得 v 0=2El ′Bl⑦(3)由运动学公式和题给数据得v 1=v 0tanπ6⑧联立①②③⑦⑧式得q m =43El ′B 2l2⑨ 设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期,则 T =2πmqB⑪由③⑦⑨⑩⑪式得t ′=Bl E ⎝ ⎛⎭⎪⎪⎫1+3πl 18l ′⑫7.在如图甲所示的xOy 坐标系中,第一象限内有垂直坐标平面的匀强磁场;第二象限内有方向水平向右、场强大小为E 的匀强电场E 1;第四象限内有方向水平(以水平向右为正方向)、大小按图乙规律变化的电场E 2,变化周期T =2mx 0Eq.一质量为m 、电荷量为+q 的粒子,从(-x 0,x 0)点由静止释放,进入第一象限后恰能绕O 点做匀速圆周运动.以粒子经过x 轴进入第四象限的时间点为电场E 2的计时起点,不计粒子重力.求:(1)第一象限内匀强磁场的磁感应强度B 的大小; (2)粒子在第四象限中运动,当t =T2时,粒子的速度;(3)粒子在第四象限中运动,当t =nT (n ∈N *) 时,粒子的坐标. 【答案】 (1)2mEqx 0(2)2qEx 0m,方向与水平方向成45°角斜向右下方 (3)[(n +1)x 0,-2nx 0] (n ∈N *)【解析】 (1)设粒子离开第二象限时的速度为v 0,在第二象限内,由动能定理得qEx 0=12mv 02解得v 0=2qEx 0m在第一象限内,粒子做匀速圆周运动的速度为v 0,由洛伦兹力提供向心力得qv 0B =m v 20x 0解得B =2mE qx 0(2)粒子进入第四象限后,加速度a =q ·E 2m =q ·2E m ,当t =T2时在水平方向上有v 水平=at =q ·2E m ×T2得v 水平=2qEx 0m=v 0故粒子的速度大小v 合=2v 0=2qEx 0m方向与水平方向成45°角斜向右下方(3)粒子在第四象限中运动时,y 轴方向上做匀速直线运动,x 轴方向上前半个周期向右做匀加速运动,后半个周期向右做匀减速运动直到速度为0;每半个周期向右前进x =12×qE 2m ⎝ ⎛⎭⎪⎫T 22=x 02,每个周期前进x 0当t =nT 时,x 轴距O 点的距离x =x 0+nx 0y 轴距O 点的距离y =-v 0nT =-2nx 0粒子的坐标[(n +1)x 0,-2nx 0](n ∈N *)8.回旋加速器的工作原理如图所示,置于真空中的两个D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直. 设两D 形盒之间所加的交流电压为U ,被加速的粒子质量为m 、电荷量为q ,粒子从D 形盒一侧开始被加速(初动能可以忽略),经若干次加速后粒子从D 形盒边缘射出.求:(1)粒子从静止开始第1次经过两D 形盒间狭缝加速后的速度大小; (2)粒子第一次进入D 形盒磁场中做圆周运动的轨道半径; (3)粒子至少经过多少次加速才能从回旋加速器D 形盒射出. 【答案】 (1)2qU m (2)1B2mU q (3)qB 2R 22mU【解析】 (1)粒子在电场中被加速,由动能定理qU =12mv 12得:v 1=2qU m(2)带电粒子在磁场中做圆周运动,由洛伦兹力提供向心力得,qv 1B=m v 12r 1解得:r 1=mv 1qB代入数据得:r 1=1B2mU q(3)若粒子从回旋加速器D 形盒射出,则粒子做圆周运动的轨道半径为R ,设此时速度为v n由洛伦兹力提供向心力得qv n B =m v n 2R ,解得此时粒子的速度为v n =BqRm此时粒子的动能为E k =12mv n 2,代入数据得E k =q 2B 2R 22m粒子每经过一次加速动能增加qU ,设经过n 次加速粒子射出,则nqU=E k ,代入数据解得:n =qB 2R 22mU.。
带电粒子在复合场中,常见的三种运动轨迹
v0=4.0×103 m/s的速度沿与两板平行的中线OO′
射入,取g=10 m/s2、π=3.14。求:
(1)粒子在0~1.0×10-4 s内位移的大小x;
(2)粒子离开中线OO′的最大距离h;
(3)粒子在板间运动的时间t;
(4)画出粒子在板间运动的轨迹图。
U 5 【解析】(1)由题意知: Eq q 2.0 10 s d 5 而mg 2.0 10 s
由牛顿第二定律得:
mv0 2 qv0 B = R
所以粒子离开中线OO′的最大距离 h=0.128 m。
(3)板长L=1.2 m=3x t=2T+3Δt=5.0×10-4 s (4)轨迹如圆形区域内存在
垂直纸面向外的匀强磁场,磁感应强度大
小为B,在此区域外围足够大空间有垂直 纸面向内的磁感应强度大小也为B的匀强 磁场,一个带正电粒子从边界上的P点沿半径向外,以速 度v0进入外围磁场,已知带电粒子质量m=2×10-10 kg,带
显然Eq=mg 故粒子在0~1.0×10-4 s时间内做匀速直线运动, 因为Δt=1.0×10-4 s, 所以x=v0Δt=0.4 m
(2)在1.0×10-4~2.0×10-4 s时间内,
电场力与重力平衡,粒子做匀速圆周运动, 2m 因为 T qB 故粒子在1.0×10-4~2.0×10-4 s时间内恰好完成一个周期圆 周运动
4 为 v = BqR = BqL m 4m
设粒子进入电场后沿y轴负方向做减速运动的最大位移
1 为y, mv 2 = qEy, 得y = 2 2 2 qB L 由动能定理知 s = + 16mE qB2 L2 32mE 1 p L。 2
所以粒子运动的总路程为
答案: qB2 L2
高考物理一轮复习课件带电粒子在复合场中的运动
典型例题解析与思路拓展
例题一
解析带电粒子在复合场中的受力 情况和运动轨迹,探讨速度变化
规律。
例题二
分析带电粒子在复合场中的能量 转化情况,理解能量守恒定律在
解题中的应用。
思路拓展
通过对比不同复合场的特点和规 律,总结归纳出一般性的解题方 法和技巧。同时,注意挖掘题目 中的隐含条件和信息,提高解题
的准确性和效率。
比,方向与电场强度的方向相同或相反。
02 03
洛伦兹力
带电粒子在磁场中运动时,会受到洛伦兹力的作用。洛伦兹力的大小与 电荷量、速度以及磁感应强度成正比,方向垂直于磁场方向和粒子运动 方向所构成的平面。
重力
在地球表面附近,带电粒子还受到重力的作用。重力的大小与粒子的质 量成正比,方向竖直向下。
运动轨迹与速度变化规律
洛伦兹力对带电粒子不做功,只改变粒子的运动 方向,不改变粒子的速率和动能。
霍尔效应及其应用实例
霍尔效应原理
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方 向会产生一附加电场,从而在半导体的两端产生电势差。
霍尔效应应用实例
利用霍尔效应可以测量磁场、电流、电子浓度等物理量,在半导体技术、自动 化技术、检测技术等领域有广泛应用,如霍尔开关、霍尔传感器等。
实验步骤及注意事项说明
实验步骤
1. 准备实验器材,包括带电粒子源、电 场和磁场装置、测量仪器等。
2. 搭建实验装置,调整电场和磁场的强 度和方向。
实验步骤及注意事项说明
01
3. 释放带电粒子,观察其在复合 场中的运动情况。
02
4. 使用测量仪器记录实验数据, 包括粒子的运动轨迹、速度变化 等。
实验步骤及注意事项说明
2021届新高考物理第一轮复习课时强化训练:带电粒子在叠加场中的运动(解析版)
2021届新高考物理第一轮复习课时强化训练带电粒子在叠加场中的运动一、选择题1、如图所示,空间的某个复合场区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场。
质子由静止开始经一加速电场加速后,垂直于复合场的边界进入并沿直线穿过场区,质子(不计重力)穿过复合场区所用时间为t,从复合场区穿出时的动能为E k,则( )A.若撤去磁场B,质子穿过场区时间大于tB.若撤去电场E,质子穿过场区时间等于tC.若撤去磁场B,质子穿出场区时动能大于E kD.若撤去电场E,质子穿出场区时动能大于E k解析:选C 质子在加速电场中是直线加速,进入复合场,电场力与洛伦兹力等大反向,质子做匀速直线运动。
若撤去磁场,只剩下电场,质子做类平抛运动,水平分运动是匀速直线运动,速度不变,故质子穿过场区时间不变,等于t,A错误;若撤去电场,只剩下磁场,质子做匀速圆周运动,速率不变,水平分运动的速度减小,故质子穿过场区时间增加,大于t,B错误;若撤去磁场,只剩下电场,质子做类平抛运动,电场力做正功,故末动能大于E k,C正确,若撤去电场,只剩下磁场,质子做匀速圆周运动,速率不变,末动能不变,仍为E k,D错误。
2、如图所示,一个不计重力的带电粒子以初速度v0沿各图中虚线射入。
A中I是两条垂直纸平面的长直导线中等大反向的电流,虚线是两条导线连线的中垂线;B中+Q是两个位置固定的等量同种点电荷的电荷量,虚线是两位置连线的中垂线;C中I是圆环线圈中的电流,虚线过圆心且垂直圆环平面;D中是正交的匀强电场和匀强磁场,虚线垂直于电场和磁场方向,磁场方向垂直纸面向外。
其中,带电粒子不可能做匀速直线运动的是( )解析:选B 图A中两条垂直纸平面的长直导线中通有等大反向的电流,在中垂线上产生的合磁场方向水平向右,带电粒子将沿中垂线做匀速直线运动;图B中等量同种正点电荷在中垂线上的合场强在连线中点左侧水平向左,带电粒子射入后受力不为零,不可能做匀速直线运动;图C 中粒子运动方向与所处位置磁感线平行,粒子做匀速直线运动;图D 是速度选择器的原理图,只要满足射入速度v 0=E B,粒子即可做匀速直线运动,故选B 。
2021版高考物理大复习通用版:带电粒子在复合场中的运动含答案
(2)速度方向沿x轴正方向射入磁场的质子、到达y轴所需时间及与y轴交点坐标。
[解析](1)质子射入磁场后做匀速圆周运动、洛伦兹力提供向心力、由牛顿第二定律得
evB=m
可得v= 。
(2)质子沿x轴正方向射入磁场、经 圆弧后、以速度v垂直于电场方向进入电场、
由于T= =
质子在磁场中运动的时间为t1= =
(2)设乙种离子所带电荷量为q2、质量为m2、射入磁场的速度为v2、在磁场中做匀速圆周运动的半径为R2。同理有
q2U= m2v ⑤
q2v2B=m2 ⑥
由题给条件有2R2= ⑦
由①②③⑤⑥⑦式得、甲、乙两种离子的比荷之比为
∶ =1∶4。⑧
[答案](1) (2)1∶4
2.(20xx·全国卷Ⅰ)如图所示、在y>0的区域存在方向沿y轴负方向的匀强电场、场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核 H和一个氘 H先后从y轴上y=h点以相同的动能射出、速度方向沿x轴正方向。已知 H进入磁场时、速度方向与x轴正方向的夹角为60°、并从坐标原点O处第一次射出磁场。 H的质量为m、电荷量为q。不计重力。求:
设粒子由M点运动到N点所用的时间为t′、则
t′=2t+ T⑩
式中T是粒子在磁场中做匀速圆周运动的周期、
T= ⑪
由③⑦⑨⑩⑪式得t′= 。⑫
[答案](1)见解析 (2) (3)
“5步”突破带电粒子在组合场中的运动问题
[跟进训练]
先电场后磁场
1.(20xx·全国卷Ⅲ)如图所示、从离子源产生的甲、乙两种离子、由静止经加速电压U加速后在纸面内水平向右运动、自M点垂直于磁场边界射入匀强磁场、磁场方向垂直于纸面向里、磁场左边界竖直。已知甲种离子射入磁场的速度大小为v1、并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。不计重力影响和离子间的相互作用。求:
【高三】2021届高考物理基础知识归纳 带电粒子在复合场中的运动
【高三】2021届高考物理基础知识归纳带电粒子在复合场中的运动【高三】2021届高考物理基础知识归纳带电粒子在复合场中的运动M第4课时带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指电场、磁场和重力场的共存,或两个场的共存,或子区域的存在。
分析方法与力学问题基本相同。
不同的是,有更多的电场力和磁场力。
除了力学的三个观点(动力学、动量和能量),分析方法还应注意:(1) 洛伦兹力永不做功.(2)重力和电场力所做的功与路径无关,只由初始位置和最终位置决定。
此外,由于洛伦兹力随速度变化,洛伦兹力的变化导致粒子上合力的变化,它改变了加速度,使粒子加速2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子的合力为零时,它们将以匀速直线运动或静止。
当组合外力恒定且与初始速度方向相同时,它们将以匀速直线移动。
常见情况如下:①洛伦兹力为零(v与b平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.② 洛伦兹力垂直于速度,并与重力和电场的合力平衡,形成均匀的线性运动(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当施加在带电粒子上的外力的大小和方向不断变化时,粒子将以不均匀的速度变化曲线移动3.带电粒子在复合场中有约束情况下的运动带电粒子通常受到表面、杆、绳、圆轨道等的约束。
常见的运动形式有直线运动和圆周运动。
对于这样的问题,我们应该注意分析洛伦兹力的作用4.带电粒子在交变场中的运动带电粒子在不同场中的运动特性可能不同,这可以单独讨论。
不同场中粒子运动的接触点是速度,因为速度不会突然变化。
前一个场的最终速度就是后一个场的初始速度5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.② 原理:如图所示,离子源s产生质量为m、电荷为q的正离子(与重力无关),离子出来时的速度非常小(可以忽略不计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二十二—带电粒子在复合场的运动知识点总结一带电粒子在叠加场中无约束情况下的运动(1)洛伦兹力、重力并存①若重力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若重力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、洛伦兹力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电粒子做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电粒子将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、洛伦兹力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.二带电粒子在叠加场中有约束情况下的运动带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.三电场与磁场叠加的应用实例分析共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,qvB =qE.1.速度选择器(1)平行板中电场强度E 和磁感应强度B 互相垂直.(如图)(2)带电粒子能够沿直线匀速通过速度选择器的条件是qvB =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量.(4)速度选择器具有单向性.2.磁流体发电机(1)原理:如图所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在A 、B 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=qvB ,即U =Blv .(4)电源内阻:r =ρl S.(5)回路电流:I =U r +R .3.电磁流量计 (1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积.(2)公式:Q =Sv ;S 为导管的横截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图所示,一圆柱形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q Ud=qvB ,可得v =U Bd.(4)流量的表达式:Q =Sv =πd 24·U Bd =πdU 4B. (5)电势高低的判断:根据左手定则可得φa >φb .4.霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.(2)电势高低的判断:如图,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压的计算:导体中的自由电荷(电荷量为q )在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由qvB =q U h,I =nqvS ,S =hd ;联立得U =BI nqd =k BI d ,k =1nq称为霍尔系数. 专题练习1.(多选)足够大的空间内存在着竖直向上的匀强磁场和匀强电场,有一带正电的小球在电场力和重力作用下处于静止状态.现将磁场方向顺时针旋转30°,同时给小球一个垂直磁场方向斜向下的速度v (如图所示),则关于小球的运动,下列说法正确的是( )A.小球做类平抛运动B.小球在纸面内做匀速圆周运动C.小球运动到最低点时电势能增加D.整个运动过程中机械能不守恒【答案】 CD【解析】 小球在复合电磁场中处于静止状态,只受两个力作用,即重力和电场力且两者平衡,当把磁场顺时针方向旋转30°,且给小球一个垂直磁场方向的速度v ,则小球受到的合力就是洛伦兹力,且与速度方向垂直,所以小球在垂直于纸面的倾斜平面内做匀速圆周运动,选项A 、B 错误;小球从开始到最低点过程中克服电场力做功,电势能增加,选项C 正确;整个运动过程中机械能不守恒,选项D 正确.2.(多选)如图所示,空间某处存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,一个带负电的金属小球从M点水平射入场区,经一段时间运动到N点,关于小球由M到N的运动,下列说法正确的是( )A.小球可能做匀变速运动B.小球一定做变加速运动C.小球动能可能不变D.小球机械能守恒【答案】BC【解析】小球从M到N,在竖直方向上发生了偏转,所以受到的竖直向下的洛伦兹力、竖直向下的重力和竖直向上的电场力的合力不为零,并且速度方向变化,则洛伦兹力方向变化,所以合力方向变化,故不可能做匀变速运动,一定做变加速运动,A错误,B正确;若电场力和重力等大反向,则运动过程中电场力和重力做功之和为零,而洛伦兹力不做功,所以小球的动能可能不变,C正确;沿电场方向有位移,电场力一定做功,故小球的机械能不守恒,D错误.3.如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c 电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是( )A.m a >m b >m cB.m b >m a >m cC.m c >m a >m bD.m c >m b >m a【答案】 B【解析】 设三个微粒的电荷量均为q ,a 在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,则m a g =qE ①b 在纸面内向右做匀速直线运动,三力平衡,则m b g =qE +qvB ②c 在纸面内向左做匀速直线运动,三力平衡,则m c g +qvB =qE ③比较①②③式得:m b >m a >m c ,选项B 正确.4.如图所示,竖直平面内存在水平方向的匀强电场,电场强度为E ,同时存在垂直纸面向里的匀强磁场,磁感应强度为B ,纸面内放置一光滑的绝缘细杆,与水平方向成θ=45°角.质量为m 、带电荷量为q 的金属小环套在细杆上,以初速度v 0沿着细杆向下运动,小环离开细杆后,恰好做直线运动,则以下说法正确的是( )A.小球可能带负电B.电场方向可能水平向右C.小球的初速度v 0=2mg qBD.小球离开细杆时的速度v =E B【答案】 C5.如图所示,半圆光滑绝缘轨道MN 固定在竖直平面内,O 为其圆心,M 、N 与O 高度相同,匀强磁场方向与轨道平面垂直。
现将一个带正电的小球自M 点由静止释放,它将沿轨道在M 、N 间做往复运动.下列说法中正确的是A .小球在M 点和N 点时均处于平衡状态B .小球由M 到N 所用的时间大于由N 到M 所用的时间C .小球每次经过轨道最低点时对轨道的压力大小均相等D .小球每次经过轨道最低点时所受合外力大小均相等【答案】D【解析】A 、小球在M 点和N 点只受到重力,所以小球在这两点不能处于平衡状态,故A 错误;B 、由于洛仑磁力总是与运动垂直,由于没有摩擦力,故对其速度大小由影响的只有重力,故小球无论从哪边滚下,时间都是一样的,故B 错误;D 、小球不管从哪边滚下,只有重力做功,且重力做功相等,由动能定理可知,小球在最低点是,速度大小总是相等的,由2=v F m r合可知合力不变,故D 正确。
C 、小球从M 到N 运动,在最低点受到向上的洛仑磁力、向上的支持力和向下的重力,由牛顿运动定律可得:21v F F mg m r+-=洛,故此时小球对轨道的压力为:21v F m mg F r=+-洛;小球从N 到M 运动,在最低点受到向下的洛仑磁力、向上的支持力和向下的重力,由牛顿可得:22v F mg F m r --=洛,故此时小球对轨道的压力为22v F m F mg r=++洛,所以小球每次经过轨道最低点时对轨道的压力大小不相等,故C 错误。
6.如图所示是一速度选择器,当粒子速度满足v 0=E B时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )A .粒子射入的速度一定是v >E BB .粒子射入的速度可能是v <E BC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度【答案】 B7.(多选)如图所示是磁流体发电机的示意图,两平行金属板P 、Q 之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)沿垂直于磁场的方向喷入磁场.把P 、Q 与电阻R 相连接.下列说法正确的是( )A .Q 板的电势高于P 板的电势B .R 中有由a 向b 方向的电流C .若只改变磁场强弱,R 中电流保持不变D .若只增大粒子入射速度,R 中电流增大【答案】 BD【解析】 等离子体进入磁场,根据左手定则,正离子向上偏,打在上极板上,负离子向下偏,打在下极板上,所以上极板带正电,下极板带负电,则P 板的电势高于Q 板的电势,流过电阻R 的电流方向由a 到b ,故A 错误,B 正确;依据电场力等于洛伦兹力,即为q U d=qvB ,则有U =Bdv ,再由闭合电路欧姆定律I =U R +r =Bdv R +r,电流与磁感应强度成正比,故C 错误;由上分析可知,若只增大粒子的入射速度,R 中电流会增大,故D 正确.8.为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图12所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a 、b 、c ,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M 、N 两端间的电压表将显示两个电极间的电压U .若用Q 表示污水流量(单位时间内排出的污水体积),下列说法中正确的是( )A .M 端的电势比N 端的高B .电压表的示数U 与a 和b 均成正比,与c 无关C .电压表的示数U 与污水的流量Q 成正比D .若污水中正、负离子数相同,则电压表的示数为0【答案】 C 【解析】 根据左手定则知,正离子所受的洛伦兹力方向向里,则向里偏转,N 端带正电,M 端带负电,则M 端的电势比N 端电势低,故A 错误; 最终离子在电场力和洛伦兹力作用下平衡,有:qvB =q U b,解得U =vBb ,电压表的示数U 与b 成正比,与污水中正、负离子数无关,故B 、D 错误;因v =U Bb ,则流量Q =vbc =Uc B ,因此U =BQ c,所以电压表的示数U 与污水流量Q 成正比,故C 正确.9.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图14所示是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,当元件中通入图示方向的电流I 时,C 、D 两侧面会形成一定的电势差U .下列说法中正确的是( )A .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带负电B .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带正电C .在地球南、北极上方测地磁场强弱时,元件工作面竖直放置时U 最大D .在地球赤道上方测地磁场强弱时,元件工作面竖直放置且与地球经线垂直时,U 最大【答案】 AD【解析】 若元件的载流子带负电,由左手定则可知,载流子受到的洛伦兹力方向向D 侧面偏,则C 侧面的电势高于D 侧面的电势,故A 正确;若元件的载流子带正电,由左手定则可知,载流子受到的洛伦兹力方向向D 侧面偏,则D 侧面的电势高于C 侧面的电势,故B 错误;在测地球南、北极上方的地磁场强弱时,因磁场方向竖直,则元件的工作面保持水平时U 最大,故C 错误;地球赤道上方的地磁场方向水平,在测地球赤道上方的地磁场强弱时,元件的工作面应保持竖直,当与地球经线垂直时U 最大,故D 正确.10.如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着垂直纸面向里的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T.有一带正电的小球,质量m =1×10-6 kg ,电荷量q =2×10-6 C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g =10 m/s 2,求:(1)小球做匀速直线运动的速度v 的大小和方向;(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t .【答案】 (1)20 m/s 方向与电场方向成60°角斜向上(2)2 3 s【解析】 (1)小球做匀速直线运动时受力如图甲,其所受的三个力在同一平面内,合力为零,有qvB =q 2E 2+m 2g 2①代入数据解得v =20 m/s ②速度v 的方向与电场E 的方向之间的夹角满足tan θ=qEmg③代入数据解得tan θ= 3θ=60°④(2)撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图乙所示,设其加速度为a ,有a =q 2E 2+m 2g 2m ⑤ 设撤去磁场后小球在初速度方向上的分位移为x ,有x =vt ⑥设小球在重力与电场力的合力方向上的分位移为y ,有y =12at 2⑦ tan θ=y x⑧ 联立④⑤⑥⑦⑧式,代入数据解得t =2 3 s ⑨11.如图所示,在坐标系xOy 平面的x >0区域内,存在电场强度大小E =2×105N/C 、方向垂直于x 轴的匀强电场和磁感应强度大小B =0.2 T 、方向与xOy 平面垂直向外的匀强磁场.在y 轴上有一足够长的荧光屏PQ ,在x 轴上的M (10,0)点处有一粒子发射枪向x 轴正方向连续不断地发射大量质量m =6.4×10-27kg 、电荷量q =3.2×10-19 C 的带正电粒子(重力不计),粒子恰能沿x 轴做匀速直线运动.若撤去电场,并使粒子发射枪以M 点为轴在xOy 平面内以角速度ω=2π rad/s 顺时针匀速转动(整个装置都处在真空中).(1)判断电场方向,求粒子离开发射枪时的速度;(2)带电粒子在磁场中运动的轨迹半径;(3)荧光屏上闪光点的范围距离;(4)荧光屏上闪光点从最低点移动到最高点所用的时间.【答案】 见解析【解析】 (1)带正电粒子(重力不计)在复合场中沿x 轴做匀速直线运动,据左手定则判定洛伦兹力方向向下,所以电场力方向向上,电场方向向上有qE =qvB速度v =E B =2×1050.2m/s =106 m/s (2)撤去电场后,有qvB =m v 2R所以粒子在磁场中运动的轨迹半径R =mv qB =6.4×10-27×1063.2×10-19×0.2m =0.1 m (3)粒子运动轨迹如图所示,若粒子在荧光屏上能最上端打在B 点,最下端打在A 点由图可知:d OA =R tan 60°=3Rd OB =R所以荧光屏上闪光点的范围距离为d AB =(3+1)R ≈0.273 m(4)因为粒子在磁场中做圆周运动的周期T =2πm qB≈6.28×10-7 s ,所以粒子在磁场中运动的时间可以忽略不计闪光点从最低点移到最高点的过程中,粒子发射枪转过的圆心角φ=5π6所用的时间t =φω=5π62π s =512s ≈0.42 s。