2014年全国各地中考数学试卷解析版分类汇编 解直角三角形
全国各地2014年中考数学试卷解析版分类汇编 开放性问题
开放性问题1. (2014•四川巴中,第28题10分)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海,第24题11分)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.,发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE ≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.,﹣﹣。
(完整word版)2014年中考数学真题三角函数汇总,推荐文档
中考数学真题三角函数汇总1、(2014?黄冈)如图,在南北方向的海岸线 MN 上,有A 、B 两艘巡逻船,现均收到故障船 C 的求救信号.已知A 、B 两船相距100 (汀卞+1)海里,船C 在船A 的北偏东60。
方向上,船C 在船B 的东南方向上,MN 上有一观测 点D ,测得船C 正好在观测点D 的南偏东75方向上.(1)分别求出A 与C , A 与D 之间的距离AC 和AD (如果运算结果有根号,请保留根号) .(2)已知距观测点 危险?(参考数D 处100海里范围内有暗礁.若巡逻船 A 沿直线AC 去营救船C ,在去营救的途中有无触暗礁血勺.41,需勺.73)端A 处,视线与水平线夹角 / ADE 为39°且高CD 为1.5米,求建筑物的高度 AB .(结果精确到0.1米)(参考数据:sin39°0.63, cos39°0.78, tan39°0.81) 3、(2014?兰州)如图,在电线杆上的 C 处引拉线CE 、CF 固定电线杆,拉线 CE 和地面成60°角,在离电线杆6米 的B 处安置测角仪,在 A 处测得电线杆上 C 处的仰角为30°已知测角仪高 AB 为1.5米,求拉线CE 的长(结果 保留根号)4、(2014?泸州)海中两个灯塔 A 、B ,其中B 位于A 的正东方向上,渔船跟踪鱼群由西向东航行,在点C 处测得灯塔A 在西北方向上,灯塔 B 在北偏东30°方向上,渔船不改变航向继续向东航行 30海里到达点D ,这是测得灯 6、(2014绵阳)如图,一艘海轮位于灯塔 P 的北偏东30°方向,距离灯塔 80海里的A 处,它沿正南方向航行一段 时间后,到达位于灯塔 P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为()24M2题图2、18. ( 7分)(2014?长春)如图,为测量某建筑物的高度 AB ,在离该建筑物底部 24米的点C 处,目测建筑物顶B 间的距离.(计算结果用根号表示,不取近似值)/ ABC=62 °坡面长度AB=25米(图为横截面) ,为了使堤坝更加牢固,/ ADB=50 °贝毗时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数sin62° 出88, cos62° M7, tan50° 核0) 1题图塔A 在北偏西60方向上,求灯塔 A 、A. 40 「海里 B . 40:;海里C. 80海里D. 40.:海里图① 團② 圉③ 囿④7、(2014?遂宁)如图,根据图中数据完成填空,再按要求答题:2 2 2 2 2 2 sin A i +sin B i = ______________ ; sin A 2+sin B 2= ___ ; sin A 3+sin B 3= .(1)观察上述等式,猜想:在 Rt △ ABC 中,/ C=90 °都有sin 2A+sin 2B=(2)如图④,在Rt △ ABC 中,/ C=90 ° / A 、/ B 、/ C 的对边分别是 a 、b 、c ,利用三角函数的定义和勾股定 理,证明你的猜想.(3)已知:/ A+ / B=90 °且sinA=^,求sinB .138 ( 2014山东日照)如图某天上午9时,向阳号轮船位于 A 处,观测到某港口城市 P 位于轮船的北偏西 67.5 ;轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市 P 位于该船的南偏西 36.9方向, (8题图) 9、 (2014年湖北荆门)钓鱼岛自古以来就是中国的领土•如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域 巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A 处和正东方向的B 处,这时两船同时接到立即赶往C 处海域巡查的任务,并测得 C 处位于A 处北偏东59°方向、位于B 处北偏西44°方向•若甲、乙两船分别沿 AC , BC 方 向航行,其平均速度分别是 20海里/小时,18海里/小时,试估算哪艘船先赶到 C 处.(cos59° 0^2, sin46 ° 0.72)10、 (2014?临沂)如图,在某监测点 B 处望见一艘正在作业的渔船在南偏西 15方向的A 处,若渔船沿北偏西 75° 方向以40海里/小时的速度航行,航行半小时后到达 C 处,在C 处观测到B 在C 的北偏东60方向上,贝U B 、C 之 间的距离为( )A . 20海里B . 10.二海里C . 20二海里D . 30海里11. 如图,要在木里县某林场东西方向的两地之间修一条公路 MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从 A 向东走600米到达B 处,测得C 在点B 的北偏西60°方亠,tan67.5°13.3〜1.732 ) (2)若修路工程顺利进行,要使3 3求此时轮船所处位置 B 与城市P 的距离?(参考数据:sin36.9°恙,tan36.9°= , sin67.5 (第 21 题)向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:修路工程比原计划提前 5天完成,需将原定的工作效率提高 25%,则原计划完成这项工程需要多少天12.1题图 2. 某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BAD 60o ,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造•经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结3.如图,AC 是我市某大楼的高,在地面上B 点处测得楼顶 A 的仰角为450,沿BC 方向前进18米到达D 点,5测得tan / ADC = 5 •现打算从大楼顶端 A 点悬挂一幅庆祝建国 60周年的大型标语,若标语底端距地面15m ,请你3 计算标语AE 的长度应为多少?D 点是洞的入口,游人从入口进洞游览后, 可经山洞到达山顶的出口凉亭 A AB 返回山脚下的B 处•在同一平面内,若测得斜坡 BD 的长为100米,坡 角 DBC 10°,在B 处测得A 的仰角 ABC 40°在D 处测得A 的仰角 ADF 85° ,过D 点作地面BE 的 垂线,垂足为C •(1) 求 ADB 的度数;(2) 求索道AB 的长.(结果保留根号)1. •如图,山顶建有一座铁塔,塔高 CD 30m ,某人在点求此人距CD 的水平距离 AB • (参考数据: sin 20 0 〜0.342, cos 20 0 〜0.940, tan 20sin 23o ~ 0.391 , cos 23o ~ 0.921 , tan 23o ~ 0.424 ) A 处测得塔底C 的仰角为20o ,塔顶D 的仰角为23o ,』・::• C~ 0.364 ,A 4 23BC // AD ,斜坡AB 40米,坡角4.某旅游区有一个景观奇异的望天洞,处观看旅游区风景,最后坐缆车沿索道 2题图.答案1、解直角三角形的应用-方向角问题.分析:(1)作CE 丄AB,设AE=x 海里,贝U BE=CE= _ 住海里.根据AB=AE+BE=x+ 一_;x=100 (屆1),求得x的值后即可求得AC的长;过点D作DF丄AC于点F,同理求出AD的长;(2)作DF丄AC于点F,根据AD的长和/ DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE丄AB ,由题意得:/ ABC=45 ° / BAC=60 °设AE=x海里,在Rt△ AEC 中,CE=AE?tan60° :;x; 在Rt△ BCE 中,BE=CE=#G x.•AE+BE=x+ . ':x=100 ( .「;+1),解得:x=100 .AC=2x=200 .在厶ACD 中,/ DAC=60 ° / ADC=75 ° 则/ ACD=45 °过点D作DF丄AC于点F,设AF=y,则DF=CF= 「;y,•AC=y+ : ;y=200 ,解得:y=100 (「;- 1),•AD=2y=200 (頒-1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200 ( :- - 1)海里.(2)由(1)可知,DF=U1AF二巫X100 (虧-1) -127•/ 127> 100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.2、考点:解直角三角形的应用-仰角俯角问题.分析:过D作DE丄AB于点E,继而可得出四边形BCDE为矩形,DE=BC=24米,CD=BE=1.5 米,根据/ ADE=39 °在Rt△ ADE中利用三角函数求出AE的长度,继而可求得AB 的长度.解答:解:过D作DE丄AB于点E,•••四边形BCDE为矩形,DE=BC=24 米,CD=BE=1.5 米,在Rt△ ADE 中,•/ / ADE=39 °••• tan / ADE= —=tan39 °0.81 ,DE• AE=DE ?tan39°24 >0.81=19.44 (米), • AB=E+EB=19.44+1.5=20.94 P0.9 (米). 答:建筑物的高度 AB 约为20.9米.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角构造直角三角形,禾U 用三角函数求解.3、考点:解直角三角形的应用-仰角俯角问题 专题:计算题;压轴题.分析:由题意可先过点 A 作AH 丄CD 于H .在Rt △ ACH 中,可求出CH ,进而CD=CH+HD=CH+AB ,再在 Rt △ CED 中,求出 CE 的长.解答:解:过点A 作AH 丄CD ,垂足为H ,由题意可知四边形 ABDH 为矩形,/ CAH=30 ° • AB=DH=1.5 , BD=AH=6 , 在 Rt △ ACH 中,tan / CAH=丄, AH• CH=AH ?tan / CAH ,• CH=AH ?tan / CAH=6tan30 °6 > 丄,:.(米), •/ DH=1.5 , • CD=2品\+1.5, 在 Rt △ CDE 中, •// CED=60 ° sin / CED=—,CE=(4+ .;)(米),4、考点:解直角三角形的应用-方向角问题.分析:根据方向角的定义以及锐角三角函数关系得出AN , NC 的长进而求出BN 即可得出答案.解答:解:如图所示:由题意可得出: / FCA= / ACN=45 ° / NCB=30 ° / ADE=60 ° 过点A 作AF 丄FD ,垂足为F ,• CE=贝U / FAD=60 ° / FAC= / FCA=45 ° / ADF=30 ° ,• AF=FC=AN=NC ,设AF=FC=x ,6、考点: 解直角三角形的应用一方向角问题.分析: 根据题意画出图形,进而得出 PA , PC 的长,即可得出答案.解答: 解:过点P 作PC 丄AB 于点C ,由题意可得出:/ A = 30° / B = 45° AP = 80海里, 故CP =」AP = 40 (海里),\2则PB =——=40 2 (海里).sin45c故选:A .5、FD X-F30 3解得:x=15 (-汁1),B W15(V3+1)解得:BN=15+5 -;••• AB=AN+BN=15 ( :;+1 ) +15+5. ;=30+20 .:,考点:解直角三角形的应用-坡度坡角问题.分析:过A 点作AE 丄CD 于E .在Rt △ ABE 中,根据三角函数可得 中,根据三角函数可得 DE ,再根据DB=DC - BE 即可求解.解答:解:过A 点作AE 丄CD 于E .AE , BE ,在 Rt △ ADE在 Rt △ ABE 中,/ ABE=62• AE=AB ?sin62 °25 >0.88=22 米,BE=AB米,在 Rt △ ADE 中,/ ADB=50 °DE=AE tanSO*• DB=DC - BE£58 米. 故此时应将坝底向外拓宽大约6.58米.答:灯塔A 、B 间的距离为(30+20 :■;)海里.勾股定理;互余两角三角函数的关系;解直角三角形. -(1)由前面的结论,即可猜想出:在Rt△ ABC中,/ C=90 °都有sin2A+sin2B=1(2)在Rt△ ABC中,/ C=90 °利用锐角三角函数的定义得出sinA=2sinB±,则c csin2A+sin2B=且,再根据勾股定理得到a 2+b2=c2,从而证明sin2A+sin2B=1 ;(3)利用关系式sin2A+sin2B=1,结合已知条件sinA=§,进行求解.13解答:解:(1) 1.(2)如图,在Rt△ ABC 中,/ C=90°■/ sinA=2, sinB=±, q |c2 , , 2.2 2 a + b…sin2A+sin 2B= ----- :—c•••/ ADB=90 °••• BD2+AD2=AB2,2 2•- sin2A+cos2A=1 .9、考点:解直角三角形的应用-方向角冋题.(3) •/ sinA=-,13.2 2sin2A+sin 2B=1 ,PC在Rt△ APC 中,T tan/ A=—ACPC 在Rt△ PCB 中,T tan/ B=—BC5x 4x T AC + BC=AB=21 X5,^ 一12 3c PC5xAC = ....... 3分tan 67.512xBC=4x...... 5分ta n36.9321 5,解得x60.sin B PC,•PBPC• PBsin B6060 5100 (海里).sin 36.9 3B与城市P的距离为100海里.考点:分析:&过点P作PC丄AB,垂足为C,设PC=x海里.•向阳号轮船所处位置分析: 作CD 丄AB 于点D ,由题意得:/ ACD=59 ° / DCB=44 °设CD 的长为a 海里,分别在 Rt △ ACD 中, 和在Rt △ BCD 中,用a 表示出AC 和BC ,然后除以速度即可求得时间,比较即可确定答案 解答: 解:如图,作CD 丄AB 于点D , 由题意得:/ ACD=59 ° / DCB=44 ° 设CD 的长为a 海里,•••在 Rt △ ACD 中,-lU=cos Z ACD ,AC••• AC= __ QU _ =—5—羽.92a ;casZ^ACD 0. 52•••在 Rt △ BCD 中,丄=cos / BCD , BC•• BC= ___ 丄 __ =―J 羽.39a ;casZ^BCD 0. 72• •其平均速度分别是 20海里/小时,18海里/小时, • 1.92a 吃0=0.096a.1.39a T 8=0.077a ,a > 0,10、考点:解直角三角形的应用-方向角问题分析:如图,根据题意易求厶ABC 是等腰直角三角形,通过解该直角三角形来求 解答:解:如图,•••/ ABE=15 ° / DAB= / ABE , •••/ DAB=15 °•••/ CAB= / CAD+ / DAB=90 °又•••/ FCB=60 ° / CBE= / FCB ,/ CBA+ / ABE= / CBE , •••/ CBA=45 °•在直角△ ABC 中,sin / ABC= • BC=20 二海里.0.096a > 0.077a ,••乙先到达.钓鱼岛4OX1V2 B CBC2BC 的长度.。
2014年全国各地中考数学真题分类解析汇编:44 综合性问题
综合性问题一、选择题1. (2014•安徽省,第8题4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.2. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()...的图象可知3. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.4.(2014•襄阳,第12题3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()PE===5.(2014•呼和浩特,第16题3分)以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)=,,,错误,6.(3分)(2014•德州,第10题3分)下列命题中,真命题是()的图象上,若S=4S的图象上,若=4=9二.填空题三.解答题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN 求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.2. (2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA OB(+的图象经过原点OA=,﹣的顶点.)的顶点坐标为(﹣,<﹣时,﹣取得最小值,即顶<﹣时,时,3. (2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥B C.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.=12=12====6=124. (2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.OF点右边时,所求三角形为两三角形的差.得关系式再代入,=2,=3=,,,x=﹣,,,,﹣x﹣,x<.①当﹣,﹣••••••[x(x(﹣+时,,﹣•)﹣•..,<﹣x+,解得﹣<<,<.5. 2014•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM 平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据题意可设函数的解析式为y=ax2,将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x,14x2),根据PF=PM=FM,可得关于x的方程,求出x的值即可得出答案.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,14)代入y=ax2得:a=14,∴二次函数的解析式为y=14x2;(2)证明:∵点P在抛物线y=14x2上,∴可设点P的坐标为(x,14x2),过点P作PB⊥y轴于点B,则BF=14x2﹣1,PB=x,∴Rt△BPF中,PF==14x2+1,∵PM⊥直线y=﹣1,∴PM=14x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴14x2+1=4,解得:x=±2,∴14x2=14×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、角平分线的性质及直角三角形的性质,解答本题的关键是熟练基本知识,数形结合,将所学知识融会贯通.6. (2014•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a 的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r 与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.=0中,若不能使其结果为﹣x),∴顶点(﹣,﹣=1﹣.==,==0=xx xx==﹣(﹣x7.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D 点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线与坐标轴的交点坐标求法,三角形的面积,梯形的判定.综合性较强,有一定难度.运用数形结合、分类讨论及方程思想是解题的关键.8.(2014•毕节地区,第27题16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.x+=(点代入得出:,(,,x=+,9.(2014•武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B 两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.,x或.,aa aPQ PQPQ(﹣a a×.,).的纵坐标分别为m n tm tn t=x +4=≤2.10.(2014•襄阳,第26题12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,A C.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为(1,4);抛物线的解析式为y=﹣(x﹣1)2+4.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?(==5==,;==,.或.=1+1+=1+﹣﹣﹣FQ FQFQFQ×)(11.(2014•孝感,第22题10分)已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值..)∵,12.(2014•孝感,第25题12分)如图1,矩形ABCD的边AD在y轴上,抛物线y=x2﹣4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.(1)请直接写出下列各点的坐标:A(0,3),B(4,3),C(4,﹣1),D(0,﹣1);(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.①当线段PH=2GH时,求点P的坐标;②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.②根据相似三角形的性质可得,,,EF,.时,的最大值为13.(2014•邵阳,第26题10分)在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m >n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.(1)若m=2,n=1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;(3)若m=2,△ABC是等腰三角形,求n的值.﹣(﹣,==,)(=,=时,=时,=2时,时,n=时,﹣n﹣,﹣,14.(2014·浙江金华,第22题10分)(1)阅读合作学习内容,请解答其中的问题.(2)小亮进一步研究四边形的特征后提出问题:“当AE >EG 时,矩形AEGF 与矩形DOHE 能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 【答案】(1)①()6y x >0x=;②()3,2 ;(2)这两个矩形不能全等,这两个矩形的相似比为56. 【解析】∴6n mm 23n⎧=⎪⎨⎪-=-⎩,解得m 3n 2=⎧⎨=⎩或m 2n 3=⎧⎨=⎩. ∴点F 的坐标为()3,2 .(2)这两个矩形不能全等,理由如下:设点F 的坐标为()m,n ,则AE m 2,AF 3n =-=- ,考点:1. 阅读理解型问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的和矩形性质;5.全等、相似多边形的判定和性质;6.反证法的应用.15.(2014•四川自贡,第24题14分)如图,已知抛物线y =ax 2﹣x +c 与x 轴相交于A 、B 两点,并与直线y =x ﹣2交于B 、C 两点,其中点C 是直线y =x ﹣2与y 轴的交点,连接A C . (1)求抛物线的解析式;(2)证明:△ABC 为直角三角形;(3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.,,,﹣)﹣=,x=x16.(2014•浙江湖州,第23题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和A D.(1)若点A的坐标是(﹣4,4)①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为C.解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C代入y═﹣x2+bx+c得,得,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=B C.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.17.(2014•浙江湖州,第24题分)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)[来源:学&科&网](1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.分析:(1)连接PM,PN,运用△PMF≌△PNE证明,(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.解答:证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.点评:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.18. (2014•湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m 为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图),=m×mm m﹣×m.m m+2((.其中<.((其中.=.==x.=.19. (2014•湘潭,第26题)已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.(第2题图),且函数过()易得==2。
2014年全国各地中考数学解析版试卷分类汇编总汇:综合性问题-推荐下载
3. (2014•广西贺州,第 10 题 3 分)已知二次函数 y=ax2+bx+c(a,b,c 是常数,且 a≠0)的图象如图所示,则一次函数 y=cx+ 与反比例函数 y= 在同一坐标系内的大致图 象是( )
综合性问题
一、选择题 1. ( 2014•安徽省,第 8 题 4 分)如图,Rt△ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使 A 点与 BC 的中点 D 重合,折痕为 MN,则线段 BN 的长为( )
A.
B.
考点: 翻折变换(折叠问题). 分析: 设 BN=x,则由折叠的性质可得 DN=AN=9﹣x,根据中点的定义可得 BD=3,在 Rt△ABC 中,根据勾股定理可得关于 x 的方程,解方程即可求解. 解答: 解:设 BN=x,由折叠的性质可得 DN=AN=9﹣x, ∵D 是 BC 的中点, ∴BD=3, 在 Rt△ABC 中,x2+32=(9﹣x)2, 解得 x=4. 故线段 BN 的长为 4. 故选:C. 点评: 考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程 思想,综合性较强,但是难度不大. 2. ( 2014•福建泉州,第 7 题 3 分)在同一平面直角坐标系中,函数 y=mx+m 与 y= (m≠0)的图象可能是( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年各地中考数学试卷解析版分类精品汇编开放性问题、规律探索
2014年各地中考数学试卷解析版分类汇编开放性问题、规律探索1. (2014•四川巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.考点:矩形的判定.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).点评:本题考查了全等三角形的判定和性质以及平行四边形的判定,是基础题,难度不大.2. (2014•山东威海)猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.考点:四边形综合题分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,解答:猜想:DM=ME证明:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.(1)如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME,故答案为:DM=ME.(2)如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.点评:本题主要考查四边形的综合题,解题的关键是利用正方形的性质及直角三角形的中线与斜边的关系找出相等的线段.3. (2014•山东枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题:计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.4. (2014•山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE 与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.考点:全等三角形,正方形的性质,勾股定理,运动与变化的思想.分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可.解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.点评:本题主要考查了四边形的综合知识.综合性较强,特别是第(4)题要认真分析.5. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.规律探索一、选择题1. (2014•山东威海)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0B.﹣3×()2013C.(2)2014D.3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014•山东潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰)根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的变化类分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014•四川宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014•四川内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S的变化规律,得出图形面积变化规律是解题关键.二、填空题1. (2014•上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.2. (2014•四川巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)考点:正方形的性质;一次函数图象上点的坐标特征.专题:规律型.分析:根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.解答:解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(2+4)×4﹣×(2+4)×4=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.点评:本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.7. (2014•年山东东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.考点:三角形中位线定理.专题:规律型.分析:由于A1、B1、C1分别是△ABC的边BC、CA、AB的中点,就可以得出△A1B1C1∽△ABC,且相似比为,△A2B2C2∽△ABC的相似比为,依此类推△A n B n C n∽△ABC的相似比为,解答:解:∵A1、B1、C1分别是△ABC的边BC、CA、AB的中点,∴A1B1、A1C1、B1C1是△ABC的中位线,∴△A1B1C1∽△ABC,且相似比为,∵A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,∴△A2B2C2∽△A1B1C1且相似比为,∴△A2B2C2∽△ABC的相似比为依此类推△A n B n C n∽△ABC的相似比为,∵△ABC的周长为1,∴△A n B n C n的周长为.故答案为.点评:本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:9.(2014•四川内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2014个图形是□.考点:规律型:图形的变化类.分析:去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,依次不断循环出现,由此用(2014﹣2)÷6算出余数,余数是几,就与循环的第几个图形相同,由此解决问题.解答:解:由图形看出去掉开头的两个三角形,剩下的由三个正方形,一个三角形,两个圆6个图形为一组,不断循环出现,(2014﹣2)÷6=335 (2)所以第2014个图形是与循环的第二个图形相同是正方形.故答案为:□.点评:此题考查图形的变化规律,找出图形的循环规律,利用规律解决问题.10.(2014•四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.12.(2014•甘肃兰州)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.考点:有理数的乘方专题:整体思想.分析:根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.解答:解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.点评:本题考查了有理数的乘方,等式的性质是解题关键.13.(2014•广东梅州)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.考点:规律型:点的坐标.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),当点P第3次碰到矩形的边时,点P的坐标为:(8,3);∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3),(5,0).点评:此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.。
2014年全国各地中考数学试卷解析版分类汇编全等三角形
全等三角形一、选择题2.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( 3 )3.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为( A )A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)二、填空题1.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使1C F B C2..若AB=10,则EF的长是 5 .2.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).如果两个三角形的面积相等,那么这两个三角形全等.假命题.三、解答题1.如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.2.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC 于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.分析:1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和CADF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BCD.4.如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.5. 在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.6.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,即=,∴AD=28.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE填空:(1)∠AEB的度数为 60 ;(2)线段AD、BE之间的数量关系是AD=BE。
2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)
一元一次方程及其应用一、选择题1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2014•滨州,第4题3分)方程2x﹣1=3的解是().二、填空题1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.三、解答题1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),,==4×2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.=126.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?,∴盒子的个数为:=308.(2014•滨州,第19题3分)(1)解方程:2﹣=9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。
2014年全国中考数学试卷分类汇编:阅读理解、图表信息【含解析】
阅读理解、图表信息一、选择题1. (2014•山东潍坊,第12题3分)如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A .(—2012,2)B .(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M 的对应点的坐标,即可得规律.解答:∵正方形ABCD ,点A (1,3)、B (1,1)、C (3,1).∴M 的坐标变为(2,2)∴根据题意得:第1次变换后的点M 的对应点的坐标为(2-1,-2),即(1,-2), 第2次变换后的点M 的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M 的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M 的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A .点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.(2014山东济南,第14题,3分)现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D .二、填空题1.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.据此判断下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx•cosx;④sin(x﹣y)=sinx•cosy﹣cosx•siny.=××+=三、解答题1. (2014•四川巴中,第22题5分)定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.考点:新定义.分析:首先根据运算的定义化简3△x,则可以得到关于x的不等式组,即可求解.解答:3△x=3x﹣3﹣x+1=2x﹣2,根据题意得:,解得:<x<.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.2.(2014•湖南张家界,第23题,8分)阅读材料:解分式不等式<0解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①或②解①得:无解,解②得:﹣2<x<1所以原不等式的解集是﹣2<x<1请仿照上述方法解下列分式不等式:(1)≤0(2)>0.或②或②3.(2014•江西抚州,第24题,10分)【试题背景】已知:∥m∥n∥,平行线与m、m与n、n与之间的距离分别为d1、d2、d3,且d1 =d3 = 1,d2 = 2 . 我们把四个顶点分别在、m、n、这四条平行线上的四边形称为“格线四边形”.【探究1】 ⑴ 如图1,正方形ABCD 为“格线四边形”,BE l ⊥于点E ,BE 的反向延长线交直线于点F . 求正方形ABCD 的边长.【探究2】 ⑵ 矩形ABCD 为“格线四边形”,其长 :宽 = 2 :1 ,则矩形ABCD 的宽为--------------------2. (直接写出结果即可)【探究3】 ⑶ 如图2,菱形ABCD 为“格线四边形”且∠ADC =60°,△AEF 是等边三角形,AE ⊥k 于点E , ∠AFD =90°,直线DF 分别交直线、于点G 、M . 求证:EC DF =.【拓 展】 ⑷ 如图3,∥,等边三角形ABC 的顶点A 、B 分别落在直线、上,AB ⊥k于点B ,且AB =4 ,∠A C D =90°,直线CD 分别交直线、于点G 、M ,点D 、E 分别是线段GM 、BM 上的动点,且始终保持AD =AE ,DH l ⊥于点H .猜想:DH 在什么范围内,BC ∥DE ?并说明此时BC ∥DE 的理由.解析:(1) 如图1,∵BE ⊥l , l ∥k ,∴∠AEB=∠BFC=90°,又四边形ABCD 是正方形,∴∠1+∠2=90°,AB=BC, ∵∠2+∠3=90°, ∴ ∠1=∠3,∴⊿ABE ≌⊿BCF(AAS),∴AE=BF=1 , ∵BE=d 1+d 2=3 , ∴=,.(2)如图2,3,⊿ABE ∽⊿BCF,∴BF BCAE AB ==21 或BF BC AE AB ==12∵BF=d 3=1 ,∴AE=12 或AE =2∴AB==2 或AB==∴矩形ABCD 的宽为2(注意:要分2种情况讨论)(3)如图4,连接AC ,∵四边形ABCD 是菱形,∴AD=DC,又∠ADC=60°,∴⊿ADC 是等边三角形,∴AD=AC ,∵AE ⊥k , ∠AFD=90°, ∴∠AEC=∠AFD=90°,∵⊿AEF 是等边三角形, ∴ AF=AE,∴⊿AFD ≌⊿AEC(HL), ∴EC=DF.(4)如图5,当2<DH <4时, BC ∥DE .理由如下:连接AM,∵AB ⊥k , ∠ACD=90°,∴∠ABE=∠ACD=90°,∵⊿ABC 是等边三角形,∴AB=AC ,已知AE=AD, ∴⊿ABE ≌⊿ACD(HL),∴BE=CD ;在Rt ⊿ABM 和Rt ⊿ACM 中,AB ACAM AM=⎧⎨=⎩ ,∴Rt ⊿ABM ≌Rt ⊿ACM(HL), ∴ BM=CM ;∴ME=MD,∴ME MD MB MC= , ∴ED ∥BC. 4. (2014•浙江杭州,第23题,12分)复习课中,教师给出关于x 的函数y=2kx 2﹣(4kx+1)x ﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x >1时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.=﹣销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。
2014年全国各地中考数学试卷解析版分类汇编_规律探索
规律探索一、选择题1. (2014•山东威海,第12题3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为())(==3×((=3×=3×((((C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014•山东烟台,第9题3分)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014•十堰7.(3分))根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的( ),箭头的方向是5.(2014•四川宜宾,第7题,3分)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )6.(2014•四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()=,.6.7.8.二、填空题1. (2014•上海,第17题4分)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”2. (2014•四川巴中,第20题3分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014•遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.4.(2014•娄底19.(3分))如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.5. (2014年湖北咸宁14.(3分))观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.(﹣1)2+1,…解答:解:由题意知道:题目中的数据可以整理为:,(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014•江苏盐城,第18题3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n 的值为24n﹣5.(用含n的代数式表示,n为正整数)7. (2014•年山东东营,第18题4分)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.8.(2014•四川遂宁,第15题,4分)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.的相似比为的相似比为的周长为.故答案为左向右排列,那么第2014个图形是□.10.(2014•四川南充,第15题,3分)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.分析:分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.解:a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.点评:此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.11.(2014•甘肃白银、临夏,第18题4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.故答案为:13.(2014•广东梅州,第13题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2014的坐标是.。
2014年全国各地中考数学试卷解析版分类汇编-三角形的边与角
2014年全国各地中考数学试卷解析版分类汇编-三角形的边与角D点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.3. (2014•江苏苏州,第6题3分)如图,在△ABC 中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选B.点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.4.(2014•福建福州,第6题4分)下列命题中,假命题...是【】A.对顶角相等B.三角形两边和小于第三边C.菱形的四条边都相等D.多边形的内角和等于360°4.5.6.7.8.二、填空题1. (2014•山东威海,第15题3分)直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= 40°.考点:平行线的性质;三角形内角和定理分析:根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.解答:解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.(2014•湖南怀化,第15题,3分)如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD=80°.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵∠A=30°,∠B=50°,∴∠ACD=∠A+∠B=30°+50°=80°.故答案为:80.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.3. (2014•江苏盐城,第14题3分)如图,A、B 两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为60 m.考点:三角形中位线定理.专题:应用题.分析:根据三角形中位线求出AB=2DE,代入求出即可.全面有效 学习载体- - 11 - - 解答: 解:∵D 、E 分别是AC 、BC 的中点,DE =30m , ∴AB =2DE =60m故答案为:60.点评: 本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2014•广州,第11题3分)中,已知,,则的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为 【答案】 5.(2014•广州,第12题3分)已知是∠AOB的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点,,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】10。
全国各地2014年中考数学真题分类解析汇编 17点、线、面、角
点、线、面、角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()3.(2014•襄阳,第7题3分)下列命题错误的是()4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线 B.两点之间线段最短C.垂线段最短 D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()∠×60°=30°,6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. (2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50 °.2. (2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=65 °.3. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77° .5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。
全国各地2014年中考数学真题分类解析汇编 29解直角三角形
解直角三角形一、选择题1.(2014•某某,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是()A.absinαB.absinαC.abcosαD.abcosα考点:平行四边形的性质;解直角三角形.分析:过点C作CE⊥DO于点E,进而得出EC的长,再利用三角形面积公式求出即可.解答:解:过点C作CE⊥DO于点E,∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,∴si nα=,∴EC=COsinα=asinα,∴S△BCD=CE×BD=×asinα×b=absinα,∴▱ABCD的面积是:absinα×2=absinα.故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.2. (2014•某某,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,考点:解直角三角形专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.3. (2014•某某,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠M=()(第2题图)A.B.C.D.﹣2考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析:连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠M.解答:解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(LH)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥ON于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠M==故选A.点评:此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.4.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()A.6B.C.8D.考点:解直角三角形分析:根据三角函数的定义来解决,由sinA==,得到BC==.解答:解:∵∠C=90°AB=10,∴sinA=,∴BC=AB×=10×=6.故选A.点评:本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.5.(2014•某某,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选B.点评:此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.1.(2014•某某,第13题5分)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)考点:解直角三角形.专题:计算题.分析:根据正切的定义得到tanB=,然后把tanBC=32代入计算即可.解答:解:在Rt△ABC中,∠C=90°,所以tanB=,即tan37°=,所以AC=32•tan37°=32×0.75=24.故答案为24.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.2.(2014•某某,第12题4分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.3.(2014•某某某某,第17题4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 17 个这样的停车位.(≈1.4)考点:解直角三角形的应用.分析:如图,根据三角函数可求BC,CE,则BE=BC+CE可求,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:解:如图,BC=2.2×sin45°=2.2×≈,CE=5×sin45°=5×≈,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈米,(56﹣5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.4. (2014•株洲,第13题,3分)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182 米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).(第1题图)考点:解直角三角形的应用-仰角俯角问题.分析:作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC的长度.解答:解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ACtan20°=500×0.3640=182(米).故答案为:182.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.5. (2014•某某,第16题,3分)如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP 等于1或2 cm.(第2题图)考点:全等三角形的判定与性质;正方形的性质;解直角三角形分析:根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC 平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.解答:解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE==2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.点评:此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.6.(2014•某某,第12题3分)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB 的长为3+.考点:解直角三角形.分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.1. (2014•某某省,第18题8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.2. (2014•某某,第20题7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CDm).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.3. (2014•某某,第17题7分)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用-方向角问题.分析:(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠AMD=∠MAD=45°,再根据AM 的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案.解答:解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB==60,∴60÷20=3=3×2.45=7.35≈7.4(小时),答:渔船从B到达小岛M的航行时间约为7.4小时.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.4. (2014•某某贺州,第24题8分)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)考点:解直角三角形的应用-方向角问题.分析:(1)过C作AB的垂线,设垂足为D,则CD的长为海轮在航行过程中与灯塔C的最短距离;(2)在Rt△BCD中,根据55°角的余弦值即可求出海轮在B处时与灯塔C的距离.解答:解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.点评:本题考查了解直角三角形的应用:方向角问题,具体就是在某点作出东南西北,即可转化角度,也得到垂直的直线.5.(2014年某某资阳,第19题8分)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.考点:解直角三角形的应用-方向角问题.分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.6.(2014年某某市,第22题10分)解放桥是某某市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).考点:解直角三角形的应用.专题:应用题.分析:(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.解答:解:(I)∵点C是AB的中点,∴A'C'=ABm.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.7.(2014年某某省,第21题6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)考点:解直角三角形的应用-仰角俯角问题分析:首先分析图形:根据题意构造两个直角三角形△DEB、△CEB,再利用其公共边BE求得DE、CE,再根据CD=DE﹣CE计算即可求出答案.解答:解:在Rt△DEB中,DE=BE•tan45°=,在Rt△CEB中,CE=BE•tan米,则CD=DE﹣CE≈1.2米.故塑像CD的高度大约为1.2米.点评:本题考查解直角三角形的知识.要先将实际问题抽象成数学模型.分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系. 9.(2014·某某某某,第20题6分)如图,在数学实践课中,小明为了测量学校旗杆CD 的高度,在地面AAB ,测得旗杆顶端D 的仰角为32°,AC 为22米,求旗杆CD 的高度.(结果精确到0.1米.参考数据:sin 32°= 0.53,cos 32°= 0.85,tan 32°= 0.62)考点: 解直角三角形的应用-仰角俯角问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形一、选择题1. (2014•浙江杭州,第3题,3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()=2. (2014•浙江杭州,第10题,3分)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则(),,=1+﹣,故=﹣==(﹣(= =3. (2014•江苏苏州,第9题3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()km km=2=2km4. (2014•山东临沂,第13题3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()海里0==海里.5.(2014•四川凉山州,第5题,4分)如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是()m:m=202.3.4.5.6.7.8.二、填空题1. (2014•上海,第12题4分)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.,=262. (2014•山东潍坊,第17题3分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF 在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C 在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.考点:解直角三角形的应用-仰角俯角问题.分析:根据AB∥CD∥FE,可得△ABG∽△CDG,△ABH∽△EFH,可得CD:AB=DG:BG, EF:AB=FH:BH,即可求得AB的值,即可解题.解答:∵△ABG∽△CDG,∴CD:AB=DG:BG∵CD=DG=2,AB=BG∵△ABH∽△EFH,∴EF:AB=FH:BH,∵EF=2,FH=4 ∴BH=2AB∴BH=2BG=2GH∵GH=DH-DG=DF=FH-DG=52-2+4=54,∴AB=BG=GH=54.故答案为:54点评:本题考查了相似三角形对应边比值相等的性质,考查了平行线定理,本题中列出关于GH、BH的关系式并求解是解题的关键.3.(2014•湖南怀化,第13题,3分)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角∠A=30°.==落千丈4.(2014•四川内江,第23题,6分)如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是.=2×,∠=,即==,即=.故答案为:5.6.7.8.三、解答题1. (2014•四川巴中,第27题9分)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.考点:解直角三角形的应用.分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.解答:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,BE=20米,=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.2. (2014•山东枣庄,第21题8分)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)==+=30≈25.33. (2014•山东潍坊,第21题10分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是450,然后:沿平行于AB 的方向水平飞行1.99×104米到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是600,求两海岛间的距离A B .考点:解直角三角形的应用-仰角俯角问题.分析:首先过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,易得四边形ABFE 为矩形,根据矩形的性质,可得AB =EF ,AE =BF .由题意可知:AE =BF =100米,CD =500米,然后分别在Rt △AEC 与Rt △BFD 中,利用三角函数即可求得CE 与DF 的长,继而求得岛屿两端A 、B 的距离.解答:如图,过点A 作AE ⊥CD 于点E ,过点B 作BF 上CD ,交CD 的延长线于点F , 则四边形ABFE 为矩形,所以AB =EF , AE =BF , 由题意可知AE =BF =1100—200=900,CD =19900. ∴在Rt △AEC 中,∠C =450, AE =900, ∴90045tan 900tan 0==∠=C AE CE在Rt △BFD 中,∠BDF =600,BF =900,BF =900 ∴330060tan 900tan 0==∠=BDF BF DF∴ AB =EF =CD +DF -CE =19900+3300-900=19000+3300 答:两海岛之间的距离AB 是(19000+300√3)米点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.4. (2014•山东烟台,第21题7分)小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.考点:解直角三角形的应用.分析:延长OA 交BC 于点D .先由倾斜角定义及三角形内角和定理求出∠CAD =180°﹣∠ODB ﹣∠ACD =90°,解Rt △ACD ,得出AD =AC •tan ∠ACD =米,CD =2AD =3米, 再证明△BOD 是等边三角形,得到BD =OD =OA +AD =4.5米,然后根据BC =BD ﹣CD 即可求出浮漂B 与河堤下端C 之间的距离.解答:延长OA 交BC 于点D .∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°﹣∠ODB ﹣∠ACD =90°. 在Rt △ACD 中,AD =AC •tan ∠ACD =•=(米),∴CD =2AD =3米,又∵∠O =60°,∴△BOD 是等边三角形,∴BD =OD =OA +AD =3+=4.5(米),∴BC =BD ﹣CD =4.5﹣3=1.5(米). 答:浮漂B 与河堤下端C 之间的距离为1.5米.点评:本题考查了解直角三角形的应用﹣坡度坡角问题,作出辅助线得到Rt△ACD是解题的关键.5.(2014•湖南怀化,第21题,10分)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M 的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.中,==中,=+(6.(2014•湖南张家界,第21题,8分)如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)xx﹣小时,则=,﹣船再按原航向航行7. (2014•江西抚州,第21题,9分) 如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2.晾衣架伸缩时,点G 在射线DP 上滑动,∠CED 的大小也随之发生变化.已知每个菱形边长均等于20cm ,且AH DE EG ===20cm .⑴ 当∠CED =60°时,求C 、D 两点间的距离;⑵ 当∠CED 由60°变为120°时,点A 向左移动了多少cm ?(结果精确到0.1cm )⑶ 设DG x =cm ,当∠CED 的变化范围为60°~ 120°(包括端点值)时,求x 的取值范围 .(结果精确到0.1cm )(.≈1732,可使用科学计算器) 解析:(1)如图1,∵每个菱形的边长都是20㎝,且DE =20㎝, ∴CE =DE ,∵∠CED =60°,图1图2∴⊿CED是等边三角形,∴CD=20cm, ∴C、D两点之间的距离是20cm.(2)如图2,作EH⊥CD于H,在⊿CED中,CE=DE,∠CED=120°∴∠ECD=30°,∴EH=12CE=10,∴CH, ∴CD∴点C向左移动了20),∴点A向左移动了20)×3≈43.9cm .(3)如图1,当∠CED=60°时,∵ED=EG, ∠CGD=30°,在Rt⊿CGD中,DGCGcos︒=30,∵CG=40,∴DG;如图2,当∠CED=120°时,∠CGD=60°,∴DG=12CG=20, ∴20≤x≤34.6.8.(2014•山东聊城,第21题,8分)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)﹣=100,.米,即﹣=100≈≈3239.(2014年贵州黔东南)黔东南州22.(10分)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-仰角俯角问题.分析:过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.解答:解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.10.(2014•遵义21.(8分))如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比):=25+1025+10)米,35+10)米.11.(2014•十堰15.(3分))如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)=20×=10BD×=10≈10×2.4=2412.(2014•娄底22.(8分))如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45),=,=15+4513.(( 2014年河南) 19.9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。