塔吊稳定性验算

合集下载

塔吊计算书

塔吊计算书

附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。

计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×fa 大于无附着时的压力标准值Pkmax=95.717kPa,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。

TC5610中联重科塔吊附墙验算

TC5610中联重科塔吊附墙验算

1.5
2.0
安全系数
抗倾覆验算需满足安全系数要求,确 保塔吊在正常使用情况下不会发生倾
覆。
稳定性
塔吊结构设计需考虑风力、地震等因 素,确保塔吊在恶劣环境下也能保持
稳定。
结构抗滑移验算
抗滑移验算主要关注塔吊基础与地面之间的摩擦力是否足以抵抗塔吊工作状 态下产生的水平推力,防止塔吊发生滑移。
计算过程中需要考虑塔吊自重、风载、吊重等因素,并根据塔吊基础的材质 、尺寸、地基承载力等参数确定摩擦系数。
整体稳定性分析需要考虑塔吊的结构形式、材料特性、荷载工况、环境条件 等因素,并使用相应的计算软件进行分析。分析结果需要满足国家标准的要 求,确保塔吊的安全性。
总结与建议
加强附墙结构强度
附墙结构是塔吊安全的关键,应确保其强 度和刚度满足要求,防止出现坍塌或变形 。
重视风载和地震作用
风载和地震作用对塔吊稳定性影响较大, 应进行详细计算和分析,采取必要的防风 防震措施。
影响因素
风载、塔吊自重、吊 重
塔吊自重、吊重
分析斜拉索的受力情况,可以确保其强度和稳定性,避免安全事故的发生。
塔身结构受力分析
塔身结构承受着来自吊臂、平衡臂、起升机构、行走机构和操作室等部件的 荷载,以及风力、地震等外界环境因素的力。塔身结构受力分析是塔吊设计 中的关键环节,需要充分考虑各种荷载和力的作用,并进行合理的受力分析 。
规范和标准
附墙验算需符合相关规范和 标准的要求,如《建筑起重 机械安全规程》、《建筑结 构荷载规范》等。
遵循相关规范,确保塔吊附 墙结构的安全性和可靠性。
结构分析
需对附墙结构进行静力学和 动力学分析,考虑各种荷载 和环境因素的影响。
确保附墙结构能够承受塔吊 的重量、风力、地震力等。

塔吊地基承载力验算

塔吊地基承载力验算

塔吊地基承载力验算地基承载力验算根据地质报告,基础持力层土层为黄土,地基承载力特征值取值为160KPa。

根据塔吊使用说明书要求,塔吊基础选用5.6 m×5.6 m×1.35 m固定支腿钢筋混凝土基础。

根据厂家提供的使用说明书,塔吊附着式安装的参数如下:载荷、工况、工作状况、非工作状况,其中Fv表示基础所受垂直力,Fh表示基础所受水平力,M表示基础所受倾覆力矩,e表示偏心距,单位为m。

根据《塔式起重机设计规范》—GB/T-92中第13页第4.6.3条,固定式混凝土基础的抗倾翻稳定性验算要求,荷载的偏心距e取不超过b/3.地基承载力验算:一)工作状态下:1.基础所受垂直力Fv为:640 KN。

2.基础自重:G=5.6×5.6×1.35×25=1058.4 KN。

3.塔吊总重:F=Fv+G =640+1058.4=1698.4 KN。

4.力矩M/=M+Fh×1.35=2210+53×1.35=2281.55 KN.ma。

a。

当轴心荷载作用时:P=F/A= 1698.4/(5.6×5.6)=54.16 kPa<f=160kPa,满足要求。

b。

当偏心荷载作用时:e=M//F=2281.55/1698.4=1.34<b/3=5.6/3=1.66(1.87),塔吊稳定性满足要求。

Pmax=F/A×(1+6e/b)=1698.4/(5.6×5.6)×(1+6×1.34/5.6)=131.92 kPa<1.2f=192 kPa,符合要求。

Pmin=F/A×(1-6e/b)=1698.4/(5.6×5.6)×(1-6×1.34/5.6)=-23.29,计算出的Pmin<0,此时基底接触压力将重新分布,按下式重新计算Pmax:2F/3b(b/2-e)=2×1698.4/3×5.6×(5.6 / 2-1.34)=138.49kPa<f=160kPa,符合要求。

QTZ80(6013)塔机基础计算书

QTZ80(6013)塔机基础计算书

QTZ80(6013)塔机基础计算书QTZ80(6013)塔机(臂长60米,端部起重量1.0吨,最大起重量6吨),独立安装高度不大于37.4米,采用基础6.0mx6.0mx1.5m 、配筋HRB335双层双向Φ25@195、地面承受力220KPa 时,能满足使用要求,符合技术和安全规范。

1、抗倾覆稳定性验算塔式起重机独立安装时,基础所承受的载荷如图所示。

取其工作状态和非工作状态中最不利工况进行稳定性校核。

根据塔式起重机设计规范,塔机稳定的条件为:P imin3M Fn h b e Fv Fg +=≤+ (1) 地面压力按公式(2)验算:2()[]3B B Fv Fg P P b+=≤ (2) 式中: e ——偏心距,即地面反力的合力至基础中心的距离m ;M ——作用在基础上的弯矩;M=2400KN.mF V ——作用在基础上的垂直载荷;F V =650KN.F n ——作用在基础上的水平荷载力;Fn=85KN.F g ——混凝土基础的重力;Fn=24 KN/m3xbxhxl.PB——地面计算压应力;〔PB〕——地面计算许用压应力,由实地勘探和基础处理情况而定,一般情况取〔PB 〕=2×105 ~3×105Pa 。

取〔PB〕=220KPa。

经计算结果:e=1.3≤b/3=2m.P b =216KPa≤〔PB〕=220KPa.稳定性验算通过。

2、地基承载力验算DP k =2(F V +F g )/3xlxa ≤〔P B 〕根据塔机受力情况,产生的地基反力如上图所示。

P k ——基础底面边缘的最大压力值MPa ;l ——矩形基础底面的长边宽度m ;a ——合力作用点至基础底面最大压力边缘的距离m ;其中:a=b/2-e ;计算结果:P k =127KPa ≤〔P B 〕=220KPa 。

满足地基承载力要求,验算通过。

3、结论从上述计算可知,基础的抗倾覆稳定性、地基承载力都满足要求,故基础符合设计要求和安全规范。

塔吊格构柱稳定性验算方法

塔吊格构柱稳定性验算方法

塔吊格构柱稳定性验算方法本工程塔吊基础下的格构柱高度最长为20.5m,依据《钢结构设计规范》(GB50017-2003),计算模型选取塔吊最大独立自由高度60m,塔身未采取任何附着装置状态。

1、格构柱截面的力学特性:格构柱的截面尺寸为0.502×0.502m;主肢选用:16号角钢b×d×r=160×16mm;缀板选用(mXm):0.42×0.2主肢的截面力学参数为A0=49.07cm2,Z0=4.55cm,Ix0=1175.08cm2,Iy0=1175.08cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:Z,=4Z,o÷Λ(∣-^o)2格构柱的x-x轴截面总惯性矩:b2A=4Λo+4经过计算得到:I x=4×[1175.08+49.07×(50.2/2-4.55)1=87589.85cm4;I y=4×[1175.08+49.07×(50.2/2-4.55)2]=87589.85cm4;2、格构柱的长细比计算:格构柱主肢的长细比计算公式:"44)其中H——格构柱的总高度,取21.7m;I——格构柱的截面惯性矩,取,1=87589.85cm1I尸87589.85Cm%A0------------ 个主肢的截面面积,取49.07Cm2。

经过计算得到3=102.72,I y=102.72。

格构柱分肢对最小刚度轴IT的长细比计算公式:其中b——缀板厚度,取b=0.5m°h——缀板长度,取h=0.2m°a1——格构架截面长,取a尸0.502m。

经过计算得iι=[(0.25+0.04)∕48+5×0.2520/8]0M.404m o为二21.7/0.404=53.7。

换算长细比计算公式:―=—经过计算得到NkX=II5.91,2ky=115.91o3、格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:N赢&力其中N——轴心压力的计算值(kN);取N=1791.33kN;A——格构柱横截面的毛截面面积,取4X49.07cm;0——轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比2ox=115.91,2o y=115.91≤《钢结构设计规范》得到。

稳定性计算计算书

稳定性计算计算书

稳定性计算计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工计算手册》(江正荣编著)等编制。

一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;G──塔吊自重力(包括配重,压重),G=310.00(kN);c──塔吊重心至旋转中心的距离,c=1.50(m);h o──塔吊重心至支承平面距离, h o=6.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.50(m);Q──最大工作荷载,Q=60.00(kN);g──重力加速度(m/s2),取9.81;v──起升速度,v=0.50(m/s);t──制动时间,t=20.00(s);a──塔吊旋转中心至悬挂物重心的水平距离,a=15.00(m);W1──作用在塔吊上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=30.00m(m);n──塔吊的旋转速度,n=0.60(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。

经过计算得到K1=1.506;由于K1≥1.15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=310.00(kN);c1──G1至旋转中心的距离,c1=3.00(m);b──塔吊旋转中心至倾覆边缘的距离,b=2.00(m);h1──G1至支承平面的距离,h1=6.00(m);G2──使塔吊倾覆部分的重力,G2=100.00(kN);c2──G2至旋转中心的距离,c2=3.50(m);h2──G2至支承平面的距离,h2=30.00(m);W3──作用有塔吊上的风力,W3=5.00(kN);P3──W3至倾覆点的距离,P3=10.00(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.00(度)。

塔吊基础施工方案含塔吊基础验算

塔吊基础施工方案含塔吊基础验算

塔吊基础施工方案含塔吊基础验算一、项目概况本项目是为了安装一座高层建筑而进行塔吊基础施工。

塔吊基础的设计应满足塔吊安全稳定运行的要求,并经过验算确保其稳定性和承载能力。

二、施工方案1.基础设计:根据塔吊的型号、高度和重量等参数,确定基础的类型和尺寸。

本项目采用悬臂式塔吊,基础采用混凝土桩基础。

为确保基础的稳定性,每个桩基础的直径为1.2米,深度为10米。

根据塔吊的工作条件和地质条件,桩基础之间的间距为5米。

2.施工准备:施工前需对施工场地进行勘察,了解地质条件和地下设施情况。

确认施工场地的承载能力满足基础设计的要求,并确保基础周围没有地下管线等障碍物。

施工现场要做好安全措施,如设置警示标志、施工警戒线等。

3.施工工艺:施工工艺包括基础开挖、灌注混凝土、固定塔吊等主要步骤。

具体工艺如下:(1)基础开挖:根据基础设计的尺寸,采用挖掘机将施工场地的土壤挖掘至所需深度,并按设计要求整平。

(2)桩基础的施工:选择适当的施工方法进行桩基础施工。

本项目采用静压灌注桩的施工方法。

首先,在挖掘好的基坑中设置桩位控制线,确定桩的位置和方向。

然后,使用静压注塑机将桩身缓慢推入土壤,同时注入混凝土,确保桩基础的稳定性和密实度。

(3)基础验收:完成桩基础的施工后,进行基础的验收。

验收项目包括基础尺寸的测量、桩身的竖直度检查、混凝土强度的检验等。

验收合格后方可进行下一步施工。

(4)塔吊安装:根据塔吊的安装要求,使用起重机将塔吊吊装至基础上,并进行固定。

三、验算1.塔吊基础的验算主要是对基础的稳定性和承载能力进行计算和检验。

基础的验算应满足以下要求:(1)稳定性验算:计算基础的抗倾覆能力,确保塔吊在各种工况下不发生倾覆。

(2)承载能力验算:计算基础的承载能力,确保塔吊及工作时所受荷载的安全。

2.验算过程:(1)稳定性验算:根据塔吊的高度、悬臂长度、工作状态等参数,计算基础的抗倾覆矩。

根据地质条件及基础的几何形状等确定设计参数,计算倾覆系数。

塔吊附墙验算计算书

塔吊附墙验算计算书

塔吊附墙验算计算书塔机附着验算计算书本文的计算依据为《塔式起重机混凝土基础工程技术标准》/T187-2019和《钢结构设计标准》GB-2017.一、塔机附着杆参数塔机型号为QTZ63(TC5610)-中塔身桁架结构类型,计算高度为98m,起重臂长度为56m,起重臂与平衡臂截面计算高度为1.06m。

塔身宽度为1.6m,平衡臂长度为12.9m。

工作状态时扭矩标准值Tk1为269.3kN·m,包含风荷载。

非工作状态下不平衡自重引起的倾覆力矩标准值Mk'为1940kN·m(反向),工作状态下不平衡自重引起的倾覆力矩标准值Mk为1720kN·m。

附着杆数为四杆附着,附墙杆截面类型为格构柱,附墙杆类型为Ⅰ类,塔身锚固环边长为1.8m。

二、风荷载及附着参数附着次数为2,附着点1到塔机的横向距离为5m,附着点2到塔机的横向距离为2.2m,附着点3到塔机的横向距离为2.2m,附着点4到塔机的横向距离为2.2m。

工作状态基本风压ω为0.2kN/m,塔身前后片桁架的平均充实率α为0.35.点1到塔机的竖向距离为2m,点2到塔机的竖向距离为4.8m,点3到塔机的竖向距离为3.2m,点4到塔机的竖向距离为3.2m。

非工作状态基本风压ω'为0.35kN/m。

工作状态和非工作状态的风压等效高、工作状态和非工作状态的附着点高度、附着点净高、工作状态风压等效均布荷载等参数均有具体数值,这里不再赘述。

285.472kN时,支座6处附墙杆内力计算如下:考虑塔机产生的扭矩由支座6处的附墙杆承担,因此需要计算支座6处锚固环的截面扭矩T。

根据扭矩组合标准值T kTk1269.3kN·m,可得到T的值。

同时考虑塔身承受双向的风荷载和倾覆力矩及扭矩,需要将水平内力Nw计算出来。

根据计算简图和塔机附着示意图、平面图,可以得到α和β的值,并用力法计算各杆件轴力。

最终得到支座6处附墙杆的水平内力Nw20.5RE285.472kN。

TC5610(QTZ63)塔吊基础验算书

TC5610(QTZ63)塔吊基础验算书

TC5610(QTZ63)塔吊天然基础的计算书一、参数信息塔吊型号:QTZ63,塔吊起升高度H:120.00m,塔身宽度B:1.6m,基础埋深d:1.3m,基础承台厚度hc:1.30m,基础承台宽度Bc:5.00m,(KN) Mk (KN)Fk(KN) Fh工作状态下511.2 18.3 1335非工作状态下464.1 73.9 1552 地基承载力特征值f ak:270kPa,基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4,基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。

一、工作状态下验算:(1)塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=(M k+F h×h)/(F k+G k)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×5×5×1.3=812.5kN;Bc──为基础的底面宽度;计算得:e=(1335+18.3*1.3)/(812.5+511.2)=1.026m < 5/3=1.6m;基础抗倾覆稳定性满足要求!(2)地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:混凝土基础抗倾翻稳定性计算:e=1.026m >B/6= 5/6=0.833m 为大偏心受压构件地基承载力应同时满足下式:P k=(F k+G k)/A≤ f aP kmax=2×(F k+G k)/(3×a×Bc)≤1.2 f a式中 F k──作用在基础上的垂直载荷;G k──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=Bc/2-M k/(F k+G k)=5/2-1335/(511.2+812.5)=1.4914m。

TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算

TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算

目录1、TC5013塔机稳定性计算 (3)1.1抗倾翻稳定性 (3)1.1.1验算工况 (3)1.1.2抗倾翻稳定性校核 (4)1.2基本稳定性 (4)1.3动态稳定性 (6)1.4暴风侵袭稳定性 (7)1.5突然卸载稳定性 (8)1.6安装拆卸稳定性 (8)1.7地面压应力验算: (10)2、TC5013塔式起重机(固定)底架、基础设计 (10)2.1计算依据: (10)2.2参数信息 (11)2.3塔吊荷载取值与基础承台顶面的竖向力与力距 (11)2.4结构设计: (12)2.4.1桩基选型: (12)2.4.2地基基础 (12)2.4.3矩形承台弯距的计算 (13)2.4.4矩形承台弯矩的计算 (13)2.4.5矩形承台截面主筋的计算 (14)2.4.6矩形承台截面抗剪切计算 (14)2.4.7桩承载力验算 (15)2.4.8桩竖向极限承载力验算及桩长计算 (15)1、TC5013塔机稳定性计算1.1抗倾翻稳定性1.1.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。

列表4-1如下:表4-1固定基础塔式起重机验算工况1.1.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。

M —作用于基础上的弯矩。

h —基础深度。

b —基础宽度。

Fv —作用于基础上的垂直载荷。

Fh —作用于基础上的水平载荷。

Fg —混凝土基础的重力。

作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下:1.2基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5,(1) 自重载荷计算名称质量(Kg) 重心至回转中心距离mm力距Kg.mm起重臂第一节480 2250 1080000 起重臂第二节865 10500 9082500 起重臂第三节788 20500 16154000 起重臂第四节713 30500 21746500 起重臂第五节636 40500 25758000 起重臂第六节512 50500 25856000 起重臂第七节465 57500 26737500 起重臂第八节330 62500 20625000 起重臂第九节312 67500 21060000 起重臂第十节83 70740 5871420 起重臂其他176 35630 4532000 变幅机构220 7860 1729200 平衡臂1856 -7523 13963533 起升机构1600 -8280 -1324800 平衡重14700 -16270 -189879000 司机室244 1310 319640 电气系统150 -3810 -571500 平衡臂拉杆541 -6142 -3322822 回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0引进平台255 2190 493407液压顶升机构230 -1700 -391000塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm1.3动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力风压迎风面积总面积充实率挡风风载荷到基础对基础底面系数N/m2mm2mm2ω折减系数N 距离mm力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表 4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm1.4暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。

工地塔吊检测方案

工地塔吊检测方案

工地塔吊检测方案1. 引言工地塔吊是在建筑工地中常见的起重设备,用于搬运和安装重物。

由于塔吊运行在高空,负载重量大,长时间使用容易出现故障,因此对塔吊进行定期检测尤为重要。

本文将介绍一种工地塔吊检测方案,包括检测内容、检测方法和检测频率。

2. 检测内容工地塔吊的检测内容可以分为以下几个方面:2.1 结构检测结构检测主要包括对塔吊的各个部件进行外观检查和强度测试,以确保塔吊的结构完整和稳定性良好。

具体的检测项目包括: - 塔身是否有变形、裂缝等损坏;- 这基础是否有松动、移位等情况; - 各个连接部件是否存在松动、断裂等问题; - 非承重部位是否存在磨损、生锈等情况。

2.2 机电系统检测机电系统检测主要包括对塔吊的电气系统和机械传动系统进行检查,以确保塔吊的运行正常。

具体的检测项目包括: - 控制系统是否正常工作,控制按钮是否灵活; - 电气元器件是否存在短路、漏电等问题; - 机械传动系统的齿轮、链条等部件是否存在磨损、断裂等情况; - 液压系统的油位、油温是否正常。

2.3 安全装置检测安全装置检测主要包括对塔吊的各个安全装置进行测试,以确保塔吊在运行过程中能够及时发现异常情况并采取措施。

具体的检测项目包括: - 上、下行限位开关是否正常; - 超载保护装置是否灵敏; - 风速监测装置是否工作正常; - 紧急停机装置是否有效。

3. 检测方法工地塔吊的检测可以采用以下方法进行:3.1 目视检查目视检查是最常用的检测方法之一,通过观察塔吊的外观和运行状态来判断是否存在问题。

检查人员需仔细观察塔吊的各个部件,如塔身、支腿、机械传动部件等,发现异常情况及时记录并进行修复。

3.2 测试仪器检测使用专业测试仪器进行检测是确保检测结果准确可靠的关键。

例如,可以使用强度测试仪对塔身进行测试,使用电器测试仪对电气系统进行测试,使用液压测试仪对液压系统进行测试。

检测人员需熟悉各种测试仪器的使用方法,并按照相关的测试标准进行测试。

塔式起重机抗倾覆计算及基础设计资料

塔式起重机抗倾覆计算及基础设计资料

塔式起重机抗倾覆计算及基础设计塔式起重机抗倾覆计算及基础设计一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求选用基础设计图,基础尺寸采用5.5m×5.5m×1.2m,基础砼标号为C35(7天和28天期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr钢,承重板高出基础砼面5~8㎜左右,要有排水设施。

二、塔式起重机抗倾覆计算①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣制应密实,塔式起重机采用预埋螺栓固定式。

②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:37.50m,塔身宽度B:1.7m,自重FK:453kN,基础承台厚度h:1.2m,最大起重荷载Q:60kN,基础承台宽度b:5.50m,混凝土强度等级:C35。

③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。

塔式起重机受力分析图如下:根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:MK=1654kn·m, FK = 530KN,FvK=74.9KN,砼基础重量GK= 835KN④、塔式起重机抗倾覆稳定性验算:为防止塔机倾覆需满足下列条件:式中e----- 偏心距,即地基反力的合力至基础中心的距离;MK------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;FvK------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载;FK-------塔机作用于基础顶面的竖向荷载标准值;h ---------基础的高度(h=1.2m);GK----------基础自重;b---------矩形基础底面的短边长度。

(b=5.5m)将上述塔式起重机各项数值MK 、FvK、FK、h、GK、b代入式①得:e =1.28< b/3=1.83m偏心距满足要求,抗倾覆满足要求。

塔吊稳定性计算

塔吊稳定性计算

塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。

一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图::稳定安全系数可按下式验算塔吊有荷载时,式中 K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;;),G=400.00(kN)──起重机自重力 G(包括配重,压重; c──起重机重心至旋转中心的距离,c=1.50(m); h0──起重机重心至支承平面距离, h0=5.00(m);,b=2.50(m) b──起重机旋转中心至倾覆边缘的距离; Q──最大工作荷载,Q=100.00(kN)2;9.81(m/s g──重力加速度),取; v──起升速度,v=0.50(m/s); t──制动时间,t=20.00(s);──起重机旋转中心至悬挂物重心的水平距离 a,a=15.00(m)专业文档供参考,如有帮助请下载。

.W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=30.00(m);n──起重机的旋转速度,n=1.0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度)。

经过计算得到 K = 1.1541由于K>=1.15,所以当塔吊有荷载时,稳定安全系数满足要求!1二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图::稳定安全系数可按下式验算塔吊无荷载时,式中 K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320.00(kN);c1──G1至旋转中心的距离,c1=0.50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6.00(m);专业文档供参考,如有帮助请下载。

塔吊抗倾覆稳定性和地基承载力验算报告

塔吊抗倾覆稳定性和地基承载力验算报告

一、塔式起重机安装1、塔式起重机安装条件,安装前,必须经维修保养,并应进行全面的检查,确认合格后方可安装。

2、塔式起重机的基础及其地基承载力应符合使用说明书和设计图纸的要求。

安装前应对基础进行验收,合格后方可安装。

基础周围应有排水设施。

3、塔式起重机基础应按使用说明书的要求进行设计,且应符合现行国家标准《塔式起重机安全规程》GB5144及《塔式起重机》GB/T5031的规定。

4、内爬式塔式起重机的基础、锚固、爬升支承结构等应根据使用说明书提供的荷载进行设计计算,并应对内爬式塔式起重机的建筑承载结构进行验算。

二、塔式起重机基础的设计1、塔式起重机的基础应按国家现行标准和使用说明书所规定的要求进行设计和施工。

施工单位应根据地质勘察报告确认施工现场的地基承载力。

2、当施工现场满足塔式起重机使用说明书对基础的要求时,可自行设计基础,可采用下列常用的基础形式;板式基础。

根据QTZ315(ZJ7035)塔式起重机基础的设计要求,其基础底板地耐力不小于0.2mpa(200T/m2)。

而根据黄石市佳境建筑设计有限公司提供的勘察报告;粘土含碎石,承载力特征值为480~500kPa。

经过计算地耐力数据满足设计要求。

3、板式基础设计计算应符合下列规定;a、应进行抗倾覆稳定性和地基承载力验算。

b、整体抗倾覆稳定性应满足下式规定:4、板式基础是指矩形、截面高度不变的混凝土基础,组合式基础是指由若干格构式钢柱或钢管柱与其下端连接的基础、以及上端连接的混凝土承台或型钢平台组成的基础。

对计算说明如下:a、计算公式中,在计算地基承载力时采用的是荷载标准组合;而在板式基础设计与桩基承台的抗弯、抗剪、抗冲切计算时,采用的是荷载基本组合。

荷载组合系数取值应符合现行国家标准《建筑结构荷载规范》GB50009的相关规定。

如某型号的塔式起重机作用在基础顶面的最不利荷载标准值为:弯矩M k等于725kN·m,竖向力F k等于1281kN,水平力F Vk等于158kN。

塔吊同轴心旋转布置基础验算

塔吊同轴心旋转布置基础验算

塔吊同轴心旋转布置基础验算
塔吊的基础设计是非常重要的,因为它直接关系到塔吊的安全
性和稳定性。

在设计塔吊基础时,需要进行一系列的验算。

首先,对于塔吊的基础设计,需要考虑地基的承载力。

工程师
会根据实际情况进行地质勘察,了解地下土层的情况,包括土壤的
类型、承载能力等。

然后根据地质勘察结果,进行基础的承载力计算,确保基础能够承受塔吊的重量和工作时的载荷。

其次,同轴心旋转布置基础的验算也需要考虑塔吊的整体结构
和布置。

塔吊在工作时会产生旋转力和水平力,基础设计需要考虑
这些力的作用,确保基础能够稳固地支撑塔吊并抵抗这些力的影响。

另外,还需要考虑基础的稳定性。

包括基础的形式、尺寸、深
度等设计参数,以及基础与地下水位的关系等因素。

在设计时需要
进行相应的稳定性分析,确保基础在各种情况下都能保持稳定。

此外,还需要考虑基础的施工工艺和材料选择。

施工工艺的合
理性对于基础的稳定性和承载能力有着重要影响,而材料的选择也
直接关系到基础的耐久性和安全性。

总的来说,塔吊基础的验算是一个复杂的工程问题,需要综合考虑地质条件、结构设计、稳定性分析、施工工艺等多个方面的因素。

只有在全面考虑的基础上进行合理设计和验算,才能确保塔吊基础的安全可靠。

最新塔吊验收规范标准

最新塔吊验收规范标准

最新塔吊验收规范标准塔吊作为建筑施工现场的重要起重设备,其安全性和可靠性直接关系到工程质量和人员安全。

最新塔吊验收规范标准旨在确保塔吊在投入使用前满足国家和行业规定的各项安全技术要求。

以下是最新塔吊验收规范标准的主要内容:一、塔吊验收前的准备工作- 确保塔吊安装完毕,所有部件齐全,无损坏。

- 塔吊操作人员需持有相应的操作证书,并经过专业培训。

- 准备塔吊的安装、调试记录和相关技术文件。

二、塔吊验收的技术要求- 塔吊的型号、规格、性能参数应符合设计要求和国家标准。

- 塔吊的金属结构应无明显变形、裂纹、腐蚀等缺陷。

- 塔吊的电气系统应符合电气安全规范,电缆线应无损伤。

- 塔吊的控制系统应反应灵敏,操作准确无误。

- 塔吊的安全装置,如限位器、防倾翻装置等应齐全有效。

三、塔吊验收的测试项目- 进行空载试运行,检查塔吊的稳定性和运转是否平稳。

- 进行额定载荷试运行,检查塔吊的承载能力和稳定性。

- 测试塔吊的安全装置是否能够在规定范围内正常工作。

- 对塔吊的制动系统进行测试,确保其可靠性。

四、塔吊验收的记录和报告- 制作塔吊验收记录,详细记录验收过程中的各项测试结果。

- 编写塔吊验收报告,总结塔吊的技术状况和验收结论。

- 塔吊验收报告应由专业技术人员签字,并加盖单位公章。

五、塔吊验收后的管理- 塔吊投入使用后,应定期进行维护和检查,确保其良好运行状态。

- 建立塔吊使用和维护档案,记录每次检查和维护的详细情况。

- 对塔吊操作人员进行定期培训,提高其安全意识和操作技能。

六、塔吊验收的法律责任- 塔吊验收不合格的,不得投入使用。

- 对于违反塔吊验收规范的行为,将依法追究相关责任人的法律责任。

以上是最新塔吊验收规范标准的主要内容,各施工单位应严格遵守,确保塔吊的安全使用,保障工程质量和人员安全。

塔吊的稳定性验算

塔吊的稳定性验算

塔吊的稳定性验算塔吊抗倾覆稳定性校核应遵照GB3811—83“起重机设计规范”中的有关规定进行。

1.无风、静载稳定性校核验算工况是:起重臂处于最大幅度位置(对于小车变幅起重臂小车位于最大幅度),起重臂指向下坡方向,无风,起重机静置并负有额定载荷,塔式起重机无风静载工况下抗倾覆稳定性按下式验算:0.95M K——K L M L——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M L——塔吊负载对倾覆边的力矩;K L——载荷系数,查GB3811—83,取为1.4;M D——由坡度因素而产生的倾覆力矩。

2.有风、动载稳定性校核验算工况是,起重臂处于最大幅度位置(对于小车变幅臂架,小车位于最大幅度),风从平衡臂吹向起重臂,塔式起重机负有额定荷载并正在工作中。

塔吊有风动载工况下的抗倾覆稳定性按下式验算:0.95M K——K L M L——M W——M D≥0式中M K——由塔吊重及压重产生的稳定力矩;K L——载荷系数,查GB3811—83,取为1.15;M L——由起重机额定载荷产生的倾覆力矩;M W——由作用于塔吊各部的风荷及作用于荷载迎风面的风荷所产生的倾覆力矩;M D——由工作机构工作、起、制动以及风荷动力作用、坡度因素而产生的倾覆力矩。

3.突然卸载(或吊具脱落)稳定性校核验算工况是,起重臂仰起处于最小幅度(对于小车变幅起重臂,小车位于臂根处),风从起重臂吹向平衡臂,塔式起重机突然卸载或吊具突然脱落。

在此工况下,塔吊抗倾覆稳定性按下式验算0.95M K——M O——M W——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M O——由于突然卸载而造成的倾覆力矩,查GB3811-83,可大致取为0.2Q H L(Q H为额定载荷,L为幅度);M W——由作用于塔吊各部的风荷所产生的倾覆力矩;M D——由于坡度等因素而造成的倾覆力矩。

4.安装状态时稳定性校核上回转塔吊在塔身立起后的稳定性按下式验算P w1h≤0.95CP G式中P w1——工作状态最大风力(N);h——风载荷合力作用点距地高度(m);P G——塔吊已架立部分的重量(t);C——塔吊已架立部分重心至倾翻边的水平距离(m)。

塔吊稳定性验算

塔吊稳定性验算

塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。

一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──起重机自重力(包括配重,压重),G=400.00(kN);c──起重机重心至旋转中心的距离,c=1.50(m);h0──起重机重心至支承平面距离, h0=5.00(m);b──起重机旋转中心至倾覆边缘的距离,b=2。

50(m);Q──最大工作荷载,Q=100。

00(kN);g──重力加速度(m/s2),取9。

81;v──起升速度,v=0.50(m/s);t──制动时间,t=20。

00(s);a──起重机旋转中心至悬挂物重心的水平距离,a=15。

00(m);W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8。

00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2。

50(m);h──吊杆端部至支承平面的垂直距离,h=30。

00(m);n──起重机的旋转速度,n=1。

0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度).经过计算得到K1 = 1.154由于K1〉=1。

15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320。

00(kN);c1──G1至旋转中心的距离,c1=0。

50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔吊稳定性验算
塔吊稳定性验算可分为有荷载时和无荷载时两种状态。

(一)、塔吊有荷载时稳定性验算
塔吊有荷载时,计算简图:
塔吊有荷载时,稳定安全系数可按下式验算:
式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;
G──起重机自重力(包括配重,压重),G=670.00(kN);
c──起重机重心至旋转中心的距离,c=0.80(m);
h0──起重机重心至支承平面距离, h0=6.00(m);
b──起重机旋转中心至倾覆边缘的距离,b=2.50(m);
Q──最大工作荷载,Q=60.00(kN);
g──重力加速度(m/s2),取9.81;
v──起升速度,v=1.00(m/s);
t──制动时间,t=20(s);
a──起重机旋转中心至悬挂物重心的水平距离,a=15.00(m);
W1──作用在起重机上的风力,W1=5.00(kN);
W2──作用在荷载上的风力,W2=1.00(kN);
P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);
P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);
h──吊杆端部至支承平面的垂直距离,h=41.25(m);
n──起重机的旋转速度,n=0.6(r/min);
H──吊杆端部到重物最低位置时的重心距离,H=40.00(m);
α──起重机的倾斜角(轨道或道路的坡度),α=2.00(度)。

经过计算得到K1=2.679
由于K1>=1.15,所以当塔吊有荷载时,稳定安全系数满足要求!
(二)、塔吊无荷载时稳定性验算
塔吊无荷载时,计算简图:
塔吊无荷载时,稳定安全系数可按下式验算:
式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15;
G1──后倾覆点前面塔吊各部分的重力,G1=200.00(kN);
c1──G1至旋转中心的距离,c1=3.00(m);
b──起重机旋转中心至倾覆边缘的距离,b=2.00(m);
h1──G1至支承平面的距离,h1=6.00(m);
G2──使起重机倾覆部分的重力,G2=100.00(kN);
c2──G2至旋转中心的距离,c2=6.00(m);
h2──G2至支承平面的距离,h2=60.00(m);
W3──作用有起重机上的风力,W3=5.00(kN);
P3──W3至倾覆点的距离,P3=10.00(m);
α──起重机的倾斜角(轨道或道路的坡度),α=2.00(度)。

经过计算得到K2=1.453
由于K2>=1.15,所以当塔吊无荷载时,稳定安全系数满足要求!
塔吊计算满足要求!。

相关文档
最新文档