含30°角的直角三角形的性质练习题
含30角的直角三角形
含30°角的直角三角形1. 已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是( )A .2厘米B .4厘米C .6厘米D .8厘米2. 在直角△ABC 中,∠C=30°,斜边AC 的长为5cm ,则AB 的长为( )A .4cmB .3cmC .2.5cmD .2cm3. 如图,在Rt △ABC 中,∠C=90°,∠A=30°,AB+BC=12cm ,则AB 等于( )A .6cmB .7cmC .8cmD .9cm第3题图 第7题图 第9题图 4. 如果直角三角形的一个锐角为30°,而斜边与较短的直角边之和为18cm ,那么斜边长为( )A .6cmB .9cmC .12cmD .14cm5. △ABC 中,∠A :∠B :∠C=1:2:3,最小边BC=4 cm ,最长边AB 的长是( )A .5cmB .6cmC .7cmD .8cm6. 已知∠B=30°,AB=6,BC=8,则△ABC 的面积为( )A .12B .16C .24D .487. 如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .78.在△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于D ,AB=a ,则DB 等于( )A .4aB .3aC .2aD .43a 9. 如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°,则AD 与BD 的关系是( )13. 如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A .6米B .9米C .12米D .15米第13题图 第14题图 第16题图14. 某市为改善交通状况,修建了大量的高架桥,一汽车在坡度为30°的笔直高架桥点A 开始爬行,行驶了150米到达B 点,这时汽车离地面高度为( )米.A .300B .150C .75D .5015. 等腰三角形的顶角是一个底角的4倍,如果腰长为10cm ,那么底边上的高( )A .10cmB .5cmC .20cmD .15cm16.如图是一张简易活动餐桌,现测得OA=OB=30cm ,OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么两条桌腿的张角∠COD 的大小应为( )A .100°B .120°C .135°D .150°17. 如图,△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点,DE ⊥AB 于E ,若AE=4cm ,则AD 的长为( )A .4cmB .6cmC .8cmD .12cm第17题图 第18题图18.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是 .19. 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C .若∠AOB=30°,OC=4,则点P 到OA 的距离PD 等于 .第19题图 第20题图 20. 如图,在一场足球比赛中,球员A 欲传球给同伴B ,对方球员C 意图抢断传球,已知球速为16m/s ,球员速度为8m/s,角θ=30°.当球由A 传出的同时,球员C 选择与AC 垂直的方向出击,则C 恰好在点D 处将球成功抢断(填“能”或“不能”,球员反应速度、天气等因素均不予考虑).21.在课题学习时,老师布置画一个三角形ABC ,使∠A=30°,AB=10cm ,∠A 的对边可以在长为4cm 、5cm 、6cm、11cm 四条线段中任选,这样的三角形可以画个.22. 在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边第23题图 第26题图24. 已知一个等腰三角形的腰长是a ,底角是15度.则此等腰三角形的面积为 .25.△ABC中,∠BCA=90°,∠BAC=60°,BC=4.在CA延长线上取点D,使AD=AB,28. 某编辑在校阅教材时,发现这句:“从60°角的顶点开始,在一边截取9厘米的线段,在另一边截取a厘米的线段,求这个端点间的距离“,其中a厘米在排版时比原稿上多1.虽30. 已知等腰三角形顶角是底角的10倍,腰长为10cm,那么这个三角形腰上的高为 .31. 如图,△ABC中,AB=AC,∠A=120度,AB的垂直平分线MN分别交BC、AB 于点M、N,且BM=3,则CM= .第31题图第32题图32. 如图,Rt△ABC中,∠CAB=30°,AD为角平分线,DE∥AB,DF⊥AB于F,若AE=8cm,则DF的长为cm.33. 有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是海里.34. 如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,求证:BC=3AD.第34题图35. 如图所示,CD ⊥AB ,垂足为D ,∠ACB=90°,∠A=30°,求证:BD=41AB .第35题图36. 已知∠MAN ,AC 平分∠MAN .(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC ;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.37. 我们已经学过直角三角形的一个重要性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.小明得出,如图△ABC 中,有∠B=60°,2BC=AB .爱动脑筋的他想,如果先画∠ABC=60°,且有2BC=AB ,比如,BC=1,AB=2,连接AC ,那么得到的△ABC 是否是直角三角形呢?画完后他发现是的,你能帮他证明吗?第37题图38. 如图,一块含有30°角(∠ABC=30°,∠ACB=90°)的木制三角板是由三块宽度相等的木条拼合而成,若木条的宽度为5cm,求制作时拼合缝AA′的长.第38题图39.如图,在△ABC中,∠B=90°,BC=12厘米,AB的值是等式x3-1=215中的x的值.点P从点A开始沿AB边向B点以1.5厘米∕秒的速度移动,点Q从点B开始沿BC边向C点以2厘米∕秒的速度移动.①求AB的长度﹙厘米﹚.②如果P、Q分别从A、B两点同时出发,问几秒钟后,△PBQ是等腰三角形并求出此时这个三角形的面积.第39题图42.如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时40海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行2小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?第40题图等腰三角形1.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.9第1题第2题2. 如图,△ABC中,DE∥BC,FB,FC分别平分∠B和∠C,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30 B.32 C.34 D.363.如图,已知点O是△ABC的∠ABC和∠ACB平分线的交点,过O作EF平行于BC 交AB于E,交AC于F,AB=12,AC=18,则△AEF的周长是()A.15 B.18 C.24 D.30第3题第4题4. 如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为()A.16cm B.18cm C.20cm D.22cm5. 如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC 交BC于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm第5题第6题6.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个9.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定第9题第10题10. 如图所示.△ABC中,∠B=∠C,D在BC上,∠BAD=50°,AE=AD,则∠EDC 的度数为()A.15°B.25°C.30°D.50°11.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为()A.1 B.1.5 C.2 D.2.5第11题第12题12.在△ABC中,AB=AC,∠B=36°,点D、E在BC边上,且AD和AE把∠BAC三等分,则图中的等腰三角形的个数是()A.2 B.4 C.6 D.813. 已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC 是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有()个.A.①②③B.①②④C.①③④D.①②③④第13题第14题14. 在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个15.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.16.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4 cm2 B.0.5 cm2 C.0.6 cm2 D.0.7 cm2第16题第17题17.△ABC中,∠CAB-∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA的延长线交于N.已知CL=3,则CN= .19.如图所示,在△ABC中,已知AB=AC,∠A=36°,BC=2,BD是△ABC的角平分线,则AD= .第19题第20题20.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,第21题第22题22.如图,轮船以每小时20海里的速度向正北方向航行,测得灯塔C在北偏东40°的方向(即∠NAC=40°),半小时后,轮船航行到B处,测得灯塔C在北偏东80°的方向(即∠NBC=80°),这时轮船在B处与灯塔C的距离是海里.23.如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C,过点P作PD⊥OA于点D,若∠AOB=30°,OC=4,则PD= .第23题第24题24.如图:已知∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE.则∠B= .25.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.第25题26.已知:如图,点C、D在△ABE的边BE上,BC=ED,AB=AE.求证:AC=AD.第26题27.如图,四边形ABCD中,对角线AC、BD相交于点E.已知:DA=DC,E为AC 中点.求证:(1)AC⊥BD;(2)∠ABD=∠CBD.28.如图,在△ABC中,点D、E分别在边AB、AC上.给出5个论断:①CD⊥AB,②BE⊥AC,③AE=CE,④∠ABE=30°,⑤CD=BE.(1)如果论断①、②、③、④都成立,那么论断⑤一定成立吗?答:;(2)从论断①、②、③、④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是(只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组成一道证明题,画出图形,写出已知,求证,并加以证明.第28题29.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论.第29题30.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?(4)请你猜想:当∠A为多少度时,∠EDF+∠EFD=120°,并请说明理由.第30题31.在△ABC中,AB=AC,BD=CD,∠BAD=40°,AD=AE.求∠CDE的度数.第31题32.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE ⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.第32题33.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.第33题34.如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.第34题35.如图△ABC中,∠ACB=90°,AC=BC,AD是∠BAC的平分线,过D作DE⊥AB,垂足为E点.(1)求证:AB=AC+CD;(2)已知AC=4cm,求CD的长.第35题36.如图,已知∠ACB=90°,点D是AB上一点,若DB=DC.求证:点D是AB的中点.第36题37.如图,△ABC中,AB=6,BD=3,AD⊥BC于D,∠B=2∠C,求CD的长.第37题38.在△ABC中,AB=AC,BD=DC,AD的延长线交BC于点E,求证:AE⊥BC,BE=EC.第38题39.如图,在△ABC中,∠B和∠C的平分线相交于点O,且OB=OC,请说明AB=AC 的理由.第39题40.如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠ABC=∠ADC.第40题41.如图,在△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交AC于D,过C作BD垂线交BD的延长线于E,交BA的延长线于F,求证:BD=2CE.第41题42.如图所示.△ABC中,AE是∠A的平分线,CD⊥AE于D.求证:∠ACD>∠B.第42题43.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由.44.如图,△ABC中,AB=AC,D是AB上的一点,F是AC延长线上一点,连DF交BC于E,若DB=CF,求证:DE=EF.第44题45.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC-AB=2BE.第45题46.如图,AD是△ABC的角平分线,且∠B=∠ADB,过点C作AD的延长线的垂线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.第46题47.△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,则△BEF是三角形;(2)若∠BAC=∠DAE≠60°,①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.48.已知:在锐角△ABC中,AB=AC.D为底边BC上一点,E为线段AD上一点,且∠BED=∠BAC=2∠DEC,连接CE.(1)求证:∠ABE=∠DAC;(2)若∠BAC=60°,试判断BD与CD有怎样的数量关系,并证明你的结论;(3)若∠BAC=α,那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由.49.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF ∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?。
含30度角的直角三角形-初中数学习题集含答案
含30度角的直角三角形(北京习题集)(教师版)一.选择题(共5小题)1.(2019秋•西城区期末)如图,在等腰三角形中,,,为边的中点.若,则的长为 A .3B .4C .6D .82.(2018秋•东城区期末)如图,在中,,,于,是的平分线,且交于,如果,则的长为 A .2B .4C .6D .83.(2019春•昌平区校级月考)如图,若,,,则 A .B .C .D .4.(2019秋•海淀区校级月考)如图,中,,,,点是边上的动点,则的最小值为 A .1B .2C .3D .45.(2018春•海淀区校级期中)已知直角三角形中,,,若,则长为 A .2B .4C .3D .ABC BA BC =120ABC ∠=︒D AC 6BC =BD ()ABC ∆90A ∠=︒30C ∠=︒AD BC ⊥D BE ABC ∠AD P 2AP =AC ()30B ∠=︒90C ∠=︒20AC m =(AB =)25m 30m 40m ABC ∆90C ∠=︒30A ∠=︒4AB =P AC BP ()ABC 30A ∠=︒90C ∠=︒AC =AB ()二.填空题(共7小题)6.(2019秋•延庆区期末)如图,与交于点,,,,则的度数是 .7.(2019秋•丰台区期末)如图,中,,,交于点,,则 .8.(2019秋•延庆区期末)如图,在中,,是的平分线,垂直平分,若,则 .9.(2019秋•海淀区校级期中)如图,在中,,,平分交于点,的垂直平分线交于点,交于点,若,则的长为 .10.(2019秋•西城区校级期中)等腰三角形的顶角是,底边上的高是3,则腰长为 .11.(2019秋•海淀区校级期中)已知,如图,,,则的面积为 .12.(2019秋•海淀区校级期中)中,,,, .三.解答题(共3小题)13.(2017秋•大兴区期末)已知:如图,在中,,,求的长.14.(2014秋•海淀区校级期末)等腰三角形中,,,求边上的高的长.EC DA B 90ACB ∠=︒60A ∠=︒BD BE =DEB ∠ABC ∆AB AC =120BAC ∠=︒AD AC ⊥BC D 3AD =BC =ABC ∆90A ∠=︒CD ACB ∠DE BC 2DE =AB =ABC ∆AB BC =30ABC ∠=︒BD ABC ∠AC D BC EF BC E BD F 6BF =AC 120︒6AB BC ==15A ∠=︒ABC ∆Rt ABC ∆90C ∠=︒2B A ∠=∠4BC cm =AB =cm ABC ∆8AB AC ==120A ∠=︒BC ABC 30A ∠=︒8AB =AB CD15.(2014•顺义区一模)如图,在四边形中,,,,,求的长.ABCD 90B D ∠=∠=︒60C ∠=︒4BC =3CD =AB含30度角的直角三角形(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2019秋•西城区期末)如图,在等腰三角形中,,,为边的中点.若,则的长为 A .3B .4C .6D .8【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【解答】解:,,,为边的中点,,,, 故选:.【点评】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握直角三角形的性质是解题的关键.2.(2018秋•东城区期末)如图,在中,,,于,是的平分线,且交于,如果,则的长为 A .2B .4C .6D .8【分析】易得的等边三角形,则,在直角中,利用含30度角的直角三角形的性质来求的长度,然后在等腰中得到的长度,则易求的长度.【解答】解:中,,,.又是的平分线,ABC BA BC =120ABC ∠=︒D AC 6BC =BD ()BA BC =Q 120ABC ∠=︒30C A ∴∠=∠=︒D Q AC BD AC ∴⊥6BC =Q 132BD BC ∴==A ABC ∆90A ∠=︒30C ∠=︒AD BC ⊥D BE ABC ∠AD P 2AP =AC ()AEP ∆2AE AP ==AEB ∆EB BEC ∆CE AC ABC ∆Q 90BAC ∠=︒30C ∠=︒60ABC ∴∠=︒BE Q ABC ∠,,,,.又,,则,的等边三角形,则,在直角中,,则,,.故选:.【点评】本题考查了含角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到是解题的关键.3.(2019春•昌平区校级月考)如图,若,,,则 A .B .C .D .【分析】根据含的直角三角形的性质解答即可.【解答】解:,,,,故选:.【点评】此题考查含的直角三角形,关键是根据含的直角三角形的性质解答.4.(2019秋•海淀区校级月考)如图,中,,,,点是边上的动点,则的最小值为 30EBC ∴∠=︒60AEB C EBC ∴∠=∠+∠=︒C EBC ∠=∠60AEP ∴∠=︒BE EC =AD BC ⊥60CAD EAP ∴∠=∠=︒60AEP EAP ∠=∠=︒AEP ∴∆2AE AP ==AEB ∆30ABE ∠=︒24EB AE ==4BE EC ∴==6AC CE AE ∴=+=C 30︒60AEB ∠=︒30B ∠=︒90C ∠=︒20AC m =(AB =)25m 30m 40m 30︒30B ∠=︒Q 90C ∠=︒20AC m =40AB m ∴=D 30︒30︒ABC ∆90C ∠=︒30A ∠=︒4AB =P AC BP ()A .1B .2C .3D .4【分析】先根据直角三角形30度角的性质得的长,根据垂线段最短可得是的最小值.【解答】解:,,,, 点是边上的动点,则当与重合时,的值最小为2,故选:.【点评】本题考查了直角三角形30度角的性质,点到直线的距离,熟练掌握垂线段最短是关键.5.(2018春•海淀区校级期中)已知直角三角形中,,,若,则长为 A .2B .4C .3D .【分析】根据计算. 【解答】解:,,, , 故选:.【点评】本题考查了三角函数,熟练运用三角函数关系是解题的关键.二.填空题(共7小题)6.(2019秋•延庆区期末)如图,与交于点,,,,则的度数是 .【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:,,,,BC BC BP 90C ∠=︒Q 30A ∠=︒4AB =114222BC AB ∴==⨯=Q P AC P C BP B ABC 30A ∠=︒90C ∠=︒AC =AB ()cos AC A AB =∠30A ∠=︒Q 90C ∠=︒AC =∴cos cos30AC A AB =∠=︒=4AB ∴==B EC DA B 90ACB ∠=︒60A ∠=︒BD BE =DEB ∠75︒90ACB ∠=︒Q 60A ∠=︒30ABC DBE ∴∠=∠=︒BE BD ∴=, 故答案为:.【点评】本题考查了三角形的内角和,对顶角的性质,等腰三角形的性质,正确的识别图形是解题的关键.7.(2019秋•丰台区期末)如图,中,,,交于点,,则 9 .【分析】根据三角形内角和定理,等腰三角形的性质得到,根据直角三角形的性质求出,根据等腰三角形的性质求出,计算即可.【解答】解:,,,,,又,,,,,,,,故答案为:9.【点评】本题考查的是等腰三角形的性质,直角三角形的性质,掌握直角三角形中,角所对的直角边等于斜边的一半是解题的关键.8.(2019秋•延庆区期末)如图,在中,,是的平分线,垂直平分,若,则 6 .【分析】根据角平分线的性质和线段垂直平分线的性质即可得到结论.【解答】解:是的平分线,,垂直平分,1(18030)752DEB ∴∠=︒-︒=︒75︒ABC ∆AB AC =120BAC ∠=︒AD AC ⊥BC D 3AD =BC =30B C ∠=∠=︒CD BD AB AC =Q 120BAC ∠=︒30B C ∴∠=∠=︒AD AC ⊥Q 90DAC ∴∠=︒30C ∠=︒26CD AD ∴==120BAC ∠=︒Q 90DAC ∠=︒30BAD ∴∠=︒DAB B ∴∠=∠3BD AD ∴==9BC BD CD ∴=+=30︒ABC ∆90A ∠=︒CD ACB ∠DE BC 2DE =AB =CD Q ACB ∠ACD BCD ∴∠=∠DE Q BC,,,,,,,,,故答案为:6.【点评】本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.9.(2019秋•海淀区校级期中)如图,在中,,,平分交于点,的垂直平分线交于点,交于点,若,则的长为 6 .【分析】根据等腰三角形的性质和线段垂直平分线的性质得出,进而利用含的直角三角形的性质解答即可.【解答】解:连接,如图所示:在中,,平分交于点,,,的垂直平分线交于点,,,,,, ,BD CD ∴=DCB B ∴∠=∠2ACB B ∴∠=∠90A ∠=︒Q 30B ∴∠=︒90DEB ∠=︒Q 24BD CD DE ∴===2AD DE ==6AB ∴=ABC ∆AB BC =30ABC ∠=︒BD ABC ∠AC D BC EF BC E BD F 6BF =AC 6CF BF ==30︒CF Q ABC ∆AB BC =BD ABC ∠AC D AD DC ∴=BD AC ⊥BC Q EF BC E 6BF CF ∴==230DFC DBC ABC ∴∠=∠=∠=︒BD AC ⊥Q 90BDC ∴∠=︒132DC CF ∴==26AC DC ∴==故答案为:6.【点评】此题考查含角的直角三角形,关键是根据等腰三角形的性质和线段垂直平分线的性质得出解答.10.(2019秋•西城区校级期中)等腰三角形的顶角是,底边上的高是3,则腰长为 6 .【分析】画出图形,可求得底角为30度,结合已知,由含的直角三角形的性质可求得腰的长.【解答】解:如图,,于点,,,,. 故答案为:6.【点评】本题考查了等腰三角形的性质和含角的直角三角形的性质;求得的角是正确解答本题的关键.11.(2019秋•海淀区校级期中)已知,如图,,,则的面积为 9 .【分析】根据等腰三角形的性质得到,由三角形的外角的性质得到,过作交的延长线于,根据直角三角形的性质得到,于是得到结论. 【解答】解:,,,, 过作交的延长线于,,,的面积为, 故答案为:9.30︒CF BF =120︒30︒AB AC =AD BC ⊥D 3AD =120BAC ∠=︒120BAC ∠=︒Q AB AC =(180)230B C BAC ∴∠=∠=︒-∠÷=︒AD BC ⊥Q 1362AB ∴=÷=30︒30︒6AB BC ==15A ∠=︒ABC ∆15ACB A ∠=∠=︒30CBD A ACB ∠=∠+∠=︒C CD AB ⊥AB D 132CD BC ==6AB BC ==Q 15A ∠=︒15ACB A ∴∠=∠=︒30CBD A ACB ∴∠=∠+∠=︒C CD AB ⊥AB D 90D ∴∠=︒132CD BC ∴==ABC ∴∆1163922AB CD =⨯⨯=g【点评】本题考查了含直角三角形的性质,等腰三角形的性质,三角形的外角的性质,正确的作出辅助线是解题的关键.12.(2019秋•海淀区校级期中)中,,,, 8 .【分析】由“直角三角形的两个锐角互余”和“30度角所对的直角边等于斜边的一半”解答.【解答】解:如图,在中,,,, ,.故答案是:8.【点评】本题考查了直角三角形角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.三.解答题(共3小题)13.(2017秋•大兴区期末)已知:如图,在中,,,求的长.【分析】过点作于.解直角三角形求出,利用等腰三角形的性质即可解决问题.【解答】解:过点作于.,,,,30︒Rt ABC ∆90C ∠=︒2B A ∠=∠4BC cm =AB =cm Q Rt ABC ∆90C ∠=︒2B A ∠=∠190303A ∴∠=︒⨯=︒4BC cm =Q 28AB BC cm ∴==30︒ABC ∆8AB AC ==120A ∠=︒BC A AD BC ⊥D BD A AD BC ⊥D AB AC =Q 120BAC ∠=︒30B C ∴∠=∠=︒2BC BD =在中,,,,,.【点评】本题考查等腰三角形的性质、解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2014秋•海淀区校级期末)等腰三角形中,,,求边上的高的长.【分析】①当为底角时,首先计算出,然后再计算出的度数,再根据直角三角形的性质可得的长,再利用勾股定理计算出长即可;②当为顶角时,直接利用在直角三角形中,角所对的直角边等于斜边的一半可得答案;③当为底角,为底边,利用勾股定理以及在直角三角形中,角所对的直角边等于斜边的一半可得答案.【解答】解:①当为底角时,,,,,,,, ;②当为顶角时,,, ,,,③当为底角,为底边,则,,,,Rt ABD ∆90ADB ∠=︒30B ∠=︒8AB =cosBD B AB=cos308BD AB ∴=︒==BC ∴=ABC 30A ∠=︒8AB =AB CD A ∠60CBD ∠=︒BCD ∠BD CD A ∠30︒A ∠AB 30︒A ∠30A ∠=︒Q 8AB CB ==30ACB ∴∠=︒60CBD ∴∠=︒CD AD ⊥Q 30BCD ∴∠=︒142BD CB ∴==CD ∴===A ∠CD AB ⊥Q 12CD AC ∴=AB AC =Q 8AC ∴=4CD ∴=A ∠AB AC BC =AC BD =CD AB ⊥Q 4AD BD ∴==设,则,故,解得:, 综上:边上的高的长为4或【点评】此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,角所对的直角边等于斜边的一半.15.(2014•顺义区一模)如图,在四边形中,,,,,求的长.【分析】延长,,交于点,可得出三角形与三角形相似,由相似得比例,设,利用30角所对的直角边等于斜边的一半得到,利用勾股定理表示出,由表示出,在直角三角形中,利用30度角所对的直角边等于斜边的一半得到,即可求出的长.【解答】解:延长,,交于点,,,,, 在中,,设,则有,根据勾股定理得:,DC x =2AC x =22244x x +=x=CD ∴=AB CD 30︒ABCD 90B D ∠=∠=︒60C ∠=︒4BC =3CD =AB DA CB E ABE CDE AB x =2AE x =BE BC BE +CE DCE 2DC CE =AB DA CB E E E ∠=∠Q 90ABE D ∠=∠=︒ABE CDE ∴∆∆∽∴AB AE CD EC=Rt ABE ∆30E ∠=︒AB x =2AE x =BE ==,在中,,,即, 解得:则【点评】此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.4CE BC BE ∴=+=+Rt DCE ∆30E ∠=︒12CD CE ∴=1(4)32+=x =AB =。
北师大版 八年级数学 直角三角形
直角三角形课前测试【题目】课前测试如图是屋架设计图的一部分,其中∠A=30°,点D是斜梁AB的中点,BC、DE 垂直于横梁AC,AB=8cm,则立柱BC,DE要多长?【答案】立柱BC长4m,DE长2m【解析】首先根据BC⊥AF,∠A=30°,应用含30°角的直角三角形的性质,求出BC的长度是多少;然后根据BC、DE垂直于横梁AC,推得BC∥DE,再根据D是AB 的中点,求出DE的长度是多少即可.解:∵BC⊥AF,∠A=30°,∴BC=AB=4m,∵BC、DE垂直于横梁AC,∴BC∥DE,又∵D是AB的中点,∴DE=BC=2m.答:立柱BC长4m,DE长2m.此题主要考查了含30°角的直角三角形的性质,要熟练掌握,解答此题的关键是要明确:在直角三角形中,30°角所对的直角边等于斜边的一半.【难度】3【题目】课前测试如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.【答案】Rt△ABE≌Rt△CBF【解析】在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).本题考查了全等三角形的判定,解题的关键是掌握HL【难度】2知识定位适用范围:北师大版,八年级知识点概述:本章重点部分是直角三角形。
了解,掌握直角三角形的定理,还有勾股定理,还有含30°角的直角三角形的性质以及直角三角形的斜边中线定理,会证明直角三角形全等。
这部分在考试中很重要,中考中直角三角形的性质是重点适用对象:成绩中等偏下的学生注意事项:熟练掌握三角形全等的判定方法重点选讲:①直角三角形的性质②含30°角的直角三角形③证明直角三角形全等知识梳理知识梳理1:直角三角形定理:(1)直角三角形的两个锐角互余(2)有两个角互余的三角形是直角三角形勾股定理:(1)直角三角形的两条直角边的平方和等于斜边的平方(2)如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形命题:如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]
专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。
八上数学每日一练:含30度角的直角三角形练习题及答案_2020年填空题版
答案解析 答案解析
. (2020大东.八上期末) 等腰
中, 是BC边上的高,且
考点: 等腰直角三角形;等腰三角形的性质;含30度角的直角三角形;
,则等腰
底角的度数为________.
答案解析
7.
(2020江汉.八上期末) 如图,点D,E,F分别在等边三角形ABC的三边上,且DE⊥AB,EF⊥BC,FD⊥AC,过点F作
考点: 等边三角形的性质;含30度角的直角三角形;勾股定理;
4.
(2020南召.八上期末) 如图,在等边
中,点D、E分别在边BC、AB上,且
CB的延长线于点 若
,则
________.
答案解析
,过点E作
,交
考点: 等边三角形的判定与性质;含30度角的直角三角形;勾股定理;
5. (2020九龙坡.八上期中) 等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为________。 考点: 等腰三角形的性质;含30度角的直角三角形;
答案解析
9.
(2020江汉.八上期末) 如图,
,四边形ABCD的顶点A在
的内部,B,C两点在OM上(C在B
,O之间),且
,点D在ON上,若当CD⊥OM时,四边形ABCD的周长最小,则此时AD的长度是________.
考点: 含30度角的直角三角形;轴对称的应用-最短距离问题;
答案解析
10.
(2019营口.八上期末) 如图,
答案解析
1.答案: 2.答案: 3.答案: 4.答案: 5.答案: 6.答案: 7.答案: 8.答案: 9.答案: 10.答案:
中,
于点 , ,分别以点 和点 为圆心,大于
,以点 为圆心,适当长为半径画弧,与
【2021中考数学】直角三角形中30度角的性质应用含答案
2021年中考复习小专题突破训练:直角三角形中300角的性质应用1.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1C.D.22.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.53.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.84.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为()A.8B.4C.12D.65.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是()A.∠CAD=30°B.AD=BD C.BD=2CD D.CD=ED6.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5B.4.2C.5.8D.77.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2B.4C.6D.88.如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好与AF的中点重合,AE交CD于点H,若BC=,则HC的长为()A.4B.C.D.69.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm10.如图,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当AB =10,∠B=30°时,△ACD的周长为()A.12B.14C.15D.1611.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h 是()A.m B.4 m C.4m D.8 m12.如图,在Rt△ABC中,∠C=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则BD的长度是()A.3cm B.6cm C.9cm D.12cm13.如图,在△ABC中,AB=AC=10,∠BAC=120°,AD是△ABC的中线,AE是∠BAD 的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.2B.4C.5D.14.如图,在等边三角形ABC中,BC=2,D是AB的中点,过点D作DF⊥AC于点F,过点F作EF⊥BC于点E,则BE的长为()A.1B.C.D.15.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2B.C.D.16.如图,在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=8,BC的长是()A.16B.24C.30D.3217.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取P A=CQ,连接PQ,交AC于M,则EM的长为.18.如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.19.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD =1,则BD=.20.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.21.等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为度.22.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.23.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.24.如图,∠AOB=30°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE ⊥OA于E,OD=4cm,则PE=.25.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.26.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.27.如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为.28.如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC =.29.如图,在△ABC中,AB=AC,∠BAC=120°,点D为△ABC外一点,连接BD、AD、CD,∠ADC=60°,BD=5,DC=4,则AD=.30.如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC 的长.31.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为.32.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5,则AD=.33.如图(1),Rt△AOB中,,∠AOB的平分线OC 交AB于C,过O点作与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO ﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.34.如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).(1)求等边△ABC的边长;(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.35.如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.36.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.37.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.38.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,(1)求证:M是BE的中点.(2)若CD=1,DE=,求△ABD的周长.39.图1所示的是某超市入口的双翼闸门,如图2,当它的双翼展开时,双翼边缘的端点A 与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,求当双翼收起时,可以通过闸机的物体的最大宽度.40.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M、N分别是BC、DE的中点.(1)猜想,MN与DE的位置关系,并证明;(2)若∠A=60°,求的值.参考答案1.解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选:B.2.解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选:D.3.解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.4.解:∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4∴BC=BD+DC=8+4=12,故选:C.5.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠CAD=∠BAD=∠B,∴AD=BD,AD=2CD,∴BD=2CD,根据已知不能推出CD=DE,即只有D错误,选项A、B、C的答案都正确;故选:D.6.解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.7.解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.8.解:由旋转的性质可知:AC=AF,∵D为AF的中点,∴AD=AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠EAF=∠CAB=30°,∴∠EAC=30°,∴AH=CH,∴DH=AH=CH,∴CH=2DH,∵CD=AD=BC=6,∴HC=CD=4.故选:A.9.解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选:C.10.解:∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=AB=15,故选:C.11.解:过C作CM⊥AB于M则CM=h,∠CMB=90°,∵∠ABC=150°,∴∠CBM=30°,∴h=CM=BC=4m,故选:B.12.解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=3cm,在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴BD=AB﹣AD=12﹣3=9cm,故选:C.13.解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×10=5,∴DF=5,故选:C.14.解:∵△ABC为等边三角形,∴∠A=∠C=60°,AB=AC=BC=2,∵DF⊥AC,FE⊥BC,∴∠AFD=∠CEF=90°,∴∠ADF=∠CFE=30°,∴AF=AD,CE=CF,∵点D是AB的中点,∴AD=1,∴AF=,CF=,CE=,∴BE=BC﹣CE=2﹣=,故选:C.15.解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选:D.16.解:∵AB=AC,∠C=30°,∴∠B=30°,又∵AB⊥AD,∴∠ADB=60°,∴∠DAC=30°,∴AD=DC=8,∵AD=8,∠B=30°,∠BAD=90°,∴BD=16,∴BC=BD+DC=8+16=24.故选:B.17.解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.18.解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.19.解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.20.解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.21.解:①如图,∵BD是△ABC的高,AB=AC,BD=AB,∴∠A=30°,②如图,∵CD是△ABC边BA上的高,DC=AC,∴∠DAC=30°,∴∠BAC=180°﹣30°=150°,故答案为:30或150.22.解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故答案为:3.23.解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故答案为6.24.解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.故答案为:2cm.25.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.26.解:分四种情况进行讨论:①当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=BC,∴AD=BD=CD,∴底角为45度;②当AB=BC时,∵AD=BC,∴AD=AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75度.③当AC=BC时,∵AD=BC,AC=BC,∴∠C=30°,∴∠BAC=∠ABC=(180°﹣30°)=75°;④点A是底角顶点,且AD在△ABC外部时,∵AD=BC,AC=BC,∴AD=AC,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°,故答案为15°或45°或75°.27.解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,故答案为:2.28.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,又∠C=30°,∴CD=2AD=6,∵∠BAC=120°,∠DAC=90°,∴∠BAD=30°,∴∠DAB=∠B,∴BD=AD=3,∴BC=BD+CD=9,故答案为:9.29.解:将△ABD绕点A逆时针旋转120°得到△ACE,∴∠DAE=120°,AD=AE,∴∠ADE=∠AED=30°,∵∠ADC=60°,∴∠CDE=90°,∵EC=BD=5,DC=4,∴DE===3,作AF⊥DE于F,∴DF=DE=,∵在Rt△ADF中,cos30°=,∴AD===,故答案为.30.解:∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵DB⊥BC,∴∠DBC=90°,∴∠ABD=∠ABC﹣∠DBC=30°,∴∠A=∠ABD,∵BD=1,∴AD=BD=1,∵CD=2BD=2,∴AC=AD+DC=1+2=3,故答案为3.31.解:∵DE为线段AB的垂直平分线,∴BD=AD=14,∴∠BCD=2∠A=30°,∵∠ACB=90°,∴BC=BD=7,故答案为:7.32.解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣∠A﹣∠C=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABC=30°,即在Rt△BCD中,∠CBD=30°,故∠A=∠ABD=30°,∴AD=BD=2CD=10(含30度角的直角三角形的性质),故答案为:10.33.(1)解:∵∠A=90°,∠AOB=60°,OB=2,∴∠B=30°,∴OA=OB=,由勾股定理得:AB=3,∵OC平分∠AOB,∴∠AOC=∠BOC=30°=∠B,∴OC=BC,在△AOC中,AO2+AC2=CO2,∴+(3﹣OC)2=OC2,∴OC=2=BC,答:OC=2,BC=2.(2)解:①当P在BC上,Q在OC上时,0<t<2,则CP=2﹣t,CQ=t,过P作PH⊥OC于H,∠HCP=60°,∠HPC=30°,∴CH=CP=(2﹣t),HP=(2﹣t),∴S△CPQ=CQ×PH=×t×(2﹣t),即S=﹣t2+t;②当P在OC上,Q在ON上时2<t<4,过P作PG⊥ON于G,过C作CZ⊥ON于Z,∵CO=2,∠NOC=60°,∴CZ=,CP=t﹣2,OQ=t﹣2,∠NOC=60°,∴∠GPO=30°,∴OG=OP=(4﹣t),PG=(4﹣t),∴S△CPQ=S△COQ﹣S△OPQ=×(t﹣2)×﹣×(t﹣2)×(4﹣t),即S=t2﹣t+.④当t=4时,P在O点,Q在ON上,如图(3)过C作CM⊥OB于M,CK⊥ON于K,∵∠B=30°,由(1)知BC=2,∴CM=BC=1,有勾股定理得:BM=,∵OB=2,∴OM=2﹣==CK,∴S=PQ×CK=×2×=;综合上述:S与t的函数关系式是:S=;.(3)解:如图(2),∵ON⊥OB,∴∠NOB=90°,∵∠B=30°,∠A=90°,∴∠AOB=60°,∵OC平分∠AOB,∴∠AOC=∠BOC=30°,∴∠NOC=90°﹣30°=60°,①OM=PM时,∠MOP=∠MPO=30°,∴∠PQO=180°﹣∠QOP﹣∠MPO=90°,∴OP=2OQ,∴2(t﹣2)=4﹣t,解得:t=,②PM=OP时,此时∠PMO=∠MOP=30°,∴∠MPO=120°,∵∠QOP=60°,∴此时不存在;③OM=OP时,过P作PG⊥ON于G,OP=4﹣t,∠QOP=60°,∴∠OPG=30°,∴GO=(4﹣t),PG=(4﹣t),∵∠AOC=30°,OM=OP,∴∠OPM=∠OMP=75°,∴∠PQO=180°﹣∠QOP﹣∠QPO=45°,∴PG=QG=(4﹣t),∵OG+QG=OQ,∴(4﹣t)+(4﹣t)=t﹣2,解得:t=综合上述:当t为或时,△OPM是等腰三角形.34.解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,∠OMN =30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3cm.(2)∵OM=6cm,∠OMN=30°,∴ON=2,MN=4.∵△OMN∽△BEM,∴=,∴=,BE=,当点P在BE上时,PE=BE﹣PB=﹣2t=,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴△PEF的面积S=×EF×PE=×t×,即S==﹣(0<t<);当点P在AE上时,PE=PB﹣BE=2t﹣=,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴△PEF的面积S=×EF×PE=×t×,即S==(<t≤);(3)存在,有4种情况:①当点P在线段AB上时,点P在AB上运动的时间为s,∵△PEF为等腰三角形,∠PEF=90°,∴PE=EF,∵∠A=60°,∠AFE=30°,∴EF=AE=(3﹣BE)=(3﹣)=t,∴=t或=t,解得t=或>(故舍去),②当点P在AF上时,若PE=PF时,点P为EF的垂直平分线与AC的交点,此时P为直角三角形PEF斜边AF的中点,∴PF=AP=2t﹣3,∵点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,∴0<t<3,在直角三角形中,cos30°===,解得:t=2,若FE=FP,AF===t,则t﹣(2t﹣3)=t,解得:t=12﹣6;③当PE=EF,P在AF上时无解,④当P点在CF上时,AP=2t﹣3,AF=t,则PF=AP﹣AF=t﹣3=EF,所以t﹣3=t,解得t=12+6>3,不合题意,舍去.综上,存在t值为或12﹣6或2时,△PEF为等腰三角形.35.(1)解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE是∠ABC的角平分线,∴∠ABE=∠CBE=30°,∵∠A=30°,AC=AD,∴∠ACD=∠ADC=75°,∴∠DMB=∠ADC﹣∠ABE=45°;(2)证明:∵∠ACB=90°,∠A=30°,∴AB=2BC,∵CH⊥BE,∠CBE=30°,∴BC=2CH,∴AB=4CH,在Rt△CHM中,∠CMH=45°,∴CH=MH,∴AB=4MH.36.(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.(2)解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF(AAS),∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.37.解:(1)∵AE是BC边上的高,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=××=.38.解:(1)连接BD,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC,∵D为AC的中点,∴∠DBC=ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB=60°,∴∠E=30°,∴∠DBC=∠E,∴BD=ED,∴DM⊥BE,∴M是BE的中点;(2)由题意可知,BD=DE=,∵D为AC的中点,∴AD=CD=1,AB=AC=2CD=2,则△ABD的周长AB+AD+BD=3+.39.解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),答:当双翼收起时,可以通过闸机的物体的最大宽度为64cm.40.(1)证明:MN⊥DE,理由是:连接EM、DM,∵BD⊥AC,CE⊥AB,点M是BC的中点,∴EM=BC,DM=BC,∴ME=MD,又点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴=.。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试(包含答案解析)(4)
一、选择题1.如图,在ABC ∆中,∠ACB =90°,∠A =30°,BC =2,点D 在AB 上,连结CD ,将ADC ∆沿CD 折叠,点A 的对称点为E ,CE 交AB 于点F ,下列结论正确的个数是( )①当BF =BC 时,EF =23-2;②当BF =BC 时,DEF ∆为直角三角形;③当DEF ∆为直角三角形,EF =23-2;④当DE 平行ABC ∆的边时,∠BCE =30°A .1B .2C .3D .42.如图,在等腰△ABC 中,5AB AC ==,6BC =,O 是△ABC 外一点,O 到三边的垂线段分别为OD ,OE ,OF ,且::1:4:4OD OE OF =,则AO 的长度为( )A .5B .6C .407D .80173.已知点P 是ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120︒的ABC 中,当120APBAPC BPC 时,P 就是ABC 的费马点.若点P 6的等腰直角三角形DEF 的费马点,则PD PE PF ++=( )A .6B 33C .63D .94.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列说法中,不正确的有( )①不在角的平分线上的点到这个角的两边的距离不相等; ②三角形两内角的平分线的交点到各边的距离相等; ③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等, ⑤到三角形三个顶点距离相等的点有1个 A .0个B .1个C .2个D .3个6.如图,点123,,,A A A A ,…在同一直线上,111122223,,AB A B A B A A A B A A ===,3334A B A A =,……,若B 的度数为x ,则1n n n A B A +∠的度数为( )A .()111802n x -︒- B .()11802n x ︒- C .()111802n x +︒- D .()211802n x +︒-7.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个8.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .29.如图,在ABC 中,AB AC =,以点C 为圆心,CB 长为半径 画弧,交AB 于点B 和点D ,再分别以点,B D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若4,1AE BE ==,则EC 的长度是( )A .3B .5C .5D .7 10.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( )A .65°B .105°C .55°或105°D .65°或115°11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上 D .:DACABCSS=1:212.如图,每个小正方形的边长都相等,A ,B ,C 是小正方形的顶点,则ABC ∠的度数为( )A .45︒B .50︒C .55︒D .60︒二、填空题13.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.14.在平面直角坐标系中,一块等腰直角三角板如图放置,其中(2,0)A ,(0,1)B ,则点C 的坐标为_______.15.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.16.等腰三角形周长为20,一边长为4,则另两边长为______.17.如图,OA ,OB 分别是线段MC 、MD 的垂直平分线,MD =5cm ,MC =7cm ,CD =10cm ,一只小蚂蚁从点M 出发,爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径的长度为_____.18.如图,DE ∥BC ,AE =DE =1,BC =3,则线段CE 的长为_____.19.如图,已知:30MON ︒∠=,点1A 、2A 、3A ⋯在射线ON 上,点1B 、2B 、3B ⋯在射线OM 上,112A B A ∆、223A B A ∆、334A B A ∆⋯均为等边三角形,若11OA =,则9910A B A ∆的边长为________.20.如图,∠AOB =30°,点P 在∠AOB 的内部,OP =6cm ,点E 、F 分别为OA 、OB 上的动点,则△PEF 周长的最小值为________cm .三、解答题21.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ; (2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.22.如图,在△ABE 中,AB=AE ,AD=AC ,∠BAD=∠EAC ,BC 、DE 交于点O . 求证:(1)△ABC ≌△AED ; (2)OB=OE .23.如图,在四边形ABCD 中,90,A ABC BCD BDC ∠=∠=︒∠=∠,过点C 作CE BD ⊥,垂足为E .求证:AB CE =24.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F . (1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明25.如图,ABC 中,C 90∠=︒,10cm AB =,6cm BC ,若动点P 从点C 开始,按C→B→A→C 的路径运动,且速度为每秒2cm ,设运动的时间为t 秒.(1)出发几秒后,BCP 是等腰直角三角形?请说明理由; (2)当t 为何值时,BCP 为等腰三角形?(直接写出答案);(3)另有一点Q ,从点B 开始,按B→C 的路径运动,且速度为每秒0.5cm ,若P ,Q 两点同时出发,当P ,Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系?26.如图,在ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,CD 的垂直平分线FM 交AC 于点F ,交BC 于点M .(1)求ADE ∠的度数;(2)ADF 是什么三角形?说明理由.(3)若将题目中“100BAC ∠=︒”改为“∠BAC =120°”,且FM =4,其他条件不变,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由勾股定理可求A C 的长,利用折叠的性质和等腰三角形的性质依次计算可得①②正确.利用直角三角形分类讨论可知EF 有两种情况,③不正确,由平行内错角角相等可知④正确; 【详解】 解:①∵BF =BC ,且∠ABC =60°,∴BCF ∆为等边三角形,BF =CF =BC =2,ACAB =4, ∵ADC ∆沿CD 折叠,∴CE =ACEF =CE -CF ,故①正确; ②当BF =BC 时,∠EFD =∠BFC =60°, ∴∠DEF =∠A =30°,∠EDF =90°, ∴EDF ∆为直角三角形,故②正确;③当DEF ∆为直角三角形时,此处要分情况讨论,当∠EDF =90°时, ∵∠DEF =∠A =30°,∴∠EFD =60°=∠BFC ,EF =EC -CF-2, 当∠EFD =90°时,∵∠ABC =60°,∠BCF =30°,∴FCEF =EC -FC ,综上所述,EF ,故③错误; ④当DE 平行于ABC ∆的边时,∵DE ∥BC ,∴∠EDF =∠ABC =60°, ∵∠DEC =30°,∴∠BCF =∠DEC =30°,故④正确, 故选C 【点睛】本题考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CA ,学会运用分类讨论是解题的关键.2.D解析:D 【分析】连接OA,OB,OC ,由OD:OE:OF=1:4:4,设OD=x ,OE=4x ,OF=4x ,根据OE=OF ,得到AO 为∠BAC 的角平分线,再根据AB=AC ,得到AO ⊥BC ,根据三线合一及勾股定理求出AD=4,再根据ABC ABO ACO BCO S S S S =+-△△△△,得到方程求解即可. 【详解】解:连接OA,OB,OC, 由OD:OE:OF=1:4:4,设OD=x,OE=4x,OF=4x , ∵OE=OF ,∴AO 为∠BAC 的角平分线, 又∵AB=AC , ∴AO ⊥BC ,∴AD 为△ABC 的中线, ∴A 、D 、O 三点共线, ∴BD=3, 在Rt △ABD 中,==4,∴ABC ABO ACO BCO S S S S =+-△△△△ ∴12=10x+10x−3x ,∴x=1217∴AO=4+1217=8017. 故选:D .【点睛】本题考查了角平分线的判定及性质,熟知等腰三角形的三线合一、角平分线的判定及三角形的面积公式是解题的关键.3.B解析:B 【分析】根据题意首先画出图形,过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,求出PE ,PF ,DP 的长即可解决问题. 【详解】解:如图:过点D 作DM EF ⊥于点M ,在BDE ∆内部过E 、F 分别作30MEP MFP ∠=∠=︒,则120EPF FPD EPD ∠=∠=∠=︒,点P 就是费马点,在等腰Rt DEF △中,6DE DF ==DM EF ⊥, 223EF DE ∴== 3EM DM ∴=∵∠PEM =30°,∠PME =90°, ∴EP =2PM ,则()2222PM EM PM +=,解得:1PM =,则2PE =,故1DP ,同法可得2PF =,则1223PD PE PF ++++= 故选:B . 【点睛】此题主要考查了等腰三角形的性质,正确画出图形进而求出PE 的长是解题关键.4.B解析:B 【分析】根据线段垂直平分线求出AD=BD ,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC ,即可得出答案. 【详解】解:∵DE 垂直平分AB , ∴AD=BD ,∠AED=90°, ∴∠A=∠ABD , ∵∠ADE=40°, ∴∠A=90°-40°=50°, ∴∠ABD=∠A=50°, ∵AB=AC , ∴∠ABC=∠C=12(180°-∠A )=65°, ∴∠DBC=∠ABC-∠ABD=65°-50°=15°, 故选:B . 【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C 【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可. 【详解】①根据角平分线的判定可知①正确; ②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误, ∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.6.C解析:C【分析】根据等腰三角形的性质和三角形外角的性质进行求解计算【详解】解:∵在△ABA 1中,∠B=x ,AB=A 1B ,∴∠BA 1A=1802x ︒-, ∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠A 1B 1A 2=∠A 1A 2B 1=12∠BA 1A=21180180222x x ︒-︒-⨯=; 同理可得,∠A 2B 2A 3=∠A 2A 3B 2=12∠A 1B 1A 2=231180180222x x ︒-︒-⨯=; ∴∠A n B n A n +1=()111802n x +︒- 故选:C .【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,准确识图,找出规律是解答此题的关键.7.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.8.C解析:C【分析】过P 作//PF BC 交AC 于F ,得出等边三角形APF ,推出AP PF QC ==,根据等腰三角形性质求出EF AE =,证PFD QCD ∆≅∆,推出FD CD =,推出12DE AC =即可. 【详解】解:过P 作//PF BC 交AC 于F , //PF BC ,ABC ∆是等边三角形,PFD QCD ∴∠=∠,60APF B ∠=∠=︒,60AFP ACB ∠=∠=︒,60A ∠=︒, APF ∴∆是等边三角形,AP PF AF ∴==,PE AC ⊥,AE EF ∴=,AP PF =,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中PFD QCD PDF CDQ PF CQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, PFD QCD ∴∆≅∆,FD CD ∴=,AE EF =,EF FD AE CD ∴+=+, 12AE CD DE AC ∴+==, 3AC =,32DE ∴=, 故选:C .【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.9.A解析:A【分析】利用基本作图得到CE AB ⊥,再根据等腰三角形的性质得到5AC =,然后利用勾股定理计算即可;【详解】由做法得CE AB ⊥,则90AEC ∠=︒, 145AC AB BE AE ==+=+=,在Rt △ACE 中,2222543CE AC AE =-=-=;故答案选A .【点睛】本题主要考查了等腰三角形的性质,准确计算是解题的关键.10.D解析:D【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可.【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°−25°=65°.综上所述,顶角的度数为:65°或115°.故选D .【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况.同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用 ACD ACD ABC ACD ABD S S S S S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴= 11,,22ACD ABD S AC CDS AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】由勾股定理及其逆定理可得三角形ABC 是等腰直角三角形,从而得到∠ABC 的度数 .【详解】解:如图,连结AC ,由题意可得:AB AC BC=====∴AC=BC,222AB AC BC=+,∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故选A .【点睛】本题考查勾股定理的应用,熟练掌握勾股定理及其逆定理、等腰直角三角形的性质是解题关键.二、填空题13.2【分析】根据含30°角的直角三角形的性质可求解CD的长然后利用AAS 证明△BDH≌△ADC可得HD=CD进而求解【详解】解:∵AD⊥BC∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD的长,然后利用AAS证明△BDH≌△ADC,可得HD=CD,进而求解.【详解】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠HBD+∠BHD=90°,∵∠CAD=30°,AC=4,∴122CD AC==,∵BE⊥AC,∴∠HBD+∠C=90°,∴∠BHD=∠C,∵∠ABD=45°,∴∠BAD=45°,∴BD=AD,在△BDH和△ADC中,BHD CBDH ADCBD AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH≌△ADC(AAS),∴HD=CD=2,故点H到BC的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.14.【分析】如图过点C 作CH ⊥x 轴于H 证明△AHC ≌△BOA (AAS )可得结论【详解】解:如图过点C 作CH ⊥x 轴于H ∵∠AHC=∠CAB=∠AOB=90°∴∠BAO+∠CAH=90°∠CAH+∠ACH=解析:(3,2)【分析】如图,过点C 作CH ⊥x 轴于H .证明△AHC ≌△BOA (AAS ),可得结论.【详解】解:如图,过点C 作CH ⊥x 轴于H .∵∠AHC=∠CAB=∠AOB=90°,∴∠BAO+∠CAH=90°,∠CAH+∠ACH=90°,∴∠ACH=∠BAO ,在△AHC 和△BOA 中,AHC AOB ACH OAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AHC ≌△BOA (AAS ),∴AH=OB ,CH=OA ,∵A (2,0),B (0,1),∴OA=CH=2,OB=AH=1,∴OH=OA+AH=3,∴C (3,2).故答案为:(3,2).【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.15.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题解析:3 3n 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====1332=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵1113312AC B S ∆=⨯= ∴34(1)n n S n =+. 故答案为:38,34(1)n n + 【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.16.88【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案【详解】解:若等腰三角形的腰为长为4设底边长为x则有x+4×2=20解得:x=12此时三角形的三边长为4412解析:8,8【分析】从等腰三角形的腰为长为4与等腰三角形的底边为4两种情况去分析求解即可求得答案.【详解】解:若等腰三角形的腰为长为4,设底边长为x,则有x+4×2=20,解得:x=12,此时,三角形的三边长为4,4,12,∵4+4<12,∴不可以组成三角形;若等腰三角形的底边为4,设腰长为x,则有2x+4=20,解得:x=8,∵4+8>8,∴可以组成三角形;∴三角形的另两边的长分别为8,8.故答案为:8,8.【点睛】本题考查等腰三角形的定义和性质,利用分类讨论思想解题是关键.17.10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论【详解】解:设CD与OA的交点为E与OB的交点为F∵OAOB分别是线段MCMD的垂直平分线∴ME=CEMF=DF∴小蚂蚁爬行的路径解析:10cm【分析】根据轴对称的性质和线段的垂直平分线的性质即可得到结论.【详解】解:设CD与OA 的交点为E,与OB的交点为F,∵OA、OB分别是线段MC、MD的垂直平分线,∴ME=CE,MF=DF,∴小蚂蚁爬行的路径最短=CE+EF+DF=CD=10cm,故答案为:10cm.【点睛】本题考查了轴对称的性质-最短路径的问题,线段的垂直平分线的性质,解题的关键是熟练掌握知识点.18.【分析】由平行线的性质可得∠ADE=∠B由AE=DE=1可得∠ADE=∠DAE易得∠DAE=∠B可得AC=BC易得结果【详解】解:∵DE∥BC∴∠ADE=∠B∵AE =DE=1∴∠ADE=∠DAE∴∠解析:【分析】由平行线的性质可得∠ADE=∠B,由AE=DE=1,可得∠ADE=∠DAE,易得∠DAE=∠B,可得AC=BC,易得结果.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵AE=DE=1,∴∠ADE=∠DAE,∴∠DAE=∠B,BC=3,∴AC=BC=3,∴CE=AC﹣AE=3﹣1=2,故答案为:2.【点睛】本题主要考查了平行线的性质和等腰三角形的性质等,关键是运用性质定理得出AC=BC=3.19.【分析】利用等边三角形的性质得到∠B1A1A2=60°A1B1=A1A2则可计算出∠A1B1O=30°所以A1B1=A1A2=OA1利用同样的方法得到A2B2=A2A3=OA2=2OA1A3B3=A解析:256【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A n B n=A n A n+1=2n-1•OA1.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1=1,∴A1B1=A1A2=OA1=1,同理可得A2B2=A2A3=OA2=2OA1=2,∴A3B3=A3A4=OA3=2OA2=22•OA1=22,A4B4=A4A5=OA4=2OA3=23•OA1=23,…,∴A n B n=A n A n+1=2n-1•OA1=2n-1.则△A9B9A10的边长为28=256.故答案为:256.【点睛】本题考查了规律型:图形的变化类,等边三角形的性质以及等腰三角形的性质,解决本题的关键是根据图形的变化寻找规律.20.6【分析】作点P 关于OA 对称的点作点P 关于OB 对称的点连接与OA 交于点E 与OB 交于点F 此时△PEF 的周长最小然后根据∠AOB=30°结合轴对称的性质证明△是等边三角形从而可得答案【详解】解:如图作点解析:6【分析】作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小,然后根据∠AOB=30°,结合轴对称的性质证明△12OPP 是等边三角形,从而可得答案.【详解】解:如图,作点P 关于OA 对称的点1P ,作点P 关于OB 对称的点2P ,连接1122,,,OP PP OP 12PP 与OA 交于点E ,与OB 交于点F ,此时△PEF 的周长最小.此时△PEF 的周长就是12PP 的长,由轴对称的性质可得:12,,POE POE P OF POF ∠=∠∠=∠12OP OP OP ==()122222,POP POE POF POE POF AOB ∴∠=∠+∠=∠+∠=∠∵∠AOB=30°,∴1260POP ∠=︒,∴△12OPP 是等边三角形.6OP =,∴121 6.PP OP OP ===∴△PEF 周长的最小值是6.故答案为:6.【点睛】本题考查轴对称最短路径问题,关键是确定E ,F 的位置,本题的突破点是证明△12OPP 是等边三角形.三、解答题21.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】 (1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°,∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H ,ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 22.(1)见解析;(2)见解析【分析】(1)利用SAS 定理证明△ABC ≌△AED ;(2)利用△BAC ≌△EAD 全等的性质,得到角与边的关系,进一步证明即可.【详解】证明:(1)∵∠BAD=∠EAC ,∴∠BAD+∠DAC=∠EAC+∠DAC ,即∠BAC=∠EAD ,在△BAC 和△EAD 中,AB AE BAC EAD AC AD ⎧⎪∠∠⎨⎪⎩=== , ∴△BAC 和≌△EAD ;(2)∵△BAC ≌△EAD ,∴∠ABC=∠AED ,∵AB=AE ,∴∠ABE=∠AEB ,∴∠OBE=∠OEB ,∴OB=OE .【点睛】题考查的是全等三角形的判定和性质、等腰三角形的性质和判定,掌握全等三角形的判定定理和等腰三角形的性质定理是解题的关键.23.证明见解析.【分析】用“角角边”证明△ABD ≌ECB 即可.【详解】证明:∵90A ABC ∠=∠=︒,∴∠ABD+∠ADB=90°,∠ABD+∠DBC=90°,∴∠ADB=∠DBC ,∵BCD BDC ∠=∠,∴BD=BC ,∵∠A=∠BEC=90°,∴△ABD ≌△ECB∴AB CE =.【点睛】本题考查了等腰三角形的判定和全等三角形的判定与性质,解题关键是找准全等三角形,依据等腰三角形的判定和同角的余角相等证明全等.24.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.25.(1)出发9秒后,BCP 是等腰直角三角形;(2)当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【分析】(1)由题意得出BC=CP ,即可得出结果;(2)△BCP 为等腰三角形时,分三种情况进行讨论:①CP=CB ;②BC=BP ;③PB=PC ;即可得出答案.(3)若直线PQ 把△ABC 的周长分成的两部分之间是1:2,则一部分为8,另一部分为16,分两种情况,即可得出答案.【详解】解:(1)如下图,在Rt △ABC 中,根据勾股定理可得 22221068AC AB BC cm =-=-=,当△BCP 为等腰直角三角形时,CP=BC=6cm ,即AP=AC-CP=2cm ,∴6102922BC AB AP t ++++===(秒), 故出发9秒后,BCP 是等腰直角三角形;(2)△BCP 为等腰三角形时,分三种情况:①如果CP=CB ,点P 在AC 上,由(1)可知t=9(秒);如果CP=CB ,点P 在AB 上,如下图,作CD ⊥AB ,则1122ABC S AC BC AB CD ∆=⋅=⋅, 即11861022CD ⨯⨯=⨯⋅,解得CD=4.8cm , ∴22 3.6BD BC CD =-=cm ,∵CP=CB,CD ⊥AB ,∴PD=BD=3.6cm ,67.2 6.622BC BP t ++===(秒), ②如果BC=BP ,那么点P 在AB 上,BP=6cm ,此时66622BC BP t ++===(秒); ③如果PB=PC ,那么点P 在BC 的垂直平分线与AB 的交点处,即在AB 的中点,此时 65 5.522BC BP t ++===(秒); 综上可知,当t=6.6秒或9秒或6秒或5.5秒时,△BCP 为等腰三角形;(3)6120.5Q t ==秒,8610122p t ++==, 故12秒时,两点停止运动, 108624ABC C cm ∆=++=,①当P 在AB 上时,若13ABC BQ BP C ∆+=,即0.5268t t +-=,解得t=5.6(秒),①当P 在AC 上时,若23ABC BQ AB AP C ∆++=, 即0.52616t t +-=,解得t=8.8(秒),综上所示,当t 为5.6秒或8.8秒时,直线PQ 把ABC 的周长分成的两部分长度是2倍关系.【点睛】本题考查了勾股定理,等腰三角形的判定,三角形的周长的计算.利用分类讨论的思想是解(2)题的关键.26.(1)∠ADE =20°;(2)△ADF 是等腰三角形,证明见解析;(3)AB=16.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠B 和∠C ,求出∠BDE ,即可求出答案;(2)根据垂直平分线的性质定理和等边对等角可求得∠FDC ,再根据三线合一和直角三角形两锐角互余可求得∠DAF 和∠ADF 得出它们相等即可得出△ADF 为等腰三角形;(3)可求得∠C=30°根据30°角所对直角边是斜边的一般可得FC ,可证明△ADF 为等边三角形即可求得AF ,从而求得AC ,继而求得AB .【详解】解:(1)∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=12×(180°-∠BAC )=40°, ∵BD=BE ,∴∠BDE=∠BED=12×(180°-∠B )=70°, ∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=20°;(2)△ADF 是等腰三角形,理由是:∵CD 的垂直平分线MF 交AC 于F ,交BC 于M ,∴DF=CF ,∵∠C=40°,∴∠FDC=∠C=40°,∵AD ⊥BC ,∴∠ADC=90°,∴∠DAF=90°-∠C=50°,∴∠ADF=50°,∴∠DAF=∠ADF,∴AF=DF,∴△ADF是等腰三角形;(3)∵∠BAC=120°,AB=AC,∴∠B=∠C=1×(180°-∠BAC)=30°,2又∵AD是BC边上的中线,∴AD⊥BC,∴∠DAC=90°-∠C=60°,∵CD的垂直平分线MF,∴∠FMC=90°,DF=FC,∴∠FDC=∠C=30°,∴∠ADF=∠ADC-∠FDC=60°,∠AFD=∠C+∠FDC=60°,∴△ADF为等边三角形,AF=DF=FC,∵MF=4,∴FC=2MF=8,∴AF= 8,∵AC=AF+CF=8+8=16,∵AB=AC,∴AB=16.【点睛】本题考查了线段垂直平分线性质,等边三角形的性质和判定,含30°角的直角三角形的性质,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.。
含30°角的直角三角形的性质习题
第2课时 含30°角的直角三角形的性质姓名:01 基础题知识点 含30°角的直角三角形的性质1.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,则BC ∶AB 等于( )A .2∶1B .1∶2C .1∶3D .2∶32.Rt △ABC 中,CD 是斜边AB 上的高,∠B =30°,AD =2 cm ,则AB 的长度是( )A .2 cmB .4 cmC .8 cmD .16 cm 3.在Rt △ACB 中,∠C =90°,∠A =30°,AB =10,则BC = .4.如图,在△ABC 中,∠C =90°,∠B =30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD =3,则BD 的长为 .5.如图所示是某房屋顶框架的示意图,其中,AB =AC ,AD ⊥BC ,∠BAC =120°,AD =3.5 m ,求∠B ,∠C ,∠BAD 的度数和AB 的长度.02 中档题 6.如图所示,在△ABC 中,∠ACB =90°,∠B =15°,DE 垂直平分AB ,交BC 于点E ,BE =6 cm ,则AC 等于( )A .6 cmB .5 cmC .4 cmD .3 cm7.(扬州中考)如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =( )A .3B .4C .5D .68.等腰三角形的底角为15°,腰长是2 cm ,则腰上的高为 .9.(温州中考)如图,在等边△ABC 中,点D ,E 分别在边BC ,AC 上,DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F. (1)求∠F 的度数;(2)若CD =2,求DF 的长.03 综合题10.如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于Q ,PQ =3,PE =1.。
含30度角直角三角形的性质
3)直角三角形中最小的直角边是斜边的一半。
4)直角三角形的斜边是30°角所对直角边的2倍.
√
试一试
1、如图,在Rt△ABC中∠C=900 ,∠B=2 ∠A,
AB=6cm,则BC=________.
B
2、如图, Rt△ABC中, ∠A= 30°,
AB+BC=12cm,则AB= _______. C D
A
3、如图, Rt△ABC中, ∠A= 30°,BD平分∠ABC,
且CD=6cm,则AD=
.
例1.已知:如图,在△ABC中, ∠ACB= 900
∠A=300,CD⊥AB于D.
Hale Waihona Puke 求证:BD= 1 AB.C
4
A BD
例2: 如图在△ABC中,AB=AC,∠BAC=120°, AC的垂直平分线EF交AC于点E,交BC于 点F.求证:BF=2CF.
A
E
C
B
F
例3:已知:等腰三角形的底角为150,腰长为20.求腰 上的高.
D
A
B
150
150
C
D
含30°角直角三角形的性质
性质:在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的一半.
几何语言:
A
∵在Rt△ABC中,∠A=30°,
∠C=90°
∴BC= 1AB(或AB = 2BC)
2
B
C
判断
1)直角三角形中30°角所对的直角边等于另一直角边的一半.
2)三角形中30°角所对的边等于最长边的一半。
1、 如图,在△ABC中,∠ABC,∠CAB的平分线交 于点P,过点P作DE∥AB,分别交BC,AC于点 D, E.求证:DE=BD+AE.
含30度的直角三角形的特殊性质 (有知识点,手写答案,所有题目都有详细过程)
1.1直角三角形的性质和判定(Ι)第2课时含30°角的直角三角形的性质及其应用要点感知1在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的__________.预习练习1-1已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm要点感知2在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于__________.、预习练习2-1在Rt△ABC中,∠C=90°,BC=1,AB=2,∠B的度数为()A.30°B.45°C.60°D.75°知识点1在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半1.△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边BC=4 cm,最长边AB的长是()A.5cmB.6cmC.7cmD.8cm2.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5B.4.2C.5.8D.7第2题图第4题图3.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cmB.4cmC.8cmD.16cm4.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是__________.5.在△ABC中,已知∠A=12∠B=13∠C,它的最长边是8cm,求它的最短边的长.知识点2在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°6.在直角三角形中,最长边为10cm,最短边为5cm,则这个三角形中最小的内角为__________度.7.在△ABC中,如果∠A+∠B=∠C,且AC=12AB,那么∠B=__________.8.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是()A.30°B.60°C.30°或150°D.不能确定9.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,求CD的长.知识点3含30°锐角的直角三角形的应用10.如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时40海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行2小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?11.在Rt△ABC中,∠C=90°,∠B=30°,则()A.AB=2ACB.AC=2ABC.AB=ACD.AB=3AC12.等腰三角形的顶角是一个底角的4倍,如果腰长为10cm,那么底边上的高为()A.10cmB.5cmC.6cmD.8cm13.如图,CD是Rt△ABC斜边AB上的高,将△BCD 沿CD折叠,点B恰好落在AB的中点E处,则∠A 等于()A.25°B.30°C.45°D.60°14.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,且BD∶DC=2∶1,则∠B满足()A.0°<∠B<15°B.∠B=15°C.15°<∠B<30°D.∠B=30°第14题图第16题图15.在△ABC中,已知AB=4,BC=10,∠B=30°,那么S△ABC=__________.16.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.17.如图,△ABC中,∠C=90°,∠A=30°,周长为3+3,AC=3,求BC的长.18.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点.求证:CD⊥AB.19.等腰三角形一腰上的高等于这个三角形一条边长度的一半,则其顶角为()A.30°B.30°或150°C.120°或150°D.30°或120°或150°20.已知如图,在△ABC,AB=AC,AD⊥AC,CD=2,BD=1,求∠C的度数.1.1直角三角形的性质和判定(Ι)第2课时含30°角的直角三角形的性质及其应用要点感知1在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的_一半_______.预习练习1-1已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm 答案解析:由于直角三角形中,30度所对的直角边是斜边的一半,所以斜边的长度是2×2=4,所以答案选B。
初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
沪教版 八年级数学 直角三角形的性质
直角三角形的性质课前测试【题目】课前测试如图,已知Rt△ABC中,∠ACB=90°,∠B=15°,边AB的垂直平分线交边BC于点E,垂足为点D,取线段BE的中点F,联结DF.求证:AC=DF.【答案】证明:连接AE,∵DE是AB的垂直平分线(已知),∴AE=BE,∠EDB=90°(线段垂直平分线的性质),∴∠EAB=∠EBA=15°(等边对等角),∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),Rt△EDB中,∵F是BE的中点(已知),∴DF=BE(直角三角形斜边中线等于斜边的一半),Rt△ACE中,∵∠AEC=30°(已知),∴AC=AE(直角三角形30°角所对的直角边是斜边的一半),∴AC=DF(等量代换).【解析】分析:先根据线段垂直平分线的性质得:AE=BE,再利用直角三角形斜边中线的性质得:DF 与BE的关系,最后根据直角三角形30度的性质得AC和AE的关系,从而得出结论.证明:连接AE,∵DE是AB的垂直平分线(已知),∴AE=BE,∠EDB=90°(线段垂直平分线的性质),∴∠EAB=∠EBA=15°(等边对等角),∴∠AEC=30°(三角形的一个外角等于与它不相邻的两个内角的和),Rt△EDB中,∵F是BE的中点(已知),∴DF=BE(直角三角形斜边中线等于斜边的一半),Rt△ACE中,∵∠AEC=30°(已知),∴AC=AE(直角三角形30°角所对的直角边是斜边的一半),∴AC=DF(等量代换).【总结】本题考查了直角三角形含30度角的性质、直角三角形斜边中线及线段垂直平分线的性质,熟练掌握性质是关键.【难度】3【题目】课前测试如图1,平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.【答案】(1)证明:∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.【解析】分析:(1)易证∠B与∠BOC分别是∠A与∠AOC的余角,等角的余角相等,就可以证出;(2)易证∠DOB+∠EOB+∠OEA=90°,且∠DOB=∠EOB=∠OEA就可以得到;(3)∠P=180°﹣(∠PCO+∠FOM+90°)根据角平分线的定义,就可以求出.(1)证明:∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)解:∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,证明:∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.【总结】本题主要考查了角平分线的定义和直角三角形的性质.【难度】3知识定位适用范围:沪教版,初二年级,成绩中等以及中等以上知识点概述:直角三角形是继等腰三角形、等边三角形后又一种特殊的三角形,它除了具备有一般三角形的所有性质外,还有许多特殊的性质,反映了直角三角形中特有的边角关系,这些性质主要用来解决与直角三角形相关的计算和证明问题.注意事项:学生主要想听运用直角三角形的性质解决与直角三角形相关的边角计算和证明问题重点选讲:①直角三角形的基本性质②含30°角的直角三角形③直角三角形斜边中线的应用知识梳理知识梳理1:直角三角形的性质直角三角形的性质定理性质定理1:直角三角形的两个锐角互余;性质定理2:在直角三角形中,斜边上的中线等于斜边的一半.知识梳理2:直角三角形性质定理推论直角三角形的性质定理推论推论1:在直角三角形中,如果有一个锐角等于30度,那么它所对的直角边等于斜边的一半;推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度.知识梳理3:直角三角形常用结论例题精讲【题目】题型1:直角三角形的基本性质如图所示,在△ACB中,∠ACB=90°,∠1=∠B.(1)求证:CD⊥AB;(2)如果AC=8,BC=6,AB=10,求CD的长.【答案】(1)证明:∵∠ACB=90°,∴∠1+∠BCD=90°,∵∠1=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)CD=4.8直角三角形常用结论1.直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab=ch.2.含30°的直角三角形三边之比为1:3:23.含45°角的直角三角形三边之比为1:1:2【解析】分析:(1)先由∠ACB=90°,得出∠1+∠BCD=90°,而∠1=∠B,等量代换得到∠B+∠BCD=90°,再根据三角形内角和定理求出∠BDC=90°,根据垂直的定义即可证明CD⊥AB;(2)根据三角形的面积公式可得S△ABC=AB•CD=AC•BC,那么CD=,将数值代入计算即可求解.(1)证明:∵∠ACB=90°,∴∠1+∠BCD=90°,∵∠1=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)解:∵S△ABC=AB•CD=AC•BC,∴CD===4.8.【总结】本题考查了直角三角形的性质,三角形内角和定理,垂直的定义,三角形的面积,比较简单.求出∠BDC=90°是解题的关键.【难度】3【题目】题型1变式练习1:直角三角形的基本性质8.小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)M为边AC上一点,则BD、MF的位置是.请你进行证明.(2)M为边AC反向延长线上一点,则BD、MF的位置关系是.(3)M为边AC延长线上一点,猜想BD、MF的位置关系是.【答案】(1)BD∥MF理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.(3)BD⊥MF.【解析】分析:(1)根据角平分线的定义与四边形的内角和定理求出∠ABD+∠AMF=90°,又∠AFM+∠AMF=90°,然后证明得到∠ABD=∠AFM,然后根据同位角相等,两直线平行可得BD∥MF;(2)先证明∠ABC=∠AME,再根据角平分线的定义可得∠ABD=∠AMF,然后根据∠ABD+∠ADB=90°得到∠AMF+∠ADB=90°,从而得到BD⊥MF;(3)先证明∠ABC=∠AME,再根据角平分线的定义可得∠ABD=∠AMF,然后根据∠AMF+∠F=90°得到∠ABD+∠F=90°,从而得到BD⊥MF.解:(1)BD∥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF;(3)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.【点评】本题考查了直角三角形的性质,垂线的定义,平行线的判定,三角形的内角和定理,本题规律性较强,准确识图,准确找出角度之间的关系是解题的关键.【难度】3【题目】题型1变式练习2:直角三角形的基本性质如图,在直角△ABC中,D为斜边AB的中点,DE⊥DF,而E、F分别在AC和BC上,连结EF.观察AE、EF、BF能不能组成直角三角形.写出你的结论并说明理由.【答案】可以组成直角三角形,理由如下:如图,延长FD到F′,使DF′=DF,连接AF′、EF′,∵D为斜边AB的中点,∴AD=BD,在△ADF′和△BDF中,,∴△ADF′≌△BDF(SAS),∴AF′=BF,∠B=∠DAF′,∵∠BAC+∠B=90°,∴∠BAC+∠DAF′=∠BAC+∠B=90°,即∠EAF′=90°,又∵DE⊥DF,∴EF′=EF,∴△EAF′是以EF′为斜边的直角三角形,故AE、EF、BF能组成直角三角形,斜边为EF.【解析】分析:延长FD到F′,使DF′=DF,连接AF′、EF′,利用“边角边”证明△ADF′和△BDF全等,根据全等三角形对应边相等可得AF′=BF,全等三角形对应角相等可得∠B=∠DAF′,然后求出∠EAF′=90°,再根据线段垂直平分线上的点到线段两端点的距离相等可得EF=EF′,从而得解.解:如图,延长FD到F′,使DF′=DF,连接AF′、EF′,∵D为斜边AB的中点,∴AD=BD,在△ADF′和△BDF中,,∴△ADF′≌△BDF(SAS),∴AF′=BF,∠B=∠DAF′,∵∠BAC+∠B=90°,∴∠BAC+∠DAF′=∠BAC+∠B=90°,即∠EAF′=90°,又∵DE⊥DF,∴EF′=EF,∴△EAF′是以EF′为斜边的直角三角形,故AE、EF、BF能组成直角三角形,斜边为EF.【点评】本题考查了直角三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题关键,也是本题的难点.【难度】3【题目】题型2:含30°角的直角三角形如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.【答案】15°【解析】分析:根据直角三角形两锐角互余求出∠PCD=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得PC=2PD,然后求出PB=PD,根据等边对等角可得∠PBD=∠PDB,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠PBD,然后求解即可.解:∵∠APC=60°,CD⊥AP,∴∠PCD=90°﹣∠APC=90°﹣60°=30°,∴PC=2PD,∵PC=2PB,∴PB=PD,∴∠PBD=∠PDB,又∵∠APC=∠PBD+∠PDB,∴∠PBD=∠APC=×60°=30°,∵∠ABC=45°,∴∠ABD=∠ABC﹣∠PBD=45°﹣30°=15°.【总结】本题考查了直角三角形30°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,等边对等角的性质,熟记性质并准确识图是解题的关键.【难度】3【题目】题型2变式练习1:含30°角的直角三角形如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABD=30°,求证:AB=2BC.【答案】证明:作AM⊥BD,交BD延长线于M,∵在Rt△ABM中,∠ABD=30°,∴AB=2AM,∵BD为AC边上的中线,∴AD=CD,∵DB⊥BC,∴∠DBC=∠M=90°,∵在△BCD和△MAD中,,∴△BCD≌△MAD(AAS),∴AM=BC,所以,AB=2BC.【解析】分析:作AM⊥BD,交BD延长线于M,在直角三角形ABM中,利用30度角所对的直角边等于斜边的一半得到B=2AM,.再利用AAS得出三角形BCD与三角形ADM全等,由全等三角形的对应边相等得到AM=BC,等量代换即可得证.证明:作AM⊥BD,交BD延长线于M,∵在Rt△ABM中,∠ABD=30°,∴AB=2AM,∵BD为AC边上的中线,∴AD=CD,∵DB⊥BC,∴∠DBC=∠M=90°,∵在△BCD和△MAD中,,∴△BCD≌△MAD(AAS),∴AM=BC,所以,AB=2BC.【总结】此题考查了含30度直角三角形的性质,全等三角形的判定与性质,熟练掌握性质是解本题的关键.【难度】3【题目】题型2变式练习2:含30°角的直角三角形如图所示,等边△ABC中,AD⊥BC于D,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过E作EF⊥AC,垂足为F.(1)如图1,求证:2BD=2CF+BE;(2)若AB=4,过F作FQ⊥AB,垂足为Q,PQ=1,求BP的长.【答案】(1)证明:∵△ABC是等边三角形,AD⊥BC,∴BC=2BD,∠C=60°,∵EF⊥AC,∴∠EFC=90°,∴∠FEC=30°,∴EC=2FC,∵BC=BE+EC,∴2BD=2CF+BE;(2)PB=【解析】分析:(1)根据等边三角形的性质和含30°的直角三角形的性质即可得到结论.(2)设PB=x,解直角三角形求得CF=CE=2﹣x,AF=4﹣CF=2+x,AQ=AF=1+ x,列方程x+1+1+x=4,解得x=,于是得到结论.(1)证明:∵△ABC是等边三角形,AD⊥BC,∴BC=2BD,∠C=60°,∵EF⊥AC,∴∠EFC=90°,∴∠FEC=30°,∴EC=2FC,∵BC=BE+EC,∴2BD=2CF+BE;(2)解:如图,过F作FQ⊥AB于Q,设PB=x,∵PE⊥BC,∠B=60°,∴BE=x,CE=4﹣x,∵EF⊥AC,∠C=60°,∴CF=CE=2﹣x,∴AF=4﹣CF=2+x,∵∠BAC=60°,FQ⊥AB,∴AQ=AF=1+x,∴x+1+1+x=4,∴x=,∴PB=,如图2,过E作GE⊥AB于G,∴EG+EF=AD,2EG=PE,∴PE+EF=AD,即,PE+2EF=2AB,∴PB=.【总结】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟记等边三角形的性质是解题的关键.【难度】3【题目】题型3:直角三角形斜边中线的应用如图,已知AC⊥BC,AD⊥BD,E为AB的中点,(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【答案】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,∴CE=AB,DE=AB∴CE=DE,即△ECD是等腰三角形;(2)CD=.【解析】分析:(1)根据直角三角形的性质得到CE=AB,DE=AB,得到CE=DE,证明结论;(2)过点E作EH⊥CD,根据三角形的面积公式求出EH,根据勾股定理求出DH,根据等腰三角形的性质计算即可.(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,∴CE=AB,DE=AB∴CE=DE,即△ECD是等腰三角形;(2)解:∵AD=BD,∠ADB=90°,∴DE⊥AB,已知DE=4,EF=3,∴DF=5,过点E作EH⊥CD,∵∠FED=90°,EH⊥DF,∴EH==,∴DH==,∵△ECD是等腰三角形,∴CD=2DH=.【总结】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【难度】3【题目】题型3变式练习1:直角三角形斜边中线的应用如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=20,DE=12,求△MDE的面积.【答案】(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)48【解析】分析:(1)连接ME、MD,根据直角三角形的性质证明;(2)根据勾股定理求出MN,根据三角形的面积公式计算即可.(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)解:∵BC=10,ED=6,∴DM=BC=10,DN=DE=6,由(1)可知∠MND=90°,∴MN===4,∴S△MDE=DE×MN=×12×8=48.【总结】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【难度】3【题目】题型3变式练习2:直角三角形斜边中线的应用已知,如图,在Rt△ABC中,∠C=90°,点E在AC上,AB=DE,AD∥BC.求证:∠CBA=3∠CBE.【答案】证明:取DE的中点F,连接AF,∵AD∥BC,∠ACB=90°,∴∠DAE=∠ACB=90°,∴AF=DF=EF=DE,∵AB=DE,∴DF=AF=AB,∴∠D=∠DAF,∠AFB=∠ABF,∴∠AFB=∠D+∠DAF=2∠D,∴∠ABF=2∠D,∵AD∥BC,∴∠CBE=∠D,∴∠CBA=∠CBE+∠ABF=3∠CBE.【解析】分析:取DE的中点F,连接AF,根据直角三角形的性质求出AF=DF=FE=DE,推出DF=AF=AB,根据等腰三角形的性质求出∠D=∠DAF,∠AFB=∠ABF,求出∠ABF=2∠D,∠CBE=∠D,即可得出答案.证明:取DE的中点F,连接AF,∵AD∥BC,∠ACB=90°,∴∠DAE=∠ACB=90°,∴AF=DF=EF=DE,∵AB=DE,∴DF=AF=AB,∴∠D=∠DAF,∠AFB=∠ABF,∴∠AFB=∠D+∠DAF=2∠D,∴∠ABF=2∠D,∵AD∥BC,∴∠CBE=∠D,∴∠CBA=∠CBE+∠ABF=3∠CBE.【总结】本题考查了等腰三角形的性质,直角三角形的性质,平行线的性质,三角形的外角性质的应用,能正确作出辅助线是解此题的关键,难度适中.【难度】3【题目】兴趣篇1已知:如图,在Rt△ABC中,∠C=90°,∠B=5∠A,CD⊥AB,垂足为D,求证:AB=4CD.【答案】证明:作斜边AB上的中线CM,∵∠C=90°,∠B=5∠A,∴∠A+∠B=∠A+5∠A=6∠A=90°,∴∠A=15°,∵CM是在Rt△ABC斜边AB上的中线,∴AM=CM,∴∠A=∠ACM=15°,∴∠CMD=30°,∵CD⊥AB,∴∠CDM=90°,∴CM=2CD,∴AB=2CM=4CD.【解析】【分析】作斜边AB上的中线CM,由∠C=90°,∠B=5∠A,根据三角形的内角和得到∠A+∠B=∠A+5∠A=6∠A=90°,求得∠A=15°,根据直角三角形的性质得到AM=CM,由等腰三角形的性质得到∠A=∠ACM=15°,根据外角的性质得到∠CMD=30°,于是得到CM=2CD,依此得到结论.证明:作斜边AB上的中线CM,∵∠C=90°,∠B=5∠A,∴∠A+∠B=∠A+5∠A=6∠A=90°,∴∠A=15°,∵CM是在Rt△ABC斜边AB上的中线,∴AM=CM,∴∠A=∠ACM=15°,∴∠CMD=30°,∵CD⊥AB,∴∠CDM=90°,∴CM=2CD,∴AB=2CM=4CD.【总结】本题考查了含30°角的直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.【难度】3【题目】兴趣篇2已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.(2)解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF(AAS),∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.【解析】分析:(1)根据含30°角的直角三角形的性质进行证明;(2)作CE⊥AM、CF⊥AN于E、F.根据角平分线的性质,得CE=CF,根据等角的补角相等,得∠CDE=∠ABC,再根据AAS得到△CDE≌△CBF,则DE=BF.再由∠MAN=120°,AC平分∠MAN,得到∠ECA=∠FCA=30°,从而根据30°所对的直角边等于斜边的一半,得到AE=AC,AF=AC,等量代换后即可证明AD+AB=AC仍成立.(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.(2)解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF(AAS),∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.【总结】此题综合考查了角平分线的性质、全等三角形的性质和判定及含30°角的直角三角形的知识;作出辅助线是正确解答本题的关键.注意:在探索(2)的结论的时候,能够运用(1)的结论.【难度】3【题目】备选试题1如图,在△ABC中,已知AB=AC=2a,∠ABC=15°,CD是腰AB上的高,求CD的长.【答案】a【解析】分析:过点C作CD⊥AB于D,根据等腰三角形的性质,三角形的内角与外角的关系得到∠DAC=30°.在直角△ACD中,根据30°角所对的直角边等于斜边的一半解得CD的长.解:过点C作CD⊥AB于D∵AB=AC,∴∠C=∠ABC=15°,∴∠DAC=30°,∵AB=AC=2a,∴在直角△ACD中CD=AC=a.【总结】本题主要考查了等腰三角形的性质:等边对等角.三角形的内角与外角的关系以及直角三角形中30度所对的直角边等于斜边的一半.【难度】3【题目】备选试题2如图,AF垂直平分BC于D,∠ACB=∠F=30°,AC=4cm,点M从点D出发以每秒1cm 的速度向终点F运动,设运动时间为t,△CMF的面积为S.(1)求S与t之间的函数关系;(2)连接BM,并延长交CF于P,当S=4时,判断△CMP的形状.【答案】(1)S=6﹣t;(2)直角三角形.【解析】分析:(1)根据∠ACB=∠F=30°,AC=4cm求得CD=2,DF=6,则用三角形CDF的面积减去三角形CDM的面积即可得到s;(2)将S=4代入求得的解析式即可求得DM的长,然后可以判断三角形CMP的形状.解:(1)∵∠ACB=∠F=30°,AC=4cm,∴AD=2,CD=BD=2,∵AF⊥BC,∴△ACD∽△CFD,∴=,即DF===6cm,∴S=CD•DF﹣CD•DM=×2(6﹣t)=6﹣t;(2)当S=4时,6﹣t=4,解得t=2,∴DM=2,∴AM=AC=CM=4,∴∠ABM=∠ACM=60°,∴∠CBP=30°,∴∠BPC=90°,∴△CMP是直角三角形.【总结】本题考查了三角形的面积、等腰三角形的判定等形状,与函数的知识结合起来考查是中考的热点.【难度】3。
八年级数学上册:含30°角的直角三角形的性质定理练习(含答案)
八年级数学上册:含30°角的直角三角形的性质定理练习(含答案)一.选择题(共8小题)1.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B. 4.2 C.5.8 D.7第1题第2题第3题2.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C. 5 D.2.53.如图,Rt△ABC中,∠C=90°,以点B为圆心,适当长为半径画弧,与∠ABC的两边相交于点E,F,分别以点E和点F为圆心,大于的长为半径画弧,两弧相交于点M,作射线BM,交AC于点D.若△BDC的面积为10,∠ABC=2∠A,则△ABC的面积为()A.25 B.30 C.35 D.404.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4cm B.2cm C.1cm D.m5.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB第5题第6题第7题第8题6.如图是屋架设计图的一部分,立柱BC垂直于横梁AC,AB=10m,∠A=30°,则立柱BC的长度是()A.5m B.8m C.10m D.20m7.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米 B.9米C.12米 D.15米8.如图,已知∠ABC=60°,DA是BC的垂直平分线,BE平分∠ABD交AD于点E,连接CE.则下列结论:①BE=AE;②BD=AE;③AE=2DE;④S△ABE =S△CBE,其中正确的结论是()A.①②③B.①②④ C.①③④ D.②③④二.填空题(共10小题)9.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________ .10.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= _________ .11.如图,在△ABC中,∠C=90°,∠B=60°,AB=10,则BC的长为_________ .12.如图,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,底边上的高AD= _______cm.第9题第10题第11题第12题13.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD= _________ cm.第13题第14题第15题第16题14.如图,在△ABC中.∠B=90°,∠BAC=30°.AB=9cm,D是BC延长线上一点.且AC=DC.则AD= _________ cm.15.如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为_________ 米.= _________ .16.在△ABC中,已知A B=4,BC=10,∠B=30°,那么S△ABC17.如图,△ABC是等边三角形,AD⊥BC,DE⊥AC,若AB=12cm,则CE= ______ cm.18.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是_________ 海里.三.解答题(共5小题)19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.20.如图,在△ABC中,BA=BC,∠B=120°,AB的垂直平分线MN交AC于D,求证:AD=DC.21.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求AC的长.22.如图,△ABC中,∠ACB=90°,CD是△ABC的高,∠A=30°,AB=4,求BD长.23.如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.等边三角形(2):一、DABCCABC二、9、2;10、2;11、5;12、6;13、2;14、18;15、6;16、10;17、3;18、10三、19、(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.20、解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°﹣30°=90°,∴BD=DC,∴AD=DC.21、解:∵△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC, ∴∠2=∠3=30°;在Rt△B CD中,CD= BD,∠4=90°﹣30°=60°(直角三角形的两个锐角互余);∴∠1+∠2=60°(外角定理),∴∠1=∠2=30°,∴AD=BD(等角对等边);∴AC=AD+CD=AD;又∵AD=6,∴AC=9.22、解:∵△ABC中,∠ACB=90°,∠A=30°,AB=4,∴BC=AB=×4=2,∵CD是△ABC的高,∴∠CDA=∠ACB=90°,∠B=∠B,故∠BCD=∠A=30°,∴在Rt△BCD中,BD=BC=×2=1,∴BD=1.23、(1)证明:∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°∵∠AB C=∠ADC=90°,∴∠DCA=∠BCA=30°,在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴AD+AB=AC;(2)解:结论AD+AB=AC成立.理由如下:在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC,∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°, ∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.。
2023学年人教版数学八年级上册压轴题专题精选汇编(含30°角的直角三角形)解析版
2023学年人教版数学八年级上册压轴题专题精选汇编含30°角的直角三角形考试时间:120分钟试卷满分:100分一、选择题(共10题;共20分)1.(2分)(2021八上·松桃期末)如图△ABC是等边三角形点E是AC的中点过点E作EF⊥AB于点F 延长BC交EF的反向延长线于点D 若EF=1 则DF的长为()A.2B.2.5C.3D.3.5【答案】C【完整解答】解:连接BE∵△ABC是等边三角形点E是AC的中点∴∠ABC=60° ∠ABE=∠CBE=30°∵EF⊥AB∴∠D=90°-∠ABC=30° 即∠D=∠CBE=30°∴BE=DE在Rt△BEF中EF=1∴BE=2EF=2∴BE=DE=2∴DF=EF+DE=3故答案为:C.【思路引导】连接BE 根据等边三角形的性质得∠ABC=60° ∠ABE=∠CBE=30° 易求∠D=30° 即得∠D=∠CBE 由等角对等边可得BE=DE 根据含30°角的直角三角形的性质可得BE=2EF=2 即得DE=2 从而得出DF=EF+DE=32.(2分)(2021八上·平阴期末)如图 △ABC 中 ∠C =90° AB =8 ∠B =30° 点P 是BC 边上的动点 则AP 长不可能是( )A .3.5B .4.2C .5.8D .7.3【答案】A 【完整解答】解:∵∠C=90° AB=8 ∠B=30°∴AC=12AB=12×8=4 ∵点P 是BC 边上的动点∴4<AP <8∴AP 的值不可能是3.5.故答案为:A .【思路引导】根据含30°角的直角三角形的性质可得AC=12AB=4 根据垂线段最短得出AP 的最小值 然后得出AP 的范围 即可判断.3.(2分)(2021八上·海丰期末)如图 OE 为AOB ∠的角平分线 30AOB ∠=︒ 6OB = 点P C 分别为射线OE OB 上的动点 则PC PB +的最小值是( )A .3B .4C .5D .6【答案】A 【完整解答】解:过点B 作BD ⊥OA 于D 交OE 于P 过P 作PC ⊥OB 于C 此时PC PB +的值最小∵OE 为AOB ∠的角平分线 PD ⊥OA PC ⊥OB∴PD=PC∴PC PB +=BD∵30AOB ∠=︒ 6OB = ∴132BD OB == 故答案为:A .【思路引导】根据角平分线的性质求出PD=PC 再求出PC PB +=BD 最后求出BD 的值即可。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(一)
第Ⅰ卷
一、选择题:本大题共 14 个小题,每题 2 分,共 28 分,在每个小题的四个选项中只有一项是符合题目要求 的.
1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列 4 个汉字中,可以 看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是( )
A.①②
B.①②③
C.①②④
第Ⅱ卷
D.①②③④
二、填空题:本题共 4 个小题;每个小题 3 分,共 12 分,把正确答案填在横线上.
15.(2020·福建省福州延安中学八年级期中)已知点 Р(a,3)和点 Q(4,b)关于 x 轴对称,则 a b 2021 ________.
A. 35
B. 40
高,则 CD 的长( )
A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④ 13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形 ABC 的边 AB 上一点 P ,作
PE AC 于点 E , Q 为 BC 延长线上一点,当 AP CQ 时, PQ 交 AC 于点 D ,则 DE 的长为( )
D.不能确定
14.(2022·陕西·西安爱知初级中学七年级期末)如图,在 VABC 中, BAC 90, AB 2AC ,点 D 是线段
AB 的中点,将一块锐角为 45 的直角三角板按如图 VADE 放置,使直角三角板斜边的两个端点分别与 A 、
D 重合,连接 BE 、 CE , CE 与 AB 交于点 F. 下列判断正确的有( )
△A1B1C1 ,第二次将等边 △A1B1C1 的三边向外延长一倍,得到第二个新的 △A2B2C2 ,依此规律继续延长下去, 若△ABC 的面积 S0 1,则第 2022 个新的三角形的面积 S2022 为________
备考2021年中考数学复习专题:图形的性质_三角形_含30度角的直角三角形,解答题专训及答案
备考2021年中考数学复习专题:图形的性质_三角形_含30度角的直角三角形,解答题专训及答案备考2021中考数学复习专题:图形的性质_三角形_含30度角的直角三角形,解答题专训1、(2012淮安.中考真卷) 如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10 ,AB=20.求∠A的度数.2、(2018秦皇岛.中考模拟) 如图,海中有一小岛P,在距小岛P的16 海里范围内有暗礁,一轮船自西向东航行,它在A 处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?3、(2017吉林.中考模拟) 如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)4、(2017江阴.中考模拟) 如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?5、(2017西湖.中考模拟) 小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)6、(2017宁波.中考真卷) 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.7、(2017瑶海.中考模拟) 在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).8、(2018威海.中考真卷) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.9、(2017洛宁.中考模拟) 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻事故,立即出发了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以50海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)10、(2017黄州.中考模拟) 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)11、(2016广东.中考真卷) 如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CD B的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.12、(2017上思.中考模拟) 如图,已知在正方形ABCD中,AE∥BD,BE=BD,BE交AD于F.求证:DE=DF.13、(2018天水.中考真卷) 如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90º,∠CED=45º,∠DCE=30º,DE= ,BE=2 .求CD的长和四边形ABCD的面积.14、(2020青羊.中考模拟) 如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2 ,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,求 AF长。
2.5第3课时 含30°的直角三角形与斜边上的中线性质(七大题型)(原卷版)-2024-2025学年
八年级上册数学《第2章 轴对称图形》2.5 等腰三角形的轴对称性第3课时 含30°的直角三角形与斜边上的中线性质◆1、直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.◆2、几何语言:∵ 在R t △ABC 中,点O 是AB 的中点,∴ OB =AO =CO =21AC . ◆3、直角三角形斜边上的中线性质适用于任何直角三角形.◆在直角三角形中,30°角所对的直角边等于斜边的一半.◆此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.【注意】①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用; ①应用时,要注意找准30°的角所对的直角边,点明斜边.【例题1】(2022春•镇江期末)如图,在Rt △ABC 中,∠ACB =90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD =5,则EF的长为 .【变式1-1】(2023春•青原区期末)如图,在△ABC中,∠ABC=90°,点D是BC边上的一点,点P是AD的中点,若AC的垂直平分线经过点D,DC=8,则BP=()A.8B.6C.4D.2【变式1-2】如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=3,则AB的长为.【变式1-3】(2022秋•海口期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD于点D,过点D作DE ∥AC,交AB于点E,若AB=6,则DE的长为()A.2.5B.3C.3.5D.4【变式1-4】如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.2√3【变式1-5】如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3B.4C.5D.6【变式1-6】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是.【例题2】(2023春•中山市期末)如图,在△ABC中,∠ABC=90°,∠A=28°,D是AC的中点,则∠CBD=°.【变式2-1】(2022秋•仓山区校级期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD,若∠BAD=52°,则∠EBD=°.【变式2-2】(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=√3,则∠ACD=()A.15°B.30°C.22.5°D.45°【变式2-3】(2021秋•潍坊期末)如图,四边形ABCD中,∠ADC=∠ABC=90°,E为对角线AC的中点,∠DAC=30°,∠CAB=40°,连结BE,DE,BD,则∠BDE=度.【变式2-4】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,∠ECD是度.【变式2-5】如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC=°.【变式2-6】如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=80°,那么∠GHE等于()A.5°B.10°C.20°D.30°【变式2-7】(2022秋•市中区校级月考)如图,已知△ABC中,∠ACB=90°,O为AB的中点,点E在BC上,且CE=AC,∠BAE=15°,求∠COE的度数.【例题3】如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.【变式3-1】(2022秋•大名县期末)如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE.(1)求证:∠AEC=∠C;(2)求证:BD=2AC;【变式3-2】(2022春•零陵区校级期中)如图,△ABC中,BE平分∠ABC,BE⊥AF于F,D为AB中点,请说明DF∥BC的理由.【变式3-3】如图,已知△ABC的高BD、CE相交于点O,M、N分别是BC、AO的中点,求证:MN垂直平分DE.【变式3-4】如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.【变式3-5】在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC的中点,AE∥BC交BD 的延长线于点E,其中∠FBC=2∠FBD.(1)求∠EDC的度数.(2)求证:BF=AE.【变式3-6】如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.【变式3-7】如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=12 AC;(2)若EF⊥AC,求证:AM+DM=CB.【变式3-8】(2022秋•宿城区期中)如图,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明你的猜想.(3)当∠BAC变为钝角时,如图②,上述(1)(2)中的结论是否都成立?若成立,直接回答,不需证明;若不成立,请说明理由.【例题4】如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC=3,则OF长度是()A.3B.4C.5D.6【变式4-1】(2023•香洲区校级一模)如图,三角形ABC中,∠ACB=90°,CD是高,∠A=30°,AB=8,则BD的长为()A.1B.2C.2.5D.3【变式4-2】(2022春•三水区校级期中)如图,在①ABC中,①C=90°,①A=15°,①DBC=60°,BC=1.5,则AD的长为()A.1.5B.2C.3D.4【变式4-3】(2022春•西安期末)如图,在①ABC中,AB=AC,①C=30°,点D在BC上,AB①AD,AD =3cm,则BC的长为cm.【变式4-4】如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE =3,则AB的长为()A.16B.12C.9D.10【变式4-5】如图是“人字形”钢架,其中斜梁AB=AC,顶角∠BAC=120°,跨度BC=10m,AD为支柱(即底边BC的中线),两根支撑架DE⊥AB,DF⊥AC,则DE+DF等于()A.10m B.5m C.2.5m D.9.5m【变式4-6】(2022春•坪山区期末)如图,在①ABC中,AB=AC,①BAC=120°,AC的垂直平分线交AC 于点D,交BC于点E,交BA的延长线于点F,若AF=2,则BF的长为.【变式4-7】如图,①ABC中,AB=AC.①BAC=120°,AC的垂直平分线交BC于D.交AC于E,DE=2.求BD的长.【变式4-8】如图,在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.【变式4-9】如图,在①ABC中,AB=AC,AD是①ABC的角平分线,点G在边BC上,EG交AD于点F,BE=BG=6cm,①BEG=60°,EF=2cm.(1)求①DFG的度数.(2)求BC的长度.【例题5】(2023春•凤翔县期中)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E求证:AE=2CE.【变式5-1】在直角三角形中∠ACB=90°,CD,CE三等分∠ACB,CD⊥AB,求证:AB=2BC.【变式5-2】如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D、E.求证:CE=13AC.【变式5-3】如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,求证:BD=14AB.【变式5-4】如图,在等边①ABC中,点D、E分别在边BC、AC上,且AE=CD,BE与AD相交于点P,BQ①AD于点Q.(1)求证:①ABE①①CAD;(2)请问PQ与BP有何关系?并说明理由.【例题6】一棵大树在一次强台风中于离地面6米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.12米B.18米C.24米D.30米【变式6-1】(2022•鱼峰区模拟)如图,是柳州市鱼马公园一段索道的示意图,已知A、B两点间的距离为30米,①A=30°,则缆车从A点到达B点过程中,上升的高度(BC的长)为米.【变式6-2】(2022春•永定区校级期中)如图所示,为了躲避海盗,一轮船由西向东航行,早上8点,在A处测得小岛P在北偏东75°的方向上,以每小时20海里的速度继续向东航行,10点到达B处,并测得小岛P在北偏东60°的方向上,已知小岛周围22海里内有暗礁,若轮船仍向前航行,有无触礁的危险?【变式6-3】(2022秋•民权县期末)如图,一条船上午8时从A处以20海里/小时的速度向正南航行,上午10时到达B处,从A处测得灯塔C在南偏东30°的方向上,在B处测得灯塔C在南偏东60°的方向上.(1)求B处离灯塔C的距离:(2)轮船从B处出发,按原速度航行,再过多少小时灯塔C正好在船的正东方向.【变式6-4】(2023春•宿州月考)上午8时,一条船从海岛A出发,以每小时航行18海里的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得灯塔C在A的北偏西15°,灯塔C在B的北偏西30°方向上,在小灯塔C的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.【变式6-5】如图,已知某船于上午8点在A处观测小岛C在北偏东60°方向上.该船以每小时40海里的速度向东航行到B处,此时测得小岛C在北偏东30°方向上.船以原速度再继续向东航行2小时到达小岛C的正南方D点.求船从A到D一共走了多少海里?【例题7】(2022秋•宜春期末)如图所示,在等边△ABC中,AB=8cm,点P与点Q分别从点B,C同时出发,沿三角形的边运动,已知点P的速度为2cm/s,点Q的速度为1cm/s,设点P与点Q运动的时间运动s后,可得到Rt△CPQ.为ts.当0<t<12时,点P与点Q【变式7-1】(2023春•普宁市月考)如图,在△ABC中,∠C=90o,∠A=30o,AB=60cm,动点P、Q 同时从A、B两点出发,分别在AB、BC边上匀速移动,点P的运动速度为2cm/s,点Q的运动速度为1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?【变式7-2】(2022春•南城县期中)如图,在Rt①ABC中,①C=90°,①A=30°,BC=12cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为多少时,①PBQ是等边三角形?(2)P、Q在运动过程中,①PBQ的形状不断发生变化,当t为多少时,①PBQ是直角三角形?请说明理由.【变式7-3】(2022秋•晋安区期末)如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B 两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 CEF(AAS),∴BE=CF,∵CF=2CE,∴BE=2CE,又∵BE+CE=8,∴ 16 16 8 CE= 3 ,∴BD= 3 ,∴AD=3
16.已知∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.
(1)如图①,当∠B=∠D时,求证:AB+AD=AC;
(2)如图②,当∠B≠∠D时,(1)中的结论是否仍然成立?并说明理由.
) C
A.30° B.60°
C.30°或150° D.不能确定
11.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植草皮
以美化环境,已知∠A=150°,这种草皮每平方米售价 a元,则购买这 种草皮至少需要( B)
A.300a元 B.150a元 C.450a元 D.225a元
12.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分 6. 别交BC,AB于点M,N,且BM=3,则CM=____
14.台风是一种自然灾害,如图,气象部门观测到距A市正北方向200千
米的B处有一台风中心,其中心最大风力为12级,该台风中心正以18千
米/时的速度沿直线向C移动,且台风中心风力不变.已知每远离台风中
心20千米,风力就减弱一级,若A市所受风力不到4级,则称不受台风影
响.根据以上信息回答下列问题: (1)A市是否会受到这次台风影响?请说明理由. (2)若A市受影响,所受最大风力是几级?
解:(1)作 AD⊥BC 于点 D,在 Rt△ABD 中,∠B=30°,AB=200 1 千米,∴AD=2AB=100 千米.由题意知,受台风影响范围的半径为 20× (12-4)=160(千米),∵AD=100 千米<160 千米,∴A 市将受到台风影响 100 (2)当台风中心位于 D 处时,A 市所受风力最大,其风力为 12- 20 =7(级)
7.将一副三角尺按如图所示叠放在一起,若AB=12 cm,则阴影部分的
2. 面积是____cm 18
8.如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点 D,试确定BC与AD的数量关系,并说明理由. 解:BC=3AD.理由:易证∠B=∠BAD=∠C=30°,∴AD=BD,在 Rt△ACD中,CD=2AD,∴BC=BD+CD=3AD
解:(1)由∠B+∠D=180°,∠B=∠D,得∠B=∠D=90°,由已知 1 1 得∠CAB=∠CAD=60°,∴∠ACB=∠ACD=30°,∴AB=2AC,AD=2 AC,∴AB+AD=AC (2)仍然成立.理由:过点 C 作 CE⊥AB 的延长线于 点 E,作 CF⊥AD 于点 F.由角平分线的性质知 CE=CF,可证∠CBE=∠D, 由 AAS 可证△CBE≌△CDF,∴BE=DF.由(1)可知 AE+AF=AC,∴AB+ BE+AD-DF=AC,即 AB+AD=AC
15 . 如 图 , 等 边 △ ABC 的 边 长 为 8 , D 为 AB 边 上 一 动 点 , 过 点 D 作 DE⊥BC于点E,过点E作EF⊥AC于点F. (1)若AD=2,求AF的长; (2)求当AD取何值时,DE=EF?
解:(1)∵△ABC 为等边三角形,∴AB=BC=AC=8,∠B=∠C=60 °,∵BD=AB-AD=8-2=6,DE⊥BC,∴∠BDE=90°-60°=30°, 1 ∴BE=2BD=3,∴EC=8-3=5,∵EF⊥AC,∴∠FEC=90°-60°=30 1 5 5 11 °,∴FC=5×2=2,∴AF=8-2= 2 (2)当 DE=EF 时,△BDE≌△
13.如图,在△ABC中,BD是AC边上的中线,∠ABD=30°,∠CBD =90°,求证:AB=2BC. 证明:延长 BD 至 E , 使 DE = BD , 连接 AE , 易证△ ADE≌△CDB(SAS) , ∴∠AED=∠CBD=90°,AE=BC,∵∠ABD=30°,∴在Rt△ABE
中,AB=2AE,∴AB=2BC
3 .在Rt△ABC中,CD 是斜边 AB上的高, ∠B=30°,AD =2 cm ,则 AC的长是( B)
A.2 cm B.4 cm C.6 cm D.8 cm
4 . 如图 , ∠ AOP =∠ BOP = 15° , PC∥OA , PD⊥OA , 若 PC = 10 , 则 PD等于( C ) A.10 B.20 C.5 D.2.5
第十三章
13.3
轴对称
等腰三角形 等边三角形
13.3.2
第2课时 含30°角的直角三角形的性质
知识点:含30°角的直角三角形的性质 1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与 地面成30°角,这棵树在折断前的高度为( A.6米 B.9米 C.12米 D.15米
B)
2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边 上的动点,则AP的长不可能是( A.3.5 B.4.°,CD 是高,∠A=30°. 1 求证:BD=4AB.
1 解:在 Rt△ABC 中,∵∠A=30°,∴BC=2AB,在 Rt△BCD 中, 1 1 ∵∠B=90°-∠A=60°,∴∠BCD=30°,∴BD=2BC,∴BD=4AB
10.等腰三角形一腰上的高等于腰长的一半,则顶角的度数是(
方法技能: 1 .对于含 30°角的直角三角形的性质 ,应用的前提是在直角三角形中 ,结论
是30°角所对的直角边是斜边的一半,而不是任一直角边是斜边的一半.
2.该性质是利用等边三角形的 “三线合一 ”证明的 ,它主要用来证明线段的
5.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB,CD分别 表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘 电梯从点B到点C上升的高度h=____ m4 .
6.如图,在Rt△ABC中, CD,CE分别是斜边AB上的高和中线,如果∠A 30° 2 =30°,BD=1 cm,那么∠BCD=________,BC=____cm,AD=____cm. 3