函数单调性的习题及答案 2

合集下载

函数的单调性练习题

函数的单调性练习题

函数的单调性练习题函数的单调性是高中数学中的一个重要概念,它在解决各种实际问题时起着重要的作用。

通过对函数的单调性进行分析,我们可以更好地理解函数的性质,并在解决问题时提供指导。

下面,我将给大家提供一些关于函数单调性的练习题,希望能够帮助大家更好地掌握这一概念。

练习题1:已知函数f(x) = x^2 + 3x - 2,求函数f(x)的单调区间。

解析:要求函数f(x)的单调区间,首先需要求出函数f(x)的一阶导数f'(x)。

对函数f(x)进行求导得到f'(x) = 2x + 3。

由于一阶导数的符号可以反映函数的单调性,我们只需要找出f'(x)的正负变化区间即可。

令f'(x) = 0,解得x = -1.5。

这个点将数轴分成了两个区间:(-∞, -1.5)和(-1.5, +∞)。

我们只需要在这两个区间内取一点代入f'(x),判断f'(x)的正负即可。

选取x = 0代入f'(x),得到f'(0) = 3,说明在区间(-∞, -1.5)内f'(x) > 0,在区间(-1.5, +∞)内f'(x) > 0。

因此,函数f(x)在整个定义域上都是递增的,即f(x)的单调区间为(-∞, +∞)。

练习题2:已知函数g(x) = x^3 - 6x^2 + 9x + 2,求函数g(x)的单调区间。

解析:同样地,我们需要求出函数g(x)的一阶导数g'(x)。

对函数g(x)进行求导得到g'(x) = 3x^2 - 12x + 9。

令g'(x) = 0,解得x = 1。

这个点将数轴分成了两个区间:(-∞, 1)和(1, +∞)。

选取x = 0代入g'(x),得到g'(0) = 9,说明在区间(-∞, 1)内g'(x) > 0,在区间(1, +∞)内g'(x) > 0。

函数的单调性专题

函数的单调性专题

函数的单调性专题训练一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <124.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]二、填空题6.函数f (x )=|x -1|+2的单调递增区间为________.7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.10.已知函数f(x)=1x2-1.(1)设f(x)的定义域为A,求集合A;(2)判断函数f(x)在(1,+∞)上的单调性,并用定义加以证明.11.讨论函数f(x)=x+ax(a>0)的单调性.12.已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.函数的单调性专题训练答案一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性解析:选D 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x在(0,+∞)上是增函数, 在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性.2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定解析:选 D 根据单调函数的定义,所取两个自变量必须是同一单调区间内的任意两个自变量,才能由该区间上函数的单调性来比较出函数值的大小,而本题中的x 1,x 2不在同一单调区间,故f (x 1)与f (x 2)的大小不能确定,选D.3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( )A .a ≥12B .a ≤12C .a >-12D .a <12解析:选D ∵f (x )在R 上是减函数,故2a -1<0,即a <12. 4.下列四个函数在(-∞,0)上为增函数的是( )①y =|x |+1; ②y =|x |x ; ③y =-x 2|x |; ④y =x +x |x |. A .①② B .②③ C .③④ D .①④解析:选 C ①y =|x |+1=-x +1(x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x |x |=x -1(x <0)在(-∞,0)上也是增函数.5.已知函数f (x )=⎩⎪⎨⎪⎧ a -3 x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:选D 依题意得实数a 满足⎩⎪⎨⎪⎧ a -3<0,2a >0,a -3 +5≥2a ,解得0<a ≤2.二、填空题 6.函数f (x )=|x -1|+2的单调递增区间为________.解析:f (x )=⎩⎪⎨⎪⎧ x +1,x ≥1,3-x ,x <1,显然函数f (x )在x ≥1时单调递增.答案:[1,+∞)7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________. 解析:∵函数f (x )=x 2-(a -1)x +5的对称轴为x =a -12且在区间⎝ ⎛⎭⎪⎫12,1上是增函数, ∴a -12≤12,即a ≤2. 答案:(-∞,2]8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.解析:∵f (x )是定义域上的减函数,f (-3)=2,f (1)=-2,∴当x >-3时,f (x )<2,当x <1时,f (x )>-2,则当-3<x <1时,|f (x )|<2.答案:(-3,1)三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧ -x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a的取值范围.解:由对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0知函数f (x )在R 上为减函数.当x <0时,函数f (x )=-x +3-3a 为一次函数,且为减函数,则此时f (x )>f (0)=3-3a ;当x ≥0时,函数f (x )=-x 2+a 为二次函数,也为减函数,且有f (x )≤f (0)=a .要使函数f (x )在R 上为减函数,则有a ≤3-3a ,解得a≤34.所以a 的取值范围是⎝⎛⎦⎥⎤-∞,34. 10.已知函数f (x )=1x 2-1. (1)设f (x )的定义域为A ,求集合A ;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明.解:(1)由x 2-1≠0,得x ≠±1,所以函数f (x )=1x 2-1的定义域为A ={x ∈R|x ≠±1}. (2)函数f (x )=1x 2-1在(1,+∞)上单调递减. 证明:任取x 1,x 2∈(1,+∞),设x 1<x 2,则Δx =x 2-x 1>0,Δy =y 2-y 1=1x 22-1-1x 21-1= x 1-x 2 x 1+x 2 x 21-1 x 22-1 , ∵x 1>1,x 2>1,∴x 21-1>0,x 22-1>0,x 1+x 2>0.又x 1<x 2,所以x 1-x 2<0,故Δy <0.因此,函数f (x )=1x 2-1在(1,+∞)上单调递减.11.讨论函数f (x )=x +a x (a >0)的单调性.解:f (x )=x +a x (a >0).∵定义域为{x |x ∈R ,且x ≠0},∴可分开证明,设x 1>x 2>0,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2. 当0<x 2<x 1≤a 时,恒有a x 1x 2>1, 则f (x 1)-f (x 2)<0,故f (x )在(0,a ]上是减函数;当x 1>x 2>a 时,恒有0<a x 1x 2<1, 则f (x 1)-f (x 2)>0,故f (x )在(a ,+∞)上是增函数.同理可证f (x )在(-∞,-a )上是增函数,在[-a ,0)上是减函数.综上所述,f (x )在(-∞,-a ),(a ,+∞)上是增函数,在[-a ,0),(0,a ]上是减函数.12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明: 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2 x 1+2 x 2+2 . ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1 x 1-a x 2-a . ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述a 的取值范围是(0,1].。

函数单调性练习题高中

函数单调性练习题高中

函数单调性练习题高中函数单调性练习题高中在高中数学课程中,函数单调性是一个重要的概念。

它涉及到函数图像的变化趋势,对于理解函数的性质和解决实际问题都有着重要的作用。

本文将为大家提供一些函数单调性的练习题,帮助大家巩固和加深对这一概念的理解。

练习题1:给定函数 f(x) = x^2 + 3x + 2,判断它的单调性。

解答:首先,我们需要求出函数的一阶导数 f'(x)。

对 f(x) 求导得到 f'(x) = 2x + 3。

由于一阶导数 f'(x) 的系数 2 大于 0,所以函数 f(x) 在整个定义域上是单调递增的。

练习题2:给定函数 g(x) = -2x^3 + 5x^2 - 6x + 4,判断它的单调性。

解答:同样地,我们需要求出函数的一阶导数 g'(x)。

对 g(x) 求导得到 g'(x) = -6x^2 + 10x - 6。

我们可以通过求解方程 g'(x) = 0 来找到 g(x) 的驻点。

解这个方程得到 x = 1,将该值代入 g'(x) 的二次函数形式中,我们可以发现 g'(x) 在 x= 1 处取得极小值。

进一步观察可知,g'(x) 的二次项系数 -6 小于 0,所以 g(x)在 x < 1 时是单调递增的,在 x > 1 时是单调递减的。

练习题3:给定函数 h(x) = 3^x,判断它的单调性。

解答:由于函数 h(x) 是指数函数,我们可以通过观察底数 3 的大小来判断它的单调性。

由于 3 > 1,所以函数 h(x) 在整个定义域上是单调递增的。

通过以上的练习题,我们可以看到函数单调性的判断方法是通过求解函数的一阶导数,并观察导数的符号和零点来判断函数的单调性。

对于多项式函数,我们可以通过求解导数的根来确定函数的驻点,从而进一步判断函数的单调性。

而对于指数函数、对数函数等特殊函数,我们可以通过观察底数或底数的倒数的大小来判断函数的单调性。

高中数学《函数的单调性与奇偶性》针对练习及答案

高中数学《函数的单调性与奇偶性》针对练习及答案

第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。

《1.3.1函数的单调性(1)》同步练习2

《1.3.1函数的单调性(1)》同步练习2

《1.3.1函数的单调性(1)》同步练习2一、选择题1.设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是( ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2) D .不能确定[答案] D2.下列函数在区间[0,+∞)上是增函数的是( ) ①y =2x ②y =x 2+2x -1 ③y =|x +2| ④y =|x |+2 A .①② B .①③ C .②③④ D .①②③④[答案] D3.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0x -1,x <0在R 上是( )A .减函数B .增函数C .先减后增D .无单调性[答案] B4.定义在R 上的函数f (x )对任意两个不相等实数a ,b ,总有f a -f b a -b>0成立,则必有( )[来源:学.科.网] A .函数f (x )是先增加后减少 B .函数f (x )是衔减少后增加 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数[答案] C5.已知函数f (x )=2x 2-ax -1,在[-1,2]上单调,则实数a 的取值范围是( ) A .[-4,8] B .(-∞,-4]C .[8,+∞]D .(-∞,-4]∪[8,+∞)[答案] D[解析] 由已知得二次函数f (x )=2x 2-ax -1的对称轴为x =a4,若在[-1,2]上单调则满足:a 4≤ -1或a4≥2,∴a ≤-4或9≥8,故选D .6.(2013~2014南阳市一中月考试题)若在[1,+∞)上函数y =(a -1)x 2+1与y =ax 都单调递减,则a 的取值范围是( ) A .a >0B .a >1C .0≤a ≤1D .0<a <1[答案] D[解析] 由于两函数在(1,+∞)上递减应满足⎩⎪⎨⎪⎧a -1<0a >0∴0<a <1.故选D .二、填空题7.写出下列函数的单调区间. (1)y =|x |+1________________. (2)y =-x 2+ax ________________. (3)y =|2x -1|________________. (4)y =-1x +2________________.[答案] (1)增区间[0,+∞),减区间(-∞,0];(2)增区间(-∞,a 2],减区间[a2,+∞);(3)增区间[12,+∞),减区间(-∞,12];(4)增区间 (-∞,-2)和(-2,+∞),无减区间.8.若函数y =-2x 2+mx -3在[-1,+∞)上为减函数,则m 的取值范围是________. [答案] m ≤-4[解析] 由条件知-m2×-2≤-1,∴m ≤-4.9.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.[答案] f (a 2-a +1)≤f (34)[解析] ∵a 2-a +1=(a -12)2+34≥34>0,又f (x )在(0,+∞)上为减函数,∴f (a 2-a +1)≤f(34). 三、解答题10.证明函数f (x )=x 2-4x -1在[2,+∞)上是增函数.[证明] 设x 1,x 2是区间[2,+∞)上的任意两个实数,且x 2>x 1≥2,则f (x 1)-f (x 2)=(x 21-4x 1-1)-(x 22-4x 2-1)=x 21-x 22-4x 1+4x 2=(x 1-x 2)(x 1+x 2)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4).∵x 2>x 1≥2,∴x 1-x 2<0,x 1+x 2>4, 即x 1+x 2-4>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )=x 2-4x -1在[2,+∞)上是增函数.11.若函数f (x )=⎩⎪⎨⎪⎧2b -1x +b -1,x >0-x 2+2-b x ,x ≤0在R 上为增函数,求实数b 的取值范围.[分析] 分别考虑两个分段解析式的单调性→再根据整体的单调性求b 的取值范围 [来源:学科网][解析] 由题意得⎩⎪⎨⎪⎧2b -1>02-b ≥0b -1≥f 0,解得1≤b ≤2①[注释] ①本题在列不等式组时很容易忽略b -1≥f (0),即只考虑到了分段函数在各自定义域上的单调性,忽略了f (x )在整个定义域上的单调性.[方法探究] 解决此类问题,一般要从两个方面思考:一方面每个分段区间上函数具有相同的单调性,由此列出相关式子;另一方面要考虑端点处的衔接情况,由此列出另一部分的式子.12.(能力拔高题)(1)写出函数y =x 2-2x 的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?(2)写出函数y =|x |的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?(3)定义在[-4,8]上的函数y =f (x )的图象关于直线x =2对称,y =f (x )的部分图象如图所示,请补全函数y =f (x )的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?(4)由以上你发现了什么结论?(不需要证明)[解析] (1)函数y =x 2-2x 的单调递减区间是(-∞,1],单调递增区间是[1,+∞);其图象的对称轴是直线x =1;区间(-∞,1]和区间[1,+∞)关于直线x =1对称,函数y =x 2-2x 在对称轴两侧的单调性相反.(2)函数y =|x |的单调减区间为(-∞,0],增区间为[0,+∞),图象关于直线x =0对称,在其两侧单调性相反..(3)函数y =f (x ),x ∈[-4,8]的图象如图所示.函数y=f(x)的单调递增区间是[-4,-1],[2,5];单调递减区间是[5,8],[-1,2];区间 [-4,-1]和区间[5,8]关于直线x=2对称.区间[-1,2]和区间[2,5]关于直线x =2对称,函数y=f(x)在对称轴两侧的对称区间内的单调性相反.(4)发现结论:如果函数y=f(x)的图象关于直线x=m对称,那么函数y=f(x)在直线x=m两侧对称区间内的单调性相反.。

函数的单调性练习题(含答案)

函数的单调性练习题(含答案)

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,那么f (1)等于 〔 〕 A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的递增区间是 〔 〕 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,那么实数a 的取值范围是 〔 〕A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) 〔 〕 A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x+1)|<1的解集的补集是 〔 〕 A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞〕D .(-∞,-1)∪[2,+∞〕8.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕 A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,那么以下不等式中正确的选项是〔 〕 A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,那么 〔 〕 A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,那么()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,那么a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.函数f (x )=x ax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,那么f (1)=0.②在等式中令x=36,y=6那么.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,那么f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,那么f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,那么f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,那么f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

函数单调性经典题目含解析及答案

函数单调性经典题目含解析及答案

答案: (3,)或[3,)
3、已知 f (x) x2 2x 3, g(x) f (5 x2 ) ,试求 g(x) 的单调区间
解析:复合函数的单调性,当复合函数内外层单调区间不同时,以外
层函数为界限。
答案:单调减区间为 (,2), (0,2) ,单调增区间 (2,0), (2,) 4、函数 y 2 在区间[2,4] 上的最大值和最小值
答案:[0, 1]
5
8、已知 f (x) | x a |在 (,1) 上是单调函数,则 a 的取值范围 解析: f (x) | x |是偶函数,可以画图像利用图像平移的特点来判断 答案: (,1] 9、若 y (2k 1)x b 是 R 上的减函数,则 K 的取值范围。 解析:利用一元一次函数的图像 答案: (, 1)
x2 2x 1, x [0,)
解析:利用函数图像法求单调区间及最小值
答案:函数的单调增区间为 (,0), (0,) ,最小值为 f (0) 1
7、函数 f (x) ax2 2(a 1)x 2 在区间 (,4] 为减函数,则 a 的取值范围
解析:利用一元两次函数的开口方向及对称轴或一元一次函数
x
解析:利用函数单调性
答案:20。 20、函数 f (x) 2x2 mx 1在区间[1,4]上是单调函数,则实数 m 的取值
范围
解析:二次函数对称轴与区间关系
答案: m 4或m 16
21、若 f (x) x2 bx c , f (1) 0, f (3) 0
(1)求 b,c 的值
ax 5, a,x 1 x
x

1

R
上的增函数,则
a
的取值范围

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y=2x +1 B .y=3x2+1 C .y=x2D .y=2x2+x +1 2.函数f(x)=4x2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A .-7 B .1 C .17 D .253.函数f(x)在区间(-2,3)上是增函数,则y=f(x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a ,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f(x)=8+2x -x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f(x)在区间(-∞,5)上单调递减,对任意实数t ,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( ) A .f(-1)<f(9)<f(13) B .f(13)<f(9)<f(-1) C .f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f(x)在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f(a)+f(b)≤-f(a)+f(b)]B .f(a)+f(b)≤f(-a)+f(-b)C .f(a)+f(b)≥-f(a)+f(b)]D .f(a)+f(b)≥f(-a)+f(-b)12.定义在R 上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x +2)图象的对称轴是x=0,则( )A .f(-1)<f(3)B .f (0)>f(3)C .f (-1)=f (-3)D .f(2)<f(3) 二、填空题:13.函数y=(x -1)-2的减区间是____. 14.函数y=x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f(x) = ax2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__. 三、解答题:17.f(x)是定义在( 0,+∞)上的增函数,且f(yx) = f(x)-f(y) (1)求f(1)的值.(2)若f(6)= 1,解不等式 f( x +3 )-f(x1) <2 . 18.函数f(x)=-x3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=21x -在区间[-1,1]上的单调性.20.设函数f(x)=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m -1)-f(1-2m)>0,求实数m 的取值范围.22.已知函数f(x)=xax x ++22,x ∈[1,+∞](1)当a=21时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f(1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f[x(x +3)]<f(36), 又f(x)在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f(x)在R 上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+22x )2+43x22].∵x1<x2,∴x2-x1>0而(x1+22x )2+43x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x2-x1>0,222111x x -+->0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=21x -在区间[-1,0]上是增函数,f(x)=21x -在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+)∞且x1<x2,则f(x1)-f(x2)=121+x -122+x -a(x1-x2)=1122212221+++-x x x x -a(x1-x2)=(x1-x2)(11222121++++x x x x -a)(1)当a ≥1时,∵11222121++++x x x x <1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴a ≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x1=0,x2=212aa-,满足f(x1)=f(x2)=1 ∴0<a <1时,f(x)在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x1|≥x1;122+x >x2;③从a 的范围看还须讨论0<a <1时f(x)的单调性,这也是数学严谨性的体现.21.解析: ∵f(x)在(-2,2)上是减函数∴由f(m -1)-f(1-2m)>0,得f(m -1)>f(1-2m)∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a=21时,f(x)=x +x21+2,x ∈1,+∞) 设x2>x1≥1,则f(x2)-f(x1)=x2+1122121x x x --=(x2-x1)+21212x x x x -=(x2-x1)(1-2121x x ) ∵x2>x1≥1,∴x2-x1>0,1-2121x x >0,则f(x2)>f(x1) 可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞)上的最小值为f(1)=27. (2)在区间[1,+∞)上,f(x)=xax x ++22>0恒成立⇔x2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.。

函数单调性讨论16种题型(解析版)

 函数单调性讨论16种题型(解析版)

第6讲 函数单调性含参讨论16类【题型一】 讨论思维基础:求导后一元一次型参数在常数位置(单参)【典例分析】已知函数()()ln 1f x a x x a R =+-∈. (1)讨论()f x 的单调性;(2)若函数()e 1x y f ax =-+与()e ln ay x a =+的图像有两个不同的公共点,求a 的取值范围.【答案】(1)答案见解析(2)()1,+∞【分析】(1)、先求出()f x ',对a 分类讨论判断导函数的正负即可得到单调区间;(2)、由题意将问题转化为()e e ln x a x a =+有两个不同的实根,构造()e x g x x =,判断()g x 的单调性;要使()()ln g x g x a =+有两个不同的实根,则需ln x x a =+有两个不同的实根;构造()ln h x x x a =--,对a 分类讨论判断()h x 的单调性,判断()h x 的零点,得出a 的取值范围. 解(1)()()ln 1f x a x x a R =+-∈,()1a x af x x x+'∴=+=,()0x >. ①、当0a ≥,()0f x '>,函数()f x 在()0,+∞上单调递增;①、当0a <,令()0f x '=,得x a =-,∴()0,x a ∈-时,()0f x '<;(),x a ∈-+∞时,()0f x '>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.综上所述:当0a ≥,()f x 的单调递增为()0,+∞,无单调递减区间; 当0a <,()f x 的单调递增为(),a -+∞,()f x 的单调递减为()0,a -.【变式演练】1.已知函数()ln af x x x=+,()sin x g x e x =+,其中a ∈R . (1)试讨论函数()f x 的单调性;(2)若1a =,证明:()()g x f x x<. 【答案】(1)答案见解析(2)证明见解析 【分析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证()()g x f x x<,只要证sin ln 10x e x x x +-->,由于(0,1)x ∈时,sin ln 1110x e x x x +-->-=,当[1,)x ∈+∞时,令()sin ln 1x g x e x x x =+--,再利用导数求出其最小值大于零即可(1)()ln af x x x=+的定义域为(0,)+∞221()a x a f x x x x-'=-= 当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,解得x a >;令()0f x '<,解得0x a <<; 综上所述:当0a ≤时,()f x 在(0,)+∞上单调递增,无减区间; 当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增; 2.已知函数()(2)e x f x x a =-. (1)求()f x 的单调区间(2)若()f x 的极值点为12-,且()()()f m f n m n =≠,证明:3()0ef m n -<+<.【答案】(1)单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭(2)证明见解析 【分析】(1)求导()(22)e xf x x a +-'=,由()0f x '<,()0f x '>求解;(2)由(1)结合()f x 的极值点为12-,由2122a -=-,得到1a =,()(21)e x f x x =-,作出函数()f x 的大致图象,不妨设m n <,根据()()()f m f n m n =≠,得到1122m n <-<<,再由 3(1)ef -=-,将证明3()0ef m n -<+<,转化为证明1m n +<-即可. 解:()f x 的定义域为R ,()(22)e xf x x a +-'=,由()0f x '=,得22a x -=.当2,2a x -⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当2,2a x -⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.所以()f x 的单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭. 【题型二】 讨论思维基础:求导后一元一次型参数在系数位置(单参)【典例分析】已知函数()()2ln f x x a x a =++. (1)讨论()f x 的单调性;(2)若()1212,x x x x <是2()()g x f x x ax =++的两个极值点,证明:()21g x x >.【答案】(1)当0a ≥时,()f x 在()0,∞+上为单调递增函数;当0a <时,若()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数;(2)证明见解析. 【分析】(1)()f x 的定义域为()0,∞+,求导()2f x ax x+=',分类讨论0a ≥和0a <两种情况,研究()'f x 的正负,从而求得函数的单调区间;(2)由题得2()2ln ()g x x x a =++,则()221()x ax g x x++'=,由()1212,x x x x <是2()()g x f x x ax=++的两个极值点,可知120x x <<,所以1201x x <<<,要证()21g x x >,需证()2221212ln 1g x x x x x =+>,构造函数1()2ln (1)h x x x x x=+>,即证 ()1h x >,从而证得()21g x x >.【详解】(1)易知()f x 的定义域为()0,∞+,22()ax a x xf x +=+='. 当0a ≥时,()0f x '>,所以()f x 在()0,∞+上为单调递增函数; 当0a <时,若20,x a ⎛⎫∈- ⎪⎝⎭,则()0f x '>,若2,x a ⎛⎫∈-+∞ ⎪⎝⎭,则()0f x '<, 所以()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数.【变式演练】1.已知函数f (x )=alnx +1x +4,其中a ∈R . (1)讨论函数f (x )的单调性;(2)对任意x ∈[1,e ],不等式f (x )≥1x +(x +1)2恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)[(e +1)2−4,+∞) 【分析】(1)求出导函数f ′(x),分类讨论确定f ′(x)的正负得单调区间;(2)不等式变形为(x +1)2−alnx −4≤0.引入新函数g (x )=(x +1)2−alnx −4(x ∈[1,e ]),求出导函数g ′(x),分类讨论a ≤0时,不等式不恒成立,a >0时由导数确定函数有极小值点,而最大值是比较g(e )和g(1)的大小得到,从而得出参数范围. 解(1)函数f (x )的定义域为(0,+∞), f ′(x )=ax −1x 2=ax−1x 2,当a ≤0时,f ′(x )<0恒成立,函数f (x )在(0,+∞)上单调递减; 当a >0时,由f ′(x )>0,得x >1a , 由f ′(x )<0,得0<x <1a ,①函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.综上,当a ≤0时,函数f (x )在(0,+∞)上单调递减;当a >0时,函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.2.己知函数()e mxf x x =(其中e 为自然对数的底数)(1)讨论函数()f x 的单调性;(2)当1m =时,若()ln 1f x x ax ≥++恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)(],1-∞ 【分析】(1)()()'1mxf x mx e =+,进而分0m =,0m >,0m <三种情况讨论求解即可;(2)由题意知ln 1xx a e x +≤-在()0+∞,上恒成立,故令ln 1()x x g x e x+=-,再根据导数研究函数的最小值,注意到01,1x e ⎛⎫∃∈ ⎪⎝⎭使()'00g x =,进而结合函数隐零点求解即可.(1)解:()()'1mxf x mx e =+①0m =,()f x 在R 上单调增; ①0m >,令()'10f x x m ==-,,()()'1,,0,x f x f x m ⎛⎫∈-∞-< ⎪⎝⎭单调减。

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性一、单选题(共10道,每道10分)1.已知函数是上的增函数,若,则下列不一定正确的是( )..答案:D解题思路:试题难度:三颗星知识点:函数单调性的定义]2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:C解题思路:试题难度:三颗星知识点:函数单调性的定义3.已知定义在上的函数满足:对任意不同的x1,x2,都有.若,则实数a的取值范围是( )..答案:B、解题思路:试题难度:三颗星知识点:函数单调性的定义4.函数的单调递减区间是( )..无减区间答案:A解题思路:试题难度:三颗星知识点:含绝对值函数的单调性5.函数的单调递减区间是( ) (A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:函数的单调性及单调区间6.函数的单调递增区间是( )..答案:B解题思路:#试题难度:三颗星知识点:含绝对值函数的单调性7.若是奇函数,则实数a的值为( )D.±1答案:A解题思路:试题难度:三颗星知识点:函数奇偶性的性质8.若是定义在上的偶函数,则a的值为( )A.±1~答案:C解题思路:试题难度:三颗星知识点:函数奇偶性的性质9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( )A.[-1,2]B.C.(0,1)D.答案:B解题思路:试题难度:三颗星知识点:奇偶性与单调性的综合10.已知是定义在上的奇函数,且在上单调递增,若,则不等式的解集为( )..答案:D解题思路:试题难度:三颗星知识点:奇偶函数图象的对称性。

函数的单调性练习题(含答案)

函数的单调性练习题(含答案)

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.。

函数的单调性练习题(含答案)

函数的单调性练习题(含答案)

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1, ∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

函数的单调性练习题(含答案)

函数的单调性练习题(含答案)

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性如果具有单调性,它在R 上是增函数还是减函数试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数. 19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1)可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

函数单调性常考题型含详解

函数单调性常考题型含详解

函数单调性常考题型题型一:初等函数中含参数的单调性问题典例1、如果函数 在R 上是增函数,那么a 的取值范围______. 解:根据一次函数的性质,得到,即可求解实数a 的取值范围. 详解:由题意,函数 在R 上是增函数, 根据一次函数的性质,可得,解得即实数a【点睛】本题主要考查了函数的单调性的应用,以及一次函数的性质,其中解答中根据一次函数的性质,列出不等式是解答的关键,着重考查了推理与运算能力. 变式题:1、已知函数在区间上是增函数,则实数的取值范围是______.2、函数在上是增函数,在上是减函数,则_________.3、若函数在区间上是单调函数,则实数a的取值范围是________.4、若函数f (x [m,+∞)上为增函数,则实数m 的取值范围是_____. 题型二、函数单调性与不等式典例2、若函数f(x)为R 上的减函数,则满足f(1)的实数x 的取值范围为________.【解析】先根据单调性化简不等式,再解分式不等式得结果.详解:因为函数f(x)为R 上的减函数,所以由f(1)或故答案为:【点睛】本题考查利用函数单调性解不等式、解分式不等式,考查基本分析求解能力,属基础题.21()y a x b =-+210a ->21()y a x b =-+210a ->()223f x x ax =-++(),4-∞a 2()34f x x mx =-+[5,)-+∞(,5]-∞-(1)f -=2()(24)1f x ax a x =--+(1,5)0x <(,0)[1,)-∞⋃+∞变式题:已知是定义在上的增函数,若,则的取值范围是______________.题型三、复合函数的单调性典例3__________. 【解析】首先求出函数的定义域,令,分别求出的单调区间,再利用符合函数单调性的性质即可求出的单调递增区间. 详解:因为,得,得或, 解得函数的定义域为. 令,在单调递增. 因为函数在单调递增, 在单调递增. 故答案为:【点睛】本题主要考查符合函数的单调性,特别注意先求定义域,利用复合函数“同增异减”为解题的关键,属于容易题.变式题:1、若函数的单调递增区间是,则=________. 2在是增函数,则实数的取值范围是______.3、函数f (x )=x|x|-4x 的单调递增区间是______.题型四、函数单调性概念拓展应用典例4、已知满足对任意都有成立,则实数的取值范围是_________.【解析】由题意,函数在定义域R 上是增函数,故可得到,解出即可.【详解】 ()y f x =()2,2-112f m f m m ()f x 256t x x =-+256t x x =-+()f x 2560x x -+≥(2)(3)0x x --≥2x ≤3x ≥()f x (,2][3,)-∞⋃+∞256t x x =-+[0,)+∞256t x x =-+[3,)+∞[3,)+∞[3,)+∞()2f x x a =+a [)2,+∞a ()()2111a x x f x ax x ⎧-+<=⎨≥⎩12x x ≠a ()()2111a x x f x ax x ⎧-+<=⎨≥⎩02021a a a a ⎧⎪-⎨⎪-+≤⎩>>。

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

(完整版)函数的单调性课后练习题

(完整版)函数的单调性课后练习题

函数的单调性课后练习题1.下列函数中,在(-∞,0)上为减函数的是( ) A .y =1x 2B .y =x 3C .y =x 0D .y =x 2答案:D2.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1、x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( )A.f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f (x 1)-f (x 2)>0 解析:由增函数的定义易知A 、B 、D 正确,故选C. 答案:C3.若区间(0,+∞)是函数y =(a -1)x 2+1与y =ax 的递减区间,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1 解析:由二次函数及反比例函数的性质可得⎩⎪⎨⎪⎧a -1<0,a >0,∴0<a <1. 答案:D4.若二次函数y =3x 2+2(a -1)x +b 在区间(-∞,1)上为减函数,那么( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:函数的对称轴x =1-a 3,由题意得1-a3≥1时,函数y =3x 2+2(a -1)x +b 在区间(-∞,1)上为减函数,故得a ≤-2.答案:C5.已知函数f (x )在区间[a ,b ]上具有单调性,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )A .至少有一个实根B .至多有一个实根C .没有实根D .有唯一的实根解析:∵f (x )是单调函数,且图象是连续不断的,又f (a )f (b )<0,则f (x )的图象必与x 轴相交,因此f (x )在[a ,b ]上必存在一点x 0,使f (x 0)=0成立,故答案D 正确.答案:D6.已知函数f (x )在区间[0,+∞)上为减函数,那么f (a 2-a +1)与f ⎝⎛⎭⎫34的大小关系是__________.解析:∵a 2-a +1=⎝⎛⎭⎫a -122+34≥34,又f (x )在[0,+∞)上为减函数,∴f (a 2-a +1)≤f ⎝⎛⎭⎫34. 答案:f (a 2-a +1)≤f ⎝⎛⎭⎫347.(2011·潍坊模拟)函数y =2x 2-mx +3,当x ∈[-2,2]时,是增函数,则m 的取值范围是________.解析:∵函数y =2x 2-mx +3是开口向上的抛物线,要使x ∈[-2,2]时为增函数,只要对称轴x =--m 2×2≤-2,即m ≤-8.答案:m ≤-88.函数y =|3x -5|的递减区间是________.解析:y =|3x -5|=⎩⎨⎧3x -5,x ≥53,-3x +5,x <53.作出y =|3x -5|的图象,如图所示,函数的单调减区间为⎝⎛⎦⎤-∞,53. 答案:⎝⎛⎦⎤-∞,53 9.判断函数f (x )=x +1x -1在(-∞,0)上的单调性,并用定义证明.解:f (x )=x +1x -1=x -1+2x -1=1+2x -1,函数f (x )=x +1x -1在(-∞,0)上是单调减函数.证明:设x 1,x 2是区间(-∞,0)上任意两个值, 且x 1<x 2,则f (x 2)-f (x 1)=1+2x 2-1-⎝⎛⎭⎫1+2x 1-1=2(x 1-x 2)(x 1-1)(x 2-1), ∵x 1<x 2<0,∴x 1-x 2<0,x 1-1<0,x 2-1<0, ∴2(x 1-x 2)(x 1-1)(x 2-1)<0.∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).∴函数f (x )=x +1x -1在(-∞,0)上是单调减函数.10.已知f (x )是定义在[-1,1]上的增函数, 且f (x -2)>f (1-x ),求x 的取值范围.解:由题意知⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,解得1≤x ≤2.∵f (x )在[-1,1]上是增函数,且f (x -2)>f (1-x ), ∴x -2>1-x ,∴x >32.由⎩⎪⎨⎪⎧1≤x ≤2,x >32,得32<x ≤2.故满足条件的x 的取值范围是32<x ≤2.品位高考1.(全国卷)设f (x ),g (x )都是单调函数,下列四个命题,正确的是( )①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增;②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增;③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减A .①②B .①④C .②③D .②④答案:C2.(湖南高考)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:f (x )=-x 2+2ax =-(x -a )2+a 2,当a ≤1时,f (x )在[1,2]上是减函数;g (x )=a x +1,当a >0时,g (x )在[1,2]上是减函数,则a 的取值范围是0<a ≤1.答案:D备课资源1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上不是单调函数; ③函数y =-1x 在定义域内是增函数;④y =1x 的单调区间是(-∞,0)∪(0,+∞)A .0个B .1个C .2个D .3个解析:函数的单调性定义是指定义在I 上任意两个值x 1,x 2,强调的是任意性,从而①不对;y =x 2在(-∞,0]上是减函数,在[0,+∞)上是增函数,从而y =x 2在整个定义域上不具有单调性,故②正确.y =-1x 在整个定义域内不是单调递增函数,如-3<5,而f (-3)>f (5),从而③不对;y =1x 的单调区间为(-∞,0)和(0,+∞),而不是(-∞,0)∪(0,+∞),从而④不对.答案:B2.(2007·福建)已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:依题意得⎪⎪⎪⎪1x >1,∴|x |<1,且x ≠0, ∴-1<x <1且x ≠0,因此答案C 正确. 答案:C3.函数f (x )=⎩⎪⎨⎪⎧2x +1,(x ≥1),5-x ,(x <1),则f (x )的递减区间是________.答案:(-∞,1)4.已知函数f (x )是定义在(0,+∞)上的减函数,且f (x )<f (2x -3),求x 的取值范围.解:由题意知⎩⎨⎧x >2x -3x >02x -3>0⇒32<x <3. 5.已知f (x )=x 3+x ,x ∈R ,判断f (x )的单调性并证明. 解:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=x 13+x 1-(x 23+x 2)=(x 1-x 2)(x 12+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+x 22)2+34x 22+1]<0∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2). 因此f (x )=x 3+x 在R 上是增函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是( ) A .y =2x +1 B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )]B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___.15、设()y f x =是R 上的减函数,则()3y f x =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .17. 已知在上单调递减,求实数a 的取值范围________2 已知函数。

(1)若在上是增函数,求a 的取值范围;(2)求在上的最大值。

3 已知函数在区间(0,1)上是单调递增函数。

(1)求实数a 的取值范围;20.设函数f (x )=12 x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数,当x=1时,y min=3+a,于是当且仅当y min=3+a>0时函数f(x)>0恒成立.故a>-3.。

相关文档
最新文档