相似三角形基本知识系统总结和精典例题含讲解过程
九年级数学相似三角形知识点总结及例题讲解
九年级数学相似三角形知识点总结及例题讲解相似三角形基本知识放缩与相似图形的放大或缩小称为图形的放缩运动。
当两个图形形状相同时,我们称它们为相似图形,或者简称相似性。
需要注意的是,相似图形强调形状相同,与它们的位置、颜色、大小等因素无关。
相似图形不仅仅指平面图形,也包括立体图形相似的情况。
我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的。
当两个图形形状和大小都相同时,这时是相似图形的一种特例——全等形。
相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
需要注意的是,当两个相似的多边形是全等形时,它们的对应边的长度比值为1.比例线段有关概念及性质比例线段的概念比指同一单位下两条线段的长度比较,若两线段的长度分别为m和n,则它们的比为a:b=m:n(或bn)。
比的前项为a,后项为b。
比例指两个比相等的式子,如比例线段的性质对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即比例线段的基本性质是两外项的积等于两内项积,即acbd=adbc。
比例线段还有反比性质、更比性质、合比性质等。
其中,反比性质指如果注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项、后项之间发生同样的和差变化比例仍成立。
例如:$\frac{b-ad-c}{ac}=\frac{bd}{a-b+c-d}=\frac{a+bc+d}{ac}$。
5.等比性质:若$\frac{a+c+e+\cdots+m}{a\cdot c\cdote\cdots m}=\frac{b+d+f+\cdots+n}{b\cdot d\cdot f\cdots n}$,其中$b+d+f+\cdots+n\neq 0$,则$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\cdots=\frac{m}{n}$。
注意:(1)此性质的证明运用了“设$k$法”,这种方法是比例计算和变形中一种常用方法。
相似三角形经典总复习(含知识点习题)
第23章:相似三角形 第一节:比例线段 知识点:1、相似多边形:从几何直观上来说,两个图形如果形状一致,而大小不同,则称这两个图形相似,具体到多边形,称之为相似多边形。
从严谨定义上来说,如果两个多边形各边成比例,各角相等,则称这两个多边形为相似多边形。
2、比例线段:一、线段的比:如果用同一长度单位量得两条线段a 、b 的长度分别为m ,n ,则m ∶n 就是线段a ,b 的比,记作a ∶b =m ∶n 或a mb n=,其中a 叫做比例前项,b 叫做比例后项。
二、比例线段:四条线段,如果其中两条线段的比与另外两条线段的比相同,则称这四条线段成比例线段,简称比例线段。
例如线段a 、b 、c 、d ,如果a cb d=或者(::a b c d =)a 、b 、c 、d 成比例线段,这里要注意,a 、b 、c 、d 必须按顺序写出,不能写成b c a d =或a d b c=。
三、比例外项、比例内项、第四比例项、比例中项:若a cb d=,则称a 、d 为比例外项,b 、c 、为比例内项,d 为第四比例项,如果b =c ,则称b 为a 、c 的比例中项,可记做(2b ac =)3、比例性质: 1、基本性质:如果a cb d=,则根据等式的基本性质,两边同时乘以bd 得ad bc =。
2、合比性质:如果a cb d=,则根据等式的基本性质,两边同时加上1或-1得a b c d b d ±±=。
在此处键入公式。
a b c db d±±=3、等比性质:如果a c mb d n===(0b d n +++≠),则a c m a c mb d n b d n+++====+++,运用这个性质时,一定要注意0b d n +++≠的条件。
4、黄金分割:把线段AB 分成两条线段AP 、PB (AP >PB ),如果AP 是线段PB 和AB 的比例中项,则线段AP 把线段AB 黄金分割,点P 叫做线段AB 的黄金分割点。
相似相似三角形全部知识点总结附带经典习题和答案
拔高相似三角形习题集适合人群:老师备课,以及优秀同学拔高使用。
一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
相似知识点与例题总结
相似知识点与例题总结一、相似三角形的性质及判定定理相似三角形是指有相同形状但大小不同的三角形。
对于两个相似三角形,它们的对应角相等,对应边成比例。
下面是相似三角形的一些性质及判定定理。
1. 相似三角形的性质a) 对应角相等:如果两个三角形的对应角相等,则它们是相似三角形。
b) 对应边成比例:如果两个三角形的对应边成比例,则它们是相似三角形。
2. 判定相似三角形的定理a) AA相似定理:如果两个三角形的两个角分别相等,则它们是相似三角形。
b) SSS相似定理:如果两个三角形的三条边成比例,则它们是相似三角形。
c) SAS相似定理:如果两个三角形的两条边成比例并且夹角相等,则它们是相似三角形。
d) 直角三角形的相似定理:如果两个直角三角形的两个锐角分别相等,则它们是相似三角形。
二、相似三角形的例题1. 已知在△ABC和△A'D'E'中,∠A=∠A', ∠B=∠D, AB=DE,则△ABC ∽△A'D'E'。
(AA相似定理)证明:∠A=∠A', ∠B=∠D,所以△ABC∽△A'D'E'。
2. 已知在△ABC和△A'D'E'中,AB/DE=BC/D'E'=AC/E'F',则△ABC∽△A'D'E' ∽△A'F'E'。
(SSS相似定理)证明:AB/DE=BC/D'E'=AC/E'F',根据SSS相似定理可得△ABC∽△A'D'E',△A'D'E'∽△A'F'E'。
3. 已知在△ABC和△A'D'E'中,∠A=∠A', AC/A'D'=BC/B'C',则△ABC ∽△A'D'E'。
初中数学相似三角形知识点、常见结论、解题技巧
初中数学相似三角形知识点、常见结论、解题技巧一、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
二、相似三角形的基本定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成一个类似于原三角形的三角形。
三、三角形相似的判定1、三角形相似的判定方法①、定义法:对应角相等,对应边成比例的两个三角形相似②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2、直角三角形相似的判定方法①、以上各种判定方法均适用②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
相似常见类型二、相似常见结论1若DE//AB,则DG/AF=GE/BF2若AD平分∠BAC,则AB/AC=BD/CD3若四边形ABCD是平行四边形,则AE⊃2;=EF·FG4若∠DAC=∠DBC,则△ADE~△BCE ,可推导出△AEB~△DEC即上下相似可得左右相似同理,左右相似可得上下相似相似三角形常见解题技巧1、三角形叉叉图这类题目经常考察寻找线段的比例或长度。
图中四对线段比AE/ED、AF/BF、CD/BD、CE/EF,知二求二。
常用辅助线做法:过点作三角形边的平行线遵循原则:所做辅助线不能破坏原有线段比例2、三角形的可解性一个三角形,必然有三角形、三边、三高、周长、面积等十一个量。
相似三角形知识点及典型例题
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2 )平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3 )判定定理1 :如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4 )判定定理2 :如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5 )判定定理3 :如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6 )判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt △ABC中,/ BAC=90 °, AD是斜边BC上的高,则有射影定理如下:(1)( AD ) 2=BD DC , (2)( AB ) 2=BD •BC ,典型例题:例1 如图,已知等腰厶ABC 中,AB = AC , AD 丄BC 于D , CG IIAB , BG 分别交 AD , AC 于E 、F ,求证:BE 2= EF EG 证明:如图,连结 EC,V AB = AC , AD 丄BC ,•••/ABC = ZACB , AD 垂直平分 BC•••BE = EC ,/1 =/2 , A /ABC- /1 =/ACB- Z2 ,即/3 =/4,又 CG //AB ,「./G = /3 ,二/4 = /GCE EF又v/CEG = /CEF , •••©EF S /EC , • EG = CE•••EC 2 = EG - EF ,故 EB 2=EF EG【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明•而其中利用线段的垂直平分线的性质得到 BE=EC ,把原来处在同一条直线上的三条线段 BE , EF , EC 转换到相似三角形的基本图形中是证明本题的关键。
相似三角形中考考点归纳与典型例题
相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。
掌握相似三角形的性质和应用是解决几何问题的基础。
相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
记作ΔABC ~ ΔDEF。
其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。
2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。
(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。
3. 边比例关系:相似三角形的对应边成比例。
即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。
4. 高比例关系:相似三角形的高线成比例。
即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。
5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。
(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。
(4) 相似三角形的高线间成比例。
相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。
解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。
所以∠ABC ~ ∠CBM。
根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。
例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。
解:由AE = CD可得∠A = ∠C。
又由BF = FE可得∠B = ∠AFE。
所以∠AFB ~ ∠ACD。
根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。
相似三角形判定+性质+经典例题分析
相似形(一)一、比例性质1.基本性质: bc ad d cb a =⇔=(两外项的积等于两内项积) 2.反比性质:cda b d c b a =⇔= (把比的前项、后项交换)3.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .4.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 谈重点:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5.黄金分割:○1内容 ○2尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.例题2.已知111x y x y+=+,求y x x y +的值。
概念: 谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
相似三角形常见模型及经典型例题讲解
第一局部 相似三角形模型分析一、相似三角形判定的根本模型认识〔一〕A 字型、反A 字型〔斜A 字型〕ABCDE〔平行〕CBA DE〔不平行〕〔二〕8字型、反8字型J OADBCAB CD〔蝴蝶型〕〔平行〕 〔不平行〕 〔三〕母子型〔四〕一线三等角型:三等角型相似三角形是以等腰三角形〔等腰梯形〕或者等边三角形为背景 〔五〕一线三直角型: (六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二局部相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2::如图,△ABC 中,点E 在中线AD 上,ABC DEB ∠=∠.求证:〔1〕DA DE DB ⋅=2; 〔2〕DAC DCE ∠=∠.例3::如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.相关练习:1、如图,AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
第27章相似三角形知识点总结及典型题目精选全文完整版
可编辑修改精选全文完整版相似三角形知识点总结1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。
把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。
2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D. 3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ) A 、21 B 、31 C 、32 D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC,则CD = . A .2 B .32 C .43 D .94二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为ABCD(第7题)238332589、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m .10、如图,点P 是R tΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条. 三、解答题11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.12、如图,已知AC⊥AB,BD⊥AB,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.CBAP(第10题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.15、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.16、如图,□ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.PAB DCABECDF。
相似三角形的性质及判定知识点总结+经典题型总结
相似三角形的性质及判定知识点总结+经典题型总结(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除板块 考试要求 A 级要求B 级要求C 级要求相似三角形了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等知识点睛 中考要求 相似三角形的性质及判定如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D====''''''''(k 为相似比).D 'D A 'B C 'C B A图34.相似三角形周长的比等于相似比.如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法 欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
九年级相似三角形知识点总结及例题讲解改
.AB DE AB DEBC EF AC DF ==或等相似三角形基本知识知识点四:平行线分线段成比例定理(一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例. 已知l 1∥l 2∥l 3, A D l 1B E l 2C F l 3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由∥可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角..形的三边....与原三角形三边......对应成比例. 5.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。
★三角形一边的平行线性质定理定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。
几何语言 ∵ △中∥∴DE ADBC AB =简记:下上下上= 归纳:AE AD AC AB = 和AE DEAC BC =推广:类似地还可以得到全上全上=和全下全下=E★三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.★三角形一边的平行线的判定定理ED CB A三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边. ★平行线分线段成比例定理 1.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.用符号语言表示:∥∥,,,AB DE BC EF AB DEBC EF AC DF AC DF∴===.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等. 用符号语言表示:AD BE CF AB BC DE DF ⎫⇒=⎬=⎭P P . 重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心. 重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.知识点三:相似三角形1、相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
最新最全面九年级数学相似三角形知识点总结及例题讲解(精华版)
相似三角形基本知识知识点一:放缩与相似1. 图形的放大或缩小,称为图形的放缩运动。
2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a、b 的长度分别是m、n,那么就说这两条线段的比是a:b=m:a b m nn(或)2、比的前项,比的后项:两条线段的比a:b 中。
a 叫做比的前项, b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
a b c d3、比例:两个比相等的式子叫做比例,如a b cd (或a:b=c:d)中a、d 叫做比例外项。
cd (或a:b=c:d)中b、c 叫做比例内项。
c4、比例外项:在比例ab 5、比例内项:在比例ab6、第四比例项:在比例d(或a:b=c:d)中,d 叫a a、b、c 的第四比例项。
ba (或a:b =b:c 时,我们把7、比例中项:如果比例中两个比例内项相等,即比例为b b 叫做 a 和d 的比例中项。
8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a b cd(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质a b cdad bc1. 基本性质: (两外项的积等于两内项积)a b cdbadc2. 反比性质:把比的前项、后项交换() 3. 更比性质( 交换比例的内项或外项) :a c db dc bd,(交换内项)a bcdc,(交换外项)ab.(同时交换内外项a)abcda b c d4. 合比性质:(分子加(减)分母, 分母不变)b d.注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间b aad cabcdc发生同样和差变化比例仍成立.如:.aabbccdd5. 等比性质:(分子分母分别相加,比值不变. )abcdefm(bnabcdefmnabd f n0) ,那么如果.k注意:(1)(2)(3)此性质的证明运用了“设法”,这种方法是有关比例计算,变形中一种常用方法.应用等比性质时,要考虑到分母是否为零.可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割AC AB AC 与BCAC21)定义:在线段AB 上,点C把线段AB 分成两条线段AC和B C(AC>BC),如果,即AC =AB ×BC ,那么称线段AB 被点 C 黄金分割,点 C 叫做线段AB 的黄金分割点,AB 的比叫做黄金比。
相似三角形知识点整理及习题
相似三角形知识点整理及习题相似三角形知识点整理本章的两套定理:第一套(比例的有关性质):ac/bd = ad/bc (比例基本定理)bd/ac = dc/ab 或者 bacd = a±bc±d (合比性质)bd/ac = ma+c+…+ma/(b+d+…+n) (等比性质)涉及概念:第四比例项、比例中项、比的前项、后项、内项、外项、黄金分割等。
有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:1) 与全等的判定方法的联系列表如下:类型全等三角形的判定相似三角形的判定SAS 两边对应成比例夹角相等SSS 三边对应成比例AAS(ASA)两角对应相等HL 一条直角边与斜边对应成比例从表中可以看出,只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”,就可得到相似三角形的判定定理。
6.直角三角形相似:1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:1)相似三角形的对应角相等。
2)相似三角形的对应边成比例。
3)相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比。
4)相似三角形的周长比等于相似比。
5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性:如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2.注意:相似三角形的基本定理是相似三角形的一个判定定理,也是后面研究的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A”型和“8”型。
相似三角形基本知识点+经典例题(完美打印版)
相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。
它们的对应角度相等,对应边长成比例。
以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。
2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。
b. 对应边成比例:两个相似三角形的对应边的比值相等。
3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。
b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。
二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。
如果两个三角形是相似的,则对应边的比值相等。
以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。
则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。
例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。
解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。
例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。
若AB= 10cm,BC = 15cm,求AD的长度。
解析:由于ABCD是平行四边形,所以∠B = ∠D。
根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。
相似三角形基本知识点及典型例题
相似三角形一、知识点梳理★知识点一:比例线段1、比例:如果两个数的比值与另两个数的比值相等,就说这四个数成比例,通常我们把d c b a ,,,四个实数成比例表示成:a cb d=或者a :b=c :d ,期中b ,c 称为比例内项,a ,d 称为比例外项。
a c b d =等式两边同乘以bd ,可得ad=bc ,反过来等式ad=bc 同除以bd ,可得a c b d= 2、比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,即a c b d =,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段。
3、比例中项:如果三个数a ,b ,c 满足比例式a b b c=,那么b 叫做a 、c 的比例中项, 此时有2b ac =。
4、黄金分割:如果点P 把线段AB 分成两条线段AP 和PB ,使PB AP AP AB =,那么称线段AB 被点P 黄金分割,点P 叫做线段AB 的黄金分割点,比值叫做黄金比。
长短=全长≈0.618 5、比例式变形:a c a b c d b d b d ±±=⇔=或a a c b b d+=+ 例1、如果a b =23 ,那么a a +b=_____。
例2、若a b =35 ,则a +b b的值是( ) A 、85 B 、35 C 、32 D 、58例3、若4x=5y,则x ∶y = . 例4、若3x =4y =5z ,则y z y x +-∶xx z y -+= . 例5、已知13y x -=7y ,则y y x +的值为 .例6、如果x ∶y ∶z =1∶3∶5,那么z y x z y x +--+33= 例7、如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a 例8、如果2===c z b y a x ,那么=+-+-cb a z y x 3232 例9、已知c b a +=a c b +=ba c +=x ,求x ★知识点二:相似三角形 1、定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形基本知识系统总结和精典例题含讲解过程知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。
2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm ba=)2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如dc ba=4、比例外项:在比例d c ba=(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例dc ba=(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例dc b a=(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为ab b a =(或a:b =b:c 时,我们把b叫做a 和d 的比例中项。
8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dc b a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bcad dc ba=⇔=(两外项的积等于两内项积)2.反比性质: c da b d c b a=⇒= (把比的前项、后项交换)3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:dd c bb a dc b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c dc ba b a cc d a ab dc b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nm f e d c b a ,那么ba nf d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBC ABAC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。
其中AB AC 215-=≈0.618AB 。
2)黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点..AB D E A B D EB C E F A C D F ==或等作法:①过点B 作BD ⊥AB ,使;②连结AD ,在DA 上截取DE=DB ;③在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点.黄金分割的比值为:.(只要求记住)3)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形。
知识点四:平行线分线段成比例定理(一)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比.例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3可得2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAE ABAD EAEC ADBD ECAE DBAD===或或.此推论较原定理应用更加广泛,条件是平行.成比例.那么这条直线平行于三角形的第三边. (即利用比例式证平行线)4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原.三角形三边.....对应成比例. 5.平行线等分线段定理:三条平行线截两条直线,如果在一条直线上截得的线段相等,难么在另一条直线上截得的线段也相等。
★★★三角形一边的平行线性质定理定理:平行于三角形一边的直线截其他两边所得的线段对应成比例。
几何语言 ∵ △ABE 中BD ∥CE∴DE ADBCAB=简记:下上下上=归纳:AE ADAC AB= 和AE DEAC BC=推广:类似地还可以得到全上全上=和全下全下=E★★★三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.★★★三角形一边的平行线的判定定理三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的ED CB A★★★平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.用符号语言表示:AD ∥BE ∥CF,,,A B D E B C E F A B D E B CE FA CD FA CD F∴===.2.平行线等分线段定理:两条直线被三条平行的直线所截,如果在一直线上所截得的线段相等,那么在另一直线上所截得的线段也相等. 用符号语言表示:AD BE C F AB BC D E D F ⎫⇒=⎬=⎭.重心定义:三角形三条中线相交于一点,这个交点叫做三角形的重心.重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.知识点三:相似三角形1、 相似三角形1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 2)性质:两个相似三角形中,对应角相等、对应边成比例。
3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。
相似比为k 。
4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).③相似三角形对应面积的比等于相似比的平方.2、相似的应用:位似1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。
②两个位似图形的位似中心只有一个。
③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。
④位似比就是相似比。
2)性质:①位似图形首先是相似图形,所以它具有相似图形的一切性质。
②位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。
③每对位似对应点与位似中心共线,不经过位似中心的对应线段平行。
相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDFAEF S S S ,∴)cm (542=∆CDF S . 例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.分析 由于ABD ∆∽ACE ∆,则C A E B A D ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECA ADBA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠. ∵ABD ∆∽ACE ∆,∴AEAC ADAB =.在ABC ∆和ADE ∆中,∵AEAC ADAB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C , 则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac cb b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.解:例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF ECDF AEC =∆,,又AC F∆∽ABC ∆,∴BCGF ECDF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴E A C D A F A E C A D F ∠=∠∠=∠,,∴A D F ∆∽AEC ∆.∴ACAF ECDF =.又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GFAC AF=,∴BCGFEC DF=.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆. 所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8 格点图中的两个三角形是否是相似三角形,说明理由.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BCEF ABDE .所以DEF ∆∽ABC ∆.说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC ABcm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . .解 (1)因为7128cm4cm ,7117.5cm2.5cm ,7124.5cm3.5cm ==''==''==''A C CAC B BCB A AB ,所以ABC∆∽C B A '''∆;(2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等;(5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边. (2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,bd c a =,或ca ab =,再根据比例的基本性质推出乘积式或平方式.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C . 212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B .∴12010242121=⨯⨯=''⨯''=C B C A S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F 作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆. 因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH . 由AGF ∆∽EHF ∆,得HFGF EHAG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米)所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CDEC BD AB CDBD ECAB (米),答:两岸间AB 大致相距100米.例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)答案:1506=AB 米,30750=BD 步,(注意:AK FEFH KE AK CDDG KC ⋅=⋅=,.)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4.如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴ACFC ABGF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGFS 正方形.如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1,∵GH ∥AB ,∴△C GH ∽△CBA ,∵xx x -=132,32132+=x ∴121348156)32132(2-=+=GFEHS 正方形因此,正方形的面积为3612-或121348156-.。