北师大数学九上课件1.2矩形的性质与判定(第二课时)
合集下载
1.2 矩形的性质与判定 北师大版数学九年级上册教学课件
矩形 矩形:有一个角是直角的平行四边形叫做矩形.
矩形的定义
二、合作交流,探究新知
平行四边形
有一个角是直角
矩形
矩形:有一个角是直角的平行四边形叫做矩形.
二、合作交流,探究新知
平行四边形集合 矩形集合
归纳:矩形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形 不一定是矩形.
二、合作交流,探究新知
D
O
B
C
三、运用新知
∵∠AOD=120°,
∴∠ODA=∠OAD= 1 (180°- 120°)=30°. 2
又∵∠DAB=90° ,
(矩形的四个角都是直角)
∴BD = 2AB = 2 ×2.5 = 5.
A
D
O
B
C
你还有其他解法吗?
提示:∠AOD=120° → ∠AOB=60°→ OA=OB=AB → AC=2OA=2×2.5=5.
第一章 特殊平行四边形
1.2 矩形的性质与判定
一、提出问题,引出新知
知识回顾四边形源自两组对边 分别平行平行四边形
平行四边形有哪些性质? 边:对边平行且相等
角:对角相等,邻角互补
对角线:对角线互相平分
一、提出问题,引出新知
矩形的定义 活动:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化, 请同学们注意观察.
D C
三、运用新知
例1:如图,在矩形ABCD中,两条对角线相交于点O, ∠AOD=120°, AB=2.5 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC = BD(矩形的对角线相等).
OA= OC= 1 AC,OB = OD = 1 BD ,
2
2
矩形的定义
二、合作交流,探究新知
平行四边形
有一个角是直角
矩形
矩形:有一个角是直角的平行四边形叫做矩形.
二、合作交流,探究新知
平行四边形集合 矩形集合
归纳:矩形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形 不一定是矩形.
二、合作交流,探究新知
D
O
B
C
三、运用新知
∵∠AOD=120°,
∴∠ODA=∠OAD= 1 (180°- 120°)=30°. 2
又∵∠DAB=90° ,
(矩形的四个角都是直角)
∴BD = 2AB = 2 ×2.5 = 5.
A
D
O
B
C
你还有其他解法吗?
提示:∠AOD=120° → ∠AOB=60°→ OA=OB=AB → AC=2OA=2×2.5=5.
第一章 特殊平行四边形
1.2 矩形的性质与判定
一、提出问题,引出新知
知识回顾四边形源自两组对边 分别平行平行四边形
平行四边形有哪些性质? 边:对边平行且相等
角:对角相等,邻角互补
对角线:对角线互相平分
一、提出问题,引出新知
矩形的定义 活动:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化, 请同学们注意观察.
D C
三、运用新知
例1:如图,在矩形ABCD中,两条对角线相交于点O, ∠AOD=120°, AB=2.5 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
∴AC = BD(矩形的对角线相等).
OA= OC= 1 AC,OB = OD = 1 BD ,
2
2
北师大版数学九年级上册《矩形的性质与判定》特殊平行四边形(第2课时)
”这样四步画出一个四边形. ①
④
②
③
问题2:李芳觉得按照以上步骤可以得到一个矩形?你认为她的 判断正确吗?如果正确,你能证明吗?
已猜知想::当如三图个,在角四都边是形直A角B,C该D四中边,∠形A可=∠能B是=∠矩C形=.90°.
求证:四边形ABCD是矩形.
证明:∵ ∠A=∠B=∠C=90°,
A
D
解:∵四边形ABCD是平行四边形,
∴OA= OC,OB = OD.
A
D
又∵△ABO是等边三角形, ∴OA= OB=AB= 4,∠BAC=60°.
O
B
C
∴AC= BD= 2OA = 2×4 = 8.
∴□ABCD是矩形 (对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角) .
在Rt△ABC中,由勾股定理,得
A
D
AB2 + BC2 =AC2 ,
O
B
C
∴BC= AC 2 AB2 82 42 4 3 .
∴S□ABCD=AB·BC=4×4 3 = 16 3.
例2:如图,在△ABC中, AB=AC,D为BC上一点,以AB,BD为
邻边作平行四边形ABDE,连接AD , EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形. 证明:(1)∵△ABC是等腰三角形,
∴∠B=∠ACB.
A
E
又∵四边形ABDE是平行四边形,
∴∠B=∠EDC,AB=DE,
B
D
C
∴∠ACB=∠EDC,
∴△ADC≌△ECD.
(2)∵AB=AC,BD=CD,
A
E
∴AD⊥BC,∴∠ADC=90°.
④
②
③
问题2:李芳觉得按照以上步骤可以得到一个矩形?你认为她的 判断正确吗?如果正确,你能证明吗?
已猜知想::当如三图个,在角四都边是形直A角B,C该D四中边,∠形A可=∠能B是=∠矩C形=.90°.
求证:四边形ABCD是矩形.
证明:∵ ∠A=∠B=∠C=90°,
A
D
解:∵四边形ABCD是平行四边形,
∴OA= OC,OB = OD.
A
D
又∵△ABO是等边三角形, ∴OA= OB=AB= 4,∠BAC=60°.
O
B
C
∴AC= BD= 2OA = 2×4 = 8.
∴□ABCD是矩形 (对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角) .
在Rt△ABC中,由勾股定理,得
A
D
AB2 + BC2 =AC2 ,
O
B
C
∴BC= AC 2 AB2 82 42 4 3 .
∴S□ABCD=AB·BC=4×4 3 = 16 3.
例2:如图,在△ABC中, AB=AC,D为BC上一点,以AB,BD为
邻边作平行四边形ABDE,连接AD , EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形. 证明:(1)∵△ABC是等腰三角形,
∴∠B=∠ACB.
A
E
又∵四边形ABDE是平行四边形,
∴∠B=∠EDC,AB=DE,
B
D
C
∴∠ACB=∠EDC,
∴△ADC≌△ECD.
(2)∵AB=AC,BD=CD,
A
E
∴AD⊥BC,∴∠ADC=90°.
北师大版九年级数学上册.2矩形的性质与判定课件
自我诊断
1、能够判断一个四边形是矩形的条件是(C)
A 对角线相等
B 对角线垂直
C对角线互相平分且相等 D对角线垂直且相等
2、矩形的一组邻边长分别是3cm和4cm,则它的对角线长是 5
cm
3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD
分别是∠ EAC、 ∠ MCA、 ∠ ACN、 ∠ CAF的角平分线,则四边形
九年级上册
1.2.2 矩形的性质与判定
复习回顾
四边形
两组对边 分别平行
平行 四边形
一个角 是直角
∟
矩形
定义:有一个角是直角的平行四边形叫做矩形。
四边形集合
平行四边形集合
矩形集合
边 矩形对边平行且相等;
A
D
O
角 矩形的四个角都是直角;
B
C
对角线 矩形的对角线相等且平分;
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
情境一:工人师傅为了检验两组对 边相等的四边形窗框是否成矩形, 一种方法是量一量这个四边形的两 条对角线长度,如果对角线长相等, 则窗框一定是矩形,你知道为什么 吗?
猜想:对角线相等的平行四边形是矩形 。
情境一:李芳同学有“边——直角、 边——直角、边——直角、边”这 样四步,画出了一个四边形,她说 这就是一个矩形,她的判断对吗? 为什么?
ABCD是( C ) E
A 菱形 B 平行四边形 C 矩形 D 不能确定
AP F
B
D
M
C
N
Q
能说出你这节课的收获和体验让大家与你分享吗?
作业
完成教材和 练习册中的练习 题。
北师大版数学九年级上册矩形的性质与判定(第2课时矩形的判定)课件(共26张)
{AP=DP ∵ AB=PC , BP=PC ∴△ABP≌△DCP(SSS), ∴∠D=∠A, ∵∠D+∠A=180°, ∴∠D=∠A=90°, ∵四边形ABCD是平行四边形, ∴平行四边形ABCD是矩形.
7.如图, ABCD的四个内角的平分线相交 于点E、F、G、H. 求证:EG = FH.
证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠BAD+∠ABC=180°. 又∵AH,BH分别平分∠BAD,∠ABC, ∴∠DAE=∠BAE= ∠DAB,∠CBG=∠ABG= ∠ABC, ∴∠BAE+∠ABG= (∠DAB +∠ABC )=90°, ∴∠AHB=90°, 同理可证∠EFG=90°,∠HEF=90°, ∴四边形EFGH为矩形,∴EG=FH.
∴∠ABC+∠DCB=180°.
∴∠ABC=∠DCB
=
1 2
×180°=90°.
∴□ABCD是矩形.(矩形的定义)
2.矩形的四个角都是直角,反过来,一个四边形 至少有几个角是直角时,这个四边形才是矩形呢? 请证明你的结论,并与同伴交流.
归纳结论:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,
已知:如图,在□ABCD中,对角线AC=BD.
求证:平行四边形ABCD是矩形.
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
证明: ∵四边形ABCD是平行四边形. A
D
∴AB=CD,AB∥CD.
又∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
B
C
∴∠ABC=∠DCB.
又∵AB∥CD.
巩固练习
1.如图,四边形ABCD的对角线互相平分,要使它 变为矩形,需要添加的条件是( D )
7.如图, ABCD的四个内角的平分线相交 于点E、F、G、H. 求证:EG = FH.
证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠BAD+∠ABC=180°. 又∵AH,BH分别平分∠BAD,∠ABC, ∴∠DAE=∠BAE= ∠DAB,∠CBG=∠ABG= ∠ABC, ∴∠BAE+∠ABG= (∠DAB +∠ABC )=90°, ∴∠AHB=90°, 同理可证∠EFG=90°,∠HEF=90°, ∴四边形EFGH为矩形,∴EG=FH.
∴∠ABC+∠DCB=180°.
∴∠ABC=∠DCB
=
1 2
×180°=90°.
∴□ABCD是矩形.(矩形的定义)
2.矩形的四个角都是直角,反过来,一个四边形 至少有几个角是直角时,这个四边形才是矩形呢? 请证明你的结论,并与同伴交流.
归纳结论:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,
已知:如图,在□ABCD中,对角线AC=BD.
求证:平行四边形ABCD是矩形.
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
证明: ∵四边形ABCD是平行四边形. A
D
∴AB=CD,AB∥CD.
又∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
B
C
∴∠ABC=∠DCB.
又∵AB∥CD.
巩固练习
1.如图,四边形ABCD的对角线互相平分,要使它 变为矩形,需要添加的条件是( D )
北师大版九年级数学上册1.2.2矩形的性质与判定第2课时矩形的判定(共13张PPT)
可根据条件灵活选用恰当的方法.
求证:
是矩形。
A
解:∵ABCD是平行四边形, 意四边形,还是平行四边形,然后选择适
已知:如图,平行四边形ABCD的四个内角平分线相
O
∴AC = 2OA,BD = 2OB。 矩形的判定方法分两类:
A.对角线相等
B.对角线垂直
∵OA = OB, 求证:四边形ABCD是矩形
∴∠ABC + ∠DCB = 180°,
O
是矩形吗?为什么?
)1 B
2( C
1.已知:矩形ABCD的两条对角线相交于点O, ∠AOD= 120°,AB=4cm,求矩形对角线的长。
2.已知平行四边形ABCD的对角线AC和BD相交于 点O,△AOB是等边三角形,AB= 4 cm。求这 个平行四边形的面积。
3.已知:如图,平行四边形ABCD的四个内角平分线相 交于点E,F, G,H。求证:EG=FH。
A D
C
B
定义:有一个角是直角的平行四边形叫做矩形。Βιβλιοθήκη 求证:判是矩定形定。 理1
矩 ∴ ∠A + ∠B = 180°,
∴ ∠ABC = 90°,
形 有三个角都相等的四边例形是如矩:形.
已知:在
中,AC = BD。
对角线相等的平行四边形是矩形
A
D
的 延长CD到点E,使得 DE=CD。
在Rt△ABC中,
∴ ∠A + ∠B = 180°,
∠B + ∠C = 180°,
∴AD∥BC, AB∥DC,
∴四边形ABCD是平行四边形。
∵ ∠A=90°,
∴四边形ABCD是矩形。
返回
例题 已知平行四边形ABCD的对角线AC、BD交于O,△AOB是 等边三角形,AB = 4cm,求这个平行四边形的面积.
北师大版九年级数学上册1.2 矩形的性质与判定公开课优质PPT课件(2)
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
1. 如果仅仅有一根较长的绳子,你怎么 判断一个四边形是平行四边形呢?
2. 如果仅仅有一根较长的绳子,你怎 么判断一个四边形是菱形呢?
3. 如果仅仅有一根较长的绳子,你怎 么判断一个四边形是矩形呢?
例:如图在□ABCD中,对角线AC和BD相较
于点O,△ABO是等边三角形,AB=4.
求□ABCD的面积A .
D
O
B
C
练一练1
已知:如图,M为平行四边形ABCD边AD的中点,
且MB=MC.
求证:四边形ABCD是矩形.
A
M
D
B
C
练一练2
已知:如图,菱形ABCD中,对角线AC和BD相较
于点O,CM∥BD,DM∥AC.
求证:四边形OCMD是矩形.
A
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
求证:四边形ABCD是矩形.
A
D
证明: ∵∠A=∠B=∠C=90°, B
C
∴∠A+∠B=180°,∠B+∠C=180°.
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形判定方法二
A=∠B=∠C=90°
C
四边形ABCD 是矩形
议一议:
A
D
B
ABCD AC = BD
C
四边形ABCD是矩形
情境二
李芳同学用四步画出了一个 四边形,她的画法是“边— —直角、边——直角、边— —直角、边” ,她说这就是 一个矩形,她的判断对吗? 为什么?
有三个角是直角的四边形是矩形.
1. 如果仅仅有一根较长的绳子,你怎么 判断一个四边形是平行四边形呢?
2. 如果仅仅有一根较长的绳子,你怎 么判断一个四边形是菱形呢?
3. 如果仅仅有一根较长的绳子,你怎 么判断一个四边形是矩形呢?
例:如图在□ABCD中,对角线AC和BD相较
于点O,△ABO是等边三角形,AB=4.
求□ABCD的面积A .
D
O
B
C
练一练1
已知:如图,M为平行四边形ABCD边AD的中点,
且MB=MC.
求证:四边形ABCD是矩形.
A
M
D
B
C
练一练2
已知:如图,菱形ABCD中,对角线AC和BD相较
于点O,CM∥BD,DM∥AC.
求证:四边形OCMD是矩形.
A
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
求证:四边形ABCD是矩形.
A
D
证明: ∵∠A=∠B=∠C=90°, B
C
∴∠A+∠B=180°,∠B+∠C=180°.
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形判定方法二
A=∠B=∠C=90°
C
四边形ABCD 是矩形
议一议:
A
D
B
ABCD AC = BD
C
四边形ABCD是矩形
情境二
李芳同学用四步画出了一个 四边形,她的画法是“边— —直角、边——直角、边— —直角、边” ,她说这就是 一个矩形,她的判断对吗? 为什么?
北师大版九年级数学上1.2 矩形的性质与判定 (共39张PPT)
直角三角形斜边上的中线等于斜边的一半.
2.明确定理: 直角三角形性质定理:直角三角形斜边上的
中线等于斜边的一半.
推理格式:在△ABC中, ∵∠ABC=90°,AO=CO, BO 1 AC.
2
3.定理证明
D
思路:(1)造全等:
延长BO至点D,使OD=OB,连接AD.
先证△BOC≌△DOA(SAS),
解:∵四边形ABCD是平行四边形, ∴OA=OC,OB=OD. 又∵△ABO是等边三角形, ∴OA=OB=AB=4. ∴OA=OC=OB=OD=4. ∴AC=BD=2OA=2×4=8.
∴□ABCD是矩形(对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角). 在Rt△ABC中,由勾股定理,得 AB2 + BC 2 = AC 2 ,
• 9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.821.9.8Wednesday, September 08, 2021 • 10、阅读一切好书如同和过去最杰出的人谈话。10:15:0210:15:0210:159/8/2021 10:15:02 AM • 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.810:15:0210:15Sep-218-Sep-21 • 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。10:15:0210:15:0210:15Wednesday, September 08, 2021
证明:∵AD平分∠BAC,AN平分∠CAM,
∟
CAD = 1 BAC,CAN = 1 ∠CAM.
2.明确定理: 直角三角形性质定理:直角三角形斜边上的
中线等于斜边的一半.
推理格式:在△ABC中, ∵∠ABC=90°,AO=CO, BO 1 AC.
2
3.定理证明
D
思路:(1)造全等:
延长BO至点D,使OD=OB,连接AD.
先证△BOC≌△DOA(SAS),
解:∵四边形ABCD是平行四边形, ∴OA=OC,OB=OD. 又∵△ABO是等边三角形, ∴OA=OB=AB=4. ∴OA=OC=OB=OD=4. ∴AC=BD=2OA=2×4=8.
∴□ABCD是矩形(对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角). 在Rt△ABC中,由勾股定理,得 AB2 + BC 2 = AC 2 ,
• 9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.821.9.8Wednesday, September 08, 2021 • 10、阅读一切好书如同和过去最杰出的人谈话。10:15:0210:15:0210:159/8/2021 10:15:02 AM • 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.810:15:0210:15Sep-218-Sep-21 • 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。10:15:0210:15:0210:15Wednesday, September 08, 2021
证明:∵AD平分∠BAC,AN平分∠CAM,
∟
CAD = 1 BAC,CAN = 1 ∠CAM.
北师大九年级数学上册1.2 矩形的性质与判定(2)
0
2
C
F
1
N D
∴∠2+∠4=90°即∠ECF=90°
∴四边形AECF是矩形
拓展:
(1)对角线相等的四边形是矩形吗?
(2)需要添加什么条件才能使 对 角线相等的四边形是矩形吗?
归纳:
对角线相等且互相平分的 四边形是矩形
∵ AC=BD 且OA=OC OB=OD ∴四边形ABCD是矩形
等腰梯形
现在你可以帮助木工朋友检测所制作的 窗框是否是矩形了吧,你可以测量哪些数 据,有几种方案,根据又是什么呢?
∵AE、BE分别平分∠DAB、∠ABC ∴∠EAB+∠EBA=90 °
即∠AEB=90° ∴∠HEF=90°
∴四边形EFGH是矩形
变式:平行四边形ABCD,AF、BH、 CH、
DF分别是BAD、ABC、BCD、CDA的
平分线。求证:EF=GH .
L
M
A
D
H
E
G
F
B
N
K
C
9、如图,在△ABC中,点0是AC边上的一个动点, 过点0作直线MN∥BC,若MN交∠BCA的平分线于 点E,交∠BCA的外角平分线于点F,
∴ ∠ABC=∠BCD=∠CDA=∠DAB=90°.
(3) 对角线:相等且互相平分 ∵矩形ABCD
∴ AC=BD 且OA=OB=OC=OD.
课前热身
1、矩形的四个内角都是__直_角___。 2、矩形的对角线__相_等___且 __互_相__平__分___。
3、矩形是__轴__对__称__和__中__心__对称图形。
两组对边相等的四边形窗框 是否成矩形,一种方法是量 一量这个四边形的两条对角 线长度,如果对角线长相等, 则窗框一定是矩形,你知道 为什么吗?
1.2 矩形的性质与判定(第二课时 矩形的判定)(课件)九年级数学上册(北师大版)
D
几何语言: ∵在四边形ABCD中,∠A=∠B=∠C=90° ∴四边形ABCD是矩形。
B
C
课堂总结
定义法: 有一个角是直角的平行四边形是矩形.
矩
形
的
判
定理1:对角线相等的平行四边形是矩形.
定
定理:
定理2:有三个角是直角的四边形是矩形.
课堂练习
1 检查一个门框是否为矩形,下列方法中正确的是( ) A.测量两条对角线,是否相等 B.测量两条对角线,是否互相平分 C.测量门框的三个角,是否都是直角 D.测量两条对角线,是否互相垂直
课堂练习
7 在□ ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF= BE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD. ∵BE∥DF,BE=DF, ∴四边形BFDE是平行四边形. ∵DE⊥AB, ∴∠DEB=90°, ∴四边形BFDE是矩形;
课堂练习
4.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是( )
A.∠A=∠B
B.∠A=∠C
C.AC=BD
D.AB⊥BC
【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行 四边形为矩形,正确; B、∠A=∠C不能判定这个平行四边形为矩形,错误; C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确; D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确, 故选B.
课堂练习
2.如图,下列条件不能判定四边形ABCD是矩形的是( ) A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
初中数学(北师大)九年级上册课件2矩形的性质与判定
∴∠ A +∠B = 180°,
∠B +∠C = 180°,
∴AD∥BC, A
∵∠A=90°,
∴ 四边形ABCD是矩形。
返回
例题已知平行四边形
ABCD的对角线AC、BD交于O,
等边三角形,AB = 4cm,求这个平行四边形的面积.
解:∵ABCD是平行四边形, A O D
九年级数学(上) 第一章 特殊平行四边形
2.矩形的性质与判定—判定
驶向胜利 的彼岸
定义:有一个角是直角的平行四边形叫做矩形。
复 习 与 回 顾 推论:直角三角形斜边上的中线等于斜边的一半。
A ∵∠ACB=90°AD = BD ∴CD = AB
C
D B
定义:有一个角是直角的平行四边形叫做矩形。
判定定理1对角线相等的平行四边形是矩形
矩 形
例如:
A
D
的
判
B
定
ABCD
AC = BD
C ABCD是矩形
判定定理2有三个角是直角的四边形是矩形
例如:
A
D
例1
练习
B
C
小结
∠A=∠B=∠C=90° 四边形ABCD是矩形
判定定理1对角线相等的平行四边形是矩形
已知:在
ABCD中,AC D
=求ABBD证C。:D是矩形。A
B
C
证明:∵AB = DC,BC = CB,AC = DB,
2.已知平行四边形ABCD的对角线AC和BD相交于 点O,△AOB是等边三角形,AB= 4 cm。求这 个平行四边形的面积。
练一练(三)
3.已知:如图,平行四边形ABCD的四个内角平分线相 交于点E,F, G,H。求证:EG=FH。
1.2矩形的性质与判定课件北师大版数学九年级上册
几何语言: ∵四边形ABCD是矩形
∴∠A=∠B=∠C=∠D=90° AC = BD
矩形的性质
边的性质: 矩形的对边平行且相等.
角的性质: 矩形的四个角都是直角.
对角线的性质: 矩形的对角线相等,且互相平分.
练习:
1.矩形具有而一般平行四边形不具有的性质是
(A )
A.对角线相等
B.对边相等
C.对角相等
1.2 矩形的性质与判定
教学目标
1.会证明矩形的判定定理 2.能运用矩形的判定定理进行计算与证明 3.能运用矩形的性质定理与判定定理进行 比较简单的综合推理与证明
教学重难点
重点:矩形判定定理的证明 难点:矩形判定定理的应用
情景创设
具备什么条件的平行四边形是矩形?具 备什么条件的四边形是矩形?同学之间 进行交流。
谢谢!
矩形的两条边和对角线构成
A
D 一个 直角 三角形, 对角线 是
斜边.
求矩形的边长和对角线的问
O
题可转化为直角三角形,利
用 勾股定理 解决.
B
C
4.
A
D 已知:如左图,矩形
O
ABCD的两条对角线相交 于点O,∠AOD=120°,
AB=4cm,求矩形对角线
B
C 的长.
解:∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等).
矩形
∟
矩形的定义:有形一叫个做角矩是形直. 角的平行四边
A
D 矩形是轴对称图形
吗?如果是,那么
B
C
有几条对称轴?
轴对称图形
矩形有哪些性质? 具有平行四边形的所有性质
边:矩形的对边平行且相等
角:矩形对角相等;邻角互补 对角线:矩形对角线互相平分
∴∠A=∠B=∠C=∠D=90° AC = BD
矩形的性质
边的性质: 矩形的对边平行且相等.
角的性质: 矩形的四个角都是直角.
对角线的性质: 矩形的对角线相等,且互相平分.
练习:
1.矩形具有而一般平行四边形不具有的性质是
(A )
A.对角线相等
B.对边相等
C.对角相等
1.2 矩形的性质与判定
教学目标
1.会证明矩形的判定定理 2.能运用矩形的判定定理进行计算与证明 3.能运用矩形的性质定理与判定定理进行 比较简单的综合推理与证明
教学重难点
重点:矩形判定定理的证明 难点:矩形判定定理的应用
情景创设
具备什么条件的平行四边形是矩形?具 备什么条件的四边形是矩形?同学之间 进行交流。
谢谢!
矩形的两条边和对角线构成
A
D 一个 直角 三角形, 对角线 是
斜边.
求矩形的边长和对角线的问
O
题可转化为直角三角形,利
用 勾股定理 解决.
B
C
4.
A
D 已知:如左图,矩形
O
ABCD的两条对角线相交 于点O,∠AOD=120°,
AB=4cm,求矩形对角线
B
C 的长.
解:∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等).
矩形
∟
矩形的定义:有形一叫个做角矩是形直. 角的平行四边
A
D 矩形是轴对称图形
吗?如果是,那么
B
C
有几条对称轴?
轴对称图形
矩形有哪些性质? 具有平行四边形的所有性质
边:矩形的对边平行且相等
角:矩形对角相等;邻角互补 对角线:矩形对角线互相平分