4线性方程组的直接解法
数值分析第三章线性方程组解法
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
(整理)线性方程组的直接法
第二章线性方程组的直接法在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。
例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。
(2.1)其中ai j,bi为常数。
上式可写成矩阵形式Ax = b,即(2.2)其中,为系数矩阵,为解向量,为常数向量。
当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有为系数矩阵的第列元素以代替的矩阵的行列式的值。
克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。
例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。
在石油勘探、天气预报等问题中常常出现成百上千阶的方程组,也就产生了各种形式方程组数值解法的需求。
研究大型方程组的解是目前计算数学中的一个重要方向和课题。
解方程组的方法可归纳为直接解法和迭代解法。
从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。
但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。
迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量而已。
在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。
在数值计算历史上,直接解法和迭代解法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。
数值代数方法及其应用
数值代数方法及其应用数值代数是数学中的一个分支,旨在通过计算和近似方法解决代数问题。
它结合了代数、数值计算和计算机科学的概念和技术,为科学研究和工程应用提供了强大的工具。
本文将介绍数值代数方法的基本原理、常用技术和应用领域。
一、数值代数方法简介数值代数方法是研究如何通过数值计算求解代数问题的学科。
它的核心思想是用数值计算的方式近似求解代数方程组、计算矩阵的特征值和特征向量等。
数值代数方法基于线性代数和数值分析的基本理论,通过算法和计算机程序实现。
数值代数方法的主要目标是提供一种有效、准确的计算方法,解决实际问题中的线性和非线性代数问题。
它在科学计算、工程模拟、金融建模等领域发挥着重要作用。
常用的数值代数方法包括线性方程组的直接解法、迭代解法、特征值问题的求解方法等。
二、常用的数值代数方法1. 线性方程组的直接解法线性方程组是数值代数中常见的问题之一,它的解决涉及到矩阵的运算和数值计算。
常用的直接解法包括高斯消元法、LU分解法等。
这些方法通过将线性方程组转化为等价的上三角或下三角矩阵,从而求解方程组的解。
2. 迭代解法当线性方程组规模较大时,直接解法的计算量较大。
此时可以使用迭代解法,通过反复迭代逼近线性方程组的解。
常用的迭代解法包括雅可比迭代法、高斯-赛德尔迭代法等。
这些方法通过计算矩阵的逆或逼近逆,逐步接近线性方程组的解。
3. 特征值问题的求解方法特征值问题在物理、化学、工程等领域中都有广泛的应用。
求解特征值问题涉及到矩阵的特征向量和特征值的计算。
常用的方法包括幂法、反幂法、QR方法等。
这些方法通过迭代计算矩阵的特征向量和特征值,从而求解特征值问题。
三、数值代数方法的应用领域数值代数方法在众多领域中都有着广泛的应用。
以下是数值代数方法在几个典型领域中的应用示例:1. 工程应用工程领域中常常需要求解大规模线性方程组,如结构力学问题、电路问题等。
数值代数方法提供了高效、准确的计算方式,可以快速求解这些问题,为工程设计和优化提供支持。
数值分析-线性方程组的直接解法
算法 Gauss(A,a,b,n,x)
1. 消元 For k=1,2, … , n-1 1.1 if akk=0 , stop; 1.2 For i=k+1,k+2, …, n 1.2.1 l ik=aik /akk => aik 1.2.2 For j=k+1,k+2, … ,n ai j -aik ak j =>aij 1.2.3 bi -aik bk=> bi 2. 回代 2.1 bn / an=>xn; 2.2 For i=n-1,n-2, …, 2,1 2.2.1 bk => S 2.2.2 For j=k+1,k+2, … ,n S –akj xj =>S 2.2.3 S/ akk => xk a1 1 a1 2 a13 a2 1 a2 2 a23
线性方程组的直接解法
刘 斌
线性方程组的直接解法
§1 Gauss消去法 1.1 顺序Gauss消去法
1.2
§2 2.1 2.2 2.3
列主元Gauss消去法
Gauss消去法的矩阵运算 Doolittle分解法 平方根法
直接三角分解方法
2.4
追赶法
引入
在科学计算中,经常需要求解含有n个未知量 的n个方程构成的线性方程组 a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 (1) an1 x1 an 2 x2 ann xn bn
(1) a12 ( 2) a22 0
(1) (1) a13 a1 n ( 2) ( 2) a23 a2 n ( 3) ( 3) a33 a3 n
0
数值分析小论文线性方程组的直接解法
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
数值分析第二章解线性方程组的直接方法
a2(22) x2 ... a2(2n) xn b2(2) ,
..............
an(nn) xn bn(n) .
对此方程组进行回代,就可求出方程组的解.
xn
xiΒιβλιοθήκη bn(n) (bi(i )
an(nn) ,
n
ai(ji ) x
j i 1
j
)
ai(ii ) ,
i n 1,n 2,,1.
x3 x3
1 1
4x1 2x2 2x3 3
消去后两个方程中的x1得
x1
2 x2 5 x2
x3 1 2x3 2
6x2 6x3 1
再消去最后一个方程的x2得
x1
2 x2 5 x2
x3 1 2x3 2
42 5
x3
7 5
消元结束.
x1
1 2
经过回代得解:
x2
1 3
互换, 因而程序比较复杂, 计算时间较长.
• 列主元素法的精度虽然稍低于全主元素法, 但其
计算简单, 工作量大为减少, 且计算经验与理论实
践均表明, 它与全主元素法同样具有良好的数值稳
定性.
• 列主元素法是求解中小型稠密线性方程组的最好
方法之一.
27
§2 直接三角分解法
Gauss消元法的矩阵表示
a12
a13
a 1 0 a21 a22 a23 a21 aa11 a22 aa12 a23 aa13
b 0 1 a31 a32 a33 a31 ba11 a32 ba12 a33 ba13
28
n=3时Gauss消元法的矩阵表示
a11 a12 a13 A a21 a22 a23
线性方程组的直接解法程序设计
线性方程组的直接解法程序设计一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过消元和回代的方式,将线性方程组转化为上三角形式,进而求解未知数的值。
程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行初等行变换,将系数矩阵A转化为上三角矩阵U,并同时对常数向量b进行相应的变换;3.判断是否有唯一解,如果主对角线上存在零元素,则方程组无解;如果主对角线上所有元素都非零,则方程组有唯一解;4.进行回代计算,求解未知数的值。
高斯消元法的优点是简单直观,容易理解和实现。
但是在一些情况下,会出现主对角线上有零元素的情况,此时需要进行行交换,增加了额外的计算量。
二、LU分解法LU分解法是另一种常用的线性方程组直接解法。
它将系数矩阵A分解为下三角矩阵L和上三角矩阵U的乘积,即A=LU。
程序设计步骤如下:1.读入线性方程组的系数矩阵A和常数向量b;2.进行LU分解,找到下三角矩阵L和上三角矩阵U;3.解第一个方程Ly=b,先求解向前替代方程,计算出y的值;4.解第二个方程Ux=y,再求解向后替代方程,计算出x的值。
LU分解法的优点是可以在多次需要解线性方程组的情况下重复使用LU分解的结果,提高计算效率。
但是LU分解法需要找到L和U的值,增加了额外的计算量。
三、数学实验在进行数学实验时,需要注意以下几点:1.线性方程组的系数矩阵应该是满秩的,以保证方程组有唯一解;2.对于大规模的线性方程组,可以使用稀疏矩阵存储和计算,减少内存和计算时间的消耗;3.在求解过程中,需要判断方程组是否有解,并且考虑特殊情况的处理;4.通过数学实验可以验证直接解法的正确性和有效性,分析计算结果的误差和稳定性。
综上所述,线性方程组的直接解法程序设计在计算方法和数学实验中都是重要的研究内容。
高斯消元法和LU分解法是常用的直接解法,通过编写程序并进行数学实验,可以深入理解和应用这些方法。
这些方法的有效性和稳定性对于解决实际问题具有重要意义。
第三章解线性方程组直接法
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a a a a aa a a a ΛΛΛΛΛΛ212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⇔∈n n x x x M 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A Λ= 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A M其中Ti b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21Λ,其中()Tk e 0,0,1,0,0ΛΛ= k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。
线性代数方程组的直接解法赖志柱
第二章线性代数方程组的直接解法教学目标:1.了解线性代数方程组的结构、基本理论以及相关解法的发展历程;2.掌握高斯消去法的原理和计算步骤,理解顺序消去法能够实现的条件,并在此基础上理解矩阵的三角分解(即LU分解),能应用高斯消去法熟练计算简单的线性代数方程组;3.在理解高斯消去法的缺点的基础上,掌握有换行步骤的高斯消去法,从而理解和掌握选主元素的高斯消去法,尤其是列主元素消去法的理论和计算步骤,并能灵活的应用于实际中。
教学重点:1. 高斯消去法的原理和计算步骤;2. 顺序消去法能够实现的条件;3. 矩阵的三角分解(即LU分解);4. 列主元素消去法的理论和计算步骤。
教学难点:1. 高斯消去法的原理和计算步骤;2. 矩阵的三角分解(即LU分解);3. 列主元素消去法的理论和计算步骤。
教学方法:教具:引言在自然科学和工程技术中,许多问题的解决常常归结为线性方程组的求解,有的问题的数学模型中虽不直接表现为线性方程组,但它的数值解法中将问题“离散化”或“线性化”为线性方程组。
例如,电学中的网络问题、船体数学放样中建立三次样条函数问题、最小二乘法用于求解实验数据的曲线拟合问题、求解非线性方程组问题、用差分法或有限元法求解常微分方程边值问题及偏微分方程的定解问题,都要导致求解一个或若干个线性方程组的问题。
目前,计算机上解线性方程组的数值方法尽管很多,但归纳起来,大致可以分为两大类:一类是直接法(也称精确解法);另一类是迭代法。
例如线性代数中的Cramer法则就是一种直接法,但其对高阶方程组计算量太大,不是一种实用的算法。
实用的直接法中具有代表性的算法是高斯(Gauss)消元法,其它算法都是它的变形和应用。
在数值计算历史上,直接法和迭代法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中、低阶(200n )以及高阶带形的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。
线性方程组的直接解法
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
第3章 线性方程组求解的直接解法
线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。
线性方程组的直接解法迭代解法
广东金融学院实验报告课程名称:数值分析实验目的及要求实验目的:题一:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向最的微小变化对解向最的影响。
比较各种直接接法在解线性方程组中的效果;题二:认识齐种迭代法收敛的含义、影响齐迭代法收敛速度的因素。
实验要求:题一:(1)在MATLAB中编写程序用列主元高斯消去法和LU分解求解上述方程组,输出曲b中矩阵A 及向量b和A二LU分解中的L及U, detA及解向量X.(2)将方程组中的2. 099999改为2. 1, 5. 900001改为5. 9,用列主元高斯消去法求解变换后的方程组,输出解向最x及detA,并与(1)中的结果比较。
(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵,再输入命令x=inv(A)*b,即可求出方程组的解。
请与列主元高斯消公法和LU分解法求出的解进行比较,体会选主元的方法具有良好的数值稳定性。
用MATLAB的内部曲数det求出系数行列式的值,并与(1)、(2)中输出的系数行列式的值进行比较。
(4)比较以上各种直接解法在解线性方程组中的效果。
题二:(1)选取不同的初始向M:X(0)及右端向最b,给泄迭代误差要求,用Jacobi迭代法和Gauss-Seidel迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。
列岀算法清单。
(2)用SOR迭代法求上述方程组的解,松弛系数血取1<69<2的不同的三个值,在< 10"5时停止迭代,记录迭代次数,分析计算结呆与松弛系数血的关系并得出你的结论。
(3)用MATLAB的内部函数inv求出系数矩阵的逆矩阵.再输入命令^inv(A)*b>即可求出上述各个方程组的解.并与上述三种方法求出的解进行比较。
请将比较结果列入卜表。
方程组的解X1 Xr■迭代次数误差楮确解Jacibi解法Gause・seidel 解法SOR 解法00= 60= 60=实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)1. Win72. Mat lab 7.0实验内容及步骤(包含简要的实验步骤流程) 实验内容:题一:解卜列线性方程组'10 -7‘X 】、(8、-3 2.099999 62Xr5.9000015-1 5 -15、12> 0< 1 >题二研究解线性方程组 做=b 迭代法的收敛性、收敛速度以及SOR 方法中/佳松弛因子的选取问题, 用迭代法求解做二b,其中・4 -1r■7 A=4 -81 ,b =-21-2 ■1515实验结果(包括程序或图表、结论陈述.数据记录及分析等,可附页)题一:直接解法解线性方程组(1)列主兀高斯消去法与LU 分解求解列主元高斯消去法:编写matalab 程序(见附录gaosi.m ),输出矩阵10.000 -7.000 0.000= 0.000 2.5000-5.000一 0.000 0.0006.0000020.000 0.000 0.000向量8 b =1 8.300 L5.0800J解向量:X = (0 ・-1 , 1 r I )7 其中系数行列式的值det (A )=762.00009LU 分解求解:编J matalab 程序(见附录zhjLU. m 和LU ・m ),执行输出:-1.5 2.300 5.080-3.0001.000000.00000.5000 -25000001.0000 0.2000 -24000000.9600 10.0000 -7.0000 0.0000 1.0000n = 0.0000-0.0000010.0000 2.3000 —0.0000 0.000015000000 57500000.0000 0.0000 0.0000 5.0800在matlab 命令窗II 输入L*U ,可以得到A 二L*U ,即分解结果正确。
线性方程组直接解法实验
实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。
二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。
三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。
这个过程也可通过矩阵分解来实现。
将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积称为对矩阵A 的三角分解,又称LU 分解。
根据LU 分解,将Ax b =分解为Ly bUx y =⎧⎨=⎩形式,简化了求解问题。
程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。
2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值a的位置上,然后再进行消元过程。
交换系数矩阵中最大的元素,通过行交换将其交换到kk的两行(包括常数项),相当于两个方程的位置交换了。
程序框图:Array变量说明:k表示消元到a为消元第k步时第k步,kk主对角线元素3)四、实验过程及结果1)Doolittle分解方法的输出结果----------计算实习题----------Page64 第1题用Doolittle分解方法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000L =1.0e+006 *0.0000 0 0 0-0.0000 0.0000 0 00.0000 -2.5000 0.0000 00.0000 -2.4000 0.0000 0.0000 U =1.0e+007 *0.0000 -0.0000 0 0.00000 -0.0000 0.0000 0.00000 0 1.5000 0.57500 0 0 0.0000 X =-0.0000-1.00001.00001.0000det(A)值为-762.00009000----------输出完毕----------2)列主元消去法输出结果----------计算实习题----------Page64 第1题列主元消去法解方程组A =10.0000 -7.0000 0 1.0000-3.0000 2.1000 6.0000 2.00005.0000 -1.0000 5.0000 -1.00002.0000 1.0000 0 2.0000b =8.00005.90005.00001.0000X =0.0000-1.00001.00001.0000detA值为-762.00009000----------输出完毕----------五、实验分析1.运用LU分解法可以成批地解方程组,且速度快.若c先求LU=A3,再解(LU)x=b,则要重新计算,计算量增加;如果按照上述方法计算,能够减少运算次数,加快运算速度.3. ⑴无论当n=10、n=100、n=1000时,x1与x2的值都相等,且随着n的增大,变化的只是解的中间部分数字,头、前后几位数都没有变化.⑵高斯消去法应用于三对角方程组得到的就是所谓的“追赶法”.追赶法不需要对零元素计算,只有6n-5次乘除法计算量,求解速度快.且当系数矩阵对角占优时数值稳定,是解三对角方程组的优秀解法.⑶用LU分解法解此方程组速度慢.顺序高斯消去法实际上就是将方程组的系数矩阵分解成单位下三角矩阵与上三角矩阵的乘积.顺序高斯消去法的消元过程相当于LU分解过程和Ly=b的求解,回代过程则相当于解线性方程组Ux=y,故其求解速度慢.六、附原程序1)Doolittle分解方法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题用Doolittle分解方法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];n=length(A);U=zeros(n,n);L=eye(n,n);U(1,:)=A(1,:);L(2:n,1)=A(2:n,1)/U(1,1);for i=2:n;U(i,i:n)=A(i,i:n)-L(i,1:i-1)*U(1:i-1,i:n);L(i+1:n,i)=(A(i+1:n,i)-L(i+1:n,1:i-1)*U(1:i-1,i))/U(i,i); endY=zeros(n);Y(1)=b(1);for i=2:nY(i)=b(i)-L(i,1:i-1)*Y(1:i-1,1);endX=zeros(n,1);if det(U)==0;X=0;elseX(n)=Y(n)/U(n,n);for i=n-1:-1:1X(i)=(Y(i)-U(i,i+1:n)*X(i+1:n,1))/U(i,i);endendAbLUXfprintf('det(A)值为%9.8f\n',det(A))fprintf('----------输出完毕 ----------\n')2)列主元消去法原程序fprintf('----------计算实习题----------\n')fprintf('Page64 第1题列主元消去法解方程组\n')A=[10 -7 0 1 ; -3 2.099999 6 2 ;5 -1 5 -1 ; 2 1 0 2];b=[8;5.900001;5;1];C=[A b];n=length(A);D=zeros(n,n+1);l=zeros(n,1);for i=1:nD=C;k=min(find(C(i:n,i)==max(C(i:n,i))));C(i,i:n+1)=D(k+i-1,i:n+1);C(k+i-1,i:n+1)=D(i,i:n+1);l(i+1:n,1)=C(i+1:n,i)/C(i,i);C(i+1:n,i:n+1)= C(i+1:n,i:n+1)- l(i+1:n,1)*C(i,i:n+1); endX=zeros(n,1);X(n)=C(n,n+1)/C(n,n);for i=n-1:-1:1X(i)=(C(i,n+1)-C(i,i+1:n)*X(i+1:n,1))/C(i,i); endAbXfprintf('detA值为%9.8f\n',det(A))fprintf('----------输出完毕----------\n')。
《线性方程组的直接解法及其应用》研究综述
学院:建筑工程学院专业:结构工程组号:16 成绩:报告题目:《线性方程组的直接解法及其应用》研究学院:建工学院专业:结构工程组号:16号成员:xxx学院: 建筑工程学院 专业:结构工程 组号:16 成绩:《线性方程组的直接解法及其应用》研究第一章对象描述一、 《线性方程组的直接解法及其应用》描述在科技、工程、医学、经济等各个领域中,经常遇到求解n 阶线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++,,,22112222212*********m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (1.1) 的问题.方程组(1.1)的系数),,2,1.(n j i a ij =和右端项),,2,1(n i b i =均为实数,且1b 、2b ,……,n b 不全为零。
方程组(1.1)可简记为b Ax =其中 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x x 21 , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b b 21. 线性方程组的数值解法有两大类,一类是直接法,另一类是迭代法。
本次主要研究的是直接解法。
所谓直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(若计算过程中没有舍入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得现行方程组的近似解。
这类算法中最基本的是高斯消元法及其某些变形,它是解决低阶稠密矩阵方程组及某些系数矩阵方程组的有效方法学院: 建筑工程学院 专业:结构工程 组号:16 成绩:二、 《线性方程组的直接解法及其应用》的相关概念1.特征值和特征向量设A 是一个n n ⨯阶实矩阵,若对于数λ,存在非零向量x ,使得x Ax λ=成立。
则称λ是A 的特征值(Characteristic Value),x 为A 的对应于λ的特征向量(Characteristic Vector)。
数值分析原理习题答案
数值分析原理习题答案【篇一:数值分析习题】学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为0.5?10,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 ??3.14159?具有4位有效数字的近似值是多少?(有效数字的计算)3 已知a?1.2031,b?0.978是经过四舍五入后得到的近似值,问a?b,a?b有几位有效数字?(有效数字的计算)4 设x?0,x的相对误差为?,求lnx的误差和相对误差?(误差的计算)**5测得某圆柱体高度h的值为h?20cm,底面半径r的值为r?5cm,已知?5|h?h*|?0.2cm,|r?r*|?0.1cm,求圆柱体体积v??rh的绝对误差限与相对误差限。
(误差限的计算)6 设x的相对误差为a%,求y?xn的相对误差。
(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为1%,问度量半径r时允许的相对误差限为多大?(函数误差的计算)128 设in?e?1nxx?edx,求证: 0(1)in?1?nin?1(n?0,1,2?)(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。
(计算方法的比较选择)第二章插值法姓名学号班级习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。
1 已知f(?1)?2,f(1)?1,f(2)?1,求f(x)的拉氏插值多项式。
(拉格朗日插值)2 已知y?x,x0?4,x1?9,用线性插值求7的近似值。
(拉格朗日线性插值) 3 若xj(j?0,1,...n)为互异节点,且有lj(x)?试证明(x?x0)(x?x1)?(x?xj?1)(x?xj?1)?(x?xn)(xj?x0)(xj?x1)?(xj?xj?1)(x j?xj?1)?(xj?xn)?xlj?0nkjj(拉格朗日插值基函数的性质) (x)?xk(k?0,1,...n)。
线性方程组直接法
练习 利用LU分解法求解方程组
1 2 3 x1 2 1 3 5 x2 4. 1 3 6 x3 5
1001 2 3 2 1 答L: U 110 01 2 , y 2 ,x 0 .
111 001 1 1
二、解三对角方程组的追赶法
在数值求解常微分方程边值问题、热传导方程和建立
二、向量和矩阵的范数
定义1 ( 向量范数) x 和 y 是 Rn 中的任意向量 , 向量范数‖•‖是定义
在 Rn上的实值函数, 它满足:
(1) ‖ x ‖≥0, 并且当且仅当 x=0 时, ‖ x ‖=0;
(2) ‖k x ‖=|k| ‖ x ‖, k 是一个实数;
(3) ‖ x + y ‖≤ ‖ x ‖+ ‖ y ‖
1 0 01 2 3
A 2 3
1 5
0 0 1 0
1 0
4
24
LU
3=-72/-24; 2=[-10+4*3]/1;
求解
1=[14-(2*2+3*3)]/1]
Ly (14, 18, 20)T , 得y (14, 10,72)T 同理当 ukk 0或 Ux (14, 10, 72)T , 得x (1, 2, 3)T 很小时,可用
子式 Di 0(i 1,2,,k),即
a11 Di
ai1
a1i
aii
0aa1i((i1i1))
0 Di
Di1 0
由于高斯消去法过在程消中元可能ak(出 kk) 现 0的情况, 这时消去法将无;法即进使行主a元 k(kk) 素0但很小时, 用其作除数,会他导元致素其数量级的长严和重舍增
入误差的扩散,使最得后计也算的解不可靠。
线性方程组直接解法实验
实验一 线性方程组直接解法实验一、实验目的1.运用matlab 软件完成线性方程组的直接实验;2.通过实验,了解Doolittle 分解方法和列主元消去法解方程组的过程,并比较两种方法的优点。
二、实验题目分别用Doolittle 分解方法和列主元消去法解方程组123410-7018-3 2.09999962 5.9000015-15-1521021⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x x x x . 输出A ,b ;Doolittle 分解方法的L 和U ;解向量x,det A ;列主元方法的行交换次序,解向量x,det A ;比较两种方法所得的结果。
三、实验原理1) Doolittle 分解方法的原理算法原理:应用高斯消去法解n 阶线性方程Ax b =经过1n -步消去后得出一个等价的上三角形方程组()()n n A x b =,对上三角形方程组用逐步回代就可以求出解来。
这个过程也可通过矩阵分解来实现。
将非奇异阵分解成一个下三角阵L 和上三角阵U 的乘积A LU =称为对矩阵A 的三角分解,又称LU 分解。
根据LU 分解,将Ax b =分解为Ly bUx y=⎧⎨=⎩形式,简化了求解问题。
程序框图:变量说明:ij a 为系数矩阵元素,i b 为常数矩阵系数,,ij ij l u 分别为下、上三角矩阵元素。
开始输入a ij ,b ii,j=1,2,…,na i1=l i1=a i1/a 11i=2,3,…,nk=2akj=ukj=akj-∑l ktj=k,…,nk=n?k=k+1y 1=b 1,y i =b i -∑l ij y ji=2,…,n x n =y n /u nnx i =(y i -∑u ij x j )/u iii=n-1,…2,1是否a kj =l jk =(a jk -∑l it u tk )/u kkj=k,…,n2)列主元消去法解方程组的原理算法原理:列选主元是当变换到第k步时,从k列的kk a及以下的各元素中选取绝对值最大的元素,通过行交换将其交换到kka的位置上,然后再进行消元过程。
线性方程组及其解法
线性方程组及其解法线性方程组是数学中重要的概念之一,它描述了一组线性方程的集合。
解决线性方程组可以帮助我们理解和解决实际问题,例如工程、经济和科学等领域的应用。
本文将介绍线性方程组的概念、解法以及实际应用。
一、线性方程组的概念线性方程组由多个线性方程组成,每个方程都是变量的线性组合。
一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b其中,a₁, a₂, ..., aₙ为系数,x₁, x₂, ..., xₙ为变量,b为常数。
变量的个数称为方程组的未知数个数。
二、线性方程组的解法解决一个线性方程组的关键是找到所有使得方程组中的每个方程都成立的变量值。
以下介绍几种常见的线性方程组解法。
1. 直接代入法直接代入法是最基本的线性方程组解法。
它的步骤是:先从一个方程中选择一个变量,解出该变量的值,然后将这个值代入其他方程,减少未知数的个数。
重复这一过程,直到得到所有变量的值。
2. 消元法消元法是线性方程组解法中常用的一种方法。
它利用方程之间的关系,通过加减乘除等运算,将线性方程组化简为更简单的形式,从而求解变量的值。
消元法的关键是使用行变换和列变换来改变方程组的形式,使其更易于求解。
3. 矩阵法矩阵法是一种基于矩阵运算的线性方程组解法。
将线性方程组的系数和常数用矩阵表示,通过矩阵的运算来求解变量的值。
常用的矩阵运算包括矩阵的加法、减法、乘法、转置、逆矩阵等,在求解过程中可以利用这些运算来简化计算。
三、线性方程组的实际应用线性方程组在实际生活中有广泛的应用。
以下是几个具体的例子:1. 物理学中的应用线性方程组在物理学中的应用非常广泛。
例如,力学中的牛顿第二定律、电路分析中的欧姆定律、热传导方程等都可以表示为线性方程组。
通过解决这些方程组,我们可以研究物体的运动、电流的分布以及温度的变化等现象。
2. 经济学中的应用经济学中的供求模型、成本模型和收入模型等经常涉及到线性方程组。
通过解决这些方程组,我们可以研究市场的均衡价格和数量、企业的利润最大化策略以及收入分配等经济问题。
《数值分析》课程实验报告范文
《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。
t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。
三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。
四个方程四个未知数快速解法
四个方程四个未知数快速解法
在代数学中,当我们有四个方程和四个未知数时,我们可以使用不同的方法来快速求解这个方程组。
以下是两种常见的解法:
1. 高斯消元法:
高斯消元法是一种常用的求解线性方程组的方法。
它的基本思想是通过矩阵的行变换将方程组化为简化行阶梯形式,从而求解出未知数的值。
具体步骤如下:- 将方程组写成增广矩阵的形式,其中矩阵左侧是系数矩阵,右侧是常数矩阵。
- 通过行变换将矩阵化为简化行阶梯形式,即将矩阵的每一行化为只有一个非零元素的行,并且每个非零元素都在上一行非零元素右边。
- 根据简化行阶梯形式的矩阵,可以直接得到未知数的值。
2. 矩阵求逆法:
如果我们将四个方程和四个未知数的方程组表示为矩阵形式,可以使用矩阵求逆的方法来求解。
具体步骤如下:
- 将方程组的系数矩阵表示为A,未知数的矩阵表示为X,常数矩阵表示为B。
- 如果A是可逆矩阵(即行列式不为零),则可以使用逆矩阵的方法求解,即X = A^(-1) * B。
这两种方法都可以快速求解四个方程四个未知数的问题,但需要注意的是,解的存在与唯一性取决于方程组的性质。
有时方程组可能无解或有无穷多解。
因此,
在使用这些方法之前,我们需要先对方程组进行适当的分析和判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(i k 1,, n)
akk 0
(n) (n) xn bn / ann n 对于上三角方程组,容易得到 (k ) (k ) (k ) xk (bk akj x j ) / akk j k 1
回代过程
(k n 1, n 2, , 2,1)
矩阵的初等(行)变换与初等方阵
矩阵的初等变换:三种形式 初等方阵:三种形式类型,p(I,j), p(i(k)),p(i(k),j),与初等变换一一对应 初等变换与初等方阵的关系: 初等方阵的逆阵、行列式、乘法
此处主要使用第三种形式的初等方阵
1 1 P(i (k ), j ) k 1 1
矩阵L,U的计算公式见教材p69 (4-5)-(4-8)。 如上的LU分解成为杜利特尔(Doolittle)分解。还有另一种分解法称为克 劳特(Crout)分解,它是将A分解为一个下三角阵L与一个单位上三角阵U 的乘积的形式,可以自己推导L和U的计算公式。
LU分解的唯一性定理 定理4-1 设A为n阶方阵,若A的各阶顺序主子式不为零,则A可分解
1 1 ( P(i (k ), j )) 1 k 1 1
P(i (k ), j ) 1
4.2.1 LU分解法
高斯消去法的消元过程是通过对增广矩阵的初等行变换来完成的。
(1) (1) ) ( 2) ( 2) 2) a11 a12 a1(1 b1(1) a11 a12 a1(n n (1) (1) (1) (1) ( 2) ( 2) a a a b 0 a 22 a2 21 22 2 n 2 n A b ~ (1) (1) (1) (1) ( 2) ( 2) a a a b n2 nn n n1 0 a n 2 a nn 用矩阵乘法可表示为:Ln 1 Lk L2 L1 A b U y (n) a11 b1( 2) ( 2) b2 ~~ 0 ( 2) bn 0 (n) n) a12 a1(n (n) (n) a 22 a2 n
它们都是若干个初等方阵的乘积构成的n阶单位下三角阵,且
1 1 1 1 1 1 令L L1 L2 L U y LU y LU Ly n 1 , 则有 A b L1 L2 Ln 1
又可写成
A LU
b Ly
1 0 0 l 1 0 21 即将A分解为单位下三角阵L与上三角阵U的乘积,这就是矩阵的LU分解。这里 L 例4-2 P67 l n1 l n 2 1
2、系数矩阵A对称正定。
3、系数矩阵A严格对角占优。
n 1 n 1
(n 1)n!(n 1) n
不在一个数量级上,减少了很多。
消元和回代的乘除及加减法总次数如下:
n(n 1) n 3 n (n k ) (n k )(n k 1) n2 2 3 3 k 1 k 1 n(n 1) n 3 n 2 5n (n k )(n k 1) 2 3 2 6 k 1
记作
A( n) x b( n)
其中
(k ) (k ) mik aik / akk (i k 1,, n)
( k 1) (k ) (k ) aij aij mik akj
(i, j k 1,, n)
注意:必须确保
b
( k 1) i
b
(k ) i
m b
(k ) ik k
0
(n) a nn
b1( n ) (n) b2 U y (n) bn
1 l 其中 L1 21 l n1
1) (1) li1 ai(1 / a11
0 0 0 1 1 0 0 1 , L2 0 1 0 l n 2
4 线性方程组的直接解法
( Direct methods of Linear equationห้องสมุดไป่ตู้ )
本章主要内容 4.1 高斯消去法 4.2 三角分解法 4.3 直接法的误差分析 4.4 近似解的精度改善 重点:LU分解 难点:追赶法、平方根法
直接法(第4章)
思想:对系数矩阵进行分解、变换,经有限次算术运算,求出精确解 特点:准确、可靠、无方法误差
适用:中、小规模问题,尤其是稠密系数矩阵
问题:舍入误差对病态方程组的影响,算法可能不稳定
常见的线性方程组数值方法分类
迭代法 Jacobi 迭代法 Gauss Seidel迭代法 SOR迭代法 Gauss消去法 消去法 Gauss主元消去法 Gauss Jordan 消去法 杜利特里( Doolittle)分解 直接法 LU分解 克劳拉(Crout)分解 分解法 三对角方程组的追赶法 乔立斯基(Cholesy)平方根分解法
a11 a A 21 a n1 a12 a 22 an2 a1n u11 u12 l a2n 21 u 22 a nn l n1 l n 2 u1n u 2n u nn b1 y1 x1 b y x 2 2 2 b y n n xn
0 0 0 1 0, Ln 1 0 1 0 0 l n ,n 1 1 1
( n 1) ( n 1) i k 1,, n l n ,n 1 a n , n 1 / a n 1, n 1
n 1
4.1.2 高斯列主元消去法
选主元的思想是消除零主元和小主元,策略是对方称组进行行或列的交换。 为拟制舍入误差的传播,在消元过程中希望主元 akk 的绝对值最大, 就要在每步消元过程前选主元。通常有列主元和全主元两种方法。
(k ) (k ) aik 列主元消去法是第k步消元时,选取 a pk max k i n
4.1 消去法
4.1.1 高斯消去法
用高斯消去法求解线性方程组,分为消元过程和回代过程。
消元过程
将原始方程组 Ax b 记作 A(1) x b(1) 。经过n-1步消元后,得到
(1) (1) (1) b x a11 a12 a1(1) 1 1 n (2) (2) (2) x a a b2 22 2n 2 (n) (n) ann xn bn
为单位下三角阵L与一个上三角阵U的乘积,且这种分解是唯一的。 证明:反证法。见p67
4.2.2 列主元LU分解法
列主元LU分解的矩阵描述
(1) (n) Ln1 Ein 1 ,n1 L2 Ei2 , 2 L1 Ei1 ,1 A A U (1) (n) L E L E L E b b n 1 i , n 1 2 i , 2 1 i , 1 n 1 2 1 这里Eik ,k 是第k次交换选列主元其主元 素在第ik 行时交换次两行所对应 的
列主元LU分解计算步骤和公式
P73-74
4.2.3 三对角方程组的追赶法
追赶法计算时的存储结构
d1 a 三对角矩阵与三对角方程组 2 三对角矩阵的克劳特分解的唯一性 A 追赶法计算步骤及流程图 c1 d2 c2 a n 1 d n 1 an c n 1 dn
可行性与计算量
高斯消元法的消去过程和回代过程均要求 akk 0 (k 1,2,, n) , 否则溢出停机。但在如下情况下,对原方程组不作任何处理,确保上 述条件成立,使高斯消去法在计算机上顺利执行。
(k )
由于在此不予证明,仅列出一下三个条件:
1、系数矩阵A的各阶顺序阶主子式均不为零。 相比克莱姆法则的乘除法次数
定理4-2 设A为三对角矩阵,且对角占优,则对A可以进行克劳特分解, 且分解是唯一的。
步骤1 u1 c1 / d1 , u i ci /(d i ai u i 1 ) i 2,3, , n 1 步骤2 y1 b1 / d1 , y i (bi ai y i 1 ) /(d i ai u i 1 ) i 2,3, , n 步骤3 x n y n , xi y i u i xi 1 i n 1, ,2,1
4.2.1 LU分解法
用LU分解法求解线性方程组的步骤
(1)对A进行LU分解,即A=LU;公式见p69 (4-5)-(4-8) (2)求解Ly=b;公式见p69 (4-9) (3)求解Ux=y;公式见p70 (4-10) 例4-3 p70
用LU分解法求解线性方程组的数据结构
存储空间仅需一个n阶的二维数组和一个n阶的一维数组(向量)公式
2) ( 2) i 2,3,, n li 2 ai(2 / a 22
0 1 0 0 , Lk 0 1 1 0 l nk
(k ) (k ) i 3,, n lik aik / a kk
作为主元素,进行消元。
而全主元消去法是选取
a pq
m ax ai j
k i n k j n
作为第k步的主元素进行消元。 列主元往往需要行的交换,而全主元不仅需要行的交换,而且可能 需要列的交换。列的交换实质上是未知量的交换。
列主元素消去法步骤及流程框图 (p63-65)
4.2 三角分解法
第1种形式的初等方阵, Lk的意义同上节。
拓展L(见 p54),可得到如下形式 k Ln 1 ( Ein 1 ,n 1 Ln 2 Ein 1 ,n 1 )(Ein 1 ,n 1 Ein 2 ,n 2 Ln 3 Ein 2 ,n 2 Ein 1 ,n 1 ) ( Ein 1, n 1 Ei2 , 2 L1 Ei2 , 2 Ein 1, n 1 )(Ein 1, n 1 Ei2 , 2 Ei1 ,1 ) A ~ ~ ~ ~ Ln 1 Ln 1 L2 L1 PA ~ ~ ~ ~ 令L1 Ln 1 Ln 1 L2 L1 , 从而有 PA LU , PAx LUx Pb