《数列》单元测试
数列单元测试卷
数列单元测试卷1.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .3. 等比数列{a n }的前n 项和S n =________;设a =a 11-q (q ≠1),则S n =________.4. 在等比数列{}a n 中,若S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值为________.5. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.6.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n .7. 已知等比数列{a n }的公比q =2,a n =96,前n 项和S n =189,则这个数列共有________项,首项a 1=________. 8. 已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为________.9.等差数列}{n a 中,a 1=2,公差不为零,且a 1,a 3,a 11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________________.10. 设等比数列{}a n 的前n 项和为S n ,已知S 4=1,S 8=17,则数列{}a n 的通项公式为________.11 . 已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数n 为________.12. 如果lg x +lg x 2+…+lg x 10=110,那么lg x +lg 2x +…+lg 10x =________. 13.若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .14.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = . 15. 已知nS 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .16.{a n }为等差数列,{b n }为等比数列,a 1=b 1 =1, a 2+a 4 =b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10.17.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.18.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围.19. 在等比数列{a n }中,S n 为前n 项和,a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.20.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否为等比数列?若是,请求出a 1的值;若不是,请说明理由.21.(本小题满分16分)已知数列{a n }满足2122111()2222n n n na a a n N ++++⋅⋅⋅+=∈. (1) 求数列{a n }的通项公式;(2) 求数列{a n }的前n 项和S n .22.设数列{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求数列{a n }的通项公式.(2)设数列{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .数列单元测试卷参考答案: 1.3n 23-⨯; 2.2-;3. ⎩⎪⎨⎪⎧a 11-q n1-q q ≠1,na 1q =1.a -aq n4. 16 [提示] 由a 1⎝ ⎛⎭⎪⎫1-q 41-q =1,a 1⎝ ⎛⎭⎪⎫1-q 81-q =3,得1+q 4=3,q 4=2,所以a 17+a 18+a 19+a 20=a 1q 16+a 2q 16+a 3q 16+a 4q 16=q 16=24=16.5. 323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n [提示] 由⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以{a n a n +1}是首项为a 1a 2=8,公比为q 2=14的等比数列.6. 6[提示]3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 7. 6 3 [提示] 由189=S n =a 1(2n-1),96=a 1·2n -1,得a 1=3,n =6.8. S 3 9.4 10.-1n·2n -15或2n -115 [提示] 设公比为q ,易知q ≠1.由S 4=1,S 8=17,得a 11-q 41-q =1,a 11-q 81-q=17,相除,得q 4+1=17,q =±2.当q =2时,a 1=115,a n =2n -115;当q =-2时,a 1=-15,a n =-1n·2n -15. 11. n =5 [提示] 由a 1+a 2+…+a n ≥1a 1+1a 2+…+1a n ,得a 11-q n 1-q ≥1a 1⎝ ⎛⎭⎪⎫1-1q n 1-1q.又由a 2>a 3=1,得0<q <1且a 1=1q2.代入可得q5-n≤1.又 0<q <1, ∴ n ≤5.12. 2046 [提示] 由题意,得lg x +lg 2x +…+lg 10x =2×1-2101-2=211-2=2046.13.12n - 14.-415. 由0>n a ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n ∴81821122=⇒=--=nn n n n q q q S S , ∴1>q .又 前n 项中的数值最大的项为5411==-n n q a a ,∴321=q a . ∴ .133,21001001-=⇒==S q a16.∵ {a n }为等差数列,{b n }为等比数列, ∴ a 2+a 4=2a 3,b 3b 4=b 32. 而已知a 2+a 4=b 3,b 3b 4=a 3, ∴ b 3=2a 3,a 3=b 32. ∵ b 3≠0, ∴ b 3=12,a 3=14.由 a 1=1,a 3= 14 知{a n }的公差d =-38.∴ S 10=10a 1+10×92d =-558.由b 1=1,b 3= 12 知{b n }的公比为q =22或q =-22. 当q =22时,T 10=b 1(1-q 10)1-q =3132(2+2);当q =-22时,T 10=b 1(1-q 10)1-q =3132(2-2)17. 显然q ≠1,由S 3+S 6=2S 9,得a 11-q (1-q 3)+a 11-q (1-q 6)=2a 11-q (1-q 9), ∴ 1+1+q 3=2(1+q 3+q 6),2q 6+q 3=0. ∴ q 3=-12.∴ a 2+a 5=a 2+a 2q 3=a 2(1+q 3)=a 2⎝ ⎛⎭⎪⎫1-12=12a 2.a 8=a 2q 6=a 2⎝ ⎛⎭⎪⎫-122=14a 2.∴ a 2+a 5=2a 8.∴ a 2,a 8,a 5成等差数列.18. 22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13nn n a S n n N -==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)nn na S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥.19. 在等比数列{a n }中,a 1·a n =a 2·a n -1=128.又a 1+a n =66,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2.若a 1=2,a n =64,S n =126,则qn -1=32,1-q n=63(1-q ).将q n=32q 代入1-q n=63(1-q ),得q =2,n =6. 若a 1=64,a n =2,S n =126,则qn -1=132,32(1-q n)=63(1-q ). 将q n =q 32代入32(1-q n)=63(1-q ),得q =12,n =6.20. (1)由5S 2=4S 4,得 5a 11-q 21-q =4a 11-q 41-q,∴ 5(1-q 2)=4(1-q 4). ∴ q 2=14.又 q >0, ∴ q =12.(2)S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.若{b n }成等比数列,则12+2a 1=0,∴ a 1=-14.此时b n =⎝ ⎛⎭⎪⎫12n +1,b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12. ∴ {b n }成等比数列.故存在实数a 1=-14,使{b n }成等比数列.21.解:(1)n=1时,2111122a +=,得12a =;………………………2分n ≥2时,21221112222n n n na a a +++⋅⋅⋅+=,①2212121111(1)(1)22222n n n n n na a a ---+--++⋅⋅⋅+==,② ①-②得12nn a n =,2nn a n =⋅, 故2,12,2n nn a n n =⎧=⎨⋅≥⎩,即2n n a n =⋅(n N *∈)………………………8分 (2)1212222nn S n =⨯+⨯++⋅ ③23121222(1)22n n n S n n +=⨯+⨯++-⋅+⋅ ④③-④得1231121212122nn n S n +-=⨯+⨯+⨯++⋅-⋅ ……………12分112(12)2(1)2212n n n n n ++-=-⋅=-⋅--……………14分故1(1)22n n S n +=-⋅+……………16分22.【解】 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n . (2)因为y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2,其最小正周期为2π2π=1,故首项为1,因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1,故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n 1-3=n 2+n +12-3n 2.。
(15)“ 数列”单元测试题
北大附中广州实验学校2008—2009高三第一轮复习“数列”单元测试题一、选择题:(每小题5分,计50分)1. n 285(A)4 (B)5 (C)6 (D)72.(2008福建理)设{a n }是公比为正数的等比数列,若11=a ,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.1283.(2007辽宁文、理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .274、(2008海南、宁夏文、理)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C. 152D. 1725.(1994全国文、理)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-( )A.511个B.512个C.1023个D.1024个6.(2001天津、江西、山西文、理)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是( ) (A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列7.(2003全国文、天津文、广东、辽宁)等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50(D )518.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-99.(2004春招安徽文、理)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B )(1)2n n + (C )12-n (D )12-n10.(2006江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2-B.0C.1D.211.(2007北京文)若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 .12.(2006重庆理)在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.13.(2007江西理)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .14.(2004春招上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有_____ _________________个点.三、解答题:(15、16题各12分,其余题目各14分)15.(2008浙江文)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值; (Ⅱ)数列{}n x 的前n 项的和n S 的公式。
《数列》单元测试题(含答案解析)
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C )3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )2174.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )236.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B )170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210(B )220(C )216(D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是.12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S . 13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是8.5℃,5km 高度的气温是-17.5℃,那么3km 高度的气温是℃. 14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T ,,,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ; (Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a nb =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列; (Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )8.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4 C.2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值围是( ) A .d >83 B .d <3C.83≤d <3D.83<d ≤3 10.等比数列{}n a 中,首项为1a ,公比为 q ,则下列条件中,使{}n a 一定为递减数列的条件是( ) A .1q < B 、10,1a q >< C 、10,01a q ><<或10,1a q <> D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于( )A.9B.10C.11D.12 12.设函数f (x )满足f (n +1)=2)(2nn f + (n ∈N +),且f (1)=2,则f (20)为( ) A .95B .97C .105D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________. 14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a 16.已知数列满足:a 1=1,a n +1=a na n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +). (1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足2S n =2n a + n -4(n ∈N +). (1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. (1)求{}n a 的通项公式;(2)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0). (1)求证数列{1b n}是等差数列;(2)令11+=n n a c ,求数列{n c }的通项公式.22.(12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .《数列》单元测试题 参考答案 一、选择题1.D 2.A 3.C 4.B5.B 6.C 7.A 8.A 9.B 10.C 二、填空题11.1613 12.21513.-4.5 14.12+n 15.48T T ,812T T 三、解答题16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n .∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a ,从而])21(1[38)21(1])21(1[4n n n S --=----⨯=.18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去). 第1次相遇是在开始运动后7分钟. (Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去). 第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221na a a a n n =++++- ,① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=.在①中,令1=n ,得311=a .∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=,∴nn n S 33332332⋅++⨯+⨯+= ,③ ∴14323333233+⋅++⨯+⨯+=n n n S . ④即31)31(3321---⋅=+n n n n S ,∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b .∵241+=+n n a S ,①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{nn a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a nn ,∴22)13(-⋅-=n n n a . 21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列,∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d 2-8=-2.∴a =a +(n -1)d =8-2(n -1)=10-2n .(2) S =)9(n n -得S = -22018.解:n n S n 272-=282-=∴n a n ∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a (2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1,即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252nn S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n }是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n.∴1211+=+=n na c n n。
高一数学同步测试—数列单元测试题
高一数学同步测试(13)—数列单元测试题一、选择题1.若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是 ( )A .等比数列,但不是等差数列B .等差数列,但不是等比数列C .等差数列,而且也是等比数列D .既非等比数列又非等差数列2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( )A .511个B .512个C .1023个D .1024个 3.等差数列{a n }中,已知为则n a a a a n ,33,4,31521==+= ( )A .48B .49C .50D .514.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 ( )A .5B .10C .15D .205.等比数列{a n }的首项a 1=1,公比q ≠1,如果a 1,a 2,a 3依次是某等差数列的第1,2,5项,则q 等于 ( ) A .2 B .3 C .-3 D .3或-3 6.等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-17.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m( )A .1B .43 C .21 D .83 8.数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(n ∈N*),则此数列为( ) A .等差数列 B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列9.等比数列前n 项和为54,前2n 项和为60,则前3n 项和为 ( )A .66B .64C .2663 D .260310.设等差数列{a n }的公差为d ,若它的前n 项和S n =-n 2,则( )A .a n =2n -1,d =-2B .a n =2n -1,d =2C .a n =-2n +1,d =-2D .a n =-2n +1,d =211.数列{a n }的通项公式是a n =11++n n (n ∈N*),若前n 项的和为10,则项数为( )A .11B .99C .120D .12112.某人于2000年7月1日去银行存款a 元,存的是一年定期储蓄,计划20XX 年7月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的7月1日他都按照同样的方法在银行取款和存款.设银行一年定期储蓄的年利率r 不变,则到20XX 年7月1日他将所有的存款和本息全部取出时,取出的钱共为 ( ) A .a (1+r )4元 B .a (1+r )5元C .a (1+r )6元D .ra[(1+r )6-(1+r )]元 二、填空题:13.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列, 则q = .14.设数列{}n a 满足121+-=+n n n na a a ,,,3,2,1 =n 当21=a 时, .15.数列{}n a 的前n项的和S n =3n 2+ n +1,则此数列的通项公式a n =__ . 16.在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a 必定是常数数列.然而在等比数列}{n a中,对某些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是 ___ ___.三、解答题:17.已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .18.求下面各数列的和:(1)111112123123n++++++++++;(2).21225232132nn -++++19.数列{a n }满足a 1=1,a n =21a n -1+1(n ≥2) (1)若b n =a n -2,求证{b n }为等比数列; (2)求{a n }的通项公式.20.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (1)问第几年开始获利? (2)若干年后,有两种处理方案:(3)年平均获利最大时,以26万元出售该渔船; (4)总纯收入获利最大时,以8万元出售该渔船. 问哪种方案合算.21.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (1)求数列{}n a 的通项公式;(2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.22.某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据 1.059≈1.551,1.0510≈1.628)参考答案一、选择题:BBCAB CCDDC CD 二、填空题:13.1.14.1+=n a n )1(≥n .15.⎪⎩⎪⎨⎧≥-==)2(26)1(5n n n a n.16、)0(,,,,≠--a a a a a ,r 与s 同为奇数或偶数.三、解答题:17.解析:(1)由41014185a S =⎧⎨=⎩ ∴11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 由23,3)1(5+=∴⋅-+=n a n a n n(1)设新数列为{n b },由已知,223+⋅=n nb.2)12(62)2222(3321n n G n n n +-=+++++=∴ *)(,62231N n n G n n ∈-+⋅=∴+ 18.解析:(1)12)]111()3121()211[(2)111(2)1(23211+=+-++-+-=+-=+=++++=n n n n S n n n n n a n n 故(本题用到的方法称为“裂项法”,把通项公式化为a n =f (n +1)-f (n )的形式)(2)通项.)21()12(212nnn n n a ⨯-=-=呈“等差×等比”的形式, nn n n S 212)21(231---=-19.解析: (1)由a n =21a n -1+1得a n -2=21(a n -1-2)即21221=---n n a a ,(n ≥2)∴{b n }为以-1为首项,公比为21的等比数列 (2)b n =(-1)( 21)n -1,即a n -2=-(21)n -1∴a n =2-(21)n -120.解析:(1)由题设知每年费用是以12为首项,4为公差的等差数列,设纯收入与年数的关系为()f n ,∴[]9824098)48(161250)(2--=-++++-=n n n n n f ,获利即为()f n >0, ∴04920,09824022<+->--n n n n 即,解之得:1010 2.217.1n n <<<<即,又n ∈N , ∴n =3,4,…,17, ∴当n =3时即第3年开始获利;(1)(i)年平均收入=)49(240)(nn n n f +-= ∵n n 49+≥14492=⨯nn ,当且仅当n =7时取“=”, ∴nn f )(≤40-2×14=12(万元)即年平均收益,总收益为12×7+26=110万元,此时n =7. (ii)102)10(2)(2+--=n n f ,∴当102)(,10max ==n f n总收益为102+8=110万元,此时n =10,比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种.21.解析:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得 ,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ② 当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x所以.12)1()1(212xnx x x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n ,综上可得当1=x 时,)1(+=n n S n当1≠x 时,.12)1()1(212x nx x x x S n n n ----=+ 22.解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n 年的结余数为a n , ∵a 1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8 a 2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05) …… a 10=6×1.0510-0.8(1+1.05+…+1.059)=6×1.0510-0.8×105.1105.110--=6×1.0510-16×(1.0510-1) =16-10×1.0510≈16-16.28=-0.28(万元) 所以一次性付款合算.。
高一数学数列单元测试题1.doc
数列单元测试001一. 选择题: 1.在数列{}a n 中,311=a , )2(21)1(≥=--n a a n nn ,则=a 5( )A. 316-B.316 C.38- D.38 2.在等差数列{}a n中,=++aa a 74139 ,=++a a a 85233 则=++a a a 963( )A. 30B. 27C. 24D. 21 3.设{}a n是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是( )A. 1B. 2C. 4D. 6 4.在等差数列{}a n中,若8171593=+++aa a a ,则=a 11( )A.1B.-1C.2D.-25. 等差数列前10项和为100,前100项和为10。
则前110项的和为A .-90B .90C .-110D .106.两个等差数列,它们的前n 项和之比为1235-+n n ,则这两个数列的第9项之比是( )A .35B .58C .38D .477. 设等比数列{a n }中,每项均为正数,且a 3·a 8=81,log 3a 1+log 3a 2+…+log 3a 10等于A.5B.10C.D.408.已知等比数列的公比为2,若前4项之和为1,则前8项之和为( ) A.15 B.17 C.19 D.21 9.数列1 ,a , a2, …… ,an 1- ,……的前N 项和为( )A.a a n--11 B. a a n --+111C. aa n --+112D.均不正确 10.设直角三角形ABC 三边成等比数列,公比为q, 则q 2的值为( )A.2B.215- C. 215+ D. 215± 11.若数列22331,2cos ,2cos ,2cos ,,θθθ前100项之和为0,则θ的值为( )A. ()3k k Z ππ±∈ B. 2()3k k Z ππ±∈ C. 22()3k k Z ππ±∈ D.以上的答案均不对12.设2a =3,2b =6,2c =12,则数列a,b,c 成A.等差B.等比C.非等差也非等比D.既等差也等比 二. 填空题: 13.在等差数列{}a n中,a 3、a10是方程0532=--x x 的两根,则=+a a 85 14. 已知数列{}an的通项公式na=n 项和为10,则项数n 为15.小于自然数中被7除余3的所有的数的和是_________。
(完整版)数列单元测试卷含答案
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
(典型题)高中数学选修二第一单元《数列》测试(答案解析)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项3.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .20204.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .1766.设数列{}n a 满足122,6,a a ==且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数,则121024102410241024a a a ⎡⎤+++=⎢⎥⎣⎦( ) A .1022 B .1023 C .1024 D .10257.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7668.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a9.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018210.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207511.已知函数()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( ) A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .0,1B .[]1,0-C .1,12⎡⎤⎢⎥⎣⎦D .11,2⎡⎤-⎢⎥⎣⎦二、填空题13.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则10S =________. 14.已知数列{}n a 与2n a n ⎧⎫⎨⎬⎩⎭均为等差数列(n *∈N ),且12a =,则{}n a 的公差为______.15.设n S 是数列{}n a 的前n 项和,若()112nn n n S a =-+,则129S S S +++=________.16.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.17.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________20.已知首项为1a ,公比为q 的等比数列{}n a 满足443210q a a a ++++=,则首项1a 的取值范围是________.参考答案三、解答题21.已知{}n a 是首项为19,公差为2-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .22.已知数列{}n a 的前n 项和n S 满足()*12n n a S n N =-∈.(1)求数列{}n a 的通项公式,(2)设函数13()log f x x =,()()()12n n b f a f a f a =+++,1231111n nT b b b b =+++求证:2n T <. 23.已知数列{a n }的前n 项和为S n ,且2n S n =,n *∈N ,数列{b n }满足:12113b b ==,,且21340n n n b b b ++-+=,n *∈N (1)求证:数列{}1n n b b +-是等比数列; (2)求数列{a n }与{b n }的通项公式.24.设等差数列{}n a 的前n 项和为n S ,5624a a +=,11143S =,数列{}n b 的前n 项和为n T ,满足()1*12n a n T n a -=-∈N .(1)求数列{}n a 的通项公式及数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和;(2)判断数列{}n b 是否为等比数列,并说明理由.25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N . (1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T .26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式. (2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.3.C解析:C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >, 所以212021220201011...1a a a a a ====, 因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭. ∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23n a n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭,所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.6.B解析:B 【分析】由2122n n n a a a ++-+=变形得()2112n n n n a a a a +++---=,令1n n n b a a +=-,可得n b 为等差数列,求得{}n b 通项进而求得{}n a 通项, 结合裂项公式求1n a ⎧⎫⎨⎬⎩⎭前n 项和,再由最大整数定义即可求解 【详解】由()12121222n n n n n n n a a a a a a a +++++--=-+⇒=-,设1n n n b a a +=-,则12n nb b ,{}n b 为等差数列,1214b a a =-=,公差为2d =,故22=+n b n ,112n n n b n a a --==-,()1221n n a a n ---=-,,2122a a -=⨯,叠加得()()121n a a n n -=+-,化简得2n a n n =+,故()111111n a n n n n ==-++,所以 1210241024102410241111111024110241223102410251025a a a ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫+++=⨯-+-++-=⨯-⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ 1024102410231025⎡⎤=-=⎢⎥⎣⎦ 故选:B 【点睛】方法点睛:本题考查构造数列的使用,等差通项的求解,叠加法求前n 项和,裂项公式求前n 项和,新定义的理解,综合性强,常用以下方法: (1)形如()1n n a a f n --=的数列,常采用叠加法求解;(2)常见裂项公式有:()11111n n n n =-++,()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭7.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题8.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.9.C解析:C 【分析】根据“等差比”数列的定义,得到数列1n n a a +⎧⎫⎨⎬⎩⎭的通项公式,再利用202020202019201820192019a a a a a a =⨯求解. 【详解】由题意可得:323a a =,211a a = ,32211a a a a -=, 根据“等差比数列”的定义可知数列1n n a a +⎧⎫⎨⎬⎩⎭是首先为1,公差为2的等差数列,则()111221n na n n a +=+-⨯=-, 所以20202019220191220181a a =⨯-=⨯+,20192018220181aa =⨯-, 所以()()2202020202019201820192019220181220181420181a a a a a a =⨯=⨯+⨯-=⨯-. 故选:C 【点睛】本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.10.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.11.B解析:B 【分析】由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案.【详解】()()633,7,,7.xa x xf xa x-⎧--≤=⎨>⎩令()()na f n n N*=∈得数列{}n a∴()633,7,7n na n naa n-⎧--≤=⎨>⎩()n N*∈且数列{}n a为递增数列,得()230,1,733,aaa a⎧->⎪>⎨⎪--<⎩解得23a<<.即:()2,3a∈故选:B.【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.12.D解析:D【分析】设等比数列{}n a的公比为q,由1220a a+=,334S=,列方程求出1,a q,进而可求出nS,列不等式组可求出a的取值范围【详解】解:设等比数列{}n a的公比为q,因为1220a a+=,334S=,所以121(12)03(1)4a qa q q+=⎧⎪⎨++=⎪⎩,解得111,2a q==-,所以11()212[1()]1321()2nnnS--==----,所以当1n=时,nS取得最大值,当2n=时,nS取得最小值12,所以1221a a ⎧≤⎪⎨⎪+≥⎩,解得112a -≤≤,故选:D 【点睛】此题考查等比数列的通项公式与求和公式及其性质,考查推理能力与计算能力,属于中档题二、填空题13.【分析】将化为两边同除以可得数列数列是等差数列进而可求出再令即可求出【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以故答案为:【点睛】思路点睛:与关系问题的求解思路根据所求结 解析:111【分析】将110n n n a S S +++=化为110n n n n S S S S ++-+=,两边同除以1n n S S +,可得数列数列1{}nS 是等差数列,进而可求出n S ,再令10n =即可求出10S . 【详解】因为110n n n a S S +++=,所以110n n n n S S S S ++-+=,所以11n n n n S S S S ++-=, 所以1111n n S S +-=,又11112S a ==,所以数列1{}n S 是以2为首项,1为公差的等差数列,所以12(1)11n n n S =+-⨯=+,所以11n S n =+,所以10111S =. 故答案为:111【点睛】思路点睛:n S 与n a 关系问题的求解思路,根据所求结果的不同要求,将问题向不同的两个方向转化:(1)利用1(2)n n n a S S n -=-≥转化为只含n S ,1n S -的关系式,再求解; (2)利用1(2)n n n S S a n --=≥转化为只含n a ,1n a -的关系式,再求解.14.【分析】本题首先可设数列的公差为则然后根据题意得出最后通过计算即可得出结果【详解】设数列的公差为因为所以因为数列是等差数列所以即解得故答案为:【点睛】关键点点睛:本题考查等差数列的公差的求法主要考查 解析:2【分析】本题首先可设数列{}n a 的公差为d ,则22a d =+、322a d =+,然后根据题意得出2123221322a a a +=⨯,最后通过计算即可得出结果. 【详解】设数列{}n a 的公差为d ,因为12a =,所以22a d =+,322a d =+,因为数列2n a n ⎧⎫⎨⎬⎩⎭是等差数列,所以2123221322a a a +=⨯,即()()2222342d d +=++,解得2d =, 故答案为:2. 【点睛】关键点点睛:本题考查等差数列的公差的求法,主要考查等差中项的应用,若数列{}n a 是等差数列且2n mk ,则2n m k a a a ,考查计算能力,是中档题.15.【分析】令计算得出然后推导出当为偶数时当为奇数时利用等比数列的求和公式可求得的值【详解】当时解得;当时当为偶数时可得则;当为奇数时可得则因此故答案为:【点睛】方法点睛:本题考查已知与的关系求和常用的 解析:3411024【分析】令1n =计算得出114a =,然后推导出当n 为偶数时,0n S =,当n 为奇数时,112n n S +=,利用等比数列的求和公式可求得129S S S +++的值.【详解】 当1n =时,11112a S a ==-+,解得114a =;当2n ≥时,()()()1111122nnn n n n n nS a S S -=-+=-⋅-+. 当n 为偶数时,可得112n n n n S S S -=-+,则112n nS -=; 当()3n n ≥为奇数时,可得112n n n n S S S -=-++,则1112120222n n n n nS S -+=-=-=.因此,2512924681011111111341240000122222102414S S S ⎛⎫- ⎪⎝⎭+++=++++++++==-.故答案为:3411024. 【点睛】方法点睛:本题考查已知n S 与n a 的关系求和,常用的数列求和方法如下: (1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.16.1010【分析】由与关系当时将代入条件等式得到数列为等差数列求出进而求出即可求出结论【详解】∵∴∴∴令则∴数列是以为首项公差的等差数列∴即∴∴由解得即正整数的最小值为故答案为:【点睛】方法点睛:本题解析:1010 【分析】由n S 与n a 关系,当2n ≥时,将1n n n a S S -=-代入条件等式,得到数列21{}nn S +为等差数列,求出n S ,进而求出12m S S S ,即可求出结论.【详解】∵1122n n n n n S S S S na --+-=, ∴()11122n n n n n n S S S S n S S ---+-=-, ∴()()1122121n n n n S S n S n S --=+--, ∴121212n n n n S S -+--=, 令21n nn b S +=,则()122n n b b n --=≥, ∴数列{}n b 是以111331b S a ===为首项,公差2d =的等差数列, ∴21n b n =-,即2121n n n S +=-,∴2121n n S n +=-,∴12521321321m m S S S m m +=⨯⨯⨯=+-,由212021m +≥,解得1010m ≥, 即正整数m 的最小值为1010.故答案为: 1010. 【点睛】方法点睛:本题考查等差数列的通项公式,考查递推关系式,求通项公式的主要方法有: 观察法:若已知数列前若干项,通过观察分析,找出规律;公式法:已知数列是等差数列或等比数列,或者给出前n 项和与通项公式的关系; 累加法:形如()1n n a a f n +=+的递推数列; 累乘法:形如()1n n a a f n +=⋅的递推数列.17.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n个正方形的边长为n a ,则第n n , 所以第n+1个正方形的边长为12n n a a +=, 1n n a a +∴=, 即数列{n a }是首项为15a =的等比数列, 15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列,123125(1)1250(1)1212n n nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5018.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n d S na n n -=+=+,记()2991010n nn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+, 所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.20.【分析】利用等比数列通项公式可整理已知等式得到令可得到由函数的单调性可求得的取值范围【详解】由得:令则在上单调递减;在上单调递减;综上所述:的取值范围为故答案为:【点睛】本题考查函数值域的求解问题涉解析:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦【分析】利用等比数列通项公式可整理已知等式得到211211q q a q q⎛⎫+- ⎪⎝⎭=-++,令1t q q =+可得到1111a t t =-+++,由函数的单调性可求得1a 的取值范围. 【详解】由443210q a a a ++++=得:43211110q a q a q a q ++++=,224213211211111q q q q q a q q q q q q q⎛⎫+-+ ⎪+⎝⎭∴=-=-=-++++++. 令(][)1,22,t q q=+∈-∞-+∞,则()()2211211211111t t t a t t t t +-+--=-=-=-+++++, 111t t -+++在(],2-∞-上单调递减,12112a ∴≥+-=;111t t -+++在[)2,+∞上单调递减,1122133a ∴≤-++=-; 综上所述:1a 的取值范围为[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.故答案为:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查函数值域的求解问题,涉及到等比数列通项公式的应用;关键是能够将1a 表示为关于q 的函数,利用分离常数法可确定函数的单调性,进而利用函数单调性求得函数的最值,从而得到所求的取值范围.三、解答题21.(1)212n a n =-;(2)12123n n b n -=-+;231202n n T n n -=-++. 【分析】(1)利用等差数列的通项公式即可求解;(2)由(1)得12123n n b n -=-+,利用分组求和即可求解.【详解】(1)因为{}n a 是首项119a =,公差2d =-的等差数列, 所以192(1)n a n =--212n =-,(2)由题知{}n n b a -是首项为1,公比为3的等比数列,则13n n n b a --=,所以13n n n b a -=+12123n n -=-+,所以12n n T b b b =+++()()()()0121233333n n a a a a =++++++++ ()()21121333n n a a a -=+++++++()()()211319212402313120132222n n n n n n n n n ⨯-+----=+=+=-+-.22.(1)13nn a ⎛⎫= ⎪⎝⎭;(2)证明见解析. 【分析】(1)由12n n a S =-,结合n a 和n S 的关系,化简得到数列{}n a 为首项为13,公比为13的等比数列,即可求得数列的通项公式;(2)由函数13()log f x x =,结合对数的运算性质,求得(1)2nn n b +=,再利用“裂项法”求得数列的前n 项和,即可证得结论. 【详解】(1)因为12n n a S =-,所以1112(2)n n a S n --=-≥, 所以11222(2)n n n n n a a S S a n ---=-=-≥,可得11(2)3n n a a n -=≥,即11(2)3n n a n a -=≥, 又由1112a S =-,所以113a =,所以数列{}n a 为首项为13,公比为13的等比数列, 所以数列{}n a 的通项公式为1113n nn a q a -⎛⎫= ⎪⎝⎭=. (2)由题意,函数13()log f x x =,所以11121n 333log log log n b a a a =+++()121121331log ,log 3nn a a a +++⎛⎫== ⎪⎝⎭(1)122n n n +=+++=则12112(1)1n b n n n n ⎛⎫==- ⎪++⎝⎭, 所以12111n nT b b b =+++11111212231n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦221n =-+, 因为n *∈N ,所以201n >+,所以2221n -<+,即2n T <. 【点睛】关于数列的裂项法求和的基本策略: 基本步骤:裂项:观察数列的通项,将通项拆成两项之差的形式; 累加:将数列裂项后的各项相加;消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前n 项和. 消项的规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 23.(1)证明见解析;(2)21n a n =-,113n n b -=. 【分析】(1)利用等比数列的定义证明;(2)利用1(2)n n n a S S n -=-≥求n a ,由累加法求n b . 【详解】(1)因为21340n n n b b b ++-+=,所以2111()3n n n n b b b b +++-=-,又21203b b -=-≠, 所以21113n n n n b b b b +++-=-,*n N ∈,所以数列{}1n n b b +-是等比数列;(2)2n ≥时,221(1)21n n n a S S n n n -=-=--=-,又111a S ==适合上式, 所以21,*n a n n N =-∈,由(1)112133n n n b b -+⎛⎫-=-⨯ ⎪⎝⎭,所以,2n ≥时,212132122121()()()133333n n n n b b b b b b b b --⎛⎫⎛⎫⎛⎫⎛⎫=+-+-++-=+-+-⨯++-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1121133111313n n --⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+= ⎪⎝⎭-.又11b =,所以113n n b -=. 【点睛】易错点睛:本题考查等比数列的证明,考查由n S 求n a ,累加法求数列的通项公式.在由n S 求n a 时要注意公式1n n n a S S -=-中2n ≥,而11a S =,求法不相同,易出错,同样在用累加法求通项公式时,121321()()()n n n b b b b b b b b -=+-+-++-,括号中的各项成等比数列,这里不包含1b .要特别注意首项.24.(1)21()n a n n =+∈N ;69n n +;(2)数列{}n b 不是等比数列.理由见解析. 【分析】(1)由等差数列的通项公式以及前n 项和公式即可求得n a ,代入11n n a a +,利用裂项求和即可求得数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和; (2)由n T 求出数列{}n b 的通项公式,再运用等比数列的定义判断即可.【详解】解:(1)设数列{}n a 的公差为d ,11611143S a ==,613a ∴=,又5624a a +=,解得:511a =,2d =,21()n a n n ∴=+∈N ,111111(21)(23)22123n n a a n n n n +⎛⎫∴==- ⎪++++⎝⎭, 设11n n a a +⎧⎫⎨⎬⎩⎭前n 项的和为n B , 1113557(21)(23)n B n n ∴=++⋯+⨯⨯++1111111235572123n n ⎛⎫=-+-++- ⎪++⎝⎭111232369n n n ⎛⎫=-= ⎪++⎝⎭; (2)13a =,124n a n -=,43n n T ∴=+.当1n =时,17b =;当2n ≥时,1114434n n n n n n b T T ---=-=-=⨯,()142n n b b n +∴=≥,若{}n b 是等比数列,则有214b b =,而17b =,212b =,所以与214b b =矛盾,故数列{}n b 不是等比数列.【点睛】方法点睛:数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.25.(1)2n n a =;(2)1(1)222n n n n T ++=+-. 【分析】(1)利用公式11,1=,2n nn S n a S S n -=⎧⎨-≥⎩求{}n a 的通项公式; (2)由题得2n n b n =+,再利用分组求和求数列{}n b 的前n 项和n T .【详解】解:(1)∵点(),n n a S 在直线22y x =-上,n *∈N ,∴22n n S a =-.当1n =时,1122a a =-,则12a =,当2n 时,22n n S a =-,1122n n S a --=-.两式相减,得122n n n a a a -=-,所以12n n a a -=.所以{}n a 是以首项为2,公比为2等比数列,所以2n n a =.(2)2n n b n =+,()23(123)2222n n T n =+++⋯++++++,所以1(1)222n n n n T ++=+-. 【点睛】 方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列的通项特征选择合适的方法求解. 26.(1)证明见解析;21n a n =+;(2)8. 【分析】 (1)根据等差数列的定义,证明111n na a +-为常数,由等差数列通项公式得1n a ,从而求得n a ;(2)不等式11122k n n a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭即为11222n n k -+≤<,从而可确定k 的个数,即n b ,然后由错位相减法求得n S ,结合{}n S 是递增数列,通过估值法得出不等式4032n S <的最大正数解.【详解】 (1)由1122n n n a a a +=+取倒数得 11221112n n n n n a a a a a +++=⇔=+,即11112n n a a +-=,所以1n a ⎧⎫⎨⎬⎩⎭为公差为12的等差数列, ()1111121221n n n n a a a n +=+-⋅=⇒=+. (2)当11122n n k a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭时,1112221212n n n n k k -++≤<⇔-≤<-, 所以这样k 有2n 个2n n b ⇒=,()112n n nb n a -=+⋅, ()2121324212n n S n -=⋅+⋅+⋅+⋅⋅⋅+-⋅,()2122232212n n n S n n -=⋅+⋅+⋅⋅⋅+⋅++⋅,两式相减得:()21222212n n n S n --=+++⋅⋅⋅+-+⋅2n n =-⋅,所以2n n S n =⋅为递增数列. 82048S =,94608S =,8940328S S n <<⇒≤,所以最大正整数解为8.【点睛】方法点睛:本题主要考查等差数列的证明,考查错位相减法求和.数列求和的常用方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.。
数列》单元测试题(附答案解析).doc
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
数列单元测试题及答案解析
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
高二数列单元测试题及答案
高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。
__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。
__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。
__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。
__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。
__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。
12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。
13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。
求第5年的产量,并求前5年的总产量。
答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。
(完整版)高三数学第一轮复习单元测试--数列
高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
完整版)中职数学《数列》单元测试题
完整版)中职数学《数列》单元测试题Chapter 6 Test of SequencesI。
Multiple-choice ns1.What is a general formula for the sequence -3.3.-3.3. A。
an3(-1)n+1B。
an3(-1)nC。
an3 - (-1)nD。
an3 + (-1)n2.{anXXX sequence with the first term a11 and common difference d = 3.If an2005.what is the value of n?A。
667 B。
668 C。
669 D。
6703.In a geometric sequence {anwhere all terms are positive。
a13.and the sum of the first three terms is 21.what is the value of a3a4a5A。
33 B。
72 C。
84 D。
1894.In a geometric sequence {anif a29 and a5243.what is the sum of the first four terms of {anA。
81 B。
120 C。
168 D。
1925.If the common difference of an arithmetic sequence {a nis 2 and a1a3and a4form a geometric sequence。
what is the value of a 2A。
-4 B。
-6 C。
-8 D。
-106.If all terms of a geometric sequence {anwith a common。
of 2 are positive and a3a1116.what is the value of a5A。
高中数学选择性必修二第四章《数列》单元测试卷
高中数学选择性必修二第四章《数列》单元测试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列{}n a 的通项公式为()()132nn a n =--,则{}n a 的第5项是( )A .13B .13-C .15-D .152.记n S 为数列{}n a 的前n 项和.“任意正整数n ,均有0n a >”是“{}n S 为递增数列” 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…,设第n 个图形的边长为n a ,则数列{}n a 的通项公式为( )A .13nB .131n - C .13nD .113n - 4.若数列{}n a 满足12a =,111nn na a a ++=-,则2018a 的值为( )A .2B .3-C .12-D .135.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100-B .100C .110-D .1106.已知数列{}n a 的前n 项和1233n n S a =+,则{}n a 的通项公式n a =( )A .12nn a ⎛⎫=- ⎪⎝⎭B .112n n a -⎛⎫=- ⎪⎝⎭C .112n n a -⎛⎫= ⎪⎝⎭D .112n n a +⎛⎫=- ⎪⎝⎭7.在数列{}n a 中,11a =-,20a =,21n n n a a a ++=+,则5a 等于( ) A .0B .1-C .2-D .3-8.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1769.已知数列{}n a 的各项均为整数,82a =-,134a =,前12项依次成等差数列,从第11项起依次成等比数列,则15a =( ) A .8B .16C .64D .12810.设数列{}n a 的前n 项和为n S ,若2n S n n =--,则数列()21n n a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前40项的和为( )A .3940B .3940-C .4041D .4041-11.已知等差数列{}n a 的前n 项和为n T ,34a =,627T =,数列{}n b 满足1123n n b b b b b +=+++⋅⋅⋅+,121b b ==,设n n n c a b =+,则数列{}n c 的前11项和为( )A .1062B .2124C .1101D .110012.已知数列{}n a 满足11a =,()12n n a a n +-≥∈*N ,则( ) A .21n a n ≥+B .2n S n ≥C .12n n a -≥D .12n n S -≥二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上) 13.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.14.已知数列{}n a 的首项12a =,且()11122n n a a n +=+∈*N ,则数列11n a ⎧⎫⎨⎬-⎩⎭的前10项的和为_____.15.已知数列{}n a 前n 项和为n S ,若22n n n S a =-,则=n S _________.16.已知n S 为数列{}n a 的前n 项和,10a =,若()()1112n nn n a a +⎡⎤=+-+-⎣⎦,则100S =_____.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na ⋅=+,求数列{}n b 的前n 项和n T .18.(12分)设等差数列{}n a 的前n 项和为n S ,且3S ,52S ,4S 成等差数列,521322a a a =+-. (1)求数列{}n a 的通项公式;(2)设12n n b -=,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(12分)已知公差不为0的等差数列{}n a 的首项11a =,且1a ,2a ,6a 成等比数列.(1)求数列{}n a 的通项公式; (2)记11n n n b a a +=,求数列{}n b 的前n 项和n S .20.(12分)设正项数列{}n a 的前n 项和n S满足1n a +,()n ∈*N . (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围.21.(12分)已知正项等比数列{}n a 的前n 项和为n S ,且()21n n S a n =-∈*N . (1)求数列{}n a 的通项公式;(2)若lg n n b a =,求数列{}n n a b +的前n 项和n T .22.(12分)若数列{}n a 的前n 项和n S 满足2n n S a λ=-(0n λ>∈*N ,). (1)证明:数列{}n a 为等比数列,并求n a ;(2)若24,log n n n a n b a n λ⎧⎪==⎨⎪⎩,是奇,是偶,(n ∈*N ),求数列{}n b 的前n 项和n T .高中数学选择性必修二第四章《数列》单元测试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】求数列{}n a 的某一项,只要把n 的值代入数列的通项即得该项. 2.【答案】A【解析】∵“0n a >”⇒“数列{}n S 是递增数列”, 所以“0n a >”是“数列{}n S 是递增数列”的充分条件. 如数列{}n a 为1-,0,1,2,3,4,…,显然数列{}n S 是递增数列,但是n a 不一定大于零,还有可能小于等于零, 所以“数列{}n S 是递增数列”不能推出“0n a >”, ∴“0n a >”是“数列{}n S 是递增数列”的不必要条件.∴“0n a >”是“数列{}n S 是递增数列”的充分不必要条件.故答案为A . 3.【答案】D【解析】本题主要考查了等比数列的判定和等比数列的通项的求法,属于基础题. 4.【答案】B【解析】12a =由题,111n n n a a a ++=-,所以121131a a a +==--,2321112a a a +==--,3431113a a a +==-,454121a a a +==-,故数列{}n a 是以4为周期的周期数列,故20185044223a a a ⨯+===-.故选B . 5.【答案】A【解析】由()11nn n a a n ++=-,得211a a +=-,343a a +=-,565a a +=-,…192019a a +=-, ∴n a 的前20A . 6.【答案】B【解析】令1n =,11a =,代入选项,排除A ,D 选项.令2n =,解得212a =-,排除C 选项.故选B . 7.【答案】C【解析】因为21n n n a a a ++=+,所以3121a a a =+=-,4321a a a =+=-,5432a a a =+=-.故选C . 8.【答案】B【解析】由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=.即第八个孩子分得斤数为184.本题选择B 选项. 9.【答案】B【解析】设由前12项构成的等差数列的公差为d ,从第11项起构成的等比数列的公比为q ,由()2212131124d 423d a a a -+===-+,解得1d =或34d =, 又数列{}n a 的各项均为整数,故1d =,所以13122a q a ==, 所以111012213n n n n a n --≤⎧=⎨≥⎩,,,故415216a ==,故选B .10.【答案】D【解析】根据2n S n n =--,可知当2n ≥时,()()221112n n n a S S n n n n n -⎡⎤=-=-------=-⎣⎦,当1n =时,112a S ==-,上式成立,所以2n a n =-,所以()221112(+11nn a n n n n ⎛⎫=-=-- ⎪++⎝⎭),所以其前n 项和11111111234+111n n T n n n n ⎛⎫⎛⎫=--+-++-=--=-⎪ ⎪++⎝⎭⎝⎭, 所以其前40项和为404041T =-.故选D . 11.【答案】C【解析】设数列{}n a 的公差为d ,则112461527a d a d +=+=⎧⎨⎩,解得121a d ==⎧⎨⎩,数列{}n a 的通项公式为1n a n =+,当2n ≥时,1n n n b b b +-=,∴12n n b b +=,即{}n b 从第二项起为等比数列,∴()222n n b n -=≥,数列{}n b 的通项公式为:21,1 2,2n n n b n -=⎧⎪=⎨≥⎪⎩, 分组求和可得数列{}n c 的前11项和为()()29101123412112227721101S =+++++++++=+=+.本题选择C 选项.12.【答案】B【解析】由题得212a a -≥,322a a -≥,432a a -≥,432a a -≥, ∴()213243121n n a a a a a a a a n --+-+-++-≥-,∴()121n a a n -≥-,21n a n ∴≥-,∵123135a a a ≥≥≥,,,,21n a n ≥-,∴12313521n a a a a n ++++≥++++-,∴()21212n nS n n ≥+-=.故选B . 二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上) 13.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以1-为首项,以2为公比的等比数列,所以()66126312S --==--.故答案是63-.14.【答案】1023【解析】由11122n n a a +=+,得()11112n n a a +-=-,∴{}1n a -为等比数列,()111111122n n n a a --⎛⎫⎛⎫-=-⨯= ⎪⎪⎝⎭⎝⎭,1121n n a -=-,101012102312S -==-,故答案为1023. 15.【答案】2n n ⋅【解析】∵1n n n a S S -=-,故()122n n n n S S S -=--,整理得到122n n n S S -=+,也即是11122n n n n S S --=+,故2n n S ⎧⎫⎨⎬⎩⎭为等差数列.又12a =,∴()11122n n S a n n =+-⨯=即·2n n S n =. 16.【答案】101223-【解析】由()()()1112n nn n a a n +⎡⎤=+-+-∈⎣⎦*N ,当n 为奇数时,有()12nn a +=-;当n 为偶数时,有122n n n a a +=+, ∴数列{}n a 的所有偶数项构成以2-为首项,以4为公比的等比数列,()()10013599246100S a a a a a a a a =+++⋯+++++⋯+()()()246982469824610022222a a a a a a a a =+++⋯+++++⋯+++++⋯+()()24698246100100322222a a a a a =+++⋯+-++++⋯+()()()5049101992144142232214143----=⨯-⨯-+=--. 故答案是101223-.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)12n n a -=;(2)21122n n T n n -++-=. 【解析】(1)由已知1,n a n S 成等差数列得21n n a S =+,① 当1n =时,111211a S a =+=+,∴11a =, 当 2n ≥时,1121n n a S --=+,② ①-②得122n n n a a a --=,∴12nn a a -=, ∴数列{}n a 是以1为首项,2为公比的等比数列,∴1111122n n n n a a q ---==⨯=. (2)由12n n n a b na ⋅=+得12n nb n a =+, ∴1212111242n n nT b b b n a a a =+++=++++++()12111242nn a a a ⎛⎫=+++++++ ⎪⎝⎭()21112212212212n n n n n n --+=+=++--. 18.【答案】(1)21n a n =-,()n ∈*N ;(2)12362n n n T -+=-. 【解析】设等差数列{}n a 的首项为1a ,公差为d ,由3S ,52S ,4S 成等差数列, 可知345S S S +=,由521322a a a =+-得:120a d -=,1420a d --= 解得:11a =,2d =,因此21n a n =-,()n ∈*N . (2)令()11212n n n n a c n b -⎛⎫==- ⎪⎝⎭.则12n n T c c c =++⋯+,∴()21111113521222n n T n -⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪⎝⎭⎝⎭,①()23111111352122222nn T n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,②①-②,得()2111111122122222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⋅+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()1111212122n nn -⎡⎤⎛⎫⎛⎫=+---⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2332n n +=-∴12362n n n T -+=-. 19.【答案】(1)32n a n =-;(2)31n nS n =+. 【解析】(1)设等差数列{}n a 的公差为()0d d ≠,∵1a ,2a ,6a 成等比数列,∴2216a a a =⋅∴()()21115a d a a d +=⋅+, ∵11a =,∴23d d =,∵0d ≠,∴3d =,∴32n a n =-.(2)由(1)知()()1111323133231bn n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1211111111113447323133131n n n S b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 20.【答案】(1)21n a n =-,()n ∈*N ;(2)1132n T ⎡⎫∈⎪⎢⎣⎭,.【解析】(1)①1n =时,由11a +,得11a =,②2n ≥时,由已知,得()241n n S a =+,∴()21141n n S a --=+, 两式作差,得()()1120n n n n a a a a --+--=, 又∵{}n a 是正项数列,∴12n n a a --=,∴数列{}n a 是以1为首项,2为公差的等差数列.∴21n a n =-,()n ∈*N . (2)∵()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪⋅-+-+⎝⎭,∴12111111111111123235221212212n n T b b b n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-< ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭. 又因为数列{}n T 是递增数列,当1n =时n T 最小,113T =,∴1132n T ⎡⎫∈⎪⎢⎣⎭,.21.【答案】(1)12n n a -=;(2)()1lg2212n n n n T -=+-.【解析】(1)由()21n n S a n =-∈*N ,可得1121S a =-,∴1121a a =-,∴11a =. 又2221S a =-,∴12221a a a +=-,∴22a =. ∵数列{}n a 是等比数列,∴公比212a q a ==,∴数列{}n a 的通项公式为12n n a -=. (2)由(1)可知,()lg 1lg2n n b a n ==-,∴数列{}n n b a +的前n 项和()()()1122n n n T b a b a b a =++++++()()()-101lg221lg22n n ⎡⎤=+++++-+⎣⎦()()1lg22lg21lg2122n n -=+++-++++⎡⎤⎣⎦()1lg2212n n n -=+-. 22.【答案】(1)12n n a λ-=⨯;(2)()()()()()14214344211334n n n n n n T n n n +⎧-+⎪+⎪=⎨--+⎪+⎪⎩,是偶,是奇. 【解析】(1)由题意可知112S a λ=-,即1a λ=; 当2n ≥时,()()1112222n n n n n n n a S S a a a a λλ---=-=---=-,即12n n a a -=; ∴数列{}n a 是首项为λ,公比为2的等比数列,∴12n n a λ-=⨯.(2)由(1)可知当4λ=时12n n a +=,从而121n n n b n n +⎧⎪=⎨+⎪⎩,是奇,是偶, n 为偶数时,()2414312142n n n n T ⎛⎫- ⎪++⎝⎭=+-; n 为奇数时,()()1211141431122142n n n n n n T T b n +++⎛⎫+- ⎪+++⎝⎭=-=+-+- ()()()142115234n n n n +-++=+-- ()()()14211334n n n +--+=+, 综上,()()()()()14214344211334n n n n n n T n n n +⎧-+⎪+⎪=⎨--+⎪+⎪⎩,是偶,是奇.。
(必考题)高中数学选修二第一单元《数列》测试卷(有答案解析)
一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11283.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个4.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =5.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩6.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项 7.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2058.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207510.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.16.等差数列{}n a 中,若15939a a a ++=,371127a a a ++=,则数列{}n a 前11项的和为__________. 17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.设数列{}n a 满足15a =,且对任意正整数n ,总有()()13344n n n a a a +++=+成立,则数列{}n a 的前2020项和为______.19.已知n S 为等差数列{}n a 的前n 项和,且675S S S >>,给出下列说法: ①6S 为n S 的最大值;②110S >;③120S <;④850S S ->.其中正确的是______.20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.已知{}n a 为等差数列,123,,a a a 分别是表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数都不在表的同一列.请从①1,②1,③1的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在.并在此存在的数列{}n a 中,试解答下列两个问题: (1)求数列{}n a 的通项公式;(2)设数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S ,若不等式4nn S a λ+≥对任意的*n ∈N 都成立,求实数λ的最小值.22.在各项均为正数的等比数列{}n a 中,1212a a +=,34108a a +=, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n n b na =,求数列{}n b 的前n 项和n S .23.数列{}n a 各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=(1)求数列{}n a 的通项公式; (2)设4241n n b S =-,求数列{}n b 的前n 项和nT ,并求使21(3)6>-n T m m 对所有的*n N ∈都成立的最大正整数m 的值.24.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 25.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由. 26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a =令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.3.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使100n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.4.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.5.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.6.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.7.C解析:C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
数列单元测试卷
第二章单元测验A 卷一、填空题(每题5分,共25分)1. 等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________.2. 在等比数列{}n a 中, 若,75,393==a a 则10a =___________3. 两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________.4.计算3log n=__________________________.5. 在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则=⋅74a a ___________.二、选择题(每题4分,共28分)6.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于 ( ) A. 11 B. 12 C. 13 D. 147.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 ( ) A. 66 B. 99 C. 144 D. 2978.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第 ( ) A. 2项 B. 4项 C. 6项 D. 8项9.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则=2a ( ) A. 4- B. 6- C. 8- D. 10-10.12+与12-,两数的等比中项是 ( ) A. 1 B. 1- C. 1± D. 2111.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为A. 81B. 120C. 168D. 192 12.设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则 ( ) A. 1 B. 1- C. 2 D.21三、解答题(共47分)13.(8分) 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数. 【设四数为3,,,3a d a d a d a d --++,则22426,40a a d =-=即1333,222a d ==-或,当32d =时,四数为2,5,8,11当32d =-时,四数为11,8,5,2】14.(9分)设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q .【解:显然1q ≠,若1q =则3619,S S a +=而91218,S a =与9632S S S =+矛盾由369111369(1)(1)2(1)2111a q a q a q S S S q q q---+=⇒+=---96332333120,2()10,,1,2q q q q q q q --=--==-=得或而1q ≠,∴243-=q 】15.(10分)求和:)0(),(...)2()1(2≠-++-+-a n a a a n【原式=2(...)(12...)n a a a n +++-+++2(1)( (2)n n a a a +=+++-2(1)(1)(1)12(1)22n a a n n a a n n a ⎧-+-≠⎪⎪-=⎨⎪-=⎪⎩】 16.(10分)在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围. 【22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13n n n a S n n N-==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)n n n a S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥】17.(10分) 已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和. 【解:112,5211,6n n n n b a n n -≤⎧==⎨-≥⎩,当5n ≤时,2(9112)102n n S n n n =+-=-当6n ≥时,255525(1211)10502n n n S S S n n n --=+=++-=-+∴⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n 】第二章单元测验B 卷一、填空题(每题5分,共25分)1.等差数列{}n a 中, ,33,562==a a 则=+53a a _________.2.在正项等比数列{}n a 中,252735351=++a a a a a a ,则=+53a a _______.3.已知数列{}n a 中,11-=a ,n n n n a a a a -=⋅++11,则数列通项=n a ___________.4.等比数列{}n a 前n 项的和为12-n,则数列{}2n a 前n 项的和为______________.5.已知数列{}n a 是等差数列,若171074=++a a a ,77141312654=++++++a a a a a a 且13=k a ,则=k _____.二、选择题(每题4分,共28分) 6.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9A. 98B. 99C. 96D. 977.在等比数列{}n a 中,若62=a ,且0122345=+--a a a 则n a 为 ( ) A. 6 B. ()216--⋅n C. 226-⋅n D. ()2226166--⋅-⋅n n 或或8.在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为 ( ) A. 9 B. 12 C. 16 D. 17 9.A.B.C.D.10.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为 ( ) A. 5.22- B. 5.21- C. 5.20- D. 20-11.等比数列{}n a 的各项均为正数,且187465=+a a a a ,则=+++1032313log log log a a a ( ) A. 12 B. 10 C. 5l o g 13+ D. 5l o g 23+ 12.等差数列{}{}n n b a ,的前n 项和分别为n n T S ,,若,132+=n n T S n n 则=nn b a( ) A.32 B. 1312--n n C. 1312++n n D. 4312+-n n 三、解答题(共47分)13.(8分)三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?【设原三数为3,4,5,(0)t t t t ≠,不妨设0,t >则2(31)516,5t t t t +==,315,420,525,t t t ===∴原三数为15,20,25】14.(9分) 求和:12...321-++++n nxx x .【记21123...,n n S x x nx -=++++当1x =时,1123...(1)2n S n n n =++++=+当1x ≠时,23123...(1),n n n xS x x x n xnx -=++++-+231(1)1...,n nn x S x x x xnx --=+++++-11nn n x S nx x-=-- ∴原式=⎪⎪⎩⎪⎪⎨⎧=+≠---)1(2)1()1(11x n n x nx xx n n】15.(10分) 已知数列{}n a 的前n 项和n n S 23+=,求n a .【解:111132,32,2(2)nn n n n n n n S S a S S n ----=+=+=-=≥而115a S ==,∴⎩⎨⎧≥==-)2(,2)1(,51n n a n n 】16.(10分) 一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数. 【解:设此数列的公比为,(1)q q ≠,项数为2n,则22222(1)1()85,170,11n n a q q S S q q --====--奇偶2221122,85,2256,28,14n nS a q n S a -======-偶奇∴,2=q 项数为8】17.(10分) 已知数列{}n a 的前n 项和)34()1(...139511--++-+-=-n S n n ,求312215S S S -+的值.【解:(4),2,2121,(4)43,2n n nn n n S S n n n n n ⎧⨯-⎪-⎧⎪==⎨⎨--⎩⎪⨯-+-⎪⎩为偶数为偶数,,为奇数为奇数15223129,44,61,S S S ==-=15223176S S S +-=-】第三章单元测验A 卷一、填空题(每题5分,共25分)1. 若方程()024*******=++++++n mn m x m x 有实根,则实数=m ________;且实数=n ______.2.原点和点()1,1在直线0=-+a y x 的两侧,则a 的取值范围是_________________.3. 当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________.4.设实数y x ,满足⎪⎩⎪⎨⎧≤->-+≥--,032,042,02y y x y x 则x y 的最大值是____________________.5.设+∈R y x ,且191=+yx ,则y x +的最小值为________. 二、选择题(每题4分,共28分)6.下列各对不等式中同解的是 ( )A. 72<x 与x x x +<+72B. 0)1(2>+x 与 01≠+xC. 13>-x 与13>-xD. 33)1(x x >+与xx 111<+ 7.已知点()2,a P 在直线0432:=-+y x l 右上方(不包括边界)则a 的取值范围为 ( ) A. 1->a B. 1-<a C. 1-≤a D. 1-≥a8.设11->>>b a ,则下列不等式中恒成立的是 ( ) A.b a 11< B. ba 11> C. 2b a > D. b a 22> 9.不等式x x 22lg lg <的解集是 ( ) A. ⎪⎭⎫⎝⎛1,1001 B. ()+∞,100 C. ()+∞⋃⎪⎭⎫⎝⎛,1001,1001 D. ()()+∞⋃,1001,0 10.若214122-+⎪⎭⎫⎝⎛≤x x ,则函数xy 2=的值域是 ( )A. ⎪⎭⎫⎢⎣⎡2,81B. ⎥⎦⎤⎢⎣⎡2,81C. ⎥⎦⎤⎝⎛∞-81, D. [)+∞,211.下面结论正确的是A. ba b a 11,<>则有若 B. c b c a b a >>则有若, C. b a b a >>,则有若 D. 1,>>bab a 则有若12.由不等式组⎩⎨⎧≤≤≤≤9020x y x表示的平面区域内的整点(横、纵坐标都是整数的点)个数为 ( )A. 个55B. 个1024C. 个1023D. 个1033 三、解答题(共47分)13.(8分) 解不等式(1) ()()03log 232>--x x (2) 2232142-<---<-x x ; 14.(9分) 已知1)1()(2++-=x aa x x f , (1)当21=a 时,解不等式0)(≤x f ;(2)若0>a ,解关于x 的不等式0)(≤x f ; 【已知1)1()(2++-=x a a x x f ,(I )当21=a 时,解不等式0)(≤x f ;(II )若0>a ,解关于x 的不等式0)(≤x f 。
数列单元测试
人教新课标版(A )高二必修五第二章数列单元测试(时间:90分钟 满分:100分)一、选择题(每小题3分,共36分)1、已知{a n }是等差数列,且有48a a a a 111032=+++,则67a a +=( )A 、12B 、16C 、20D 、24 2、若等差数列的第一、二、三项依次是x1,x 65,1x 1+,那么这个等差数列的第101项是( ) A 、3150 B 、3213 C 、24 D 、3283、设等比数列{a n }的前n 项和为S n ,前n 项的倒数之和为T n ,则nn T S的值为( )A 、n 1a aB 、n1a aC 、nn n 1a aD 、nn 1aa ⎪⎪⎭⎫ ⎝⎛ 4、在等比数列中,已知首项为89,末项为31,公比为32,则该数列的各项之和为( ) A 、4 B 、2465 C 、89 D 、8195、在各项均为正数的等比数列{a n }中,若,9a a 76=则2313a log a log ++…+123113103a log a log a log ++等于( )A 、12B 、10C 、8D 、2+log 35 6、已知数列{a n }的前n 项和为3n n S =,则9876a a a a +++等于( ) A 、729B 、387C 、604D 、8547、如果数列{a n }的前n 项和1n 2n 8S 2n -+=,那么{a n }是( )A 、等差数列B 、等比数列C 、从第二项开始,以后各项成等差数列D 、从第二项开始,以后各项成等比数列 8、数列{a n }和{b n }是等差数列,其中100b a ,75b ,25a 10010011=+==,则数列}b a {n n +的前100项的和是( ) A 、0 B 、100 C 、10 000 D 、50 5009、一个等比数列的前3项之和为48,前6项之和为60,则前9项之和为( ) A 、108 B 、75 C 、63 D 、310、已知数列{a n }的前三项依次是,6,2,2-前n 项的和S n 是n 的二次函数,则a 100=( ) A 、390 B 、392 C 、394 D 、39611、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…第1000项等于( ) A 、42 B 、45 C 、48 D 、51 12、已知{a n }中,)2n (n 2a a ,2a 1n n 1≥=-=-,则a n 等于( ) A 、n n 2+B 、n n 2-C 、2nD 、2n 2二、填空题(每小题4分,共12分)13、等比数列{a n }的首项a 1=1,前n 项和为S n ,若3231S S 510=,则公比q 等于 。
高三数学单元测试《数列》
高三数学单元测试《数列》一、选择题(本题每小题5分,共60分)1.在等比数列}{n a 中,a 1+a 2=2,a 3+a 4=50,则公比q 的值为 ( )A .25B .5C .-5D .±52.已知等差数列{a n }中,a 6=a 3+a 8=5,则a 9的值是( )A .5B . 15C .20D .253.给定正数p,q,a,b,c ,其中p ≠q ,若p,a,q 成等比数列,p,b,c,q 成等差数列, 则一元二次方程bx 2-2ax+c=0 ( ) A .无实数根B .有两个相等的实数根C .有两个同号的相异的实数根D .有两个异号的相异的实数根4.等差数列}{n a 的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中也是常数的是 ( )A .6SB .11SC .12SD .13S5.设数列{}n a 为等差数列,且65867424,20042a a a a a a a 则=++等于 ( )A .501B .±501C .2004D .±20046.已知等差数列{}n a 的前n 项和为S n ,若m>1,且38,012211==-+-+-m m m m S a a a ,则m等于 ( )A .38B .20C .10D .97.设等比数列}{n a 的前n 项和为S n ,若2:1:36=S S ,则=39:S S ( )A .1:2B .2:3C .3:4D .1:38.某人为了观看2008年奥运会,从2001年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2008年将所有的存款及利息全部取回,则可取回的钱的总数(元)为 ( )A .7)1(p a + B .8)1(p a +C .)]1()1[(7p p p a+-+ D .()()[]p p pa+-+118 9.已知()1+=bx x f 为x 的一次函数,b 为不等于1的常量,且()=n g ⎩⎨⎧≥-=)1()],1([)0(1n n g f n , 设()()()+∈--=N n n g n g a n 1,则数列{}n a 为 ( )A .等差数列B .等比数列C .递增数列D .递减数列10.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新车辆数约为现有总车辆数的(参考数据1.14=1.46 1.15=1.61) ( )A .10%B .16.4%C .16.8%D .20%二、填空题(本题每小题5分,共20分)11.已知等比数列}{n a 及等差数列}{n b ,其中01=b ,公差d ≠0.将这两个数列的对应项相加,得一新数列1,1,2,…,则这个新数列的前10项之和为_________________.12.设数列{a n }满足a 1=6,a 2=4,a 3=3,且数列{a n+1-a n }(n ∈N *)是等差数列,求数列{a n }的通项公式__________________. 13.设()244+=x xx f ,利用课本中推导等差数列前n 项和方法,求+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛112111f f …⎪⎭⎫ ⎝⎛+1110f 的值为______ ___.14.(文)黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖____________块.(理)已知nn a ⎪⎭⎫⎝⎛∙=312,把数列{}n a 的各项排成三角形状;1a 2a 3a 4a 5a 6a 7a 8a ……记A (m,n )表示第m 行,第n 列的项,则A (10,8)= .三、解答题(本大题共6小题,共80分。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版高中数学(必修五)《数列》单元测试
一、选择题:(本大题共10小题,每小题5分)
1. 在数列1,1,2,3,5,8,x ,21,34,55,…中,x 等于
A .11
B .12
C .13
D .14 2. 在数列{}n a 中,12a =,1221n n a a +=+,则101a 的值为
A .49
B .50
C .51
D .52
3. 已知数列111
10,211
10,311
10,…,11
10n ,…,使数列前n 项的乘积不超过5
10的最大正整
数n 是
A .9
B .10
C .11
D .12
4. 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和
为
A .513
B .512
C .510
D .
8
225
5. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 的前9项的和S 9等于
A .66
B .99
C .144
D .297 6. 已知命题甲:“任意两个数a ,b 必有唯一的等差中项”,命题乙:“任意两个数a ,b 必有两
个等比中项”.则
A .甲是真命题,乙是真命题
B .甲是真命题,乙是假命题
C .甲是假命题,乙是真命题
D .甲是假命题,乙是假命题 7. 设S n 是等差数列{}n a 的前n 项和,若5359a a =,则95
S
S 的值为
A .1
B .-1
C .2
D .
2
1
8. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为
A .9
B .12
C .16
D .17
9. 数列{a n }、{b n }的通项公式分别是a n =an+b (a ≠0,a 、b ∈R),b n =q n-1(q>1),则数列{a n }、{b n }
中,使a n =b n 的n 值的个数是
A 、2
B 、1
C 、0
D 、可能为0,可能为1,可能为2
10. 在各项均不为零的等差数列{}n a 中,若2
110(2)n n n a a a n +--+=≥,则214n S n --=
A.2-
B.0 C.1 D.2
二、填空题:(本大题共6小题,每小题4分,共24分)
11. 在等比数列{}n a 中, 若101,a a 是方程06232
=--x x 的两根,则74a a ⋅=___________.
12. 等差数列110,116,122,128,…在[400,600]内的共有________项. 13. 已知数列的12
++=n n S n ,则12111098a a a a a ++++=_____________。
14. 三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则a ∶b ∶c=_________。
15. 已知数列1,
,则其前n 项的和等于 。
16. 在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三
图1
…
棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图1所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示这n 堆的乒乓球总数,则(3)_____f =;()_____f n =(()f n 的答案用n 表示).
三、解答题:(本大题共5小题,共46分。
解答应写出文字说明,或演算步骤)
17. 三个互不相等的数成等差数列,如果适当排列这三个数,也可成等比数列,已知这三个数的
和等于6,求此三个数。
18. 某城市1991年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为
1%,则从1992年起,每年平均需新增住房面积为多少万m 2,才能使2010年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).
19. 设数列{}n a 的前n 项和为n S ,点(,
)n
S n n N n
*∈均在函数y =-x+12的图像上. (Ⅰ)写出n S 关于n 的函数表达式; (Ⅱ)求证:数列{}n a 是等差数列; (Ⅲ)求数列{||}n a 的前n 项的和.
20. 设等比数列{}n a 前n 项和为n S ,若9632S S S =+.
(Ⅰ)求数列的公比q ;
(Ⅱ)求证:2S 3,S 6,S 12-S 6成等比数列.
21. 在等差数列{}n a 中,11a =,前n 项和n S 满足条件
242
,1,2,1
n n S n n S n +==+.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)记(0)n a n n b a p p =>,求数列{}n b 的前n 项和n T .
苏教版高中数学五(必修)第二章《数列》单元测试试卷
参考答案
二、填空题:(本大题共6小题,每小题4分,共24分)
11.-2;
12.33; 13.100; 14.4∶1∶(-2); 15.
21
n
n +; 16.=)3(f 10,6
)
2)(1()(++=
n n n n f .
三、解答题:(本大题共5小题,共46分。
解答应写出文字说明,或演算步骤)
17.解:设三个数分别为 a-d,a,a+d ,则(a -d )+a +(a +d)=3a =6, a=2 .
三个数分别为2-d,2,2+d ,∵它们互不相等 ∴分以下两种情况: 当(2-d)2=2(2+d)时,d=6. 三个数分别为-4,2,8 ; 当(2+d)2=2(2-d)时,d=-6. 三个数分别为8,2,-4. 因此,三个数分别为-4,2,8 或8,2,-4.
18.解 设从1992年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式
19500619500(10.01)24x ⨯+≥⨯+⨯
解得605x ≥.
答 设从1992年起,每年平均需新增住房面积为605万m 2. 19.解 (Ⅰ)由题设得
12n
S n n
=-+,即2(12)12n S n n n n =-+=-+. (Ⅱ)当1n =时,1111n a a S ===;
当2n ≥时,1n n n a S S -=-=2
2
(12)((1)12(1))n n n n -+---+-=213n -+; 由于此时-2×1+13=11=1a ,从而数列{}n a 的通项公式是213n a n =-+. (Ⅲ)由(Ⅱ)知,126,,
0a a a >,数列{}n a 从第7项起均为负数.设数列{||}n a 的
前n 项的和为n T .
当6n ≤时,12||||||n n T a a a =++
+=12n a a a ++
+=212n S n n =-+;
当7n ≥时,12||||||n n T a a a =++
+=1267n a a a a a +++--
-
=1267()()n a a a a a +++-++
=12612672()()n a a a a a a a a +++-++++++
=62n S S -=2
1236n n -+.
所以数列{||}n a 的前n 项的和为2212,6
1236,7
n n n n T n n n ⎧-+≤⎪=⎨-+≥⎪⎩.
20.解 (Ⅰ)当1q =时,3619S S a +=,91218S a =.因为10a ≠,所以3692S S S +≠,
由题设1q ≠.从而由9632S S S =+得369111(1)(1)(1)
2111a q a q a q q q q
---+=⋅
---,化简得96320q q q --=,因为0q ≠,所以63210q q --=,即33(21)(1)0q q +-=.又1q ≠,
所以3
12q =-
,q =(Ⅱ)由3
12q =-得3663363333111(1)(1)2222
S S S S S S q S S S -+-=⋅=⋅+=⋅+=11(1)22-+
=
14;又62126611
()24S S q S -==-=,所以632S S =1266
S S S -,从而2S 3,S 6,S 12-S 6成等比数列.
21.解:(Ⅰ)设等差数列{}n a 的公差为d ,由2421
n n S n S n +=+得:12
13a a a +=,
所以22a =,即211d a a =-=,所以n a n =。
(Ⅱ)由n a
n n b a p =,得n n b n p =。
所以23123(1)n n n T p p p n p np -=++++-+,
当1p =时,(1)
2
n n n T +=; 当1p ≠时,
234123(1)n n n pT p p p n p np +=++++-+, 2
3
1
1
1(1)(1)1n n n n n n p p P T p p p p
p np
np p
-++--=+++
++-=--
即1
2
(1)
,12(1),1
(1)
1n n n n n p T p p np p p p ++⎧=⎪⎪
=⎨-⎪-≠⎪--⎩.。