2018届河北省唐山市高三上学期期末考试理科数学试题及答案 (3)
(精品)河北省唐山市2018届高三上学期期末考试理科综合扫描版含答案
唐山市2017—2018学年度高三年级第一学期期末考试理科综合能力测试参考答案及评分参考生物部分(共90分)A卷1-6 CCDDABB卷1-6 ACBDCB29.(每空2分,共12分)(1)膜蛋白的种类和数量不同(2)类囊体线粒体内(3)光照(4)被动运输(协助扩散)由负变正30.(8分)(1)一(1分)(2)细胞中的所有染色体上的两条姐妹染色单体一条着色深、一条着色浅(3分)(3)二(1分)染色体上着色深的染色单体中含有着色浅的染色单体片段,着色浅的染色单体中含有着色深的染色单体片段(3分)31.(9分)(1)1 min左右(0.8~1.2 min)(2分)(2)肝糖原可分解、脂肪等非糖物质转化(2分)(3)马拉松长跑过程中消耗了大量的葡萄糖,使血糖水平暂时降低,胰岛B细胞分泌的胰岛素减少,同时胰岛A细胞分泌的胰高血糖素增加(2分),从而使血糖水平升高(1分)。
(4)小于1 (2分)32.(每空2分,共10分)(1)暗红眼雌果蝇:朱红眼雌果蝇:暗红眼雄果蝇:朱红眼雄果蝇=1:1:1:1(2)假设2:控制果蝇朱红眼和暗红眼的基因同时位于X和Y染色体上(位于X、Y的同源区段)测交2:用测交1得到的朱红眼雌果蝇与群体中的暗红眼雄果蝇杂交测交2可能的实验结果及结论:①后代雌果蝇全为暗红眼,雄果蝇全为朱红眼,则假设1成立②后代雌雄果蝇全为暗红眼,则假设2成立37.(15分)(1)酵母菌(2分)乙醇、CO2(2分)(2)温度不适宜(或温度未在30~35℃之间)(2分)(3)蛋白酶(2分)甘油(2分)脂肪酸(2分)(4)泡菜滤液中菌的浓度高,直接培养很难分离得到单菌落(3分)38.(15分)(1)抗PG基因能阻止PG基因表达的翻译过程,使细胞不能合成PG (3分)(2)模板(2分)dNTP(dATP、dTTP、dGTP、dCTP)(2分)(3)T-DNA (2分)农杆菌转化(2分)DNA分子杂交(2分)(4)细胞质(2分)化学部分(100分)26.(15分) (1)+1 (1分)(2)进行焰色反应,透过蓝色钴玻璃观察,火焰呈紫色(1分)取一定量溶液于试管中加浓NaOH 溶液并加热,产生能使湿润的红色石蕊试纸变蓝的气体(2分) (3)Ⅰ①乙(1分) ②0.02(2分) Ⅱ①吸收NH 3(2分) ② (NH 4)2SO 3(2分)③(NH 4)2SO 4分解过程中不断通入N 2,从而稀释了SO 2起到了阻止倒吸的作用。
河北省唐山一中2018高三数学试卷
河北省唐山一中2018届高三教学质量监测数学(理)试卷说明: 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间120分钟卷Ⅰ(选择题 共60分)一.选择题(共12小题,每小题5分,计60分。
在每小题给出的四个选项中,有且仅有一个正确的)1-10 17 181、已知复数121,1z i z i =-=+,则12z z i等于 .A 2i .B 2i - .C 2i + .D 2i -+2、设P 和Q 是两个集合,定义集合Q P -={}Q x P x x ∉∈且,|,如果{}1log 2<=x x P ,{}12<-=x x Q ,那么Q P -等于{}{}{}{}32211010<≤<≤<<≤<x x D.x x C.x x B.x x A. 3、下列命题是真命题的是.A 若sin cos x y =,则2x y π+=.B 1,20x x R -∀∈> .C 若向量,//+=0a b a b a b满足,则 .D 若x y <,则 22x y <4、 已知向量为单位向量,且21-=⋅b a ,向量与+的最小值为...A B C D 131245、若函数)12(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是2211-==-== D. x C. x B. xA. x 6、设等比数列{}n a 的公比为q ,则“10<<q ”是“{}n a 是递减数列”的.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件7、已知函数x x g x x f lg )(,)(2==,若有)()(b g a f =,则b 的取值范围是.A [0,+∞) .B (0,+∞) .C [1,+∞) .D (1,+∞)8、如图,在扇形OAB 中,︒=∠60AOB ,C 为弧.AB 上且与BA ,不重合...的一个动点,且y x +=,若(0)u x y λλ=+>存在最大值,则λ的取值范围为.A )3,1( .B )3,31( .C )1,21( .D )2,21(9、定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2x f x x=6π个单位,以下是所得函数图象的一个对称中心是 .A ,04π⎛⎫⎪⎝⎭ .B ,02π⎛⎫ ⎪⎝⎭ .C ,03π⎛⎫ ⎪⎝⎭ .D ,012π⎛⎫⎪⎝⎭10、已知数列{}n a 满足:*)(2,111N n a a a a n n n ∈+==+,若,),11)((11λλ-=+-=+b a n b nn 且数列{}n b 是单调递增数列,则实数λ的取值范围是3232<<>>λλλλ D. C. B. A. 11、已知函数()cos xf x x πλ=,存在()f x 的零点)0(,00≠x x ,满足[]222200'()()f x x πλ<-,则λ的取值范围是A.( B.(C.(,)-∞+∞ D.(,)-∞+∞ 12、已知定义在]8,1[上的函数348||,122()1(),2822x x f x x f x ⎧--≤≤⎪⎪=⎨⎪<≤⎪⎩则下列结论中,错误..的是 A .1)6(=f B .函数)(x f 的值域为]4,0[C .将函数)(x f 的极值由大到小排列得到数列*},{N n a n ∈,则}{n a 为等比数列D .对任意的]8,1[∈x ,不等式6)(≤x xf 恒成立卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,计20分)13、 已知向量b为单位向量,向量(1,1)a = ,且||a = ,则向量,a b 的夹角为 .14、若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 .15、已知函数23)(nx mx x f +=的图象在点)2,1(-处的切线恰好与直线03=+y x 平行,若)(x f 在区间]1,[+t t 上单调递减,则实数t 的取值范围是________.16、已知定义在R 上的函数()f x 满足:()[)[)()()222,0,1,22,1,0,x x f x f x f x x x ⎧+∈⎪=+=⎨-∈-⎪⎩且, ()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为 .三.解答题(共6小题,计70分)17、(本题12分)已知B A ,是直线0y =与函数2()2coscos()1(0)23xf x x ωπωω=++->图像的两个相邻交点,且.2||π=AB(Ⅰ)求ω的值;(Ⅱ)在锐角ABC ∆中,c b a ,,分别是角A ,B ,C 的对边,若ABC c A f ∆=-=,3,23)( 的面积为33,求a 的值.18、(本题12分)已知数列}{},{n n b a 分别是等差数列与等比数列,满足11=a ,公差0>d ,且22b a =,36b a =,422b a =. (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设数列}{n c 对任意正整数n 均有12211+=+⋅⋅⋅++n nn a b c b c b c 成立,设}{n c 的前n项和为n S ,求证:20172017e S ≥(e 是自然对数的底).19、(本题12分) 如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,60BAD ∠= ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,3BF =,G 和H 分别是CE 和CF 的中点.(Ⅰ)求证:平面//BDGH 平面AEF ; (Ⅱ)求二面角H BD C --的大小.20、(本题12分)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.21、(本题12分)已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.请考生在第22、23两题中任选一题作答,如果多选,则按所做的第一题计分.22、(本题10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系, 已知曲线),0(cos 2sin:2>=a a C θθρ过点)4,2(--P 的直线l 的参数方程为:)( 224222为参数t t y tx ⎪⎪⎩⎪⎪⎨⎧+-=+-=,直线l 与曲线C 分别交于N M 、两点. (Ⅰ)写出曲线C 和直线l 的普通方程;(Ⅱ)若PN MN PM 、、成等比数列,求a 的值. 23、(本题10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f . (Ⅰ)求不等式6)(≤x f 的解集;(Ⅱ)若关于x 的不等式1)(-<a x f 的解集非空,求实数a 的取值范围.河北省唐山一中2018届高三教学质量监测数学(理)答案一.选择题(共12小题,每小题5分,计60分。
2018届河北省唐山市度高三第三次模拟考试数学(理)试题(解析版)
2018届河北省唐山市度高三第三次模拟考试数学(理)试题一、单选题1.已知集合,则集合()A. B. C. D.【答案】C【解析】分析:求出或,,可得.详解:,或,,,故选C.点睛:本题主要考查集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.复数满足(为虚数单位),则()A. B. C. D.【答案】A【解析】分析:先利用复数模的公式求得,然后两边同乘以,利用复数运算的乘法法则化简,即可得结果详解:,,,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知,则()A. B. C. D.【答案】D【解析】分析:利用“拆角”技巧可得,利用两角差的正切公式可得结果.详解:,,故选D.点睛:三角函数求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.4.已知命题在中,若,则;命题,.则下列命题为真命题的是()A. B. C. D.【答案】B【解析】分析:命题在中,,根据正弦函数的性质可判断命题为真命题;时,结论不成立,故为假命题,逐一判断四个选项中的命题即可.详解:命题在中,,若,则,故为真命题;命题,当时,不成立,故为假命题,故选B.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的正弦函数的性质以及不等式恒成立问题,属于中档题. 解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.5.已知双曲线的两条渐近线分别为,若的一个焦点关于的对称点在上,则的离心率为()A. B. 2 C. D.【答案】B【解析】分析:求得,可得的斜率为,化简后,结合,从而可得结果.详解:分别为双曲线的两条渐近线,不妨设为为,由右焦点关于的对称点在上,设焦点关于的对称点为,右焦点坐标为,中点坐标为,可得,解得,即有,可得的斜率为,即有,可得,即,则,可得,故选B.点睛:本题主要考查双曲线的简单性质及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.6.某几何体的三视图如图所示,则该几何体的体积为()A. 6B. 7C.D.【答案】B【解析】分析:由三视图可知,该几何体为五棱柱,其底面为正视图,根据三视图中数据,利用柱体体积公式求解即可.详解:由三视图可知,该几何体为五棱柱底面为正视图,底面面积为,,高为,体积为,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.已知函数的图象与轴相切,则()A. B. C. D.【答案】B【解析】分析:由函数的图象与轴相切,可得的最大值为,求出,得出的解析式,再计算.详解:,且的图象与轴相切,所以最大值,,即,,,故选B.点睛:本题主要考查由三角函数的性质求解析式,以及特殊角的三角函数,属于简单题. 8.已知是抛物线上任意一点,是圆上任意一点,则的最小值为()A. B. 3 C. D.【答案】D【解析】分析:可设点的坐标为,由圆方程得圆心坐标,求出的最小值,根据圆的几何性质即可得到的最小值.详解:设点的坐标为,由圆的方程可得圆心坐标,,,是圆上任意一点,的最小值为,故选D.点睛:解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.9.利用随机模拟的方法可以估计圆周率的值,为此设计如图所示的程序框图,其中表示产生区间上的均匀随机数(实数),若输出的结果为786,则由此可估计的近似值为()A. 3.134B. 3.141C. 3.144D. 3.147 【答案】C【解析】分析:由模拟试验可得所取的点在圆内的概率为,则由几何概型概率公式,可得所取的点在圆内的概率为圆的面积比正方形的面积,由二者相等列方程可估计的值.详解:由程序框图可知, 共产生了对内的随机数,其中的共有对,即在以边长为的正方形中随机取点次,所取之点在以正方形中心为圆心,为半径的圆中的次数为次,设事件是在以边长为的正方形中随机取点, 所取之点在以正方形中心为圆心, 为半径的圆中,则,又由试验结果可得,,,故选C.点睛:本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.10.在中,点满足.若存在点,使得,且,则()A. 2B.C. 1D.【答案】D【解析】分析:由,可得,求得,解得,从而可得结果.详解:,,,可得,,故选D.点睛:本题主要考查向量的几何运算及平面向量基本定理的应用,属于难题.向量的几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).11.若异面直线所成的角是,则以下三个命题:①存在直线,满足与的夹角都是;②存在平面,满足,与所成角为;③存在平面,满足,与所成锐二面角为.其中正确命题的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】分析:在①中,在上任取一点,过作,与的夹角均为;在②中,在上取一点,过作;在③中,在上取一点,过作,确定一个平面平面即可.详解:异面直线所成的角是,在①中,由异面直线所成的角是,在上任取一点,过作,在空间中过点能作出直线,使得与的夹角均为,存在直线,满足与的夹角都是,故①正确;在②中,在上取一点,过作,则以确定的平面,满足与所成的角是,故②正确;在③中,在上取一点,过作,确定一个平面平面,过能作出一个平面,满足与所成锐二面角为,故③正确,故选D点睛:本题主要通过对多个命题真假的判断,主要综合考查空间线性角、线面角、面面角的定义与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.12.已知,若的最小值为,则()A. B. C. D.【答案】A【解析】分析:求出导函数,设导函数的零点,即原函数的极值点为,可得,结合的最小值为列方程组,求得,则值可求.详解:由,得,令,则,则在上为增函数,又,存在,使,即,,①函数在上为减函数,在上为增函数,则的最小值为,即,②联立①②可得,把代入①,可得,故选A.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题. 求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.二、填空题13.设变量满足约束条件则的最大值为__________.【答案】4.【解析】分析:画出可行域,平移直线,由图可知,当直线过点时,有最大值,从而可得结果.详解:画出表示的可行域,如图,,化为,平移直线,由图可知,当直线过点时,有最大值,由,到,此时,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.某种袋装大米的质量(单位:)服从正态分布,任意选一袋这种大米,质量在的概率为__________.()【答案】0.8185.【解析】分析:先求出,再求得,从而可得结果.详解:因为(单位:)服从正态分布,所以,,根据正态分布的对称性,可得,,,故答案为.点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.15.设函数则使得成立的得取值范围是__________.【答案】.【解析】分析:分两种情况讨论,分别解不等式组,然后求并集即可.详解:由,得或,得或,即得取值范围是,故答案为.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.16.的内角的对边分别为,角的内角平分线交于点,若,则的取值范围是__________.【答案】.【解析】分析:先由根据基本不等式可得,再根据角平分线的定理和角平分线公式,换元后结合函数的单调性即的结果.详解:,,,当且仅当时取等号,角的内角平分线交于,设,则,,由角平分线公式可得,设,易知函数单调递增,,,当且仅当时取等号,故答案为.点睛:本题主要考查角平分线定理基本不等式的应用以及利用单调性求范围,属于难题.求范围问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,利用函数的单调性求范围,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的取值范围即可.三、解答题17.已知数列是等差数列,是等比数列,,.(1)求和的通项公式;(2)若,求数列的前项和.【答案】(1) a n=2n-1,b n=2n.(2).【解析】分析:(1)根据,列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列与的通项公式;(2)由(1)可得根据分组求和,结合等差数列的求和公式以及等比数列求和公式可得结果.详解:(1)设数列{a n}的公差为d,数列{b n}的公比为q,依题意有,解得d=2,q=2,故a n=2n-1,b n=2n,(2)由已知c2n-1=a2n-1=4n-3,c2n=b2n=4n,所以数列{c n}的前2n项和为S2n=(a1+a3+…a2n-1)+(b2+b4+…b2n)=+=2n2-n+ (4n-1).点睛:本题主要考查等差数列的定义及等比数列的通项和利用“分组求和法”求数列前项和,属于中档题. 利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.18.某球迷为了解两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);记事件“球队的攻击能力等级高于球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.【答案】(1)茎叶图见解析,,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)0.31.【解析】分析:(1)通过茎叶图可以看出,球队所得分数的平均值高于球队所得分数的平均值;球队所得分数比较集中,球队所得分数比较分散;(2)由古典概型概率公式,利用互斥事件概率公式,独立事件的概率公式可求得事件的概率.通过茎叶图可以看出,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)记C A1表示事件:“A球队攻击能力等级为较强”,C A2表示事件:“A球队攻击能力等级为很强”;C B1表示事件:“B球队攻击能力等级为较弱”,C B2表示事件:“B球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C=(C A1C B1)∪(C A2C B2).P(C)=P(C A1C B1)+ P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为,,,,故P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,P(C)=×+×=0.31.点睛:本题主要考查互斥事件、对立事件及必然事件的概率及分段函数的解析式,属于难题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.19.如图,四棱锥的底面是平行四边形,.(1)求证:平面平面;(2)若,为的中点,为棱上的点,平面,求二面角的余弦值.【答案】(1)见解析.(2).【解析】分析:(1)由平面,可得,由,可得,利用线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结果;(2)以所在直线分别为轴,轴,轴建立空间直角坐标系,利用向量垂直数量积为零,列方程组分别求出平面与平面的一个法向量,利用空间向量夹角余弦公式求解即可.详解:(1)∵AB∥CD,PC⊥CD,∴AB⊥PC,∵AB⊥AC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥PA,又∵PA⊥AD,AB∩AD=A,∴PA⊥平面ABCD,PA平面PAB,∴平面PAB⊥平面ABCD.(2)连接BD交AE于点O,连接OF,∵E为BC的中点,BC∥AD,∴==,∵PD∥平面AEF,PD平面PBD,平面AEF∩平面PBD=OF,∴PD∥OF,∴==,以AB,AC,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系A-xyz,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),P(0,0,3),E(,,0),F(2,0,1),设平面ADF的法向量m=(x1,y1,z1),∵=(2,0,1),=(-3,3,0),由·m=0,·m=0得取m=(1,1,-2).设平面DEF的法向量n=(x2,y2,z2),∵=(,-,0),=(,-,1),由·n=0,·n=0得取n=(1,3,4).cos〈m,n〉==-,∵二面角A-DF-E为钝二面角,∴二面角A-DF-E的余弦值为-.点睛:本题主要考查利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20.已知点,点,点,动圆与轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点(均不同于点),且与交于点,设点的轨迹为曲线.(1)证明:为定值,并求的方程;(2)设直线与的另一个交点为,直线与交于两点,当三点共线时,求四边形的面积.【答案】(1)证明见解析,方程为.(2) .【解析】分析:(1)根据圆的切线性质可得,,从而根据椭圆的可得结果;(2)直线与曲线联立,利用韦达定理、弦长公式以及三角形面积公式可得四边形的面积为.详解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|,所以|PB|+|PC|=|PD|+|DB|+|PC|=|PE|+|PC|+|AB|=|CE|+|AB|=|AC|+|AB|=4>|BC|所以点P的轨迹Γ是以B,C为焦点的椭圆(去掉与x轴的交点),可求Γ的方程为+=1(y≠0).(2)由O',D,C三点共线及圆的几何性质,可知PB⊥CD,又由直线CE,CA为圆O'的切线,可知CE=CA,O'A=O'E,所以△O'AC≌△O'EC,进而有∠ACO'=∠ECO',所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2,所以△PBC为等边三角形,即点P在y轴上,点P的坐标为(0,±)(i)当点P的坐标为(0,)时,∠PBC=60︒,∠BCD=30︒,此时直线l1的方程为y= (x+1),直线CD的方程为y=- (x-1),由整理得5x2+8x=0,得Q(-,-),所以|PQ|=,由整理得13x2-8x-32=0,设M(x1,y1),N(x2,y2),x1+x2=,x1x2=-,|MN|=|x1-x2|=,所以四边形MPNQ的面积S=|PQ|·|MN|=.(ii)当点P的坐标为(0,-)时,由椭圆的对称性,四边形MPNQ的面积为.综上,四边形MPNQ的面积为.点睛:求椭圆标准方程的方法一般为定义法与待定系数法,定义法是若题设给条件符合椭圆的定义,直接写出方程;也可以根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.已知,函数.(1)记,求的最小值;(2)若有三个不同的零点,求的取值范围.【答案】(1) g(a)的最小值为g(1)=0.(2) 0<a<1.【解析】分析:(1)先求出,再求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得的最小值;(2),因为有三个不同的零点,所以至少有三个单调区间,而方程至多有两个不同正根,所以,有解得,,然后再证明在内各有一个零点,可得的范围是.详解:(1)g(a)=lna2+-2=2(lna+-1),g'(a)=2(-)=,所以0<a<1时,g'(a)<0,g(a)单调递减;a>1时,g'(a)>0,g(a)单调递增,所以g(a)的最小值为g(1)=0.(2)f'(x)=-=,x>0.因为y=f(x)有三个不同的零点,所以f(x)至少有三个单调区间,而方程x2+(2a2-4a)x+a4=0至多有两个不同正根,所以,有解得,0<a<1.由(1)得,当x≠1时,g(x)>0,即lnx+-1>0,所以lnx>-,则x>e- (x>0),令x=,得>e-.因为f(e-)<-+-2=-<0,f(a2)>0,f(1)=-2=<0,f(e2)=>0,所以y=f(x)在(e-,a2),(a2,1),(1,e2)内各有一个零点,故所求a的范围是0<a<1.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22.选修4-4:坐标系与参数方程已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.(1)求椭圆和直线的极坐标方程;(2)证明::中,斜边上的高为定值,并求该定值.【答案】(1),.(2) h为定值,且h=.【解析】分析:(1)直接利用即可得椭圆和直线的极坐标方程;(2)由(1)得,代入,化简即可得结果.详解:(1)由x=ρcosθ,y=ρsinθ得椭圆C极坐标方程为ρ2(cos2θ+2sin2θ)=4,即ρ2=;直线l的极坐标方程为ρsinθ=2,即ρ=.(2)证明:设A(ρA,θ),B(ρB,θ+),-<θ<.由(1)得|OA|2=ρ=,|OB|2=ρ==,由S△OAB=×|OA|×|OB|=×|AB|×h可得,h2===2.故h为定值,且h=.点睛:本题主要考查直接坐标方程化为极坐标方程,以及坐标方程的应用,属于中档题.利用即可实现直接坐标方程化为极坐标方程的互化. 23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)设,求的最大值.【答案】(1).(2) 故x=±时,g(x)取得最大值-3.【解析】分析:(1)不等式等价于,两边平方后利用一元二次不等式的解法求解即可;(2)将,写成分段函数形式,利用函数的单调性,可得当时,取得最大值.详解:(1)由题意得|x-1|≥|2x-3|,所以|x-1|2≥|2x-3|2整理可得3x2-10x+8≤0,解得≤x≤2,故原不等式的解集为{x|≤x≤2}.(2)显然g(x)=f(x)+f(-x)为偶函数,所以只研究x≥0时g(x)的最大值.g(x)=f(x)+f(-x)=|x-1|-|2x-3|+|x+1|-|2x+3|,所以x≥0时,g(x)=|x-1|-|2x-3|-x-2=所以当x=时,g(x)取得最大值-3,故x=±时,g(x)取得最大值-3.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想;④不等式两边都含绝对值,可以两边平方后再求解,体现了转化与划归思想.。
河北唐山市2018届高三数学一模试卷理科有答案
河北唐山市2018届高三数学一模试卷(理科有答案)唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A.B.C.D.2.设集合,,则()A.B.C.D.3.已知,且,则()A.B.C.D.4.两个单位向量,的夹角为,则()A.B.C.D.5.用两个,一个,一个,可组成不同四位数的个数是()A.B.C.D.6.已知,,,则()A.B.C.D.7.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A.求B.求C.求D.求8.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度9.某几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.10.已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A.B.C.D.11.已知函数,则下列关于的表述正确的是()A.的图象关于轴对称B.,的最小值为C.有个零点D.有无数个极值点12.已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.设,满足约束条件,则的最小值是.14.的展开式中,二项式系数最大的项的系数是.(用数字作答)15.已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则.16.在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.18.某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?19.如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.20.已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.21.已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切. (二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.23.选修4-5:不等式选讲设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A卷:DCBDADCCABDBB卷:ACBDDDCAABDB二.填空题:(13)-5(14)-160(15)32(16)[2,22]三.解答题:(17)解:(Ⅰ)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又为单调递增数列,所以a n≥1.…2分由2Sn=a2n+n得2Sn+1=a2n+1+n+1,所以2Sn+1-2Sn=a2n+1-a2n+1,整理得2an+1=a2n+1-a2n+1,所以a2n=(an+1-1)2.所以an=an+1-1,即an+1-an=1,所以是以1为首项,1为公差的等差数列,所以an=n.…6分(Ⅱ)bn=an+22n+1anan+1=n+22n+1n(n+1)=12nn-12n+1(n+1)…9分所以Tn=(1211-1222)+(1222-1233)+…+[12nn-12n+1(n+1)]=1211-12n+1(n+1)<12.…12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P=0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192.…3分(Ⅱ)(ⅰ)X可取100,200,300,400,500,P(X=100)=0.0010×10=0.1;P(X=200)=0.0020×10=0.2;P(X=300)=0.0030×10=0.3;P(X=400)=0.0025×10=0.25;P(X=500)=0.0015×10=0.15;所以X的分布列为:X100200300400500P0.10.20.30.250.15…6分(ⅱ)当每日进货300公斤时,利润Y1可取-100,700,1500,此时Y1的分布列为:Y1-1007001500P0.10.20.7此时利润的期望值E(Y1)=-100×0.1+700×0.2+1500×0.7=1180;…8分当每日进货400公斤时,利润Y2可取-400,400,1200,2000,此时Y2的分布列为:Y2-40040012002000P0.10.20.30.4此时利润的期望值E(Y2)=-400×0.1+400×0.2+1200×0.3+2000×0.4=1200;…10分因为E(Y1)<E(Y2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C =A1C,得B1O⊥平面AA1C1C,又AC平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1平面A1B1C,得AC⊥CA1.…4分(Ⅱ)以C为坐标原点,CA→的方向为x轴正方向,|CA→|为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,3).所以CA→=(1,0,0),AA1→=(-1,2,0),AB→=A1B1→=(0,-1,3).…6分设n=(x,y,z)是平面A1AB的法向量,则nAA1→=0,nAB→=0,即-x+2y=0,-y+3z=0.可取n=(23,3,1).…8分设m=(x,y,z)是平面ABC的法向量,则mAB→=0,mCA→=0,即-y+3z=0,x=0.可取m=(0,3,1).…10分则cosn,m=nm|n||m|=12.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为3.…12分(20)解:(Ⅰ)依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),由AF⊥BF得kAFkBF=bcb-3+c=-1,又b2+c2=6. 解得c=2,b=2.所以,椭圆Γ的方程为x26+y22=1.…4分(Ⅱ)由(Ⅰ)得A(0,2),依题意,显然m≠0,所以kAM=-2m,又AM⊥BM,所以kBM=m2,所以直线BM的方程为y=m2(x-m),设P(x1,y1),Q(x2,y2).y=m2(x-m)与x26+y22=1联立得(2+3m2)x2-6m3x+3m4-12=0,x1+x2=6m32+3m2,x1x2=3m4-122+3m2.…7分|PM||QM|=(1+m22)|(x1-m)(x2-m)|=(1+m22)|x1x2-m(x1+x2)+m2|=(1+m22)|2m2-12|2+3m2=(2+m2)|m2-6|2+3m2,|AM|2=2+m2,…9分由AP⊥AQ得,|AM|2=|PM||QM|,所以|m2-6|2+3m2=1,解得m=±1.…12分(21)解:(Ⅰ)F(x)=(x+1)ex-1,当x<-1时,F(x)<0,F(x)单调递减;当x>-1时,F(x)>0,F(x)单调递增,故x=-1时,F(x)取得最小值F(-1)=-1e2.…4分(Ⅱ)因为f(x)=ex-1,所以f(x)=ex-1在点(t,et-1)处的切线为y=et-1x +(1-t)et-1;…5分因为g(x)=1x,所以g(x)=lnx+a在点(m,lnm+a)处的切线为y=1mx +lnm+a-1,…6分由题意可得et-1=1m,(1-t)et-1=lnm+a-1,则(t-1)et-1-t+a=0.…7分令h(t)=(t-1)et-1-t+a,则h(t)=tet-1-1由(Ⅰ)得t<-1时,h(t)单调递减,且h(t)<0;当t>-1时,h(t)单调递增,又h(1)=0,t<1时,h(t)<0,所以,当t<1时,h(t)<0,h(t)单调递减;当t>1时,h(t)>0,h(t)单调递增.…9分由(Ⅰ)得h(a-1)=(a-2)ea-2+1≥-1e+1>0,…10分又h(3-a)=(2-a)e2-a+2a-3>(2-a)(3-a)+2a -3=(a-32)2+34>0,…11分h(1)=a-1<0,所以函数y=h(t)在(a-1,1)和(1,3-a)内各有一个零点,故当a<1时,存在两条直线与曲线f(x)与g(x)都相切.…12分(22)解:(Ⅰ)由x=ρcosθ,y=ρsinθ可得,C1:ρ2cos2θ+ρ2sin2θ-2ρcosθ+1=1,所以ρ=2cosθ;C2:ρ2cos2θ+ρ2sin2θ-6ρcosθ+9=9,所以ρ=6cosθ.…4分(Ⅱ)依题意得|AB|=6cosα-2cosα=4cosα,-2<α<2,C2(3,0)到直线AB的距离d=3|sinα|,所以S△ABC2=12×d×|AB|=3|sin2α|,故当α=±4时,S△ABC2取得最大值3. (10)分(23)解:(Ⅰ)f(x)=|x+1|-|x|=-1,x≤-1,2x+1,-1<x<1,1,x≥1,由f(x)的单调性可知,当x≥1时,f(x)有最大值1.所以m=1.…4分(Ⅱ)由(Ⅰ)可知,a+b=1,a2b+1+b2a+1=13(a2b+1+b2a+1)[(b+1)+(a+1)] =13[a2+b2+a2(a+1)b+1+b2(b+1)a+1]≥13(a2+b2+2a2(a+1)b+1b2(b+1)a+1)=13(a+b)2=13.当且仅当a=b=12时取等号.即a2b+1+b2a+1的最小值为13.…10分。
高考最新-河北省唐山市数学(理) 精品
河北省唐山市2018—2018学年度高三年级模拟考试数 学 试 卷(理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(C U A )∪(C U B )= ( ) A .{1,2,3,4,5} B .{3} C .{1,2,4,5} D .{1,5} 2.抛物线x y 82=上的点),(00y x 到抛物线焦点的距离为3,则|y 0|= ( )A .2B .22C .2D .4 3.已知|a |=1,|b |=2,a =λb (λ∈R ),则|a -b |=( ) A .1 B .3 C .1或3D .|λ| 4.设a 、b 表示直线,α、β表示平面,α//β的充分条件是( )A .a //b ,βα⊥⊥b a ,B .b a b a //,,βα⊂⊂C .αββα//,//,,b a b a ⊂⊂D .αβ⊥⊥⊥b a b a ,,5.设x ,y 满足约束条件:y x z y y x y x y +=⎪⎩⎪⎨⎧≤+≥+≤则2,2,1的最大值与最小值分别为 ( )A .27,3 B .5,27 C .5,3 D .4,3 6.函数),(,cos sin ππ-∈+=x x x x y 的单调增区间是( )A .)2,0()2,(πππ和-- B .(-2π,0)和(0,2π)C .),2()2,(ππππ和-- D .(-2π,0)和(2π,π)7.关于函数)2|sin(|)(π+=x x f 有下列判断:①是偶函数;②是奇函数;③是周期函数;④不是周期函数,其中正确的是 ( )A .①与④B .①与③C .②与④D .②与③8.从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有 ( ) A .140种 B .80种 C .70种 D .35种 9.过坐标原点且与点(1,3)的距离都等于1的两条直线的夹角为 ( )A .90°B .45°C .30°D .60°10.已知函数)(x f 是区间[-1,+∞]上的连续函数,当1111)(,03-+-+=≠x x x f x 时,则f (0)=( )A .23B .1C .32 D .0 11.设y x y x y x +≥-->>则且,2)1)(1(0,0的取值范围是( )A .),222[+∞+B .]12,0(+C .)12,0(+D .),222(+∞+12.若]),[(||b a x e y x ∈=的值域为[1,e 2],则点(a ,b )的轨迹是图中的( ) A .线段AB 和OA B .线段AB 和BC C .线段AB 和DCD .点A 和点C第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.62)(a x xa -展开式的第三项为14.在正三棱锥S —ABC 中,侧棱SC ⊥侧面SAB ,侧棱SC=32,则此正三棱锥的外接球的表面积为15.双曲线122=-by ax 的离心率为5,则a :b=16.定义运算bc ad d c b a-=,若复数x 满足==x x ixi 则,22322三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 求函数)2cos 2sin 1)(tan 1()(x x x x f ++-=的定义域,值域和最小正周期.18.(本小题满分12分)如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 是BC 的中点,平面B 1ED 交A 1D 1于F.(Ⅰ)指出F 在A 1D 1上的位置,并说明理由; (Ⅱ)求直线A 1C 与DE 所成的角;(Ⅲ)设P 为侧面BCC 1B 1上的动点,且,332 AP 试指出动点P 的轨迹,并求出其轨迹所表示曲线的长度.19.(本小题满分12分)甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次为ξ;乙用这次枚硬币掷2次,记正面朝上的次为η.(Ⅰ)分别求ξ和η的期望;(Ⅱ)规定;若ξ>η,则甲获胜,若ξ<η,则乙获胜,分别求出甲和乙获胜的概率.20.(本小题满分12分)过椭圆1422=+y x 的右焦点F 作直线l 交椭圆于M 、N 两点,设.23||= (Ⅰ)求直线l 的斜率k ;(Ⅱ)设M 、N 在椭圆右准线上的射影分别为M 1、N 1,求11N M ⋅的值.21.(本小题满分12分)已知数列}{n a 的前n 项和为S n ,且)3(21n n S n a +=对一切正整数n 恒成立. (Ⅰ)证明数列}3{n a +是等比数列;(Ⅱ)数列}{n a 中是否存在成等差数列的四项?若存在,请求出一组;若不存在,请说明理由.22.(本小题满分14分)函数1)(23+--=x x x x f 的图象上有两点A (0,1)和B (1,0)(Ⅰ)在区间(0,1)内,求实数a 使得函数)(x f 的图象在x =a 处的切线平行于直线AB ;(Ⅱ)设m>0,记M (m ,)(m f ),求证在区间(0,m )内至少有一实数b ,使得函数图象在x =b 处的切线平行于直线AM.高三数学参考答案及评分标准(理科)一、每小题5分,共60分.CBCAC ABDCA AB 二、每小题4分,共16分. 13.x 15 14.π36 15.4或4116. i 22±- 三、解答题 17.解:)sin )(cos sin (cos 2)cos 2cos sin 2)(cos sin 1()(2x x x x x x x xxx f +-=+-= x x x 2cos 2)sin (cos 222=-= ………………6分函数的定义域为},2,|{Z R ∈+≠∈k k x x x ππ 22cos 222-≠⇔+≠x k x ππ∴函数)(x f 的值域为]2,2(- …………10分 ∴函数)(x f 的最小正周期ππ==22T …………12分 18.解:(Ⅰ)F 为A 1D 1的中点证明:由正方体ABCD —A 1B 1C 1D 1 面ABCD//面A 1B 1C 1D 1 面B 1EDF ∩面ABCD=DE 面B 1EDF ∩面A 1B 1C 1D 1=B 1F ∴B 1F//DE ,同理:B 1E//DF ∴四边形DEB 1F 为平行四边形 ∴B 1F=DE ,又A 1B 1=CD Rt △A 1B 1F ≌Rt △CDE∴A 1F=CE=112121D A =∴F 为A 1D 1的中点 …………4分(Ⅱ)过点C 作CH//DE 交AD 的延长线于H ,连结A 1H则A 1C 与DE 所成的角就等于A 1C 与CH 所成的锐角即∠A 1CH (或其补角) 由于正方体的棱长为1,E 为BC 中点 ∴可求得A 1C=25,213,31==CH H A 在△A 1CH 中,由余弦定理得: 151525324134532cos 1212211=⋅-+=⋅⋅-+=∠CH C A H A CH C A CH A ∴1515arccos1=∠CH A ,即直线A 1C 与DE 所成的角为1515arccos …………8分 (Ⅲ)由于点A 到侧面BCC 1B 1的距离等于AB=1∴A 、P 、B 构成直角三角形的三个顶点 ∴B AB AP BP ,3322=-=为定点 ∴点P 的轨迹是以B 为圆心,33为半径的四分之一的圆 ∴它的长度等于:ππ6333241=⋅ …………12分 19.解:(Ⅰ)依题意ζ~B (3,0.5),η~B (2,0.5),所以E ζ=3×0.5=1.5, E η=2×0.5=1 ………………4分(Ⅱ)P (ζ=0)=83)21()1(,81)21(331303====C P C ζ81)21()3(,83)21()2(333323======C P C P ζζ21)21()1(,41)21()0(212202======C P C P ηη41)21()2(222===C P η …………7分甲获胜有以下情形:ζ=1,η=0,ζ=2,η=0,1;ζ=3,η=0,1,2 则甲获胜的概率为 21)412141(81)2141(8341831=++⨯++⨯+⨯=P乙获胜有以下情形:η=1,ζ=0,η=2,ζ=0,1则乙获胜的概率为 163)8381(4181212=+⨯+⨯=P …………12分 20.解:(Ⅰ)F (0,3) l :)3(-=x k y …………2分 由041238)41(,)3(44222222=-+-+⎪⎩⎪⎨⎧-==+k x k x k x k y y x 得 …………4分 设M 222122114138),,(),,(kk x x y x N y x +=+则 ① 222141412k k x x +-=⋅ ② 2122122124)(1||1||23x x x x k x x k -++=-+== ③ 把①②代入③,并整理,得2241)1(423kk ++= 解得 25±=k …………6分 (Ⅱ)设11N M 与的夹角为20,πθθ<< 则由(Ⅰ)知52tan 25)2tan(=∴=-θθπ∴35cos =θ ∴4595)23(cos ||cos ||||2221111=⨯===⋅θθMN N M MN N M MN ……12分 21.解:(Ⅰ)由已知,得)(32+∈-=N n n a S n n ∴)1(3211+-=++n a S n n 两式相减得 32211--=++n n n a a a∴321+=+n n a a ………………2分 即)3(231+=++n n a a ∴2331=+++n n a a 又32111-==a S a ∴63311=+=a a故数列}3{+n a 是首项为6,公比为2的等比数列 …………5分(Ⅱ)由(Ⅰ)1263-⋅=+n n a ∴3233261-⋅=-⋅=-n n n a假设}{n a 中存在四项依次为)(,,,,43214321m m m m a a a a m m m m <<<,它们可以构成等差数列,则)323()323()323()323(3241-⋅+-⋅=-⋅+-⋅m m m m 即32412222m m m m +=+⋅ ………………9分上式两边同除以12m ,得1+131214222m m m m m m ---+= ①∵m 1,m 2,m 3,m 4∈N +,且m 1<m 2<m 3<m 4∴①式的左边是奇数,右边是偶数 ∴①式不能成立∴数列}{n a 中不存在构成等差数列的四项 …………12分22.(Ⅰ)解:直线AB 斜率k AB =-1 123)(2--='x x x f令1123)10(1)(2-=--<<-='a a a a f 即 解得 32=a …………………………4分 (Ⅱ)证明:直线AM 斜率 101)1(223--=--+--=m m m m m m k AM 考察关于b 的方程1)(2--='m m b f即3b 2-2b -m 2+m=0 ………………7分在区间(0,m )内的根的情况令g(b)= 3b 2-2b -m 2+m ,则此二次函数图象的对称轴为31=b 而0121)21(31)31(22<---=-+-=m m m g g(0)=-m 2+m=m(1-m)g(m)=2m 2-m -m(2m -1) ………………10分∴(1)当),0(0)(,0)(,0)0(,210m b g m g g m 在区间方程时=<><<内有一实根 (2)当)31,0(0)(,0)31(,0)0(,121在区间方程时=<><≤b g g g m 内有一实根 (3)当),31(0)(,0)(,0)31(,1m b g m g g m 在区间方程时=><≥内有一实根综上,方程g(b)=0在区间(0,m)内至少有一实根,故在区间(0,m)内至少有一实数b,使得函数图象在x=b处的切线平行于直线AM…………14分。
河北省唐山市2018-2019学年高三上学期期末考试A卷数学(理)试题(解析版)
17.如图,在梯形 中, , , 为 上一点, , .
(1)若 为等腰三角形,求 ;
(2)设 ,若 ,求 .
【答案】(1)3(2)
【解析】
【分析】
(1)由题意结合几何性质和余弦定理求解BC的长度即可;
(2)由题意结合正弦定理得到关于 的等式,然后求解 的值即可.
【详解】(1)由 , 可得, ,
【详解】函数 的图象是由函数 的图象向左平移 个单位得到的,
函数 在x轴右侧的第一个最高点横坐标为 ,
由于函数 的图像关于点 对称,故 ,
据此可得: ,结合题意可知: ,
从而 ,解得 .
本题选择C选项.
【点睛】本题主要考查三角函数的性质,三角函数图像的变换等知识,意在考查学生的转化能力和计算求解能力.
16.已知圆锥的顶点为 , 为底面中心, , , 为底面圆周上不重合的三点, 为底面的直径, , 为 的中点.设直线 与平面 所成角为 ,则 的最大值为__________.
【答案】
【解析】
【分析】
由题意建立空间直角坐标系,结合空间向量的结论和均值不等式确定 的最大值即可.
【详解】以AB的中点O为坐标原点,建立如图所示的空间直角坐标系,不妨设 ,则:
【点睛】本题主要考查轨迹方程的求解,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.
12.已知 ,若 成立,则满足条件的 的个数是( )
A.0B.1C.2D.3
【答案】D
【解析】
【分析】
由题意结合函数的解析式分类讨论确定满足条件的 的个数即可.
【详解】分类讨论:
很明显当 时, 恒成立,
(2)根据(1)的判断结果及统计值,建立 关于 的回归方程(系数精确到0.01);
最新--河北省唐山市高三上学期期末考试理科综合试题及答案 精品推荐
河北省唐山市2018-2018学年度高三年级期末考试理科综合能力试题本试卷分第I卷(选择题)和第II卷(非选择题)。
共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案标号。
第II卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷、答题卡一并交回。
第I卷本卷共2 1小题,每小题6分,共1 26分。
可能用到的相对原子质量:H-l; C-12; N-14; O-16;Na-23; Mg-24; Al- 27: Cl-35.5;Fe-56:一、选择题(本题包括13小题,每小题只有一个选项符合题意)1.下列关于浆细胞结构和功能的叙述,错误的是A.浆细胞中高尔基体膜成分的更新速度较快B.浆细胞的细胞膜上有相应抗原的受体C.在有氧和无氧的条件下浆细胞细胞质基质中都能形成ATPD.浆细胞细胞核的核孔能实现核质间频繁的物质交换和信息交流2.某基因发生了基因突变,导致氢键总数减少了一个(A-T 间2个,G-C间3个),则有关说法错误的是A.该基因可能发生了碱基对的替换B.突变后翻译过程可能提前终止C.突变后的基因中A与C含量可能不占该基因总碱基的一半D.该基因突变可能改变种群的基因频率3.种群呈“S"型增长过程中,当种群数量超过环境容量一半时,下列叙述正确的是A.种群密度增长越来越慢B.出生率小于死亡率C.环境阻力越来越小D.种内斗争越来越弱4.甲、乙两人都表现为甲状腺激素水平低下,下表为给两人注射适量的促甲状腺激素释放激素(TRH)前30 min和后30 min每人的促甲状腺激素(TSH)浓度,有关分析正确的是A. TSH的靶细胞可以是下丘脑、甲状腺细胞和肌肉细胞B.甲注射TRH后,TSH浓度增高是反馈调节的结果C.乙发生病变的部位是下丘脑D.甲、乙两人注射TRH前的耗氧量比正常人低5.在黑藻中,叶绿体非常丰富,但在嫩叶中叶绿体数目不多,下列有关用黑藻作实验材料的实验,叙述不正确的是A.黑藻可用于叶绿体色素的提取和分离实验B.黑藻嫩叶可用于高倍显微镜观察叶绿体实验C.黑藻液泡为无色,不可用于观察植物细胞质壁分离及复原实验D.将黑藻叶片制成临时装片,可用于探究环境因素对光合作用强弱的影响实验6.如图是马蛔虫(2n=4)精巢细胞正常分裂过程中,不同时期细胞内染色体、染色单体和核DNA含量的关系图,下列分析错误的是A.a、b、c分别表示染色体、核DNA和染色单体B.II时期的细胞叫次级精母细胞C.I中有4个染色体组,II中有2个染色体组D.由II变为I可表示细胞内发生着丝点分裂的过程7.下列说法或表达正确的是A.乙醇、糖类和蛋白质都是人体必需的营养物质B.NH41的电子式:C.石油是混合物,其分馏产品汽油也是混合物D.陶瓷、水晶、水泥、玻璃都属于硅酸盐8.用下列实验装置和方法进行相应实验,能达到实验目的的是A.用甲装置制干燥的氨气B.用乙装置收集并测量Cu与浓硝酸反应产生的气体及体积C.用丙装置除去CO2中含有的少量HC1D.用丁装置吸收NH3,并防止倒吸9.有机物C4H8Cl2的结构中只含有一个甲基的同分异构体有几种(不考虑立体异构)A.3 B.4 C.7 D.810.下表中对离子方程式的评价不合理的是11.设NA为阿伏加德罗常数,下列叙述中正确的是A.足量铁在氯气中反应,l mol铁失去的电子数为2 N A B.标准状况下22.4 L H2中含中子数为2 N AC.1 L Imol/L的盐酸溶液中,所含氯化氢分子数为N AD.常温下46 g NO2和N2O4混合气体中含有原子数为3N A 12.下列根据实验操作和现象所得出的结论正确的是13.短周期四种元素离子W2+、X-、Y2-、Z+的电子层结构相同。
2018年高三最新 河北唐山2018年上学期高三数学(理)期
河北唐山18-18年上学期高三数学(理)期末考试第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.)(1)设集合A={x | x=m21,m ∈N},若x 1∈A ,x 2∈A ,则必有 (A )x 1+x 2∈A (B )x 1x 2∈A (C )x 1-x 2∈A (D )21x x ∈A (2)函数f (x )=cos2xcos (x+3π)-sin2xsin (x+3π),若f (x )=0,则x 可以是 (A )34π (B )65π (C )92π (D )18π (3)曲线ρ=cos θ截直线θ=6π所得线段长为 (A )21 (B )1 (C )23 (D )3 (4)已知复数z 1=1-i ,z 2=3+i ,则z=21z z 在复平面内对应点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(5)已知0<x <21,则下列不等式成立的是 (A )log x (1-x )>1 (B )0<log x (1-x )<1(C )-1<log x (1-x )<0 (D )log x (1-x )<-1(6)将一个半圆卷成一个圆锥的侧面,则圆的侧面积与底面积之比为(A )3 (B )1 (C )4 (D )2(7)已知实数a ,b 满足,2a +2b =4,则(A )a+b 有最大值2 (B )a+b 有最小值2(C )ab 有最大值2 (D )ab 有最小值2(8)棱长为1的正方体ABCD-A 1B 1C 1D ,则四面体A 1C 1BD 的体积为(A )31 (B )61 (C )63 (D )123 (9)生产商品m 件,其中有2件是次品,现在抽取2件进行检验,若有次品的抽法共有197种,则m 的值为(A )197 (B )97 (C )100 (D )200(10)已知数列{a n }的通项公式a n =log 221++n n (n ∈N ),设其前n 项和为S n ,则使S n <-5成立的自然数n(A )有最小值63 (B )有最大值63 (C )有最小值31 (D )有最大值31 (11)在双曲线2222by a x -=1上有一个点P ,F 1,F 2为双曲线的两个焦点,∠F 1PF 2=90°,且△F 1PF 2三条边成等差数列,则此双曲线的离心率是(A )2 (B )3 (C )4 (D )5(12)某地2018年人均GDP (国内生产总值)为8000元,预计以后年增长率为10%,欲使该地区人均GDP 超过16000元,至少要经过(A )4年 (B )5年 (C )8年 (D )10年第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分。
2017~2018学年唐山市高三期末理数试题与答案
(2)右图是一个边长为 4 的正方形二维码,为了测算图中黑色部分的面积,在
正方形区域内随机投掷 400 个点,其中落入黑色部分的有 225 个点,据此
可估计黑色部分的面积为
(A)8
(B)9
(C)10
(D)12
(3)已知复数 z=31+ -ii,则关于 z 的四个命题:
p1:z 的虚部为 2i; p 3:z 的共轭复数为 1-2i; 其中的真命题为
(15)已知椭圆 C:xa22+yb22=1(a>b>0)的焦距为 2c,圆 M:x2+y2-2cy=0 与椭圆 C 交于 A,B
两点.若 OA⊥OB(O 为坐标原点),则椭圆 C 的离心率为_____. (16)在数列{an}中,a1=-1,a2=2,a4=8,Sn 为数列{an}的前 n 项和,若{Sn+λ}为等比数列,
(一个程序框图,其中 ai∈{0,1},i=1,2,…,n,且 an=1.执
行此程序,当输入 110011 时,输出 b 的值为(A)19
(B)49
(C)51
(D)55
(11)在三棱锥 P-ABC 中,底面 ABC 是等边三角形,侧面 PAB 是直角三角
形,且 PA=PB=2,当三棱锥 P-ABC 表面积最大时,该三棱锥外接
p2:|z|= 5; p4:z 在复平面内对应的点在第四象限.
(A)p1,p2 (C)p2,p3
(B)p2,p4 (D)p3,p4
(4)已知 Sn 为等差数列{an}的前 n 项和.若 S5=10,S8=40,则{an}的公差为
(A)1
(B)2
(C)3
(D)4
(5)已知偶函数 f (x)在[0,+∞)单调递减,若 f (-2)=0,则满足 xf (x-1)>0 的 x 的取值范围是 (A)(-∞,-1)∪(0,3) (B)(-1,0)∪(3,+∞) (C)(-∞,-1)∪(1,3) (D)(-1,0)∪(1,3)
河北省唐山市2018届高三上学期期末数学试卷理科 含解析
2018-2018学年河北省唐山市高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,2,3},B={y|y=x2﹣1,x∈A},则A∩B中元素的个数是()A.2 B.3 C.4 D.52.i是虚数单位,复数z=a+i(a∈R)满足z2+z=1﹣3i,则|z|=()A.或 B.2或5 C.D.53.设向量与的夹角为θ,且,则cosθ=()A.B.C.D.4.已知,则=()A.7 B.﹣7 C.D.5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A.4 B.C.D.26.已知数列{a n},{b n}满足b n=a n+a n,则“数列{a n}为等差数列”是“数列{b n}为等+1差数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.即不充分也不必要条件7.执行如图所示的程序框图,则输出的a=()A.1 B.﹣1 C.﹣4 D.8.在(x﹣2)10展开式中,二项式系数的最大值为a,含x7项的系数为b,则=()A.B.C.D.9.设实数x,y满足约束条件,则z=x2+y2的最小值为()A. B.10 C.8 D.510.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为()A. B. C.D.11.已知O为坐标原点,F是双曲线的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E,直线BM与y轴交于点N,若|OE|=2|ON|,则Γ的离心率为()A.3 B.2 C.D.12.已知函数f(x)=ln(e x+e﹣x)+x2,则使得f(2x)>f(x+3)成立的x的取值范围是()A.(﹣1,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,3)D.(﹣∞,﹣1)∪(3,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.由曲线y=x3与围成的封闭图形的面积是.14.已知{a n}是等比数列,,则a7=.15.设F1,F2为椭圆的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为的等边三角形,则椭圆C的方程为.16.已知x1,x2是函数f(x)=2sin2x+cos2x﹣m在[0,]内的两个零点,则sin (x1+x2)=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB﹣bsin2A ﹣ccosA=2bcosB.(1)求B;(2)若,求a.18.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图).(1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.附表及公式: K 2=,其中n=a +b +c +d19.在四棱锥P ﹣ABCD 中,底面ABCD 是边长为2的菱形,∠ABC=60°,PB=PC=PD . (1)证明:PA ⊥平面ABCD ;(2)若PA=2,求二面角A ﹣PD ﹣B 的余弦值.20.已知抛物线C :x 2=2py (p >0),圆O :x 2+y 2=1.(1)若抛物线C 的焦点F 在圆上,且A 为 C 和圆 O 的一个交点,求|AF |; (2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求|MN |的最小值及相应p 的值. 21.已知函数.(1)求y=f (x )的最大值; (2)当时,函数y=g (x ),(x ∈(0,e ])有最小值. 记g (x )的最小值为h (a ),求函数h(a)的值域.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1:x+y=4,曲线为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)若射线l:θ=α(p>0)分别交C1,C2于A,B两点,求的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=a|x﹣1|+|x﹣a|(a>0).(1)当a=2时,解不等式f(x)≤4;(2)若f(x)≥1,求a的取值范围.2018-2018学年河北省唐山市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,2,3},B={y|y=x2﹣1,x∈A},则A∩B中元素的个数是()A.2 B.3 C.4 D.5【考点】交集及其运算.【分析】先分别求出集体合A和B,由此以求出A∩B中元素的个数.【解答】解:∵集合A={﹣2,﹣1,0,2,3},B={y|y=x2﹣1,x∈A}={﹣1,0,3,8},∴A∩B={﹣1,0,3},∴A∩B中元素的个数是3.故选:B.2.i是虚数单位,复数z=a+i(a∈R)满足z2+z=1﹣3i,则|z|=()A.或 B.2或5 C.D.5【考点】复数求模.【分析】把复数z代入z2+z化简,再由复数相等的充要条件列出方程组,求解得到a的值,然后由复数求模公式计算得答案.【解答】解:∵复数z=a+i,∴z2+z=(a+i)2+a+i=(a2+a﹣1)+(2a+1)i=1﹣3i,∴,解得a=﹣2.复数z=a+i=﹣2+i.则|z|=.故选:C.3.设向量与的夹角为θ,且,则cosθ=()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】由条件求得,=的坐标,再根据cosθ=计算求得它的值.【解答】解:∵向量与的夹角为θ,且,∴==(2,1),则cosθ===﹣,故选:A.4.已知,则=()A.7 B.﹣7 C.D.【考点】两角和与差的正切函数.【分析】由题意和二倍角的正切公式求出tan2θ的值,由两角差的正切公式求出的值.【解答】解:由得,==,所以===,故选D.5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A.4 B.C.D.2【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的三棱柱,代入棱柱表面积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的三棱柱,底面面积为:×2×1=1,底面周长为:2+2×=2+2,故棱柱的表面积S=2×1+2×(2+2)=6+4,故选:B.6.已知数列{a n},{b n}满足b n=a n+a n,则“数列{a n}为等差数列”是“数列{b n}为等+1差数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据等差数列的定义结合充分条件和必要条件的定义分别进行判断即可.【解答】解:若数列{a n}为等差数列,设公差为d,则当n ≥2时,b n ﹣b n ﹣1=a n +a n +1﹣a n ﹣1﹣a n =a n +1﹣a n +a n ﹣a n ﹣1=2d 为常数, 则数列{b n }为 等差数列,即充分性成立, 若数列{b n }为 等差数列,设公差为b ,则n ≥2时,b n ﹣b n ﹣1=a n +a n +1﹣a n ﹣1﹣a n =a n +1﹣a n ﹣1=d 为常数,则无法推出a n ﹣a n ﹣1为常数,即无法判断数列{a n }为等差数列,即必要性不成立,即“数列{a n }为等差数列”是“数列{b n }为 等差数列”充分不必要条件, 故选:A7.执行如图所示的程序框图,则输出的 a=( )A .1B .﹣1C .﹣4D .【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的b ,a ,i 的值,观察a 的取值规律,可得当i=40时不满足条件i <40,退出循环,输出a 的值为﹣4. 【解答】解:模拟程序的运行,可得 i=1,a=﹣4满足条件i <40,执行循环体,b=﹣1,a=﹣1,i=2满足条件i <40,执行循环体,b=﹣,a=﹣,i=3 满足条件i <40,执行循环体,b=﹣4,a=﹣4,i=4 满足条件i <40,执行循环体,b=﹣1,a=﹣1,i=5 …观察规律可知,a 的取值周期为3,由于40=3×13+1,可得:满足条件i<40,执行循环体,b=﹣4,a=﹣4,i=40不满足条件i<40,退出循环,输出a的值为﹣4.故选:C.8.在(x﹣2)10展开式中,二项式系数的最大值为a,含x7项的系数为b,则=()A.B.C.D.【考点】二项式定理的应用.【分析】由题意,a==252,含x7项的系数为b==﹣960,即可得出结论.【解答】解:由题意,a==252,含x7项的系数为b==﹣960,∴=﹣,故选D.9.设实数x,y满足约束条件,则z=x2+y2的最小值为()A. B.10 C.8 D.5【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可得到结论.【解答】解:实数x,y满足约束条件的可行域为:z=x2+y2的几何意义是可行域的点到坐标原点距离的平方,显然A到原点距离的平方最小,由,可得A(3,1),则z=x2+y2的最小值为:10.故选:B.10.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为()A. B. C.D.【考点】棱柱、棱锥、棱台的体积.【分析】设球半径为R,正方体边长为a,由题意得当正方体体积最大时:=R2,由此能求出所得工件体积与原料体积之比的最大值.【解答】解:设球半径为R,正方体边长为a,由题意得当正方体体积最大时:=R2,∴R=,∴所得工件体积与原料体积之比的最大值为:==.故选:A.11.已知O为坐标原点,F是双曲线的左焦点,A,B 分别为Γ的左、右顶点,P 为Γ上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,直线 BM 与y 轴交于点N ,若|OE |=2|ON |,则 Γ的离心率为( )A .3B .2C .D .【考点】双曲线的简单性质.【分析】根据条件分别求出直线AE 和BN 的方程,求出N ,E 的坐标,利用|OE |=2|ON |的关系建立方程进行求解即可. 【解答】解:∵PF ⊥x 轴,∴设M (﹣c ,0),则A (﹣a ,0),B (a ,0),AE 的斜率k=,则AE 的方程为y=(x +a ),令x=0,则y=,即E (0,),BN 的斜率k=﹣,则AE 的方程为y=﹣(x ﹣a ),令x=0,则y=,即N (0,),∵|OE |=2|ON |,∴2||=||,即=,则2(c ﹣a )=a +c , 即c=3a ,则离心率e==3, 故选:A12.已知函数f(x)=ln(e x+e﹣x)+x2,则使得f(2x)>f(x+3)成立的x的取值范围是()A.(﹣1,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,3)D.(﹣∞,﹣1)∪(3,+∞)【考点】利用导数求闭区间上函数的最值.【分析】先求出+2x,再由f(x)为偶函数,且在(0,+∞)上单调递增,故f(2x)>f(x+3)等价于|2x|>|x+3|,解之即可求出使得f(2x)>f(x+3)成立的x的取值范围.【解答】解:∵函数f(x)=ln(e x+e﹣x)+x2,∴+2x,当x=0时,f′(x)=0,f(x)取最小值,当x>0时,f′(x)>0,f(x)单调递增,当x<0时,f′(x)<0,f(x)单调递减,∵f(x)=ln(e x+e﹣x)+x2是偶函数,且在(0,+∞)上单调递增,∴f(2x)>f(x+3)等价于|2x|>|x+3|,整理,得x2﹣2x﹣3>0,解得x>3或x<﹣1,∴使得f(2x)>f(x+3)成立的x的取值范围是(﹣∞,﹣1)∪(3,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.由曲线y=x3与围成的封闭图形的面积是.【考点】定积分在求面积中的应用.【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y=x3与在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得.【解答】解:如图在同一平面直角坐标系内作出y=x3与的图象,则封闭图形的面积.故答案为:.14.已知{a n}是等比数列,,则a7=1.【考点】等比数列的通项公式.【分析】利用等比数列通项公式列出方程组,求出首项和公比,由此能求出a7的值.【解答】解:∵{a n}是等比数列,,∴,解得,a7==1.故答案为:1.15.设F1,F2为椭圆的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为的等边三角形,则椭圆C的方程为.【考点】椭圆的简单性质.【分析】由题设条件知列出a,b,c的方程,结合三角形的面积,求出a,b求出椭圆的方程.【解答】解:F1,F2为椭圆的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为的等边三角形,可得:,×=4,a2=b2+c2,解得a2=18,b2=12,c2=6.所求的椭圆方程为:.故答案为:.16.已知x1,x2是函数f(x)=2sin2x+cos2x﹣m在[0,]内的两个零点,则sin(x1+x2)=.【考点】函数零点的判定定理.【分析】由题意可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,运用和差化积公式和同角的基本关系式,计算即可得到所求值.【解答】解:x1,x2是函数f(x)=2sin2x+cos2x﹣m在[0,]内的两个零点,可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,即为2(sin2x1﹣sin2x2)=﹣cos2x1+cos2x2,即有4cos(x1+x2)sin(x1﹣x2)=﹣2sin(x2+x1)sin(x2﹣x1),由x1≠x2,可得sin(x1﹣x2)≠0,可得sin(x2+x1)=2cos(x1+x2),由sin2(x2+x1)+cos2(x1+x2)=1,可得sin(x2+x1)=±,由x1+x2∈[0,π],即有sin(x2+x1)=.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB﹣bsin2A ﹣ccosA=2bcosB.(1)求B;(2)若,求a.【考点】正弦定理.【分析】(1)由正弦定理,三角形内角和定理,三角函数恒等变换的应用化简已知等式可得2sinBcosB=﹣sinB,结合sinB≠0,可求cosB=﹣,进而可求B的值.(2)由已知及余弦定理可求c2+ac﹣6a2=0,解得c=2a,进而利用三角形面积公式可求a的值.【解答】(本题满分为12分)解:(1)由正弦定理得:2sinBcosB=sinAcosAcosB﹣sinBsin2A﹣sinCcosA=sinAcos(A+B)﹣sinCcosA=﹣sinAcosC﹣sinCcosA=﹣sin(A+C)=﹣sinB,∵sinB≠0,∴cosB=﹣,B=.…(2)由b2=a2+c2﹣2accosB,b=a,cosB=﹣,得:c2+ac﹣6a2=0,解得c=2a,…=acsinB=a2=2,得a=2.…由S△ABC18.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见图). (1)填写下面的2×2列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”?(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X ,求X 的分布列及数学期望.附表及公式: K 2=,其中n=a +b +c +d【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(1)列出表格根据公式计算出K 2,参考表格即可得出结论.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X 可取0,1,2,3,且X ~B (3,).即可得出. 【解答】解:(1)k==≈4.167>3.841,所以有超过95%的把握认为“获奖与学生的文理科有关”.(2)由表中数据可知,抽到获奖同学的概率为,将频率视为概率,所以X可取0,1,2,3,且X~B(3,).P(X=k)=×()k(1﹣)3﹣k(k=0,1,2,3),E(X)=3×=.19.在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PB=PC=PD.(1)证明:PA⊥平面ABCD;(2)若PA=2,求二面角A﹣PD﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)连接AC,取BC中点E,连接AE,PE,推导出BC⊥AE,BC⊥PE,从而BC⊥PA.同理CD⊥PA,由此能证明PA⊥平面ABCD.(2)以A为原点,建立空间直角坐标系A﹣xyz,利用向量法能求出二面角A﹣PD ﹣B的余弦值.【解答】证明:(1)连接AC,则△ABC和△ACD都是正三角形.取BC中点E,连接AE,PE,因为E为BC的中点,所以在△ABC中,BC⊥AE,因为PB=PC,所以BC⊥PE,又因为PE∩AE=E,所以BC⊥平面PAE,又PA⊂平面PAE,所以BC⊥PA.同理CD⊥PA,又因为BC∩CD=C,所以PA⊥平面ABCD. (6)解:(2)如图,以A为原点,建立空间直角坐标系A﹣xyz,则B(,﹣1,0),D(0,2,0),P(0,0,2),=(0,2,﹣2),=(﹣,3,0),设平面PBD的法向量为=(x,y,z),则,取x=,得=(),取平面PAD的法向量=(1,0,0),则cos<>==,所以二面角A﹣PD﹣B的余弦值是.…20.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.(1)若抛物线C的焦点F在圆上,且A为C和圆O的一个交点,求|AF|;(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p 的值.【考点】直线与抛物线的位置关系;圆与圆锥曲线的综合.【分析】(1)求出F(1,0),得到抛物线方程,联立圆的方程与抛物线方程,求出A的纵坐标,然后求解|AF|.(2)设M(x0,y0),求出切线l:y=(x﹣x0)+y0,通过|ON|=1,求出p=且﹣1>0,求出|MN|2的表达式,利用基本不等式求解最小值以及p的值即可.【解答】解:(1)由题意得F(1,0),从而有C:x2=4y.解方程组,得y A=﹣2,所以|AF|=﹣1.…(2)设M(x0,y0),则切线l:y=(x﹣x0)+y0,整理得x0x﹣py﹣py0=0.…由|ON|=1得|py0|==,所以p=且﹣1>0,…所以|MN|2=|OM|2﹣1=+﹣1=2py0+﹣1=+﹣1=4++(﹣1)≥8,当且仅当y0=时等号成立,所以|MN|的最小值为2,此时p=.…21.已知函数.(1)求y=f(x)的最大值;(2)当时,函数y=g(x),(x∈(0,e])有最小值.记g(x)的最小值为h(a),求函数h(a)的值域.【考点】导数在最大值、最小值问题中的应用.【分析】(1)求出f′(x)=(x>0),通过判断函数的单调性,求解函数的最大值即可.(2)求出g′(x)=lnx﹣ax=x(﹣a),由(1)及x∈(0,e]:通过①当a=时,②当a∈[0,),分别求解函数的单调性与最值即可.【解答】解:(1)f′(x)=(x>0),当x∈(0,e)时,f′(x)>0,f(x)单调递增;当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,所以当x=e时,f(x)取得最大值f(e)=.…(2)g′(x)=lnx﹣ax=x(﹣a),由(1)及x∈(0,e]得:①当a=时,﹣a≤0,g′(x)≤0,g(x)单调递减,当x=e时,g(x)取得最小值g(e)=h(a)=﹣.…②当a∈[0,),f(1)=0≤a,f(e)=>a,所以存在t∈[1,e),g′(t)=0且lnt=at,当x∈(0,t)时,g′(x)<0,g(x)单调递减,当x∈(t,e]时,g′(x)>0,g(x)单调递增,所以g(x)的最小值为g(t)=h(a).…令h(a)=G(t)=﹣t,因为G′(t)=<0,所以G(t)在[1,e)单调递减,此时G(t)∈(﹣,﹣1].综上,h(a)∈[﹣,﹣1].…请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1:x+y=4,曲线为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)若射线l:θ=α(p>0)分别交C1,C2于A,B两点,求的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)由曲线C1:x+y=4可得曲线C1的极坐标方程;先将曲线C2化为普通方程,进而可得曲线C2的极坐标方程;(2)设A(ρ1,α),B(ρ2,α),﹣<α<,则ρ1=,ρ2=2cosα,则=,进而得到答案.【解答】解:(1)∵在直角坐标系xOy中,曲线C1:x+y=4,曲线C1的极坐标方程为:ρ(cosθ+sinθ)=4,C2的普通方程为(x﹣1)2+y2=1,所以曲线C2的极坐标方程为:ρ=2cosθ.…(2)设A(ρ1,α),B(ρ2,α),﹣<α<,则ρ1=,ρ2=2cosα,…==×2cosα(cosα+sinα)=(cos2α+sin2α+1)= [cos(2α﹣)+1],…当α=时,取得最大值(+1).…[选修4-5:不等式选讲]23.已知函数f(x)=a|x﹣1|+|x﹣a|(a>0).(1)当a=2时,解不等式f(x)≤4;(2)若f(x)≥1,求a的取值范围.【考点】绝对值不等式的解法.【分析】(1)当a=2时,f(x)在(﹣∞,1]上递减,在[1,+∞)上递增,f(0)=f()=4利用解不等式f(x)≤4;(2)若f(x)≥1,分类讨论,即可求a的取值范围.【解答】解:(1)f(x)=2|x﹣1|+|x﹣2|=所以,f(x)在(﹣∞,1]上递减,在[1,+∞)上递增,又f(0)=f()=4,故f(x)≤4的解集为{x|0≤x≤}.…(2)①若a>1,f(x)=(a﹣1)|x﹣1|+|x﹣1|+|x﹣a|≥a﹣1,当且仅当x=1时,取等号,故只需a﹣1≥1,得a≥2.…②若a=1,f(x)=2|x﹣1|,f(1)=0<1,不合题意.…③若0<a<1,f(x)=a|x﹣1|+a|x﹣a|+(1﹣a)|x﹣a|≥a(1﹣a),当且仅当x=a时,取等号,故只需a(1﹣a)≥1,这与0<a<1矛盾.…综上所述,a的取值范围是[2,+∞).…2018年1月25日。
2018~2019学年河北省唐山市高三上学期期末考试A卷数学(理)试卷(教师版)及答案解析
绝密★启用前2018~2019学年河北省唐山市高三上学期期末考试理科数学试题(A卷)(教师解析版)2019年1月第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线的焦点到准线的距离等于()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据抛物线的标准方程得,求出,即得结论.【详解】抛物线中,即, 所以焦点到准线的距离是.故选B.【点睛】本题考查抛物线的标准方程,抛物线的准线方程是,焦点坐标是焦点到准线的距离为.本题属于基础题.2.命题“,”的否定是()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】利用全称命题的否定是特称命题,写出结果即可.利用全称命题的否定是特称命题,写出结果即可.【详解】解:因为全称命题的否定是特称命题,所以,命题“,”的否定是:,.故选:A.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.若双曲线的两条渐近线斜率分别为,则()A. B. -1 C. -3 D. -9【答案】C【解析】【分析】由双曲线方程写出两条渐近线方程即可得到斜率,从而得到答案.【详解】双曲线的渐近线方程为y=,则斜率,则故选:C【点睛】本题考查双曲线渐近线方程的求法,属于简单题.4.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据不等式之间的关系结合充分条件和必要条件的定义即可得到结论.【详解】解:由,解得x<1或x>3,此时不等式x<1不成立,即充分性不成立, 若x<1,则x<1或x>3成立,即必要性成立,故“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.5.圆与圆的位置关系是()A. 相离B. 外切C. 相交D. 内切【答案】D。
河北省唐山市2018届高三第三次模拟考试数学(理)试卷及答案
河北省唐⼭市2018届⾼三第三次模拟考试数学(理)试卷及答案唐⼭市2017—2018学年度⾼三年级第三次模拟考试理科数学试卷第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合{}{}13,0M x x N x x =-≤<=<,则集合{}03x x ≤<=()A .M N ?B .M N ? C.()R MC N ?D .()R C M N ? 2.复数z 满⾜()234i z i --=+(i 为虚数单位),则z =() A .2i -+ B .2i - C. 2i -- D .2i +3.已知tan 16πα??+= ,则tan 6πα?-=()A .2.22-.2-4.已知命题:p 在ABC ?中,若sin sin AB =,则A B =;命题():0,q x π?∈,1sin 2sin x x+>.则下列命题为真命题的是()A .p q ∧B .()p q ∨? C.()()p q ?∧? D .()p q ?∨5.已知双曲线()2222:10,0x y E a b a b-=>>的两条渐近线分别为12,l l ,若E 的⼀个焦点F 关于1l 的对称点F '在2l 上,则E 的离⼼率为()A .6.某⼏何体的三视图如图所⽰,则该⼏何体的体积为()A .6B .7 C.152 D .2337.已知函数()()sin 203f x x πωωω?=+->的图象与x 轴相切,则()f π=()A .32-B .12-1- D .1- 8.已知P 是抛物线24y x =上任意⼀点,Q 是圆()2241x y -+=上任意⼀点,则PQ 的最⼩值为()A .52B .1 D .1 9.利⽤随机模拟的⽅法可以估计圆周率π的值,为此设计如图所⽰的程序框图,其中()rand 表⽰产⽣区间[]0,1上的均匀随机数(实数),若输出的结果为786,则由此可估计π的近似值为()A .3.134B .3.141 C.3.144 D .3.14710.在ABC ?中,点G 满⾜0GA GB GC ++=.若存在点O ,使得16OG BC =,且OA mOB nOC =+,则m n -=()A .2B .2- C. 1 D .1- 11.若异⾯直线,m n 所成的⾓是60?,则以下三个命题: ①存在直线l ,满⾜l 与,m n 的夹⾓都是60?;②存在平⾯α,满⾜m α?,n 与α所成⾓为60?;③存在平⾯,αβ,满⾜,m n αβ??,α与β所成锐⼆⾯⾓为60?. 其中正确命题的个数为()A .0B .1 C. 2 D .312.已知()0,xx xe a f x e a>=+,若()f x 的最⼩值为1-,则a =()A .21eB .1eC. e D .2e第Ⅱ卷(共90分)⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设变量,x y 满⾜约束条件10,1,250,x y y x y -+≥??≥??+-≤?则z x y =+的最⼤值为.14.某种袋装⼤⽶的质量X (单位:kg )服从正态分布()50,0.01N ,任意选⼀袋这种⼤⽶,质量在49.850.1kg 的概率为.15.设函数()2,0,0,x x f x x ?-成⽴的x 得取值范围是.16.ABC ?的内⾓,,A B C 的对边分别为,,a b c ,⾓A 的内⾓平分线交BC 于点D ,若111,2a b c=+=,则AD 的取值范围是.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17. 已知数列{}n a 是等差数列,{}n b 是等⽐数列,111,2a b ==,22337,13a b a b +=+=. (1)求{}n a 和{}n b 的通项公式;(2)若,,n n na n cb n ??=为奇数为偶数,求数列{}n c 的前2n 项和2n S .18. 某球迷为了解,A B 两⽀球队的攻击能⼒,从本赛季常规赛中随机调查了20场与这两⽀球队有关的⽐赛.两队所得分数分别如下:A 球队:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B 球队:114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图⽐较两⽀球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能⼒从低到⾼分为三个等级:记事件:C “A 球队的攻击能⼒等级⾼于B 球队的攻击能⼒等级”.假设两⽀球队的攻击能⼒相互独⽴. 根据所给数据,以事件发⽣的频率作为相应事件发⽣的概率,求C 的概率.19.如图,四棱锥P ABCD -的底⾯ABCD 是平⾏四边形,90BAC PAD PCD ∠=∠=∠=?.(1)求证:平⾯PAB ⊥平⾯ABCD ;(2)若3AB AC PA ===,E 为BC 的中点,F 为棱PB 上的点,//PD 平⾯AEF ,求⼆⾯⾓A DF E --的余弦值.20.已知点()2,0A -,点()1,0B -,点()1,0C ,动圆O '与x 轴相切于点A ,过点B 的直线1l 与圆O '相切于点D ,过点C 的直线2l 与圆O '相切于点E (,D E 均不同于点A ),且1l 与2l 交于点P ,设点P 的轨迹为曲线Γ.(1)证明:PB PC +为定值,并求Γ的⽅程;(2)设直线1l 与Γ的另⼀个交点为Q ,直线CD 与Γ交于,M N 两点,当,,O D C '三点共线时,求四边形MPNQ 的⾯积.21.已知0a >,函数()24ln 2af x x x a =+-+. (1)记()()2g a f a =,求()g a 的最⼩值;(2)若()y f x =有三个不同的零点,求a 的取值范围.请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分.22.选修4-4:坐标系与参数⽅程已知点A 在椭圆22:24C x y +=上,将射线OA 绕原点O 逆时针旋转2π,所得射线OB 交直线:2l y =于点B .以O 为极点,x 轴正半轴为极轴建⽴极坐标系. (1)求椭圆C 和直线l 的极坐标⽅程;(2)证明::Rt OAB ?中,斜边AB 上的⾼h 为定值,并求该定值. 23.选修4-5:不等式选讲已知函数()123f x x x =---. (1)求不等式()0f x ≥的解集;(2)设()()()g x f x f x =+-,求()g x 的最⼤值.试卷答案⼀、选择题1-5: CADBB 6-10: BBDCD 11、12:DA⼆、填空题13. 4 14.0.8185 15.()(),10,1?∞-?- 16.?三、解答题17.解:(1)设数列{a n }的公差为d ,数列{b n }的公⽐为q ,依题意有,1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2,故a n =2n -1,b n =2n,(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n,所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n(1+4n -3)2+4(1-4n)1-4=2n 2-n + 4 3(4n -1).18.解:(1)两队所得分数的茎叶图如下A 球队所得分数⽐较集中,B 球队所得分数⽐较分散.(2)记C A1表⽰事件:“A 球队攻击能⼒等级为较强”, C A2表⽰事件:“A 球队攻击能⼒等级为很强”; C B1表⽰事件:“B 球队攻击能⼒等级为较弱”, C B2表⽰事件:“B 球队攻击能⼒等级为较弱或较强”,则C A1与C B1独⽴,C A2与C B2独⽴,C A1与C A2互斥,C =(C A1C B1)∪(C A2C B2). P (C)=P (C A1C B1)+ P (C A2C B2)=P (C A1)P (C B1)+P (C A2)P (C B2).由所给数据得C A1,C A2,C B1,C B2发⽣的频率分别为1420,320,520,1820,故P (C A1)=1420,P (C A2)=320,P (C B1)=520,P (C B2)=1820,P (C)=1420×520+320×1820=0.31.19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC ,∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平⾯PAC ,∴AB ⊥PA ,⼜∵PA ⊥AD,AB ∩AD =A ,∴PA ⊥平⾯ABCD ,PA 平⾯PAB ,∴平⾯PAB ⊥平⾯ABCD .(2)连接BD 交AE 于点O ,连接OF ,∵E 为BC 的中点,BC ∥AD ,∴BO OD = BE AD = 12,∵PD ∥平⾯AEF ,PD ?平⾯PBD ,平⾯AEF ∩平⾯PBD =OF ,∴PD ∥OF ,∴BF FP = BO OD = 12,以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建⽴空间直⾓坐标系A -xyz ,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0), P(0,0,3),E ( 3 2, 32,0),F(2,0,1),设平⾯ADF 的法向量m =(x 1,y 1,z 1),∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).设平⾯DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4).cos ?m ,n ?=m ·n |m ||n |=-23939,∵⼆⾯⾓A-DF-E 为钝⼆⾯⾓,∴⼆⾯⾓A-DF-E 的余弦值为-23939.20.解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|,所以|PB|+|PC|=|PD|+|DB|+|PC| =|PE|+|PC|+|AB| =|CE|+|AB|=|AC|+|AB|=4>|BC|所以点P 的轨迹Γ是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求Γ的⽅程为x 24+y23=1(y ≠0).(2)由O ',D ,C 三点共线及圆的⼏何性质,可知PB ⊥CD ,⼜由直线CE ,CA 为圆O '的切线,可知CE =CA ,O 'A =O 'E ,所以△O 'AC ≌△O 'EC ,进⽽有∠ACO '=∠ECO ',所以|PC|=|BC|=2,⼜由椭圆的定义,|PB|+|PC|=4,得|PB|=2,所以△PBC 为等边三⾓形,即点P 在y 轴上,点P 的坐标为(0,±3) (i)当点P 的坐标为(0,3)时,∠PBC =60?,∠BCD =30?,此时直线l 1的⽅程为y =3(x +1),直线CD 的⽅程为y =-3(x -1),由x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ|=165,由x 24+y23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M(x 1,y 1),N(x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN|=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的⾯积S =1 2|PQ|·|MN|=38465.(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的⾯积为384 65.综上,四边形MPNQ 的⾯积为38465.21.解:(1)g (a)=ln a 2+4a a 2+a 2-2=2(ln a +1 a -1),g '(a)=2(a - 1 a )=2(a -1)a,所以0<a <1时,g '(a)<0,g (a)单调递减; a >1时,g '(a)>0,g (a)单调递增,所以g (a)的最⼩值为g (1)=0.(2)f '(x)= 1x -4a (x +a 2)2=x 2+(2a 2-4a)x +a4x(x +a 2)2,x >0.因为y =f (x)有三个不同的零点,所以f (x)⾄少有三个单调区间,⽽⽅程x 2+(2a 2-4a)x +a 4=0⾄多有两个不同正根,所以,有2a 2-4a <0,Δ=16a 2(1-a)>0,解得,0<a <1.由(1)得,当x ≠1时,g (x)>0,即ln x +1x-1>0,所以ln x >- 1x,则x >e -1x (x >0),令x =a 22,得a 22>e - 2 a 2.因为f (e - 2a 2)<- 2 a 2+ 4 a -2=-2(a -1)2a<0,f (a 2)>0, f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0,所以y =f (x)在(e - 2a 2,a 2),(a 2,1),(1,e 2)内各有⼀个零点,故所求a 的范围是0<a <1.22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标⽅程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ;直线l 的极坐标⽅程为ρsin θ=2,即ρ= 2sin θ.。
河北省唐山市高三数学上学期期末考试试卷理(含解析)
2014-2015学年河北省唐山市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.1.函数y=+的定义域为()A.[0,3] B.[1,3] C.[1,+∞)D.[3,+∞)2.某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是()A.13 B.14 C.15 D.163.“k<9“是“方程+=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设变量x、y满足,则目标函数z=2x+3y的最小值为()A.7 B.8 C.22 D.235.设S n是等比数列{a n}的前n项和,若=3,则=()A.2 B.C.D.l或26.己知f(x)=的值域为R,那么a的取值范围是()A.(一∞,一1] B.(一l,)C.[﹣1,)D.(0,)7.执行如图所示的算法,则输出的结果是()A.1 B.C.D.28.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.9.己知函数f(x)=sinωx+cosωx(ω>0),f()+f()=0,且f(x)在区间(,)上递减,则ω=()A.3 B.2 C.6 D.510.4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A.24种B.36种C.48种D.60种11.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C.D.一l12.设函数f(x)=ax3﹣x+1(x∈R),若对于任意x∈[﹣1,1]都有f(x)≥0,则实数a的取值范围为()A.(﹣∞,2] B.[0+∞)C.[0,2] D.[1,2]二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.13.若复数z满足z=i(2+z)(i为虚数单位),则z= .14.过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,则•= .15.在三棱锥P﹣ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为.16.数列{a n}的前n项和为S n,2S n﹣na n=n(n∈N*),若S20=﹣360,则a2= .三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.(I)求b;(Ⅱ)若△ABC的面积为,求c.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC.(I)求证:AC⊥CD;(Ⅱ)点E在棱PC上,满足∠DAE=60°,求二面角B﹣AE﹣D的余弦值.19.某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数.东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(I)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(Ⅱ)设翻乏示一天中早高峰时间段发生拥堵的主干道入口个数,求ξ的分布列及数学期望.20.已知抛物线y2=2px(p>0),过点C(一2,0)的直线l交抛物线于A,B两点,坐标原点为O,•=12.(I)求抛物线的方程;(Ⅱ)当以AB为直径的圆与y轴相切时,求直线l的方程.21.己知函数f(x)=ae x+x2,g(x)=sin+bx,直线l与曲线y=f(x)切于点(0,f(0))且与曲线y=g(x)切于点(1,g(1)).(I)求a,b的值和直线l的方程.(Ⅱ)证明:f(x)>g(x)一、请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时【选修4-1:几何证明选讲】22.如图,四边形么BDC内接于圆,BD=CD,过C点的圆的切线与AB的延长线交于E点.(I)求证:∠EAC=2∠DCE;(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的长.一、【选修4-4;坐标系与参数方程】23.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),斜率为的直线l交y轴于点E(0,1).(I)求C的直角坐标方程,l的参数方程;(Ⅱ)直线l与曲线C交于A、B两点,求|EA|+|EB|.一、【选修4-5:不等式选讲】24.设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(I)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.2014-2015学年河北省唐山市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.1.函数y=+的定义域为()A.[0,3] B.[1,3] C.[1,+∞)D.[3,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数y的解析式中,二次根式的被开方数大于或等于0,列出不等式组,求出解集即可.解答:解:∵函数y=+,∴,解得,即1≤x≤3;∴函数y的定义域为[1,3].故选:B.点评:本题考查了求函数定义域的问题,也考查了不等式的解法问题,是基础题目.2.某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是()A.13 B.14 C.15 D.16考点:茎叶图.专题:概率与统计.分析:把茎叶图中的数据按照从小到大的顺序排列,求出中位数即可.解答:解:根据茎叶图中的数据,把这组数据按照从小到大的顺序排列为5,8,10,14,16,16,20,23;∴这组数据的中位数是=15.故选:C.点评:本题考查了利用茎叶图中的数据求中位数的应用问题,是基础题目.3.“k<9“是“方程+=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义结合双曲线的性质进行判断即可.解答:解:若方程+=1表示双曲线,则(k﹣9)(25﹣k)<0,(k﹣9)(k﹣25)>0即解得k>25或k<9,则“k<9“是“方程+=1表示双曲线”的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据双曲线的定义是解决本题的关键.4.设变量x、y满足,则目标函数z=2x+3y的最小值为()A.7 B.8 C.22 D.23考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:设z=2x+3y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点C时,直线y=﹣x+z的截距最小,此时z最小,由,解得,即C(2,1),此时z min=2×2+3×1=7,故选:A.点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.5.设S n是等比数列{a n}的前n项和,若=3,则=()A.2 B.C.D.l或2考点:等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的前n项和公式求解.解答:解:∵S n是等比数列{a n}的前n项和,=3,∴=1+q2=3,∴q2=2,∴====.故选:B.点评:本题考查等比数列的前6项和与前4项和的比值的求法,是基础题,解题时要认真审题,注意等比数列的前n项和公式的合理运用.6.己知f(x)=的值域为R,那么a的取值范围是()A.(一∞,一1] B.(一l,)C.[﹣1,)D.(0,)考点:分段函数的应用;函数的值域.专题:计算题;分类讨论;函数的性质及应用;不等式的解法及应用.分析:由于x≥1,lnx≥0,由于f(x)的值域为R,则当x<1时,(1﹣2a)x+3a的值域包含一切负数,对a讨论,分a=时,当a>时,当a<时,结合二次函数的单调性,解不等式即可得到所求范围.解答:解:由于x≥1,lnx≥0,由于f(x)的值域为R,则当x<1时,(1﹣2a)x+3a的值域包含一切负数,则当a=时,(1﹣2a)x+3a=不成立;当a>时,(1﹣2a)x+3a>1+a,不成立;当a<时,(1﹣2a)x+3a<1+a,由1+a≥0,可得a≥﹣1.则有﹣1≤a<.故选C.点评:本题考查分段函数的值域,考查一次函数和对数函数的单调性的运用,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.7.执行如图所示的算法,则输出的结果是()A.1 B.C.D.2考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n,M,S的值,当S=1时,满足条件S ∈Q,退出循环,输出S的值为1.解答:解:模拟执行程序框图,可得S=0,n=2n=3,M=,S=不满足条件S∈Q,n=4,M=,S=+不满足条件S∈Q,n=5,M=,S=++=1满足条件S∈Q,退出循环,输出S的值为1.故选:A.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.8.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:几何体是三棱柱削去一个同高的三棱锥,根据三视图判断相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.解答:解:由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V=×1×1×2﹣××1×1×2=.故选:A.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.9.己知函数f(x)=sinωx+cosωx(ω>0),f()+f()=0,且f(x)在区间(,)上递减,则ω=()A.3 B.2 C.6 D.5考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:首先通过三角恒等变换把函数变形成正弦型函数,进一步利用整体思想利用区间与区间的子集关系求出ω的范围,进一步利用代入法进行验证求出结果.解答:解:f(x)=sinωx+cosωx=2sin()所以:当k=0时,由于:f(x)在区间(,)单调递减,所以:解不等式组得到:当ω=2时,f()+f()=0,故选:B.点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调性的应用,带入验证法的应用,属于基础题型.10.4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A.24种B.36种C.48种D.60种考点:计数原理的应用.专题:排列组合.分析:分两类,第一类,有3名被录用,第二类,4名都被录用,则有一家录用两名,根据分类计数原理即可得到答案解答:解:分两类,第一类,有3名被录用,有=24种,第二类,4名都被录用,则有一家录用两名,有=36,根据分类计数原理,共有24+36=60(种)故选D.点评:本题考查排列、组合的综合运用,解题时要先确定分几类,属于基础题11.椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为()A.B.C.D.一l考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出F(﹣c,0)关于直线x+y=0的对称点A的坐标,代入椭圆方程可得离心率.解答:解:设F(﹣c,0)关于直线x+y=0的对称点A(m,n),则,∴m=,n=c,代入椭圆方程可得,化简可得e4﹣8e2+4=0,∴e=﹣1,故选:D.点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.12.设函数f(x)=ax3﹣x+1(x∈R),若对于任意x∈[﹣1,1]都有f(x)≥0,则实数a的取值范围为()A.(﹣∞,2] B.[0+∞)C.[0,2] D.[1,2]考点:利用导数求闭区间上函数的最值.专题:导数的综合应用;不等式的解法及应用.分析:对x讨论,当x=0,当x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:aa≥﹣,设g(x)=﹣,由导数判断单调性,即可求出a≥0;x∈[﹣1,0)时,求出a≤2,由此可得a的取值范围.解答:解:若x=0,则不论a取何值,f(x)≥0都成立;当x>0即x∈(0,1]时,f(x)=ax3﹣x+1≥0可化为:a≥﹣,设g(x)=﹣,则g′(x)=,所以g(x)在区间(0,1]上单调递增,因此g(x)max=g(1)=0,从而a≥0;当x<0即x∈[﹣1,0)时,f(x)=ax3﹣x+1≥0可化为:a≤﹣,设g(x)=﹣,则g′(x)=,g(x)在区间[﹣1,0)上单调递增,因此g(x)min=g(﹣1)=2,从而a≤2,则0≤a≤2.即有实数a的取值范围为[0,2].故选:C.点评:本题考查不等式恒成立问题的解法,是中档题,解题时要认真审题,注意导数性质的合理运用.二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.13.若复数z满足z=i(2+z)(i为虚数单位),则z= ﹣1+i .考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的基本运算进行求解即可.解答:解:由z=i(2+z)=zi+2i得(1﹣i)z=2i,则z==﹣1+i,故答案为:﹣1+i点评:本题主要考查复数的基本运算,比较基础.14.过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,则•= 5 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,可得=0.因此•==,即可得出.解答:解:由圆C:x2+y2﹣4y﹣1=0配方为x2+(y﹣2)2=5.∴C(0,2),半径r=.∵过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,∴=0.∴•==+==5.故答案为:5.点评:本题考查了直线与圆相切性质、向量的三角形法则、数量积运算性质,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为8 .考点:棱锥的结构特征.专题:计算题;空间位置关系与距离.分析:如图所示,过G作EF∥AC,分别交PA,PC于点E,F.过点F作FM∥PB交BC于点M,过点E作EN∥PB交AB于点N.由作图可知:四点EFMN共面.可得=,EF=MN=2.同理可得:EN=FM=2.解答:解:如图所示,过点G作EF∥AC,分别交PA,PC于点E,F过点F作FM∥PB交BC于点M,过点E作EN∥PB交AB于点N.由作图可知:EN∥FM,∴四点EFMN共面可得MN∥AC∥EF,EN∥PB∥FM.∴=,可得EF=MN=2.同理可得:EN=FM=2.∴截面的周长为8.故答案为:8.点评:本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,考查了推理能力用途计算能力,属于中档题.16.数列{a n}的前n项和为S n,2S n﹣na n=n(n∈N*),若S20=﹣360,则a2= ﹣1 .考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:由已知得S n=,从而,解得a1=1,进而,由此得到{a n}是等差数列,从而由已知条件利用等差数列的性质能求出a2.解答:解:∵2S n﹣na n=n(n∈N*),∴S n=,∴,解得a1=1,∴,∴{a n}是等差数列,∵S20=﹣360,∴S20==﹣360,解得a20+1=﹣36,即a20=﹣37,∴19d=a20﹣a1=﹣38,解得d=﹣2,∴a2=a1+d=1﹣2=﹣1.故答案为:﹣1.点评:本题考查数列的第二项的值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.(I)求b;(Ⅱ)若△ABC的面积为,求c.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(Ⅰ)由正弦定理得sinC=cosC,可得C=45°,由bcosC=3,即可求得b的值.(Ⅱ)由S=acsinB=,csinB=3,可求得a,据余弦定理可得c2=a2+b2﹣2abcosC=25,即可求得c的值.解答:解:(Ⅰ)由正弦定理得sinCsinB=sinBcosC,又sinB≠0,所以sinC=cosC,C=45°.因为bcosC=3,所以b=3.…(6分)(Ⅱ)因为S=acsinB=,csinB=3,所以a=7.据余弦定理可得c2=a2+b2﹣2abcosC=25,所以c=5.…(12分)点评:本题主要考查了正弦定理、余弦定理面积公式的应用,属于基础题.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC.(I)求证:AC⊥CD;(Ⅱ)点E在棱PC上,满足∠DAE=60°,求二面角B﹣AE﹣D的余弦值.考点:用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过线面垂直的判定定理及性质定理即得结论;(Ⅱ)以点A为原点,以为x轴正方向、以||为单位长度,建立空间直角坐标系.利用∠DAE=60°即cos<,>=可得=(0,,),通过cos<,>=即得二面角B﹣AE﹣D的余弦值为.解答:(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD,因为∠PCD=90°,所以PC⊥CD,所以CD⊥平面PAC,所以CD⊥AC;(Ⅱ)解:∵底面ABCD是平行四边形,CD⊥AC,∴AB⊥AC.又PA⊥底面ABCD,∴AB,AC,AP两两垂直.如图所示,以点A为原点,以为x轴正方向、以||为单位长度,建立空间直角坐标系.则B(1,0,0),C(0,1,0),P(0,0,1),D(﹣1,1,0).设=λ=λ(0,1,﹣1),则=+=(0,λ,1﹣λ),又∠DAE=60°,则cos<,>=,即=,解得λ=.则=(0,,),=﹣=(﹣1,,﹣),所以cos<,>==﹣.因为•=0,所以⊥.又⊥,故二面角B﹣AE﹣D的余弦值为﹣.点评:本题考查空间中线线垂直的判定,以及求二面角的三角函数值,注意解题方法的积累,属于中档题.19.某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数.东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(I)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(Ⅱ)设翻乏示一天中早高峰时间段发生拥堵的主干道入口个数,求ξ的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)设东西南北四个主干道入口发生拥堵分别为事件A,B,C,D,设一天恰有三个入口发生拥堵为事件M,则M=BCD+A CD+AB D+ABC.由此能求出该城市一天中早高峰时间段恰有三个入口发生拥堵的概率.(Ⅱ)ξ的可能取值为0,1,2,3,4.分别求出相应的概率,由此能求出ξ的分布列及数学期望.解答:解:(Ⅰ)设东西南北四个主干道入口发生拥堵分别为事件A,B,C,D.则P(A)==,P(B)==,P(C)==,P(D)==.设一天恰有三个入口发生拥堵为事件M,则M=BCD+A CD+AB D+ABC.则P(M)=+×××+×××+×××=.…(5分)(Ⅱ)ξ的可能取值为0,1,2,3,4.P(ξ=0)==,P(ξ=1)==,P(ξ=2)=,P(ξ=3)==,P(ξ=4)=.ξ的分布列为:ξ 0 1 2 3 4pE(ξ)=0×+3×+4×=.…(12分)点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合的合理运用,是中档题.20.已知抛物线y2=2px(p>0),过点C(一2,0)的直线l交抛物线于A,B两点,坐标原点为O,•=12.(I)求抛物线的方程;(Ⅱ)当以AB为直径的圆与y轴相切时,求直线l的方程.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设l:x=my﹣2,代入y2=2px,可得根与系数的关系,再利用•=12,可得x1x2+y1y2=12,代入即可得出.(Ⅱ)由(Ⅰ)(∗)化为y2﹣4my+8=0.设AB的中点为M,可得|AB|=2x m=x1+x2=m(y1+y2)﹣4=4m2﹣4,又|AB|=|y1﹣y2|=,联立解出m即可得出.解答:解:(Ⅰ)设l:x=my﹣2,代入y2=2px,可得y2﹣2pmy+4p=0.(∗)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2==4.∵•=12,∴x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.(Ⅱ)由(Ⅰ)(∗)化为y2﹣4my+8=0.y1+y2=4m,y1y2=8.设AB的中点为M,则|AB|=2x m=x1+x2=m(y1+y2)﹣4=4m2﹣4,①又|AB|=|y1﹣y2|=,②由①②得(1+m2)(16m2﹣32)=(4m2﹣4)2,解得m2=3,m=±.∴直线l的方程为x+y+2=0,或x﹣y+2=0.点评:本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题转化为方程联立可得根与系数的关系、焦点弦长公式、弦长公式、直线与圆相切的性质、数量积运算,考查了推理能力与计算能力,属于中档题.21.己知函数f(x)=ae x+x2,g(x)=sin+bx,直线l与曲线y=f(x)切于点(0,f(0))且与曲线y=g(x)切于点(1,g(1)).(I)求a,b的值和直线l的方程.(Ⅱ)证明:f(x)>g(x)考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)分别求出f(x)、g(x)的导数,求得切线的斜率和切线方程,再由切线唯一,即可求得a,b和切线方程;(Ⅱ)设F(x)=f(x)﹣(x+1)=e x+x2﹣x﹣1,运用导数,求得最小值大于0,再设G(x)=x+1﹣g(x),由正弦函数的值域可得G(x)≥0,即可得到f(x)>g(x),即可得证.解答:解:(Ⅰ)f′(x)=ae x+2x,g′(x)=cos+b,即有f(0)=a,f′(0)=a,g(1)=1+b,g′(1)=b,曲线y=f(x)在点(0,f(0))处的切线为y=ax+a,曲线y=g(x)在点(1,g(1))处的切线为y=b(x﹣1)+1+b,即y=bx+1.依题意,有a=b=1,直线l方程为y=x+1.(Ⅱ)证明:由(Ⅰ)知f(x)=e x+x2,g(x)=sin+x.设F(x)=f(x)﹣(x+1)=e x+x2﹣x﹣1,则F′(x)=e x+2x﹣1,当x∈(﹣∞,0)时,F′(x)<F′(0)=0;当x∈(0,+∞)时,F′(x)>F′(0)=0.F(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,故F(x)≥F(0)=0.设G(x)=x+1﹣g(x)=1﹣sin,则G(x)≥0,当且仅当x=4k+1(k∈Z)时等号成立.由上可知,f(x)≥x+1≥g(x),且两个等号不同时成立,因此f(x)>g(x).点评:本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查函数的单调性的运用,三角函数的图象和性质,属于中档题和易错题.一、请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时【选修4-1:几何证明选讲】22.如图,四边形么BDC内接于圆,BD=CD,过C点的圆的切线与AB的延长线交于E点.(I)求证:∠EAC=2∠DCE;(Ⅱ)若BD⊥AB,BC=BE,AE=2,求AB的长.考点:与圆有关的比例线段;弦切角.专题:推理和证明.分析:(Ⅰ)由等腰三角形性质得∠BCD=∠CBD,由弦切角定理得∠ECD=∠CBD,从而∠BCE=2∠ECD,由此能证明∠EAC=2∠ECD.(Ⅱ)由已知得AC⊥CD,AC=AB,由BC=BE,得AC=EC.由切割线定理得EC2=AE•BE,由此能求出AB的长.解答:(Ⅰ)证明:因为BD=CD,所以∠BCD=∠CBD.因为CE是圆的切线,所以∠ECD=∠CBD.所以∠ECD=∠BCD,所以∠BCE=2∠ECD.因为∠EAC=∠BCE,所以∠EAC=2∠ECD.…(5分)(Ⅱ)解:因为BD⊥AB,所以AC⊥CD,AC=AB.因为BC=BE,所以∠BEC=∠BCE=∠EAC,所以AC=EC.由切割线定理得EC2=AE•BE,即AB2=AE•( AE﹣AB),即AB2+2 AB﹣4=0,解得AB=﹣1.…(10分)点评:本题考查一个角是另一个角的二倍的证明,考查线段长的求法,是中档题,解题时要认真审题,注意弦切角定理、切割线定理的合理运用.一、【选修4-4;坐标系与参数方程】23.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),斜率为的直线l交y轴于点E(0,1).(I)求C的直角坐标方程,l的参数方程;(Ⅱ)直线l与曲线C交于A、B两点,求|EA|+|EB|.考点:简单曲线的极坐标方程.专题:直线与圆.分析:(I)由ρ=2(cosθ+sinθ),得ρ2=2(ρcosθ+ρsinθ),把代入即可得出;由斜率为的直线l交y轴于点E(0,1)即可得出直线的参数方程.(II)将代入(x﹣1)2+(y﹣1)2=2得t2﹣t﹣1=0,利用根与系数的关系、直线参数的意义即可得出.解答:解:(Ⅰ)由ρ=2(cosθ+sinθ),得ρ2=2(ρcosθ+ρsinθ),即x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.l的参数方程为(t为参数,t∈R),(Ⅱ)将代入(x﹣1)2+(y﹣1)2=2得t2﹣t﹣1=0,解得,t1=,t2=.则|EA|+|EB|=|t1|+|t2|=|t1﹣t2|=.点评:本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线方程的应用,考查了计算能力,属于基础题.一、【选修4-5:不等式选讲】24.设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(I)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.考点:绝对值三角不等式;基本不等式.专题:不等式的解法及应用.分析:(I)化简函数的解析式,再利用函数的单调性求得函数的最小值,再根据函数的最小值为a,求得a的值.(Ⅱ)由(Ⅰ)知m2+n2=1,利用基本不等式求得≥2,再利用基本不等式求得+的最小值.解答:解:(I)函数f(x)=|x+1|+|x|=,当x∈(﹣∞,0]时,f(x)单调递减;当x∈[0,+∞)时,f(x)单调递增,所以当x=0时,f(x)的最小值a=1.(Ⅱ)由(Ⅰ)知m2+n2=1,由m2+n2≥2mn,得mn≤,∴≥2故有+≥2≥2,当且仅当m=n=时取等号.所以+的最小值为2.点评:本题主要考查带有绝对值的函数,利用函数的单调性求函数的最值,基本不等式的应用,属于中档题.。
【市级联考】河北省唐山市2018-2019学年高三上学期期末考试A卷数学(理)试题-
绝密★启用前【市级联考】河北省唐山市2018-2019学年高三上学期期末考试A卷数学(理)试题试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一一三总分得分注意事项1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、单选题1.设集合, ,贝U ()A. B. C. 或 D.2.复数的虚部是( )A. - B _ C. - D. -3. , 使,则实数的取值范围是()A. B. C. D.4.设向量,满足, ,贝U ()A. 2 B .一 C. - D.一5.设为等差数列,, 为其前项和,若,则公差()A. -2B. -1C. 1D. 26 .在一二的二项展开式中,的系数为()A. 一B. 一C. -D.-7.某四棱锥的三视图如图所示,则其体积为()※※题※※答※※内※※线※※订※※装※※在※※要※※不※※请派※•rkr•八 夕 一A. - B. - C. 8 D. 48. 已知是抛物线 的焦点,抛物线 的准线与双曲线一 -的两条渐近线交十 ,两点,若 为等边三角形,则 的离心率 () A. - B. — C. ■ - D.—9.将甲、乙等6位同学平均分成正方,反方两组举行辩论赛,则甲、乙被分在不同组 中的概率为() A. — B. - C. 一 10.若函数 单调递减,则 () D. - 的图像关于点 对称,且 在 上 A. 1 B. 2 C. 3 D. 411 .已知点在圆 上,,,为中点,则的最大值为()A. -B. -C. 一D. 一12 ,已知 ,若成立,则满足条件的的个数是()A. 0B. 1C. 2D. 3请点击修改第II卷的文字说明第II卷(非选择题) 评卷人得分13 .若,满足约束条件14.已知函数15.已知是数列16.已知圆锥的顶点为面的直径,、填空题的前项和,为底面中心,则的最大值为则不等式的解集为-,则为底面圆周上不重合的三点, 为底的中点.设直线评卷人得分三、解答题与平面所成角为,则的最大值为17.如图,在梯形中,,,为上一点,(1)若为等腰三角形,求;(2)设,若,求18.在三棱柱且.中,(1)证明:(2)若,,求二面角为中点,底面,点在线段上,的余弦值.19.近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号 的回 归方程类型进行了拟合实验,研究人员甲采用函数 ,其拟合指数;研究人员乙采用函数,其拟合指数 ;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好 .(注:相关系数与拟合指数满足关系).(2)根据(1)的判断结果及统计值,建立 关于 的回归方程(系数精确到 0.01 );(3)预测到哪一年的工业增加值能突破30万亿元大关.附:样本的相关系数 -------------------------------- ,20 .已知椭圆 一 一,离心率 一,过点 的动直线 与椭圆 相交于,两点.当 轴时,一.年份2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 年份序号12345678910工业增加值13.213.8 16.5 19.5 20.9 22.2 23.4 23.7 24.8 28—. — ——5.520.6 82.5 211.52 129.6VJ • • • • >)> • • ••上一工。
河北省唐山市高三上学期期末数学试卷(理科)
河北省唐山市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·河北模拟) 已知集合,,则()A .B .C .D .2. (2分)(2020·鄂尔多斯模拟) 已知在平面直角坐标系中,为坐标原点,,,若平面内点满足,则的最大值为()A . 7B . 6C . 5D . 43. (2分) (2016高二上·延安期中) 等差数列{an}的前n项和为Sn ,若a3+a17=10,则S19=()A . 190B . 95C . 170D . 854. (2分)已知函数f(x)=sin(2x+φ)(φ∈R),且f(x)≤|f()|,则f(x)图象的一条对称轴方程为()A . x=B . x=C . x=D . x=5. (2分)等比数列各项为正,成等差数列.为的前n项和,则=()A . 2B .C .D .6. (2分) (2018高三上·定州期末) 已知函数,若在区间上存在,使得,则的取值不可能为()A . 1B . 2C . 3D . 47. (2分) (2020高三上·长春月考) 已知二次函数满足,若在区间上单调递减,且恒成立,则实数的取值范围是()A .B .C .D .8. (2分) (2018高一下·淮北期末) 若变量满足约束条件 ,则的最大值是()A .B . 0C .D .9. (2分) (2016高二上·长春期中) 定积分 dx=()A . 1B . πC .D .10. (2分)已知,那么下列不等式成立的是()A .B .C .D .11. (2分) (2018高二上·嘉兴月考) 等差数列的首项为1,公差不为0,若成等比数列,则前6项的和为()A . -24B . -3C . 3D . 812. (2分)(2016·新课标Ⅰ卷文) 函数f(x)=cos2x+6cos(﹣x)的最大值为()A . 4B . 5C . 6D . 7二、填空题 (共4题;共4分)13. (1分) (2018高一下·唐山期末) 公差不为0的等差数列满足,且,,成等比数列,则数列的前7项和为________.14. (1分)(2017高一下·上饶期中) 如图,在四边形ABCD中,,,,则的值为________.15. (1分)若函数y=f(x)的定义域为R,对于∀x∈R,f'(x)<ex ,且f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为________.16. (1分)已知f(x)的定义域为[﹣2,+∞),部分对应值如下表,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图,若f(x)<1,则x的范围为________.x﹣204f(x)1﹣11三、解答题. (共7题;共60分)17. (5分) (2015高二下·双流期中) 命题p: =1表示双曲线方程,命题q:函数f(m)=有意义.若p∨q为真,p∧q为假,求实数m的取值范围.18. (10分) (2016高三上·新疆期中) 已知函数f(x)=a(2cos2 +sinx)+b(1)若a=﹣1,求f(x)的单调增区间;(2)若x∈[0,π]时,f(x)的值域是[5,8],求a,b的值.19. (10分) (2018高一下·彭水期中) 在中,角所对的边分别为、、,且,.(1)若,求的值;(2)若的面积,求、的值.20. (5分) (2016高二上·嘉峪关期中) 已知{an}是公差不为零的等差数列,a1=1,且a1 , a3 , a9成等比数列.求数列{an}的通项公式.21. (10分) (2017高二下·长春期中) 已知函数,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线(1)求实数a的值(2)求函数f(x)的单调区间.22. (10分) (2018高二下·衡阳期末) 在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 .(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.23. (10分)设函数f(x)=|2x﹣1|﹣|x+ |.(1)解不等式f(x)<0;(2)若∃x0∈R,使得f(x0)+3m2<5m,求实数m的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7、答案:略8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题. (共7题;共60分) 17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省唐山市2017-2018学年度高三年级期末考试数学(理)试题说明:一、本试卷分为第I卷和第II卷.第I卷为选择题;第II卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回,第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求.(1)函数y=(A)[0,3] (B)[1,3] (C)[1,+∞) (D)[3,+∞)(2)某品牌空调在元旦期间举行促销活动,下面的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是(A) 13 (B) 14 (C) 15 (D) 16(3)"k<9’’是“方程221259x y k k +=--表示双曲线”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件 (4)设变量x 、y 满足10,30,230,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数z=2x+3y 的最小值为 (A)7(B) 8(C) 22 (D) 23(5)设S n 是等比数列{a n }的前n 项和,若423S S =,则64S S = (A)2 (B) 73(C)310(D)l 或2(6)己知(12)3,1,()1,1.a x a x f x nx x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是(A)(一∞,一1] (B)(一l ,12)(C)[-1,12) (D)(0,12)(7)执行如图所示的算法,则输出的结果是 (A)1 (B)43(C)54(D)2(8)右上图是某几何体的三视图,则该几何体的体积等于 (A)23(B)43(C)1(D)13(9)己知函数()sin (0),()()062f x x x f f ππωωω=>+=,且()f x 在区间(,)62ππ,上递减,则ω= (A)3(B)2(C)6(D)5(10)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有 (A) 24种 (B) 36种 (C) 48种 (D)60种(11)椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0y +=的对称点A 是椭圆C 上的点,则椭圆C 的离心率为(A)12(B),l2(12)设函数3()1()f x ax x x R =-+∈,若对于任意x ∈[一1,1]都有()f x ≥0,则实数a 的取值范围为(A)(-∞, 2] (B)[0+∞) (C)[0,2](D)[1,2]第II 卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.(13)若复数z 满足z=i(2+z)(i 为虚数单位),则z= 。
(14)过点A(3,1)的直线l 与圆C:22410xy y +--=相切于点B ,则.CACB =.(15)在三棱锥P-ABC 中,PB=6,AC=3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为 .(16)数列{a n }的前n 项和为S n ,2S n –na n =n (n∈N*),若S 20= -360,则a 2=____.三、解答题:本大题共70分,其中(17) - (21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且csinB=bcos C=3. (I)求b ;( II)若△ABC的面积为21,求c.2(18)(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA =AB=AC.(I)求证:AC⊥CD;( II)点E在棱PC上,满足∠DAE=60°,求二面甬B-AE -D的余弦值.(19)(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数.东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(I)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;( II)设翻乏示一天中早高峰时间段发生拥堵的主干道入口个数,求ξ的分布列及数学期望.(20)(本小题满分12分)已知抛物线y 2= 2px(p>0),过点C (一2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,.12OAOB =.(I)求抛物线的方程;( II)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.(21)(本小题满分12分)己知函数2(),()sin 2x x f x ae x g x bx π=+=+,直线l 与曲线()y f x =切于点(0,(0))f 且与曲线y=g (x )切于点(1,g(1)). (I)求a ,b 的值和直线l 的方程. ( II)证明:()()f x g x >请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时 用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分1 0分)选修4-1:几何证明选讲 如图,四边形么BDC 内接于圆,BD= CD ,过C 点的圆的切线与AB 的延长线交于E 点. (I)求证:∠EAC=2∠DCE;( II)若BD⊥AB,BC =BE ,AE =2,求AB 的长.(23)(本小题满分10)选修4—4;坐标系与参数方程 极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,已知曲线C 的极坐标方程为2(cos sin )ρθθ=+,斜率为l 交y 轴于点E(0,1).(I)求C 的直角坐标方程,l 的参数方程;( II)直线l 与曲线C 交于A 、B 两点,求|EA|+|EB |。
(24)(本小题满分10分)选修4-5:不等式选讲 设函数1()|1|||()2f x x x x R =++∈的最小值为a .(I)求a ;( II)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值.参考答案一、选择题:A卷:BCAAB CAABD DCB卷:ACADB AACBD CD二、填空题:(13)-1+i (14)5 (15)8 (16)-1 三、解答题:(17)解:(Ⅰ)由正弦定理得sin C sin B=sin B cos C,又sin B≠0,所以sin C=cos C,C=45°.因为b cos C=3,所以b=32. (6)分(Ⅱ)因为S=12ac sin B=212,c sin B=3,所以a=7.据余弦定理可得c2=a2+b2-2ab cos C=25,所以c=5.…12分(18)解:(Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD因为∠PCD=90 ,所以PC⊥CD,所以CD⊥平面PAC,所以CD⊥AC.…4分(Ⅱ)因为底面ABCD 是平行四边形,CD ⊥AC ,所以AB ⊥AC .又PA ⊥底面ABCD ,所以AB ,AC ,AP 两两垂直.如图所示,以点A 为原点,以AB →为x 轴正方向,以|AB →|为单位长度,建立空间直角坐标系.则B (1,0,0),C (0,1,0),P (0,0,1),D (-1,1,0). 设PE →=λPC →=λ(0,1,-1),则AE →=AP →+PE →= (0,λ,1-λ),又∠DAE =60°,则cos AE →,AD → = 1 2,即λ22λ2-2λ+1= 1 2,解得λ= 12. …8分则AE →=(0, 1 2, 1 2),ED →=AD →-AE →=(-1, 1 2,- 1 2),所以cos AB →,ED → =AB →²ED →|AB →||ED →|=-63.因为AE →²ED →=0,所以AE →⊥ED →.又AB →⊥AE →, 故二面角B -AE -D 的余弦值为-63.…12分 (19)解:(Ⅰ)设东西南北四个主干道入口发生拥堵分别为事件A ,B ,C ,D .则P(A)=1830=35,P(B)=1530=12,P(C)=930=310,P(D)=1530=12.设一天恰有三个入口发生拥堵为事件M,则M=A-BCD+A B-CD+AB C-D+ABC D-.则P(M)= 25³12³310³12+35³12³310³12+3 5³12³710³12+35³12³310³12=45200=940.…5分(Ⅱ)ξ的可能取值为0,1,2,3,4.P(ξ=0)=14200=7 100,P(ξ=1)=55200=11 40,P(ξ=2)=77200,P(ξ=3)=45200=940,P(ξ=4)=9200.ξ的分布列为:E( )=0³14200+1³55200+2³77200+3³45200+4³9200=380200=1910.…12分(20)解:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=0.( )设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2=y21y224p2=4.因为OA→²OB→=12,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x. (5)分(Ⅱ)由(Ⅰ)( )化为y2-4my+8=0.y1+y2=4m,y1y2=8.…6分设AB的中点为M,则|AB|=2x m=x1+x2=m(y1+y2)-4=4m2-4,①又|AB|=1+m2| y1-y2|=(1+m2)(16m2-32),②由①②得(1+m2)(16m2-32) =(4m2-4)2,解得m2=3,m=±3.所以,直线l的方程为x+3y+2=0,或x-3y+2=0.…12分(21)解:(Ⅰ)f (x)=a e x+2x,g (x)=2cosx2+b,f(0)=a,f (0)=a,g(1)=1+b,g (1)=b,曲线y=f(x)在点(0,f(0))处的切线为y=ax+a,曲线y=g(x)在点(1,g(1))处的切线为y=b(x-1)+1+b,即y=bx+1.依题意,有a=b=1,直线l方程为y=x+1.…4分(Ⅱ)由(Ⅰ)知f(x)=e x+x2,g(x)=sin x2+x.…5分设F(x)=f(x)-(x+1)=e x+x2-x-1,则F (x)=e x+2x-1,当x∈(-∞,0)时,F (x)<F (0)=0;当x∈(0,+∞)时,F (x)>F (0)=0.F(x)在(-∞,0)单调递减,在(0,+∞)单调递增,故F(x)≥F(0)=0.…8分设G(x)=x+1-g(x)=1-sin x 2,则G(x)≥0,当且仅当x=4k+1(k∈Z)时等号成立.…10分由上可知,f(x)≥x+1≥g(x),且两个等号不同时成立,因此f(x)>g(x). (12)分(22)解:(Ⅰ)证明:因为BD=CD,所以∠BCD=∠CBD.因为CE是圆的切线,所以∠ECD=∠CBD.所以∠ECD=∠BCD,所以∠BCE=2∠ECD.因为∠EAC=∠BCE,所以∠EAC=2∠ECD. (5)分(Ⅱ)解:因为BD⊥AB,所以AC⊥CD,AC=AB.因为BC=BE,所以∠BEC=∠BCE=∠EAC,所以AC=EC.由切割线定理得EC2=AE•BE,即AB2=AE•(AE-AB),即AB2+2 AB-4=0,解得AB=5-1.…10分(23)解:(Ⅰ)由ρ=2(cosθ+sinθ),得ρ2=2(ρcosθ+ρsinθ),即x2+y2=2x+2y,即(x-1) 2+(y-1) 2=2.l 的参数方程为⎩⎪⎨⎪⎧x = 1 2t ,y =1+32t .(t 为参数, t ∈R )…5分(Ⅱ)将⎩⎪⎨⎪⎧x = 1 2t ,y =1+32t .代入(x -1) 2+(y -1) 2=2得t 2-t-1=0,解得,t 1=1+52,t 2=1-52,则|EA |+|EB |=| t 1|+| t 2|=|t 1-t 2|=5. …10分 (24)解:(Ⅰ)f (x )=⎩⎪⎪⎨⎪⎪⎧- 3 2x -1 ,x <-2,- 12x +1,-2≤x ≤0, 3 2x +1,x >0. 当x ∈(-∞,0]时,f (x )单调递减, 当x ∈[0,+∞)时,f (x )单调递增,所以当x =0时,f (x )的最小值a =1. …5分(Ⅱ)由(Ⅰ)知m2+n2=1,由m2+n2≥2mn,得mn≤ 12,则 1m+1n≥21mn≥22,当且仅当m=n=22时取等号.所以 1m+1n的最小值为22.…10分注:如有其他答案,请参考评分标准给分.。