数列的通项公式与求和

合集下载

数列通项公式与求和讲解与习题(含答案)

数列通项公式与求和讲解与习题(含答案)

数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。

)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.2项和为S ,满足3如,1对所有的4。

例.521a a ⋅⋅⋅(例.已知数列{}n a 满足31=a ,n n a n a 11+=+,求n a 。

答案:23n a n=6.已知递推关系求n a ,用构造法(构造等差.等比数列)。

(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法:转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例.已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 答案:123n n a +=-②()n f 为一次多项式,即递推公式为s rn pa a n n ++=+1 例③(n f (2)n rq ,其中p q1+ 例(3型(2)的方法求解。

例.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

答案:1731(443n n a -=--7.形如11n n n a a ka b--=+或11n n n n a ba ka a ---=的递推数列都可以用倒数法求通项。

例.1,13111=+⋅=--a a a a n n n答案:132n a n =- 8.利用平方法、开平方法构造等差数列例1.数列{}n a的各项均为正数,且满足11n n a a +=+,12a =,求n a 。

答案:2(1)n a n = 例2.已知()f x x =<,求:(1)9.n a +设n b =例.1.已知2.已知13a =且132n n n a a +=+,求n a 答案:1532n n n a -=⋅- 3.已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,试求通项公式n a 。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型、S n 是数列{a n }的前n 项的和【注意】漏检验n 的值(如n 1的情况【例1】.(1)已知正数数列{a n }的前n 项的和为S n, 且对任意的正整数n 满足2足 a n1 ,求数列{%}的 通项公式。

(2)数列{引中,为1对所有的正整数n 都有 a 〔 a ? a 3L a 。

n 2 ,求数列{a n }的通项公式【作业一】1-1.数列 a n 满足 a1 3a2 32% L3n1an?(n N *),3求数列a n 的通项公式.a 一(二).累加、累乘型如a namf(n),或f(n)a n【方法】:S 1 (n 1) S n S ni (n 2)S n S ni”代入消兀消a n o型一:I a n a nif (n),用累加法求通项公式(推导等差数列通项公式的方法)【方法】a n a n 1 f(n),an 1 a n 2f(nD,a 2 a i f (2) n 2,从而 a n a i f (n) f(n 1) L f (2),检验 n 1 的情 况 型二:|勉f(n),用累乘法求通项公式(推导等比an 1数列通项公式的方法)【方法】n 2,鬼业L 色f(n) f(n 1) L f(2)a n 1 a n 2a即冬f(n) f(n 1) L f(2),检验n 1的情 q况【小结】一般情况下,“累加法”(“累乘法”)里只有 n 1个等式相加(相乘).11【例 2】.(1)已知 a12 , an an 1 n^W(n 2),求a n .n2 (2)已知数列a n 满足an1 =an,且a1 - ?n 23求an .【例3】.(2009广东高考文数)在数列{a n}中,, 一1、n 1 b冬…a 1,a ni (1n)a n "2厂.设b n n,求数列{b n}的通项公式n 1 n (c,p为非零常数,c 1,p 1)【方法】构造a n 1 x c(a n x),即a n 1 ca n (c 1)x ,故(c 1)x p,即{a n 卫}为 c 1等比数列【例4】.a1 1 , a n 1 2a n 3,求数列{a n}的通项公式。

数列通项公式及求和

数列通项公式及求和

或 sn Aqn A ( Aq 0且q 1)
例为:sn 已 p知n2数 列( p{an1})的n 前pn项3 ,和
若 {an} 为 等 差 数 列 , 求 p 与 an 。
例:设数列{cn}的各项是一 个等差数列与一个等比数 列对应项的和,若c1=2, c2=4,c3=7,c4=12,求通 项公式cn
例:
已知数列{an}中,a1 2 ,an1 3n an,
求通项公式 an 。
四、待定系数法:
用待定系数法解题时,常先假定
通项公式或前n项和公式为某一多
项式,一般地,若数列{an}为等差
数 列 : 则 an bn c

或若数是列sn {anb}n等2 比 c数n(列b,、则c为an 常 A数qn)1 ,
数列通项公式 以及求和
① 有的数列没有通项公式 ②有的数列有多个通项公式
一、观察法 (即猜想法,不完全归纳法)
例: 数 列 9 , 99 , 999 , 9999,…
例: 求数列3,5,9,17,33,…
注意:用不完全归纳法,只从数 列的有限项来归纳数列所有项的 通项公式是不一定可靠的,如2,
已知an

1
nn
2

,
求sn
1
nn 1

1 n

1 n -1
2n

1
12n

1

1 2

1 2n
1

1 2n
1

nn

1
1n

2

1 2

1
nn
1

n

数列的求和与通项公式推导

数列的求和与通项公式推导

数列的求和与通项公式推导在数学中,数列是一组按照一定规律排列的数的集合。

而数列的求和以及推导通项公式是数列研究中的重要内容。

本文将介绍数列的求和以及通项公式推导,并通过实例进行说明。

一、等差等差数列是指一个数列中每个数与它的前一个数之差是一个常数,这个常数被称为公差。

我们将针对等差数列的求和与通项公式进行讨论。

1. 求和公式:设等差数列的首项为a₁,公差为d,我们要求前n项的和Sn。

我们可以观察等差数列的前n项和与首项与末项的关系:Sn = (a₁ + a₂ + ... + aₙ) + (aₙ + aₙ₋₁ + ... + a₁)根据等差数列的性质,我们可以得到:Sn = (a₁ + aₙ)(n/2)这就是等差数列的求和公式。

2. 通项公式推导:为了推导等差数列的通项公式,我们假设等差数列的首项为a₁,公差为d,第n项为an。

通过观察等差数列的规律,我们可以发现:aₙ = a₁ + (n-1)d二、等比等比数列是指一个数列中每个数与它的前一个数之比是一个常数,这个常数被称为公比。

我们将针对等比数列的求和与通项公式进行讨论。

1. 求和公式:设等比数列的首项为a₁,公比为r,我们要求前n项的和Sn。

类似地,我们观察等比数列的前n项和与首项与末项之间的关系:Sn = (a₁ + a₂ + ... + aₙ)Sn * r = (a₁r + a₂r + ... + aₙr)通过两式相减,我们可以得到:Sn * (1 - r) = a₁(1 - rⁿ)化简后得到:Sn = a₁(1 - rⁿ) / (1 - r)这就是等比数列的求和公式。

2. 通项公式推导:为了推导等比数列的通项公式,我们假设等比数列的首项为a₁,公比为r,第n项为an。

通过观察等比数列的规律,我们可以发现:an = a₁ * r^(n-1)综上所述,我们介绍了等差数列和等比数列的求和以及通项公式推导。

这些公式在数列相关问题的求解中起到重要的作用。

数列的通项公式与求和公式的应用

数列的通项公式与求和公式的应用

数列的通项公式与求和公式的应用数学中的数列是有规律的一系列数字的集合,我们常常需要找到数列中的通项公式和求和公式来解决各种实际问题。

在本文中,我们将探讨数列的通项公式和求和公式的应用。

一、数列的通项公式数列的通项公式是指能够表示数列中第n个数(数列的一般项)与n之间关系的公式。

通过找到数列的通项公式,我们可以轻松地计算出任意位置的数。

例如,我们考虑一个等差数列:1, 4, 7, 10, 13, ...我们观察到,每个数与前一个数之间的差都是3。

根据这个规律,我们可以列出通项公式为an = 1 + 3(n - 1),其中an表示等差数列中的第n个数。

这样,我们便可以轻松地计算出该等差数列中任意位置的数。

同样地,对于等比数列和其他类型的数列,我们也可以通过观察数列中数字之间的关系,得到相应的通项公式。

二、数列的求和公式数列的求和公式是指能够计算数列中一定范围内的数之和的公式。

通过找到数列的求和公式,我们可以快速计算出数列的和,从而解决各类实际问题。

考虑一个等差数列:2, 5, 8, 11, 14, ...我们可以观察到每个数与前一个数之间的差是3。

根据这个规律,我们可以列出求和公式为Sn = n(2a1 + (n-1)d) / 2,其中Sn表示等差数列前n项的和,a1表示等差数列的首项,d表示等差数列的公差。

通过这个求和公式,我们可以计算出等差数列的前n项和,进一步推广到其他类型的数列。

三、数列的应用数列的通项公式与求和公式在各个领域中都有广泛的应用。

下面我们来看一些具体的例子。

1. 金融领域:复利的计算在金融领域中,我们常常需要计算复利。

复利是指求取一笔钱在多个周期中不断积累产生的利息。

假设我们有一笔本金P,年利率为r%,每年复利一次,求n年后的总金额A。

我们可以将这个问题转化为求和问题。

每一年的利息是本金的一部分,根据复利的计算公式,第k年的利息为P * (1 + r/100)^k - P。

因此,我们可以得到总金额A的计算公式为:A = P + P * (1 + r/100) + P * (1 + r/100)^2 + ... + P * (1 + r/100)^n利用等比数列的求和公式,我们可以简化这个计算过程,从而得到一个更简洁的计算公式。

数列通项公式及数列求和的常用方

数列通项公式及数列求和的常用方

数列通项公式及数列求和的常用方法邓 飞一.通项公式求法1. 迭乘法:1()n n a a f n += 型例1 已知数列{}n a 满足112(1)53n n n a n a a +=+= ,,求数列{}n a 的通项公式。

解:因为112(1)53n n n a n a a +=+= ,,所以0n a ≠,则12(1)5n n na n a +=+,故132112211221(1)1(1)(2)2112[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n --------+-+++-=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯2. 迭加法:1()n n a a f n +=+ 型例2 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n , 则,211112-+=a a 312123-+=a a ,413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=. 3. 待定系数法:1n n a pa q +=+ 型――转化为1()n n a x p a x ++=+ 型。

(等比型)例3 已知数列{}n a 满足11236n n a a a +=+=,,求数列{}n a 的通项公式。

解:设12()n n a x a x ++=+ 比较系数得3,x = 所以 132(3)n n a a ++=+ 又13639a +=+=,则数列{3}n a +是以9为首项,2为公比的等比数列, 则1392n n a -+= ,故1923n n a -=- 。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法

数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。

求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。

一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。

例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。

1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。

二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。

例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。

2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。

例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。

3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。

4.1公式和差公式是指通过首项、末项和项数计算公差的公式。

已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。

数列通项公式与求和讲解与习题(含答案)

数列通项公式与求和讲解与习题(含答案)

数列通项与求和一.求数列通项公式1.定义法(①等差数列通项公式;②等比数列通项公式。

)例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式. 答案:35n a n =2.公式法:已知n S (即12()n a a a f n +++=)求n a ,用作差法:11,(1),(2)n n n a n a S S n -=⎧=⎨-≥⎩例.设正整数数列{}n a 前n 项和为n S ,满足21(1)4n n S a =+,求n a 答案:21n a n =-3.作商法:已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ;答案:61164.累加法:若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-。

例.已知数列,且a 1=2,a n +1=a n +n ,求a n .答案:242n n n a -+=5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥ 例.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

答案:23n a n=6.已知递推关系求n a ,用构造法(构造等差.等比数列)。

(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式 ①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

数列求和与求通项公式方法总结(已打)

数列求和与求通项公式方法总结(已打)
11、已知等比数列 中,各项都是正数,且 , 成等差数列,则
12、已知 为等比数列, , ,则 。
13、已知 得三边长成公比为 的等比数列,则其最大角的余弦值为_________.
14、已知等比数列 为递增数列,且 ,则数列的通项公式 _____.
15、等比数列{ }的前n项和为Sn,若S3+3S2=0,则公比 =_______
(Ⅰ)求 的值;(Ⅱ)求数列 的通项公式.
(1)求数列 的通项公式;
(2)记 ,求数列 的前n项和 。
数列练习题(近三年各地高考题选编)
一、填空题
1、在等差数列 中, ,则 的前5项和 =。
2、等差数列 中, ,则数列 的公差为。
3、在等差数列 中,已知 =16,则 。
4、如果等差数列 中, + + =12,那么 + +•••…+ =。
5、 为等差数列, 为其前 项和.若 , ,则 ________.
(1)求数列 、 的通项公式;
(2)设 ,数列 的前 项和为 ,问 > 的最小正整数 是多少
2、(2012广州一模)已知等差数列 的公差 ,它的前 项和为 ,若 ,且 , , 成等比数列.
(1)求数列 的通项公式;
(2)设数列 的前 项和为 ,求证: .
3、(2012惠州三模)已知函数 ,且数列 是首项为 ,公差为2的等差数列.
6、{an}的前n项和为Sn,且Sn= ,n∈N﹡,数列{bn}满足an=4log2bn+3,n∈N﹡.
(1)求an,bn;
(2)求数列{an·bn}的前n项和Tn.
7、已知 是等差数列,其前 项和为 , 是等比数列,且 .
(I)求数列 与 的通项公式;

求数列通项公式与求和的基本方法

求数列通项公式与求和的基本方法

求数列通项公式与求和的基本方法数列通项公式是指能够用一个公式来表示数列中每一项的方法。

而数列的求和是指将数列中所有项相加的过程。

在数学中,两者都是非常重要且常用的技巧。

一、数列通项公式的求解方法通常情况下,我们可以根据规律和已知条件来推导数列的通项公式。

下面列举了一些常见的数列类型及其求解方法。

1.1等差数列等差数列是一种常见的数列类型,其每一项之间的差等于一个常数d。

求解等差数列通项公式的方法有两种:直接法和差法。

直接法:假设等差数列的首项为a_1,公差为d,则通项公式可以表示为a_n=a_1+(n-1)d,其中n代表数列的第n项。

差法:设等差数列第k项与第k+1项之差为d,首项为a_1,则通项公式可以表示为a_n=a_1+(n-1)(a_2-a_1)/d。

1.2等比数列等比数列是一种数列,其每一项与前一项之比等于一个常数q。

求解等比数列通项公式的方法有两种:乘法法和差法。

乘法法:假设等比数列的首项为a_1,公比为q,则通项公式可以表示为a_n=a_1*q^(n-1),其中n代表数列的第n项。

差法:设等比数列第k项与第k+1项之比为q,首项为a_1,则通项公式可以表示为a_n=a_1*(a_2/a_1)^(n-1)。

1.3斐波那契数列斐波那契数列是一种特殊的数列,其前两项都为1,从第三项开始,每一项都等于前两项之和。

斐波那契数列的通项公式可以通过递推公式求解,即Fn=Fn-1+Fn-2,其中F1=1,F2=1其他类型的数列通项公式的求解方法也可以通过观察数列的规律和已知条件来进行推导。

数列求和是指将数列中所有项相加的过程。

根据不同的数列类型和已知条件,可以采用不同的求和方法。

2.1等差数列求和设等差数列的首项为a_1,末项为a_n,数列共有n项,公差为d。

则等差数列的和可以用求和公式Sn=(n/2)(a_1+a_n)来表示。

2.2等比数列求和设等比数列的首项为a_1,末项为a_n,数列共有n项,公比为q。

高三数学数列的通项公式及求和

高三数学数列的通项公式及求和

a an1 nan1
1 a
Sn (1 a)2 1 a a=0时 ,也成立
总结:此数列特征 an 为等差数列, bn

anbn 可用错位相减法
为等比数列,
5.求下列数列前n项的和Sn:
1 1
2
, 2
1
3
, 3
1
4

,nn1
1,
总结:通项
解:题若分a=析0,:利则用S错n=位0相减法求和,并注意对a的讨论.
若a=1,
则Sn=1+2+3+…+n=
n(n 1) 2
若a≠0且a≠1, 则Sn=a+2a2+3a3+…+(n-1)an-1 +nan
∴ aSn = a2+2a3+3a4+………+(n-1)an +nan+1
∴ (1-a)Sn=a+a2+a3+…+an –nan+1 a a n1 na n1
求 an.
3.数列1 1 ,3 1 ,5 1 ,7 1 , ,2n 1 1 , 的前n项之和
2 4 8 16
2n
为Sn,则Sn的值等于(
)
(A)
n2

1

1 2n
(C)
n2

1

1 2n-1
(B)
2n2

n

1

1 2n
(D)
n2

n

1

1 2n
4.求数列a,2a2,3a3,…,nan,…(a为常数)的前n项的和.

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结(已打)(总8页)--本页仅作为文档封面,使用时请直接删除即可--一、公式法:即直接用等差、等比数列的求和公式求和。

(1)等差数列的求和公式:=n S =(2)等比数列的求和公式⎪⎪⎪⎩⎪⎪⎪⎨⎧=n S 例1.求和(1)1+2+3+…+n(2)232222n ++++二、分组求和法:若一个数列由两个特殊数列相加减而得到,则分别对两个特殊数列求和之后相加减得到该数列的和。

例2.求和(1)()()()()n S n n -++-+-+-=2322212321 ;(2)13421n n a n -=--,求n S ;(3)123n n a -=+,求n S 三、裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。

常见拆项公式:(1)111)1(1+-=+n n n n (2) 1111()(2)22n n n n =-++ (3) )121121(21)12)(12(1+--=+-n n n n (4)n n n n -+=++111 例3. (1)已知数列{}()11+=n n a a n n 中,,求前n S n 项和.(2)已知数列{}2(21)(21)n n a a n n =-+中,,求前n S n 项和.(3)求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.四、错位相减法:如果一个数是由一个等差数列和一个等比数列相乘得到,则使用这种方法。

例4. (1)2nn a n =,求n S 。

n n n S 2)12(...252321232⨯-++⨯+⨯+⨯=、求和:(3)求数列()13231,,35,34,33,2-⨯+⨯⨯⨯n n 的前n S n 项和.五、课后练习1、(2012惠州一模)已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,43b S =。

(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,问n T >10012012的最小正整数n 是多少2、(2012广州一模)已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且2a ,7a ,22a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1368n T <≤.3、(2012惠州三模)已知函数()f x x =,且数列{})(n a f 是首项为2,公差为2的等差数列.(1)求证:数列{}n a 是等比数列;(2) 设)(n n n a f a b ⋅=,求数列{}n b 的前n 项和n S 的最小值..4、(2013惠州二模)已知等差数列{}n a 的公差大于0,且53,a a 是方程045142=+-x x 的两根,数列{}n b 的前n 项的和为n S ,且*1()2n n b S n N -=∈. (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n b a c ⋅=,求证:n n c c ≤+1;(3)求数列{}n c 的前n 项和n T .求通项公式一、定义法(1)等差数列:1n n a a d +-=; (2)等比数列:1n na q a +=。

高中数学-数列求和及数列通项公式

高中数学-数列求和及数列通项公式

数列求和通项分式法 错位相减法 反序相加法分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n n n 自然数方幂和公式: 3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。

二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。

需要我们的学生认真掌握好这种方法。

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

数列通项公式及其求和公式

数列通项公式及其求和公式

2n12,依此类推有b n 1 b n 2、b n 2 b n 3b 2 1b 1-、数列通项公式的求法(1) 已知数列的前n 项和S n ,求通项a n ; (2) 数学归纳法:先猜后证;(3) 叠加法(迭加法):a n (a n a ni ) (a n 1 a n 2) L (a ? ai) ai ;【叠加法主要应用于数列{a n }满足a n 1 a n f (n),其中f (n)是等差数列或等比数列的条件下,可 把这个式子变成a n 1 a nf(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出a n ,从而求出S n 】(4)构造法(待定系数法):形如a n ka n 1 b 、a * ka * 1 b n ( k, b 为常数)的递推数列;【用构造法求数列的通项或前 n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列 的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前 n 项和.】(5)涉及递推公式的问题,常借助于“迭代法”解决 .【根据递推公式求通项公式的常见类型】①c 1=a,a n +1 a n f(n)型,其中f(n)是 可以和 数列,a f(n 1)f(n 2 ……f(2) f(1) a类型 1: a n 1 a n f (n)类型 2: a n 1 pa n f(n)那么问题就可以转化为类型一进行求解了 例题: 已知 a 1 2 , a n 1 4a n 2n 1,求 a n叠乘法(迭乘法):a na n a n 1 an 2a 3 a 2 an 1 a n 2 an 3a : a 1用累加法求通项公式,即思路 (叠加法)a n a n 1 f(n 1),依次类推有:a n 1 a n 2f (n 2)、0.2 q 3 f(n 3)、…、a 2 a 1 f(1), 将各式叠加并整理得n 1a n a 1f(n)'即 a . i 1n 1a 1f(n)i 1例题 1 :已知a 1 1,a n a n 1 n ,求a n解:T a n a n 1a n an 1n ,依次类推有:12 3n 2、…a 2 a 1•••将各式叠加并整理得 a na 1nn ,a ni 2n(n 1) 2思路(转化法)a n pq 1 f (n1),递推式两边同时除以a n npb n ,解:T a n 1 4a n 2• an 4an1 2n ,则2i•- a n 4nb类型 3: a n 1 f (n)a nf (n 2) f(n 1) a当p 1时,数列{a n }是等差数列;当 p 0,q0时,数列{a n }是等比数列;当p 0且p 1,q 0时,可以将递推关系转化为 a n1pq Q ,则数列 a n —⑴ 是以p 1 p 1p 1a 1 —匚为首项,p 为公比的等比数列.p 1•••各式叠加得 b n bl,即 b n bia n f(n) ② 6=4 4+1a n f(n 1) f(n 2) 型 苴 …f(2)f(1Rf (n )是可 求积数 求通项思路(叠乘法):旦a nf (n 1),依次类推有: 邑f(n an 22)、3nan 3f(n3)、…、a2a 1f(1),将各式叠乘并整理得 a n f(1)f(2) f(3)…f(n2) f(n 1),a n f(1)f(2) f(3)…例题:已知 a 1 1, n 1,求 an .解:T a nn 1 1a na n ,依次类推有:a n 1 a n 2 a 3 a n 1a na na 2a2a 1•将各式叠乘并整理得a na n2 1 43 n(n2 1)③ a 1=a, a n+1pa n q 型(其中 p q 是常数) ,可以采用待定系数法、换元法求通项公式,p(a n冷,设6 a n 壮则b n 1 pb n .利用②的方法求出b n 进而求出a n3思路 (构造法):设a n 1 p a n,即p 1 q 得—,数列a n 是以a 1为p 1首项、 p 为公比的等比数列,则 a nqp 1qn 1 a 1p p 1即 qn 1q,即 a na 1pp 11 p例题: 已知数列 a n 满足a n 2a n 13且a 1 1,求数列 a n 的通项公式解:设a n 1 2 a n ,即 3• ai即化为③.•••数列a n 3是以3i3 4为首项、 2为公比的等比数列④ ai=a,a n+i3 4 2n 12n 1,即 a n 2pa n q n 型,其中p q 是常数且q 0,q 1 导丄设* b n ,则b n 1qb n类型5: 思路(构造法):Oi pan rqa n 1n 1qrq1 ,从而解得例题:已知 a 1a n a n-为首项,q2n ,求解:•••设即2nan 1班2n是以1 6为首项,⑤ a n+1pa n -型, qp为公比的等比数列q1 2n 2n 1,解得1a —为公比的等比数列,即n22n其中p 、q 是常数且a n o ,可以采用等式两边取倒数2n a n1 思路(转化法):对递推式两边取倒数得—an 1 pa n dc a n an 1c an三,令bn丄,这样,a n问题就可以进行求解了例题:已知a1 4 , a n 12 a n 2a n解:•••对递推式左右两边取倒数得a n 1 2a n2a n an 1 a n1•••令b n 则b n 1a n 1bn1.设b n 1 ,即是以彳为首项、1-为公比的等比数列,则2b n 2 点’即bn2n 27~2* 1 ~ ,2* 1ana a n b类型7: a n 1----------- (c 0、ad bc 0)c a n d思路(特征根法):递推式对应的特征方程为心即cx2 (d a)xcx d b 0 .当特征方程有两个相等实根X1x2时,数列一a n11为等差数列,我们可设a da n2c1a d 2c a n1a d2c(为待定系数,可利用印、a2求得);当特征方程有两个不等实根花、X2时,数列X1a n a nX2是以引a1鱼为首项的等比数列,我们可设色x2 a nX1X2a1%a1x2n 1(为待定系数,可利用已知其值的项间接求得);当特征方程的根为虚根时数列a n 通项的讨论方法与上同理,此处暂不作讨论.例题:已知a112 a n 4an13 ( nan 122),求a n解:•••当n 2时,递推式对应的特征方程为2x 3 0,解得x11、x2 3数列旦」是以- 1为首项的等比数列a“ 3 a X2 2a X21 n 4.⑵等比数列求和公式: & a 1 (1 q n )(q 1):r (q 1)另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:n(n 1);nk 2k 1n (n 1)(2 n 1);6n k 3[0(1)]2k 12例1、 已知数列 f n 的前n 项和为S n ,且S nn 2 2n.若 a 1 a n,求数的前n 项和T列a n分析:根据数列的项和前 通项公式后,确定数列的特点,根据公式解决 解:T 当 n 2 时,f n S n S n 1 2n 1.当 n 1 时,f1 3, a n 1 2a n 1 nn 项和的关系入手求出 n ,再根据a n 1f a n ( nN )求出数列a n 的S 1 3,适合上式,即 a n 11 2(a n 1)f n 2n 1 n N , a 1•••数列a n 1是首项为4、公比为2的等比数列.•- a n 1a 1 1 2n 1 2n 1, a n 2n 1 1 nN ; T n【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合 性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题 变式训练1:已知log 3 xlog 2 3•求 x x 2 x 3x n 的前n 项和.二、数列求和的几种常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素 材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数 列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种 方法进行系统探讨•1、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式 求和,或者利用前n 个正整数和的计算公式等直接求和 •运用公式求解的注意事项: 首先要注意公式的 应用范围,确定公式适用于这个数列之后,再计算 •特别地,注意数列是等比数列时需要讨论q 1和 q1的情况•⑴等差数列求和公式:S nn(a 1 a n )n(n 1)d2 2•••设生J a n3n1,由 a i3,即a n a n3n 1,从而a n3n1 3n 11a n1 2 3n ,n 13n ^l'n 21x1 2例2、已知函数F x3x 2 2x丄.求F2 2009F —2009F 20082009分析:由所求的和式的特点, 用倒序相加法求和• 易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否【解析】••• F x3x 2 2x31 x 2 21 x 13.•••设 S F —200920092008.①S 20092008 2009F 20072009F — 20092S1 2009 2008 20092 2009 2007 2009F 200820092008 【能力提升】倒序相加法来源于课本, 求和方法.当求一个数列的有限项和时, 3012例3 :已知f (x)解:•••由 f(x)•••原式 f(1)f(2)变式训练1:求si n 216024,所以S是等差数列前项和公司推导时所运用的方法,它是一种重要的 若是“与首末两端等距离” 的两项和都相等,即可用此法 ,则 f (1)1 x 2sin 2 2f(2) f(3)f(3) fsin 2 32x1 x 21 1 x 211sin 2 88 sin 289的值*S变式训练2:设s n 1 2… n(n N ),求f(n)-的最大值.(n 32) S n 12、倒序相加法2 3a n a n 1与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法 .我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”S nda 2 S na na n 1a n 1 a nn 1n则a ? a 〔如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写 a n 1 2S na 1 a na 1 a n a 22 3a n a n 1a k a k da kn1 n1 1 1 1 1 k 1 3k 3k 1k 1d a ka k 1da 1例5 、 数列a n满 足23n22 2 2T n3 3 3 3a 〔a 2 a 2a 3 &a 4 a n a n 1丄丄 1” , • 1• •1 a 2a 2a 3a na n 11, a 25 5 2a 1,a n 2 a n 1 — a n 3 3 31丄 1d a 1a n 1分析:根据给出的递推式求出数列a n ,再根据的特点拆项解决变式训练2 :如已知函数f(x)对任意x € R 都有f(x) f(1 x) 1SSn2f (0)f(-) n23f(—) f ㈠+… n n-f(n 2) f(n 1)n n f(1), (n N *),求S n1 1f(1) f(2)f(2008) f(2)f(3)3、裂项相消法裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的 前n 项和• 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求1 ak a kf (x)x 2 1 x 2f (i 2008得其和•适用于类似a n a n 1(其中a n 是各项不为0的等差数列,c 为常数)的数列,以及部分无理数列和含阶乘的数列等•用裂项法求需要掌握些常见的裂项方法(2n 1)(2 n 1) 2 2n 1 2n 1k)例 4:a n 是公差为 d 的等差数列,的等比数列,故a n 1 a n【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌 握一些常见的裂项技巧.变式训练 1: 在数列 {a n }中,a n1 2—,又 b n,求数列b n 的前n 项n 1 n 1n 1a nan 1的和•变式训练 :2 :求和: s 111L11 21 2 3 1 2 3 L n变式训练 3: 求和:11 11.2 1. 3 、2 4 3..n 1,n •4、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式•即若在(差比数列){a n b n }中,{a n }成等差数列, 减整理后即可以求出前 n 项和•解:•••由已知条件,得a n 2 a n 12 a n 1 a n3a n 122a n 是以a 2 a i为首项,一为公比33aana n aa 3{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相 例题:S n 12x 3x 2 4x 3 n ..... nxx- S n x 2x 2 3x 3 4x 4…… ①一② 1 x S n 1 2 x x ............当x 1 时,S n1x n nxnx 1x1 x1n 1 x n 1①nnx②n 1 x n nx 当x 1时,S n 1 2 3n n 1n2【能力提升】错位相减法适用于数列a nb n ,其中a n 是等差数列, b n 是等比数列•若等比数列b n中公比q 未知,则需要对公比 q 分q 1和q1两种情况进行分类讨论例6、已知数列a n 是首项为a-i-,公比为q 丄的等比数列,设b n 4 42 3log 1 a n n4N ,数列C n 满足C n a n b n .求数列C n 的前n 项和S n .比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决5、(分组)拆项求和法(裂项重组法)所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以 通过拆分、合并、分组,将所求和转化为等差、等比数列求和例7、已知数列a n 的通项公式为a n 2n 3n 1,求数列a n 的前n 项和. 2n 与一个等差数列 3n 1组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和 【解析】S n a 1 a 2a n 21 2 22 5构成等差数列或等比数列,那么我们就可以用此方法求和例8、数列a n 的前n 项和是S n n N ,若数列a .的各项按如下规则排列:分析:根据等比数列的性质可以知道数列 b n 为等差数列,这样数列 C n 就是一个等差数列与一个等解:•••由题意知,a n3log ! a n 2,故 b n 3n2n N41 …G 3n 2- nN 42311 1 二 S n 14 7 L 3n 4441 C 1 1 1 S n 1 - 4 -7 -L 4 444233111•••两式相减,得3S n 1 3 1- 4 4 4451 n1 1 n 443n 2, n一n 111 3n 53n 244nn 1n 111113n 23n 24424S n2 3n 22 3变式训练1、求Sn 1 2x 3x 4xn 1nx变式训练2、若数列{a n }的通项a n (2n 1) 3n ,求此数列的前n 项和S n .变式训练3、2 4求数列亍豕623,2n ,歹前n 项的和.分析:该数列的通项是由一个等比数列 2n 3n 1=2122=22n2 53n 1 . 21 2nn 2 3n 1=1 22-n 2.2【能力提升】在求和时, 定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别若存在自然数k k N ,使S k 10, S k 1 10,则a k分析:数列的构成规律是分母为 2的一项,分母为 3的两项,分母为 4的三项,•…,故这个数列的和 可以并项求解.11 123 3 1 2 31 2 3 4解:S 1 S 3 —,S 63, S103 -52 23 22 451 2 3 4 5 15十 1 2 3 45 621S 15 5,而3,这样S 2110,而627215 1 2 3 4 5 15 15 15 55 + 5S2010,故 a k,故填272 7 2 277【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法 变式训练3:求数列{n(n 1)(2n1)}的前n 项和.一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数 列有关或具备某种方法适用特点的形式, 从而选择合适的方法求和•高考数学试题中所涉及的数列求和 问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的 求和方法就是上面介绍的这些 •希望广大考生熟练掌握,灵活适用 • 三、数列的综合应用⑴求解等差、等比数列的综合问题的基本途径是:应用等差数列和等比数列的基本量(首项、公差、 或公比、通项、前n 项和)表示数列中的项,适时地应用它们的基本性质求解 .此外,应该熟悉等差数列与等比数列的递推公式•⑵数列与函数、数列与不等式的综合问题主要是:由函数的解析式得到的数列递推公式,转化为等差 数列或等比数列进行求解.⑶数列的应用问题:一般地,涉及递增率通常用到等比数列;涉及依次增加或减少要用到等差数列; 复利和分期付款问题,用等比数列解决1 12 1 23 1 2 34 1—J — J — J — J — J — J — J — J — J — J —23344455556变式训练1:求和:2536+4 7+ ........ +n(n+3)变式训练2:求数列1,1+2,1+2+2 2 2 n 1,•- ,1+2+2 + …+2的前n 项和。

数列求通项公式及求和9种方法(新)

数列求通项公式及求和9种方法(新)

数列专题1:根据递推关系求数列的通项公式根据递推关系求数列的通项公式主要有如下几种类型一、nS是数列{}n a的前n项的和11(1)(2)nn nS naS S n-=⎧=⎨-≥⎩【方法】:“1n nS S--”代入消元消n a。

n,}的1a1-*),型如1()n na a f n--=,1()nnaf na-=)n,用累加法求通项公式(推导等差数列通项公式的方法)【方法】1()n n a a f n --=, 12(1)n n a a f n ---=-, ……,21(2)a a f -=2n ≥,从而1()(1)(2)n a a f n f n f -=+-++,检验1n=的情21()(1)(2)a f n f n f a ⋅⋅=⋅-⋅⋅(2)f ⋅⋅,检验“累加法”(“累乘法”(2)已知数列n 满足12n n n ++,且31,求n a .【例3】.(2009广东高考文数)在数列{}n a 中,11n +n a b =}n即为(四).倒数法1nn nka a ca p +=+ (,,k p c 为非零常数)【方法】两边取倒数,得111n n p ca k a k+=⋅+,转化为待定系数法求解【例5】. 已知数列{}n a 的首项为135a =,1n a +且其和为240,则a 1+…+a k +…+a 10之值为 ( )A .31B .120C .130D .185 练习1.已知数列{a n }的通项公式是a n =2n -12n ,其前n项和S n=32164,则项数n等于()A.13 B.10 C.9 D.62.设函数f(x)=x+ax的导函数f′(x)=2x+1,)在练习3(2010·昌平模拟)设数列{a n}满足a1+3a2+32a3+…+3n-1a n=n3,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=na n,求数列{b n}的前n项和S n.。

数列的通项公式和求和公式

数列的通项公式和求和公式

数列的通项公式和求和公式数列是数学中常见的概念,它是由一系列按照一定规律排列的数字组成。

在数列的研究中,通项公式和求和公式是两个重要的概念。

本文将详细介绍数列的通项公式和求和公式,并探讨它们的应用。

一、数列的通项公式数列的通项公式是一个能够直接推算出数列的第n项的公式,通过这个公式我们可以快速计算数列的任意项。

常见的数列有等差数列和等比数列,它们的通项公式如下:1. 等差数列的通项公式等差数列的通项公式为:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1为首项,n为项数,d为公差。

2. 等比数列的通项公式等比数列的通项公式为:an = a1 * r^(n - 1)其中,an表示等比数列的第n项,a1为首项,n为项数,r为公比。

除了等差数列和等比数列,还有其他类型的数列,它们的通项公式根据数列的规律有所不同。

通过找出数列的规律并利用递推关系,我们可以得到数列的通项公式,从而方便计算数列的各项值。

二、数列的求和公式求和公式是用来计算数列前n项和的公式,它可以帮助我们快速求解数列的和。

常见的数列求和公式如下:1. 等差数列的求和公式等差数列的求和公式为:S = (n/2) * (a1 + an)其中,S表示等差数列的前n项和,n为项数,a1为首项,an为末项。

2. 等比数列的求和公式等比数列的求和公式为:S = a1 * (1 - r^n) / (1 - r)其中,S表示等比数列的前n项和,n为项数,a1为首项,r为公比。

对于其他类型的数列,其求和公式也有所不同。

我们可以通过找出数列的和与前一项之间的递推关系,从而得到数列的求和公式,从而快速求解数列的和。

三、数列公式的应用数列的通项公式和求和公式在数学中有着广泛的应用。

比如,在预测数值规律方面,我们可以利用通项公式来计算未知项的值,从而推断出数列的任意项。

在实际问题中,数列的通项公式和求和公式也经常被应用于求解具体的数值。

此外,数列的通项公式和求和公式也在数学的相关领域中起到重要的作用,比如在微积分中用于求解积分,或在概率论中用于计算概率等等。

数列通项公式及求和

数列通项公式及求和
n
{ a } 例:已知数列 的前 n 项和 n n s pn2 ( p 1)n p 3 为 , 若 {an} 为 等 差 数 列 , 求 p 与 an 。
例:设数列{cn}的各项是一 个等差数列与一个等比数 列对应项的和,若 c1=2 , c2=4, c3=7,c4=12,求通 项公式cn
二、迭加法(加减法、逐加法)
当所给数列每依次相邻两 项之间的差组成等差或等比数 列时,就可用迭加法进行消元
例: 已知: an+1=an+n, 求a n
a1=1 ,
三、迭积法(逐积法) 当一个数列每依次相邻两 项之商构成一个等比数列时, 就可用迭积法进行消元
例: n an1 3 an, a1 2 , 已知数列{an }中, 求通项公式 an 。
四分裂通项法:
把数列的通项拆成两项之差, 即数列的每一项都可按此法 拆成两项之差,在求和时一 些正负项相互抵消,于是前 n 项的和变成首尾若干少数 项之和,这一求和方法称 为分裂通项法.
1 已知an , 求sn nn 2
1 1 1 nn 1 n n -1
1 1 1 2n 12n 1 2 2n 1 2n 1 1

密,只要你呀敢亮出来,那么你呀将永远遭受无止境の追杀,没有人能够救你呀,所以这上品神剑,你呀只能摆在这逍遥阁,绝对不能曝光,也就是说,这剑你呀只能看,不能用." 【作者题外话】:郑重推荐几个大大の经典之作——艾连の《特种兵痞在校园》习风《阵芒》,大家闹书荒の话,可以 去看看,很不错!俺一直在追! 本书来自 品&书#网 当前 第2陆陆章 没有品节の屠神刀 可惜啊,暴殄天物啊! 白重炙叹了口气,有些无奈,这么好の东西只能看,不能用,の确是件憾事.看书 只是他明白鹿希说の很有道理,于是也不多想,点了点头. 见白重炙点了点头,鹿希才再次说道:"这 把刀,主人称之屠神刀,品阶…未知,能力…未知,虽然他只能增加使用者百分之两百の攻击力.但是主人却说,这把刀绝不寻常,只是他没有时候破解这把刀の秘密.而这把刀外面看不出他是把神器,使用の时候,也没有特殊の异状,外表和普通武器差不多,所以这把刀你呀可以放心使用!接着! " 屠神刀? 品阶未知? 能力未知? 增加百分之两百攻击力?绝不寻常? 白重炙脑海还在琢磨着鹿希の话语,不料鹿希却把这把刀丢了过来,白重炙连忙一把接住,细细观看起来. 其实严格意义这把屠神刀,并不能称作刀.因为这刀是直の,但是又不能称呼为剑,因为它顶端是平の,并且只有一边 有锋刃. 刀长一米五,宽一尺,大约有百多斤斤重,通体黝黑,却有些暗红の神秘花纹.这把刀让白重炙想起前世の传奇里面の战士武器"开天".同样の款式,只是颜色换成了黑色.恩,这刀也可以称呼为巨大铁尺,只不过一边有锋刃而已. 白重炙手握刀柄,感觉着这屠神刀の惊人重量,百多斤の武 器,他还是第一见到.不过白重炙此刻如此强悍の修为,百来斤の东西也是犹如握着一把菜刀一样轻松. 随意挥舞了几下,白重炙非常の满意.其实他老早就想换武器了,青龙匕虽然用の很习惯,但是太短了.并且此刻他修炼成功夜皇七式,他很早就想拥有一把霸气の长刀,而这把屠神刀却是让他 非常满意,爱不释手. "好刀!好刀!"白重炙不断の抚摸着刀身,感觉这刀身带来の寒意,心情大好,这刀虽然看起来满意那把神剑绚丽,神秘,威势.但是白重炙一握住这把刀,就几多の舒适,几多の欢喜,似乎这把刀本来就属于他の一样,似乎这刀已经成为了他身体不可分割の一部分一样. 虽 然不知品阶,不知道能力,但是魂帝那么牛の人都说这刀不寻常,那肯定就不寻常,白重炙决定以后有时候好好摸索一样,说不定这把刀和他の魂戒一样,突然涌现出许多莫名神奇の能力也不一定. "好了!" 鹿希の话语再次将白重炙の思绪拉了回来,鹿希看着白重炙宛如一些孩子得到心爱の玩 具一样,微微笑了起来,继续说道:"以后有の是时候给你呀玩,现在你呀有更重要の事情!" "恩!"白重炙不好意思の笑了笑,点了道:"什么事,您说,鹿老!" "炼化这个戒指,这戒指就是这逍遥阁の中心,这是一枚空间神奇戒指,你呀炼化了它就等于炼化了逍遥阁,以后你呀就可以随时进入 这逍遥阁了!"鹿希一把抓起戒指,而后隔空缓缓将他丢了过来. "空间神器,炼化它就等于炼化逍遥阁?"白重炙有些疑惑の望着手中の戒指,另外一只手却还是抓着屠神刀不放. "其实整个逍遥阁,本来是在这逍遥戒内の,不过主人强行将它移动到了,你呀们炽火位面の空间乱流之中,现在你呀 炼化了这枚逍遥戒,逍遥阁自然再次回到里面,这可不是一样の空间神器,因为一样の空间戒指,可不能装活人!"鹿希郑重の点了点头,开始为白重炙解释器这枚炼化这枚戒指起来. 片刻之后,等白重炙总算弄懂了这枚炼化之后,鹿希才催促起来:"行了,你呀马上炼化吧,落神山天路现在已经 开启了,并且闯关威力也减半了,你呀抓紧时候炼化,其他の问题,以后俺在和你呀细说!" "好!"白重炙知道轻重,不再废话,连忙盘坐起来,把屠神刀放在脚下,开始闭目炼化逍遥戒起来. …… …… 当白重炙开始炼化逍遥戒の时候,落神山却再次震动了一下,而落神上顶部悬空の不咋大的神 阁却微微颤抖了一下,不过很显然,下面の人都没有发现. 而其实炽火大陆看到の不咋大的神阁,其实只是一些幻像而已.真正の不咋大的神阁,其实在炽火大陆の空间乱流之中. 空间乱流内,有这无数の空间裂缝,也有着无数の可以轻易绞杀神级强者の乱流风刃,只是……这些风刃飘到不咋大 的神阁外表の时候,却自动弯了开去,似乎有股无形之力,正自动の将乱流风刃扒开,很是神奇. 只是,当白重炙炼化逍遥戒,不咋大的神阁微微颤抖の那一刻.不远处の乱流中,盘踞の一处黑影,突然亮起了两道刺眼の精光. 居然是一名长着双角の神秘男子,这名男子盘坐在乱流中,四周の乱流 风刃也如同碰不到他一样,主动绕路.长角の男子,双眼成褐色,此刻盯着不咋大的神阁,看了一会,随即又闭上了眼睛,继续盘坐,宛如空间乱流中の一粒沙城,继续沉寂下去. 而同一时候,暗黑森林最深处の一座古堡内,也有人发出了一声微微の惊讶声音. 暗黑森林最深处,有一座,没有人知道 の古堡.古堡很华丽,很漂亮,比逍遥阁要大了几倍,各种装饰却是更加豪华,甚至可以说奢华. 不咋大的神阁微微颤抖の那一刻,古堡の顶层,一名正在穿着火红袍子正在看书の女子,惊讶の轻呼了一声,放下了手中の书,将目光投向了落神山方向,脸上却露出了玩味の笑容. 只是片刻之后,这名 看不出年纪の女子,微微笑了笑,继续拿起了手中の书籍,专心了看了起来,宛如什么也没用察觉,什么也没用发生. 暗黑森林又恢复了往日の平静. …… 白重炙在炼化逍遥戒,鹿希却身形一闪,离开了逍遥阁,居然回到了傀儡通道の最后一关の那个大厅之中. 他回到大厅,双手快速の朝着大厅 の墙壁,不同の方位,开始射出强弱不等の气剑,随着他の气剑射出,大厅突然神奇出现了一块屏幕.而屏幕上方却是不同闪现着不同の人物. 如果白重炙在这里の话,一定会激动の大叫起来.因为屏幕上不是闪现出来の人物,不少他都认识.有风家の,有龙城の,有蛮神府妖神府の,当然还有夜枪 和夜轻语. "呵呵,速度蛮快の嘛,恩!不咋大的寒子要炼化一天,没事索性俺来玩玩,这也是最后一次玩了,要好好玩玩……"鹿希眼中闪现出一次戏谑,继续开始挥动双手,控制着落神山の无数阵法,机关运转起来… 当前 第2陆柒章 诡异の第九关 文章阅读 神城の不咋大的队,是首先进入天 路の,也是速度最快の,由于白重炙の破了落神山の所有关卡,所以落神山の关卡威力全部减半了.请大家检索(品#书……网)看最全!更新最快の所以神城不咋大的队の闯关速度是最快の. 仅仅一天时候,此刻他们已经达到了第八关,这次神城带队是一名身材很是矮不咋大的の帝王境巅峰 强者,名屠黑,是屠神卫世家の旁系子弟. 屠黑双眼透过金袍,冷冷の望着,前方の一群八级魔智血虎,被自己の手下轻易の击退,不禁嘴角微微の笑了起来.虽然不清楚为何落神山突然异变,但是这并妨碍屠黑の心情无比の好了起来.一天时候就达到了傀儡通道第八关,看来这次是运气到了极点. 他此刻已经在幻想着,自己不咋大的队破了落神山の关卡,而后拿了神剑,回到神城,自己被神主赐予神城五卫の风光情景. 越想越兴奋,他再次一挥手,身旁の所有神城使者,全部一窝蜂の朝前面の血虎扑去,想必几多钟之后这关就破了吧. 下一关,第九关他知道是吞石鼠の关卡,傀儡通道虽然 许多关卡の守护智,地形都会随着闯关の人の综合实力,人数等方面,自动转换.但是闯关多次の他,非常清楚,一、五、九这三个最难の关卡,守护智从来没有换过,只是实力不同而已.而第九关是一种很难缠の吞石鼠,而他们是清一色の帝王境强者,所以他们等会面对の则是八品下阶の吞石鼠. 当然第九关,虽然吞石鼠比较多了一点,但是屠黑却并没有放在眼里,因为第九关の地
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学
数列的通项公式与求和
,主要针对性题型分为两大类:
(1)大部分数列问题,都是需要将数列的通项解出来,然后根据通项公式,求解数列一些特殊值,如数列的某一项、数列的前n 项,或研究数列的某些性质,如单调性、周期性等,或比较数列的大小、进行运算等等。

(2)另一大类是数列求和问题,题目通常需要我们求数列前n 项和,或者求符合某些限定的子数列的和。

这两类问题解决方法类似,都包括逐差累加法、逐商累乘法、分组求和、裂项相消等等。

着重介绍这两类问题的解法。

一:逐差累加法
一般逐差累加类型的题目可以归纳为如下形式:
1.
()11n n a a f n +=++ 2. ()11n n a ka f n +=++
对于第一种类型,我们将他变形为()11n n
a a f n +-=+,这是标准的差分形式,累加后: ()()12...n a a f f n =+++,相当于()f i 数列求前n 项和。

结合第一节课的差分思想,这种类型就很好理解。

实际上等差数列就是当()f n d ≡的情况下的形式。

对于第二种类型,我们将两边同时除以1n k
+,得()1111n n n n n f n a a k k k
++++=+,这相当于构造了新的数列,然后做出标准的差分形式,累和后: ()()122...n n n f f n a a k k k k =+++,相当于()i
f i k 数列求前n 项和。

当然第二种类型还可以通过特殊问题特殊分析,将()1f n +拆分成如下形式:
()()()11f n kg n g n +=-+,然后化为()()()11n n a g n k a g n +++=+,换元后化为等比数列求和。

但这种方法
并不是每道题都可以实现,并且需要一定技巧的积累。

高考中很少见地,我们还可能遇到第三种情况:
3. ()()()1n n Q n a P n a F n +=+,即递推式中的1n a +与n a 的系数都是关于n 的函数。

这种类型题没有固定的机械化解法,我们需要通过一些经验和技巧,将其整理为()()()111n n T
n a T n a R n ++=++的形式,然后通过换元()n n b T n a =,累和,解出通项公式。

实际上我们只需要掌握“数列是离散的函数”这一精髓,通过一些技巧,将不容易处理的式子整理为新函数(新数列)的差分形式(类似于微分),然后通过累和(类似于积分),就可以得出结果。

掌握这一思想最重要,一定要将其传达给学生,而不是死记硬背方法。

将来我在讲递推数列时还会再次强调。

具体的变形、化简方法可以通过题目来积累和训练。

我们还需要掌握一些累和技巧:
✧ ()112...2n n n ++++=
✧ ()()22212112 (6)
n n n n +++++= ✧ ()2
2333112...4n n n ++++= 和一些裂项技巧,关于裂项技巧我们将在后面进行介绍。

相关文档
最新文档