《材料力学的》第3章的扭转习地的题目解

合集下载

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-扭转(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-扭转(圣才出品)
2.矩形截面的扭转计算
(1)一般矩形截面( h 10) b
分布特点:周边各点切应力与周边相切,没有垂直于周边的切应力分量,顶点处切应力 等于零,切应力变化情况如图 3-3(a)所示。
横截面上的最大切应力 max 发生在长边中点处
短边上切应力最大值发生在中点处
矩形截面扭转时,相对扭转角
7 / 44
;R 为弹簧圈平均半径, 。
6 / 44
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、非圆截面杆扭转的概念 1.基本概念 (1)翘曲:扭转变形后杆的横截面不再保持为平面的现象。 (2)自由扭转:等直杆两端受扭转力偶作用,且翘曲不受任何限制的扭转。 变形和受力特点:各横截面的翘曲程度相同,纵向纤维的长度无变化;横截面上只有切 应力。 (3)约束扭转:等直杆两端受扭转力偶作用,且翘曲受到限制的扭转。 变形和受力特点:各横截面的翘曲程度不同,相邻两截面间纵向纤维的长度改变;横截 面上有切应力和正应力。
WP
=
D3 16
式中, = d 。 D
上述公式只适用于等直杆和线弹性范围。 (2)强度条件 对于等直杆
对于变截面杆件需综合考虑 T 和 Wt,以求得切应力的最大值。
强度条件的应用:
①强度校核
Tmax [ ] Wt
4 / 44
圣才电子书

②截面选择
十万种考研考证电子书、题库视频学习平台
G
=
E
2(1+
)
4.剪切应变能
在应力小于剪切比例极限的情况下,单位体积内的剪切应变能密度为
=
1 2
=
2 2G , v
= 1 2
上述公式主要用于线弹性范围内纯剪切应力状态下剪切应变能密度的计算。

材料力学 第3章 扭转

材料力学 第3章  扭转

例3-4-2:一空心圆轴,内外径之比为α=0.5,两端受扭转力偶
矩作用,最大许可扭矩为T,若将轴的横截面面积增加一倍,
内外径之比仍保持不变,则其最大许可扭矩为T的多少倍?
(按强度计算)。
解:设空心圆轴的内、外径原分别为d、D,面积增大一
倍后内外径分别变为d1 、 D1 ,最大许可扭矩为T1
由 D12 (1 0.52 ) 2 D2 (1 0.52 )得 D1 2
Ip
—横截面上距圆心为处任一点剪应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截 面直杆。 ② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—极惯性矩,纯几何量,无物理意义。
材料力学 第三章 扭 转
I p A 2dA
三、切应变 剪切胡克定律
材料力学 第三章 扭 转
T=m



T ( 2A 0t) ( LR)

剪切虎克定律:当剪应力不超过材料的剪切比例极限
时(τ ≤τp),剪应力与剪应变成正比关系。
材料力学 第三章 扭 转
G
式中:G是材料的一个弹性常数,称为剪切弹性模量,因
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
对于实心圆截面:
d
I p A 2dA

D
02
2

2


d

D4
32

0.1D4
O
D
材料力学 第三章 扭 转
对于空心圆截面:
d
I p A 2dA

《材料力学》第3章 扭转 习题解

《材料力学》第3章 扭转 习题解

第三章扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。

试作轴的扭图。

解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW) 转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。

钻杆钻入土层的深度m l 40=。

如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。

解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图T 图(kN.m)x x lM mx x T e0133.0)(-=-=-=。

]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。

[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。

若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。

材力讲稿第3章扭转1-2

材力讲稿第3章扭转1-2

内外径之比
Wp =
Ip D/2
=
π
16
D 3 (1 − α 4 )
扭 转/圆轴扭转时的应力和变形
Tρ τ ρ = Gρθ = Ip
T
由两种不同材料组成的圆轴, 讨论 由两种不同材料组成的圆轴,里层和外层材 料的剪切弹性模量分别为G 料的剪切弹性模量分别为 1和G2,且G1=2G2。圆轴 尺寸如图中所示。 尺寸如图中所示。 圆轴受扭时, 外层之间无相对滑动。 圆轴受扭时,里、外层之间无相对滑动。关于 横截面上的切应力分布,有图中( 、 横截面上的切应力分布,有图中(A)、(B)、(C)、(D) 、 、 所示的四种结论,请判断哪一种是正确的。 所示的四种结论,请判断哪一种是正确的。
T
扭 转/圆轴扭转时的应力和变形 观察到的变形现象 (1)A ) B C D A B C ∴横截面上存在切应力! 横截面上存在切应力! D
(2)圆周线大小、位置、形状、间距保持不变,绕轴线产生相 圆周线大小、位置、形状、间距保持不变, 对转动。 对转动。 ∴横截面上不存在正应力! 横截面上不存在正应力!
薄壁圆轴的扭转 扭 转/薄壁圆轴的扭转
薄壁圆轴两端截面之间相对 转动的角位移, 转动的角位移,称为 相对扭
m
A B
γ
D C
m
ϕ
转角 ,用ϕ 表示。 表示。
薄壁圆轴表面上每个格子的直 角的改变量,称为 切应变。 角的改变量, 用 γ 表示 。
(c)
A D
横截面上没有正应力,只有切应力。 横截面上没有正应力,只有切应力。 且横截面上的切应力的方向是沿着 B 圆周的切线方向, 圆周的切线方向,并设沿壁厚方向 是均匀分布的(壁厚较小 。 是均匀分布的 壁厚较小)。 壁厚较小

材料力学复习题第三章 扭 转

材料力学复习题第三章  扭   转

第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。

( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。

( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。

( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。

( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。

6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。

( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。

( )8. 圆杆扭转变形实质上是剪切变形。

( )9. 横截面的角点处的切应力必为零。

( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。

A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。

2. 直径为D 的实心圆轴,两端受扭转力矩作用。

轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。

A .2τ; B .τ; C . 8τ; D .16τ。

3. 阶梯圆轴的最大切应力发生在( )。

A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。

4.空心圆轴的外径为D ,内径为d,α=d/D 。

其抗扭截面系数为( )。

A .()απ-=1163D W P ;B 。

()23116απ-=D W P ;C 。

()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。

A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。

材料力学的习地的题目及答案详解

材料力学的习地的题目及答案详解

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学第3章扭转习题及答案

材料力学第3章扭转习题及答案

材料力学第3章扭转习题及答案第三章扭转一、判断题1.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。

(× ) 2.薄壁圆管和空心圆管的扭转切应力公式完全一样。

(× )3.圆杆扭转变形实质上是剪切变形。

(√ )4.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。

(√ )5.材料相同的圆杆,它们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。

(× ) 6.切应力互等定理,仅适用于纯剪切情况。

(× ) 7.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。

( √ ) 8.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。

(√ ) 9.受扭圆轴的最大切应力只出现在横截面上。

(× ) 10.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭矩达到某一极限值时,圆杆将沿轴线方向出现裂纹。

(√ )二、填空题1.一级减速箱中的齿轮直径大小不等,在满足相同的强度条件下,高速齿轮轴的直径要比低速齿轮轴的直径(小)。

2.当实心圆轴的直径增加1培时,其抗扭强度增加到原来的( 8 )倍,抗扭刚度增加到原来的( 16 )倍。

3.直径D=50mm 的圆轴,受扭矩T=2.15kn.m ,该圆轴横截面上距离圆心10mm 处的剪应力τ=(35.0 MPa ),最大剪应力τmax=(87.6 MPa )。

4.一根空心轴的内外径分别为d ,D ,当D=2d 时,其抗扭截面模量为(33256153215D d ππ或)。

5.直径和长度均相等的两根轴,在相同的扭矩作用下,而材料不同,它们的τmax 是(相)同的,扭转角φ是(不)同的。

6.等截面圆轴扭转时的单位长度相对扭转角为θ,若圆轴直径增大一倍,则单位长度扭转角将变为(16θ)。

三、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ ,这时横截面上内边缘的切应力为( B )。

刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第3~4章【圣才出品】

刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第3~4章【圣才出品】
Me 2 r 2
2.切应力互等定理
2 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等,都垂直于两个平面 的交线,方向则共同挃向或共同背离这一交线。
3.剪切胡克定律
(1)纯剪切
若单元体的各个侧面上只有切应力并无正应力,这种情况称为纯剪切。
4.剪切应变能
在应力小于剪切比例枀限的情况下,单位体积内的剪切应变能密度为
ν
1
2
2
2G
上述公式主要用于线弹性范围内纯剪切应力状态下剪切应变能密度的计算。
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、囿轴扭转时的应力和变形 1.囿轴扭转时的应力 (1)应力计算公式 推导囿轴扭转时的应力计算公式,需同时考虑变形几何、物理和静力三方面的关系。 ①变形几何关系:囿轴扭转的平面假设; ②物理关系:剪切胡克定律; ③静力关系:横截面上的内力系对囿心的力矩合成为扭矩。 如图 3-1-2 所示,横截面上任一点的切应力为 τρ=Tρ/Ip 囿截面边缘的最大切应力 τmax=TR/Ip=T/Wt 式中,ρ 为应力点到囿心的距离;Ip 为横截面的枀惯性矩;Wt 为扭转截面系数。
4c 1 4c 4
0.615 c
8FD πd 3
k
8FD πd 3
式中,c 为弹簧挃数,c=D/d;k 为曲度系数
k 4c 1 0.615 4c 4 c
(3)强度条件
τmax≤[τ]
2.弹簧的变形计算
在作用点在弹簧圀中心的力 F 的作用下,沿力的作用方向的位秱
8FD3n 64FR3n F
图 3-1-2 对于直徂为 D 实心囿形截面 Ip=πD4/32,Wt=πD3/16 对于内徂为 d,外徂为 D 的空心囿截面

第3章扭转作业 山东建筑大学材料力学课件

第3章扭转作业 山东建筑大学材料力学课件


4

刚度比:
GI ρ 2 GIρ1
32
D4 (1 4 ) d4
( D )4 (1 4 ) d
1.1924 (1 0.84 )
1.192
32
3-14 解:作扭矩图
MA
MB
MC
(1)校核强度
A
C
E
B 14kN.m
I ρAE
32
(D4
d4)
32
(0.144
0.14 )
27.9 106 m4
M ea (rad) GI P
M ea 180 GIP
1
第 3
Me
GIρ 1 a 180
80109 (0.04)4 32
0.4 180
1
877.3N.m

扭 转 作
max
Tmax WP
Me
d 3
16
877.316
0.043
69.8MPa

题 (2)求截面A相对于截面C的扭转角
16Tmax
D3 (1 4 )
第 3
16Tmax
d 3
16Tmax
D3 (1 4 )
[ ]
得:
D 3 d
1 1 4
3
1 1 0.84
1.192

扭 转 作
重量比:
Q2 Q1
A2 A1
4
D2 (1 2 ) d2
( D )2 (1 2 ) d
1.1922 (1 0.82 )
0.51
3-4 解:校核轴的强度
Me
9550
P n
9550
50 300
1.59kN.m

材料力学 第3章扭转

材料力学 第3章扭转
d 90 ×10 −3 m − 2 × 2.5 × 103 m α= = D 90 × 10 −3 m = 0.944
Wt =
ቤተ መጻሕፍቲ ባይዱ
πD 3
16 = 29400 × 10
(1 − α 4 ) =
−9
π ( 90 × 10
16 m3
−3
m )3
(1 − 0 . 944
4
)
2)校核计算:
τ max
T 1500 N ⋅ m = = = 51×106 Pa < [τ ] Wt 29400 ×10 −9 m3
(3.28)
α , ν 由 h b 数值查
3、扭转角公式
ϕ=
Tl Tl = G β hb3 GI t
β 由 h b 数值查
四、横截面上切应力分布的两点规律 • 边缘切应力的方向与截 面边线向切。 •凸角处的切应力为零。 五、矩形截面杆扭转计算
1、切应力分布规律: 切应力分布规律: 切应力公式: 2、切应力公式:
τ m ax
τ 1 = ντ max
T = α hb 2
( 3 .2 6 )
(3.27)
P 96 表 3 . 2
(3.1)
二、扭矩与扭矩图
1.扭矩: 1.扭矩: 扭矩
•横截面分布内力系轴向合力偶矩。 •符号: T。 •正负规定:矢量方向离开截面 为正,指向截面为负。 •计算方法:截面法。
2、扭矩图: 扭矩图:
•表示扭矩沿杆轴线变化情况的 图形。 •扭矩图形式及画法:同轴力图。 •作图应注意的问题:求截面扭 矩时应采用设正法。
2、应力分布推断: 应力分布推断:
•横截面上只有切应力而无正应力。 •横截面上切应力方向与半径正交大小 相等(由于薄壁)。

材料力学第三章答案

材料力学第三章答案

材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。

现有四种答案,正确的是( a )a ②③对 b①③对 c①②对d 全对 7.扭转切应力公式?mnp?i?适用于( d)杆件。

pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。

9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。

三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩 me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若 me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解: me1与me2的作用位置互换后,最大扭矩变小。

3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。

ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。

材料力学课件第三章 扭转

材料力学课件第三章 扭转

工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:

T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。

材料力学第三章答案 景荣春

材料力学第三章答案 景荣春



ww
w.
kh
da
w.
co
长度的变化) 皆为应力与应变成正比关系。 3 个弹性常量 E , G , μ 之间关系为 G =

3-5 圆轴扭转时如何确定危险截面、危险点及强度条件? 答 等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面 在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。强度条件为
τ max =

50 ⎛ ⎞ 8 × 1.5 × 10 3 × 50 × 10 −3 ⎜ 4 × + 2 ⎟ 8 FD(4c + 2) 8 ⎝ ⎠ = 458 MPa = 解 (1) τ max = 3 50 ( ) πd 4c − 3 ⎛ ⎞ π × 8 3 × 10 −9 × ⎜ 4 × − 3 ⎟ 8 ⎝ ⎠ τ max − [τ ] 8 = × 100% = 1.78% < 5% [τ ] 450




(1)求轴内的最大扭矩; (2)若将轮 A 与轮 C 的位置对调,试分析对轴的受力是否有利。

轮 B ,轮 C 与轮 D 为从动轮,输出功率分别为 PB = 10 kW, P C = P D = 30 kW。
解 (1) M B = 9549 ×
PB 10 = 9549 × = 191 N ⋅ m 500 n P 70 M A = 9549 × A = 9549 × = 1337 N ⋅ m 500 n
27
m
E 。 2(1 + μ )
思考题 3-6 解图
3-7 从强度方面考虑,空心圆轴为何比实心圆轴合理? 答 对于相同的横截面面积 (即用相同量材料) , 空心圆轴比实心圆轴的抗扭截面系数大, 从而强度高。 3-8 如何计算扭转变形?怎样建立刚度条件?什么样的构件需要进行刚度校核? 答 (1)写出扭矩方程或扭矩图;相距 l 的两截面间的扭转角

材料力学习题册答案-第3章 扭转(完整资料).doc

材料力学习题册答案-第3章 扭转(完整资料).doc

此文档下载后即可编辑第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。

(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。

(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。

(×)4.圆杆扭转变形实质上是剪切变形。

(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。

(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。

(×)7.切应力互等定理仅适用于纯剪切情况。

(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。

(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。

(√)10.受扭圆轴的最大切应力只出现在横截面上。

(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。

(√ )12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。

( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )A0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D )A 扭矩最大的截面;B 直径最小的截面;C 单位长度扭转角最大的截面;D 不能确定。

材料力学 第三章 扭转

材料力学 第三章 扭转

例3—5 一传动轴,已知d=45cm,n=300r/min。主动轮输入功率 NA=367kW,从动轮B、C、D输出的功率NB=147kw,NC=ND=11kW。轴的材料 为45号钢,G=80103MPa,=40MPa,=2/m,试校核轴的强度和刚度。
(1) 计算外力偶矩
T A 9550 T B 9550 N n N n NC n
0 .2 d T
3
d
0 . 2 [ ]

3
543 0 . 2 40 10
6
选取轴的直径 d=4.5cm。 (3)校核轴的刚度

T GI
p

180


543 80 10 0 . 1 0 . 045
9 4

180 3 . 14
0 . 945 m [ ] 1 m
B A
9550 9550
36 . 7 300 14 . 7 300
1170 N m 468 N m 11 300 351 N m
T C T D 9550
9550
(2) 画扭矩图,求最大扭矩 用截面法求得AB.AC.CD各段的扭矩分别为:
T 1 T B 468 N m T 2 T A T B 1170 468 702 N m T 3 T A T B T C 1170 468 351 351 N m
各个截面上只有剪应力没有正应力的情况称为纯剪切
将(d)图投影到铅垂坐标平面,得到一个平面单元
2、剪应力互等定理

由静力平衡条件的合力矩 方程可以得到

'
两互相垂直截面上,剪应力成对存在, 且数值相等、符号相反(要么同时指向公共 棱边,要么同时背离公共棱边),这称为剪 应力互等定理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。

试作轴的扭图。

解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW)转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图T 图(kN.m)[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。

钻杆钻入土层的深度m l 40=。

如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。

解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图 x x lM mx x T e0133.0)(-=-=-=。

]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。

[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。

若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。

已知间距为m l 7.2=的两横截面的相对扭转角o8.1=ϕ,材料的切变模量GPa G 80=。

试求: (1)轴内的最大切应力;(2)当轴以min /80r n =的速度旋转时,轴所传递的功率。

解;(1)计算轴内的最大切应力)(9203877)5.01(10014159.3321)1(32144444mm D I p =-⨯⨯⨯=-=απ。

)(184078)5.01(10014159.3161)1(16134343mm D W p =-⨯⨯⨯=-=απ式中,D d /=α。

pGI l T ⋅=ϕ, mmmm mm N lGI T p27009203877/80000180/14159.38.142⨯⨯⨯==ϕmm N ⋅=45.8563014)(563.8m kN ⋅=MPa mmmm N W T p 518.4618407845.85630143max =⋅==τ (2)当轴以min /80r n =的速度旋转时,轴所传递的功率 )(563.880549.9549.9m kN Nn N M T k k e ⋅=⨯===)(74.71549.9/80563.8kW N k =⨯=[习题3-5] 实心圆轴的直径mm d 100=,长m l 1=,其两端所受外力偶矩m kN M e ⋅=14,材料的切变模量GPa G 80=。

试求: (1)最大切应力及两端面间的相对转角;(2)图示截面上A 、B 、C 三点处切应力的数值及方向; (3)C 点处的切应变。

解:(1)计算最大切应力及两端面间的相对转角 pe p W M W T==max τ。

式中,)(19634910014159.3161161333mm d W p =⨯⨯==π。

故: MPa mmmmN W M p e 302.71196349101436max=⋅⨯==τ pGI l T ⋅=ϕ 式中,)(981746910014159.3321321444mm d I p =⨯⨯==π。

故: o p rad mm N m m N GI l T 02.1)(0178254.010*******/108011400041229==⨯⨯⨯⨯⋅=⋅=-ϕ (2)求图示截面上A 、B 、C 三点处切应力的数值及方向 MPa B A 302.71max ===τττ 由横截面上切应力分布规律可知:MPa B C 66.35302.715.021=⨯==ττA 、B 、C 三点的切应力方向如图所示。

(3)计算C 点处的切应变 34310446.0104575.4108066.35--⨯≈⨯=⨯==MPaMPa GCC τγ[习题3-6] 图示一等直圆杆,已知mm d 40=,mm a 400=,GPa G 80=,oDB 1=ϕ。

试求:(1)最大切应力;(2)截面A 相对于截面C 的扭转角。

解:(1)计算最大切应力从AD 轴的外力偶分布情况可知:e CD AB M T T ==,0=BC T 。

pe p p e p CB CB p DC DC p i i DB GI aM GI a GI a M GI l T GI l T GI l T =⋅+⋅=⋅+⋅==∑0ϕaGI M p e ϕ=式中,)(2513274014159.3321321444mm d I p =⨯⨯==π。

故: mm N mm mm mm N aGI M p e ⋅=⋅⨯==87729618014159.3400251327/8000042ϕpeW M =max τ 式中,)(125664014159.3161161333mm d W p =⨯⨯==π。

故: MPa mm mm N W M p e 815.69125668772963max =⋅==τ (2)计算截面A 相对于截面C 的扭转角o DB pe p p e p BC BC p AB AB p i i AC GI aM GI a GI a M GI l T GI l T GI l T 22202===⋅+⋅=⋅+⋅==∑ϕϕ [习题3-7] 某小型水电站的水轮机容量为50kW ,转速为300r/min ,钢轴直径为75mm ,若在正常运转下且只考虑扭矩作用,其许用切应力MPa 20][=τ。

试校核轴的强度。

解:(1)计算最大工作切应力pp e W TW M ==max τ 式中,)(592.130050549.9549.9m kN n N M k e ⋅=⨯==; )(125667514159.3161161333mm d W p =⨯⨯==π。

故:MPa mmmm N W M p e 219.198283515920003max =⋅==τ (2)强度校核因为MPa 219.19max =τ,MPa 20][=τ,即][max ττ≤,所以轴的强度足够,不会发生破坏。

[习题3-8] 已知钻探机钻杆(参看题3-2图)的外径mm D 60=,内径mm d 50=,功率kW P 355.7=,转速min /180r n =,钻杆入土深度m l 40=,钻杆材料的GMPa G 80=,许用切应力MPa 40][=τ。

假设土壤对钻杆的阻力是沿长度均匀分布的,试求: (1)单位长度上土壤对钻杆的阻力矩集度m ;(2)作钻杆的扭矩图,并进行强度校核; (3)两端截面的相对扭转角。

解:(1)求单位长度上土壤对钻杆的阻力矩集度m)(390.0180355.7549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(00975.040390.0m kN l M m e ===(2)作钻杆的扭矩图,并进行强度校核 ①作钻杆扭矩图x x mx x T 00975.04039.0)(-=-=-=。

]40,0[∈x 0)0(=T ; )(390.0)40(m kN M T e ⋅-==扭矩图如图所示。

②强度校核peW M =max τ 式中,)(21958])6050(1[6014159.3161)1(16134343mm D W p =-⨯⨯⨯=-=απ MPa mmmm N W M p e 761.17219583900003max =⋅==τ 因为MPa 761.17max =τ,MPa 40][=τ,即][max ττ≤,所以轴的强度足够,不会发生破坏。

(3)计算两端截面的相对扭转角⎰=40)(pGI dxx T ϕ 式中,)(658752])6050(1[6014159.3321)1(32144444mm D I p =-⨯⨯⨯=-=απ 402404122640]2[10658752/108000975.000975.01|)(|x m m kN xdx GI GI dx x T pp ⎰⎰-⨯⨯⨯===ϕ 05.8)(148.0≈=rad[习题3-9] 图示绞车由两人同时操作,若每人在手柄上沿着旋转的切向作用力F 均为0.2kN ,已知轴材料的许用切应力MPa 40][=τ,试求:(1)AB 轴的直径;(2)绞车所能吊起的最大重量。

解:(1)计算AB 轴的直径AB 轴上带一个主动轮。

两个手柄所施加的外力偶 矩相等:)(08.04.02.0m kN M M e e ⋅=⨯==右左 )(16.02m kN M M e e ⋅==右主动轮 扭矩图如图所示。

由AB 轴的强度条件得: ][163max τπτ≤==dM W M e p e 右右 mm mm N mmN M d e 7.21/4014159.38000016][16323=⨯⋅⨯=≥τπ右(2)计算绞车所能吊起的最大重量 主动轮与从动轮之间的啮合力相等:35.02.0从动轮主动轮e e M M =)(28.016.020.035.0m kN M e ⋅=⨯=从动轮 由卷扬机转筒的平衡条件得:从动轮e M P =⨯25.028.025.0=⨯P)(12.125.0/28.0kN P ==[习题3-10] 直径mm d 50=的等直圆杆,在自由端截面上承受外力偶m kN M e ⋅=6,而在圆杆表面上的A 点将移动到A 1点,如图所示。

已知mm AA s 31==∆⋂,圆杆材料的弹性模量GPa E 210=,试求泊松比ν(提示:各向同性材料的三个弹性常数E 、G 、ν间存在如下关系:)1(2ν+=EG 。

相关文档
最新文档