二 匀变速直线运动规律的应用

合集下载

匀变速直线运动规律的应用

匀变速直线运动规律的应用

能力· 思维· 方法
【解题回顾】本题分析时,有不少学生易患如下毛 病,当推出v1>v2时假设物体匀加速,便主观地认 为若物体做匀减速运动结果就是v1<v2.
此外,本题还有一个较好的处理方法,就是利用vt图线比较v1和v2的大小. 设物体做加速运动,其v-t图如图2-2-2,其中间时 刻的速度v2大小即为梯形OABC的中位线的长度.而中 间位置的速度大小则应是把梯形面积平分为二的线 段DE表示的长度.若物体做减速运动由图2-2-3可得 出同样的结论.
物体在AB之间作匀变速直线
运动,C为AB的中点,已知物 体在A、B的速度分别为V 1和 V2试求物体在C点的速度
要点· 疑点· 考点
二、初速度为0的匀变速直线运动的特殊规律 1.从静止出发后,在T秒内、2T秒内、3T秒内位 移之比为:12∶22∶32∶…∶n2
2.从静止出发后,在第一个T秒内、第二个T秒内、 第三个T秒内位移,即连续相等时间内位移之比为: 1∶3∶5∶…∶(2n-1). 3.从静止出发后,在T秒末、2T秒末、3T末速度 之比为:1∶2∶3∶…∶n.
二、匀变速直线运动的规律
1.基本公式.
(1)速度公式:vt=v0+at,
(2)位移公式:s=v0t+(1/2)at2. (3)速度、位移关系:v2t-v20=2as,
要点回眸
【注意】匀变速直线运动中所涉及 的物理量有五个,分别为v0、vt、s、 a、t,其中t是标量,其余均为矢量, 一般情况下,选初速度方向为正方向. 当知道五个量中的任意三个的时候, 就可以利用公式求出其余两个量.
能力· 思维· 方法
【例3】物体从A到B做匀变速直线运动,经过中间 位置时的速度为v1,它在这段时间中间时刻的速 度为v2,则(AC)

第二章微型专题匀变速直线运动规律的应用

第二章微型专题匀变速直线运动规律的应用

例2 某人从静止开始,沿直线匀加速前进了4 s,达到最大速度6 m/s后, 又以1.2 m/s2的加速度沿直线匀减速前进了3 s,然后做匀速直线运动.求: (1)匀加速运动时的加速度大小;
答 案 1.5
m/s2 解析
由题意得:a1=ΔΔvt =64 m/s2=1.5 m/s2
解析 答案
(2)匀速运动时的速度大小; 答案 2.4 m/s 解析 由v2=v1-a2t2得,v2=2.4 m/s
例1 一个物体以v0=8 m/s的初速度沿光滑斜面向上滑,加速度的大小为 2 m/s2,冲上最高点之后,又以相同的加速度往回运动.则 A.1 s末的速度大小为10 m/s B.3 s末的速度为零 C.2 s内的位移大小是20 m
√D.5 s内的位移大小是15 m
解析 答案
二、匀变速直线运动推论公式的应用
√B.物块在B点时的速度为
v0 2
图2
C.物块从B到C的时间为 t 4
D.物块从B到C的时间为 3t 4
1234
解析 答案
4.(推论式Δx=aT2的应用)一小球从静止开始做匀加速直线运动,在第15 s 内的位移比前1 s内的位移多0.2 m,则下列说法正确的是 A.小球加速度为0.4 m/s2
√B.小球前15 s内的平均速度为1.5 m/s
1234
解析 答案
3.(推论式v2-v02=2ax的应用)(2018·浙江9+1高中联盟联考)如图2所示, 水平地面上有A、B、C三点,且AB=3BC,有一物块由A点以初速度v0沿 水平地面向右做匀减速运动,恰好运动到C点停止,已知物块由A点运动
到C点经历的总时间为t,则
A.物块在B点时的速度为 v0 4
(1)未用毛刷擦冰面时,运动员放手

第2讲匀变速直线运动的规律及应用

第2讲匀变速直线运动的规律及应用

1.匀变速直线运动的几个推论 (1) 做 匀 变 速 直 线 运 动 的 物 体 相 邻 相 等 时 间 内 的 位 移 差
s at2 ( 此公式常用来研究 打点计时器纸带上的加速度,
a

s t2
;可以推广为:sm-sn=(m-n)at2.
(2)某段时间的中间时刻的瞬时速度等于该段时间内的平
均速度: vt
2

v0
vt 2
.
(3)某段位移的中间位置的瞬时速度:vs 2
v02 vt 2 ,不等 2
于该段位移内的平均速度.无论是匀加速还是匀减速,都有
vt<vs .
特殊推论 (1)做匀变速直线运动的物体,如果初速度为零,那么公式 都可简化为:v=at,s=21at2,v2=2as,s=2vt. (2)由以上各式可以方便地得到初速度为零的匀加速直线 运动各物理量间的比例关系. ①前 1 s、前 2 s、前 3 s…内的位移之比为 1∶4∶9∶…. ②第 1 s、第 2 s、第 3 s…内的位移之比为 1∶3∶5∶…. ③1 s 末、2 s 末、3 s 末…的速度之比为 1∶2∶3∶….
答案:D智浪教育--普惠英才热点1 匀变速直线运动的规律及应用 【例1】(2011年新课标卷)甲、乙两辆汽车都从静止出发做 加速直线运动,加速度方向一直不变.在第一段时间间隔内, 两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍; 在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来 的两倍,汽车乙的加速度大小减小为原来的一半.求甲、乙两 车各自在这两段时间间隔内走过的总路程之比. 思路点拨:先把各自运动分成两段,然后应用匀变速直线 运动规律和公式解题.
内行驶的路程分别为 s1′、s2′.同样有

1.2匀变速直线运动的规律及应用(解析版)

1.2匀变速直线运动的规律及应用(解析版)

1.2匀变速直线运动的规律及应用一、匀变速直线运动的基本规律及应用 1.匀变速直线运动沿着一条直线且加速度不变的运动.如图所示,v -t 图线是一条倾斜的直线.2.匀变速直线运动的两个基本规律 (1)速度与时间的关系式:v =v 0+at . (2)位移与时间的关系式:x =v 0t +12at 2.3.位移的关系式及选用原则 (1)x =v t ,不涉及加速度a ; (2)x =v 0t +12at 2,不涉及末速度v ;(3)x =v 2-v 022a ,不涉及运动的时间t .二、匀变速直线运动的基本规律解题技巧 1.基本思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程解方程并加以讨论 2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以初速度v 0的方向为正方向;当v 0=0时,一般以加速度a 的方向为正方向.速度、加速度、位移的方向与正方向相同时取正,相反时取负.3.解决匀变速运动的常用方法 (1)逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,可以看成反向的初速度为零的匀加速直线运动.(2)图像法:借助v -t 图像(斜率、面积)分析运动过程.两种匀减速直线运动的比较 1.刹车类问题(1)其特点为匀减速到速度为零后停止运动,加速度a 突然消失. (2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动.2.双向可逆类问题(1)示例:如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x、v、a等矢量的正负号及物理意义.例题1.以72→km/h的速度在平直公路上行驶的汽车,遇到紧急情况而急刹车获得大小为4→m/s2的加速度,则刹车6→s后汽车的速度为()A.44→m/sB.24→m/sC.4→m/sD.0【答案】D【解析】汽车的初速度为v0=72→km/h=20→m/s,汽车从刹车到停止所用时间为t=v0a =204→s=5→s,故刹车5→s后汽车停止不动,则刹车6→s后汽车的速度为0,故选D。

匀变速直线运动规律的应用

匀变速直线运动规律的应用
ST ts St
S 2T ts
S 2t S 3t
S 3T ts
S 4t
S 4T ts
Q ST =
1 2 at 2
2
1 2 1 2 1 2 S 2T = S 2t − S t = 2 ( at ) − at = 3( at ) 2 2 2 1 1 1 S 3T = S 3t − S 2t =32 ( at 2 ) − 2 2 ( at 2 ) = 5( at 2 ) 2 2 2 M M 1 1 1 S nT = S nt − S ( n−1)t = n 2 ( at 2 ) − (n − 1) 2 ( at 2 ) = (2n − 1)( at 2 ) 2 2 2
只适用于匀变速直线运动;②对匀减速运动,a取负值。
二.匀变速直线运动几个特殊规律: 匀变速直线运动几个特殊规律 1.初速度(v0=0)为零的匀加速直线运动的五个重要结论: .
ST ts St
S 2T ts
S 2t
S 3T ts
S 3t S 4t
S 4T ts
1s 2s 3s …… ⑴在连续的时间内1s末,2s末,3s末……速度之比:
1 2 1 2 at = at 2 2
2
1 1 2 = a (2 t ) = 2 2 at 2 2
1 1 2 S 3 t = aБайду номын сангаас(3t ) = 3 2 at 2 2 S 4t M
2
1 1 2 = a (4 t ) = 4 2 at 2 2 M
⑵在连续的时间内1s内,2s内,3s内……位移之比:
S t : S 2t : S 3t : LL : S nt = 12 : 2 2 : 32 : LL n 2

匀变速直线运动的规律及应用

匀变速直线运动的规律及应用


2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt

专题二 匀变速直线运动规律的应用(三个推论)

专题二 匀变速直线运动规律的应用(三个推论)

专题 匀变速直线运动规律的应用-----匀变速直线运动的三个推论【知识梳理】1、在连续相等的时间(T )内的位移之差为一恒定值,即___________________________(又称匀变速直线运动的判别式)2、某段时间内中间时刻的瞬时速度等于这段时间内的平均速度_____________________________________________________________3、某段位移内中间位置的瞬间速度与这段位移的初、末速度和的关系为 _____________________________________________________________4、物体做匀变速直线运动时,某段位移上中间时刻的速度小于中间位置的速度。

【巩固练习】1、如果运动的物体的平均速度等于这段时间内初速度和末速度的算术平均值,则该运动一定不是A. 匀速直线运动B. 匀加速直线运动C. 匀减速直线运动D. 加速度减小的运动2、做匀加速直线运动的物体,先后经过A 、B 两点时的速度分别为v 和7v ,经历的时间为t ,则( )A. 前半程速度增加3.5vB. 前t2时间内通过的位移为33v t /12 C. 后t 2时间内通过的位移为33vt /12 D. 后半程速度增加3v 。

3、2006年我国自行研制的“枭龙”战机04架在四川某地试飞成功.假设该战机起飞前从静止开始做匀加速直线运动,达到起飞速度v 所需时间为t ,则起飞前的运动距离为( )A.vtB.2t v C.2vt D.不能确定 4、一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1 s .分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2 m ;在第3次、第4次闪光的时间间隔内移动了8 m ,由此不可求得( )A .第1次闪光时质点的速度B .质点运动的加速度C .从第2次闪光到第3次闪光这段时间内质点的位移D .质点运动的初速度5、一个做匀加速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是X 1=24m , X 2=64m ,每一个时间间隔为4s ,求质点的初速度和加速度。

专题二匀变速直线运动的规律及其应用ppt课件

专题二匀变速直线运动的规律及其应用ppt课件

• 条件:物体所受合外力恒定且与运动方向平行。 • 匀变速直线运动是一种理想化运动,实际并不存在。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
v
• 图象 a
s
s t
t
t
2、匀变速直线运动的规律 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
(4)比例法
s1 : s2 : s3 : …… = 12 : 22 : 32 : …… v1 : v2 : v3 : …… = 1 : 2 : 3 : …… sⅠ : sⅡ : sⅢ :……=1 : 3 : 5 : ……
t1 : t2 : t3 : …… = 1 : ( 2 ― 1) : ( 3 ― 2 ):……
无初速度地释放一颗,在连续释放若干钢球后,对准斜面
上正在滚动的若干小球拍摄到如图所示的照片,测得AB=
15cm,BC=20cm.求: (1)拍摄照片时B球的速度
CBA
(2)A球上面还有几颗正在滚动的钢球 答案: (1)VB=1.75m/s (2)2个
例4、如图所示,为了测定某辆轿车在平直路上启动时的 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
-2m/s2
(1)刹车后2s内前进的距离及刹车过程中的加速度
(2)刹车后前进9m所用的时间 1s (3)刹车后8s内前进的距离 25m
➢“速度”的误区 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益 例9、一物体作匀变速直线运动,某时刻速度的大小4m/s ,1s后速度的大小变为10m/s,在这1s内该物体的( AD ) (A)位移的大小可能小于4m (B)位移的大小可能大于10m (C)加速度的大小可能小于4m/s2 (D)加速度的大小可能大于10m/s2.

河南省2021高考物理讲义第2讲 匀变速直线运动的规律及应用

河南省2021高考物理讲义第2讲 匀变速直线运动的规律及应用

第2讲 匀变速直线运动的规律及应用知识一 匀变速直线运动的规律1.匀变速直线运动(1)概念:沿着一条直线运动,且加速度不变的运动. (2)分类①匀加速直线运动,a 与v 0同向. ②匀减速直线运动,a 与v 0反向. 2.匀变速直线运动的规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 20=2ax . 3.匀变速直线运动的两个重要推论(1)物体在一段时刻内的平均速度等于这段时刻中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半,即:v =v t 2=v 0+v2.(2)任意两个持续相等的时刻距离T 内的位移之差为一恒量,即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 4.初速度为零的匀变速直线运动的四个重要推论 (1)1T 末、2T 末、3T 末、……瞬时速度的比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1T 内、2T 内、3T 内……位移的比:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个T 内、第二个T 内、第三个T 内……位移的比:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1) (4)从静止开始通过持续相等的位移别离所历时刻的比:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)如下图的是一个水平运动球的频闪照片.要估量其运动的加速度,你需要照片提供哪些信息?同时你还需要做哪些测量?[提示] 照片要提供频闪时刻距离或频闪频率,图片与实物比例,还要测量相邻小球距离.知识二 自由落体运动和竖直上抛运动自由 落体(1)速度公式:v =gt(2)位移公式:h =12gt 2(3)速度—位移关系式:v 2=2gh 竖直 上抛(4)速度公式:v =v 0-gt (5)位移公式:h =v 0t -12gt 2(6)速度—位移关系式:v 2-v 20=-2gh (7)上升的最大高度:H =v 202g(8)上升到最大高度的时间:t =v 0g(1)(2)竖直上抛运动是匀变速直线运动.(√) (3)竖直上抛运动上升至最高点的时刻为v 0g.(√)1.(多项选择)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,通过时刻t 速度减小到零,那么它在这段时刻内的位移大小可用以下哪些式子表示( )A .v 0t +12at 2B .v 0t C.v 0t2D.12at 2 【解析】 质点做匀减速直线运动,加速度为-a ,位移为v 0t -12at 2,A 、B 错;平均速度大小为v 02,位移大小为v 02·t ,C 对;匀减速到零的直线运动可借助反向的初速度为零的匀加速直线运动来计算,位移大小为12at 2,D 对.【答案】 CD2.一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一段轨迹AB .该爱好者用直尺量出轨迹的长度,如图1-2-1所示.已知曝光时刻为11 000s ,那么小石子的起点离A 点约为( )图1-2-1 A .6.5 m B .10 m C .20 mD .45 m【解析】 因曝光时刻极短,故AB 段可看做匀速直线运动,小石子抵达A 点时的速度为v A =x t=0.0211 000m/s=20 m/s ,h =v 2A 2g =2022×10m =20 m.【答案】 C3.蹦床运动要求运动员在一张绷紧的弹性网上蹦起、腾空并做空中运动.为了测量运动员跃起的高度,训练时可在弹性网上安装压力传感器,利用传感器记录弹性网所受的压力,并在运算机上作出压力—时刻图象,假设作出的图象如图1-2-2所示.设运动员在空中运动时可视为质点,那么运动员跃起的最大高度是(g 取10 m/s 2)( )图1-2-2 A .1.8 m B .3.6 m C .5.0 mD .7.2 m【解析】 从题目中的F -t 图象中能够看出,运动员离开弹性网后腾空的时刻为t 1=2.0 s ,那么运动员上升到最大高度所用的时刻为t 2=1.0 s ,因此上升的最大高度h =12gt 22=5.0 m ,选项C 正确. 【答案】 C4.(2020·天津高考)质点做直线运动的位移x 与时刻t 的关系为x =5t +t 2(各物理量均采纳国际单位制单位),那么该质点( )A .第1 s 内的位移是5 mB .前2 s 内的平均速度是6 m/sC .任意相邻的1 s 内位移差都是1 mD .任意1 s 内的速度增量都是2 m/s【解析】 由匀变速直线运动的位移公式x =v 0t +12at 2,对照题给关系式可得v 0=5 m/s ,a =2 m/s 2.那么第1 s 内的位移是6 m ,A 错;前2 s 内的平均速度是v =x 2t=5×2+222m/s =7 m/s ,B 错;Δx =aT 2=2 m ,C 错;任意1 s 内速度增量Δv =at = 2 m/s ,D 对.【答案】 D5.(2021·广东高考)某航母跑道长200 m ,飞机在航母上滑行的最大加速度为6 m/s 2,起飞需要的最低速度为50 m/s.那么,飞机在滑行前,需要借助弹射系统取得的最小初速度为( )A .5 m/sB .10 m/sC .15 m/sD .20 m/s【解析】 飞机在滑行进程中,做匀加速直线运动,依照速度与位移的关系v 2-v 20=2ax 解决问题. 由题知,v =50 m/s ,a =6 m/s 2,x =200 m ,依照v 2-v 20=2ax 得飞机取得的最小速度v 0=v 2-2ax =502-2×6×200 m/s =10 m/s.应选项B 正确. 【答案】 B考点一 [04] 匀变速直线运动规律的应用一、解题的大体思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论二、对匀变速直线运动规律的两点说明1.正、负号的规定:直线运动中能够用正、负号表示矢量的方向,一样情形下,咱们规定初速度的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值,当v 0=0时,一样以a 的方向为正方向.2.物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,能够将全程看做匀减速直线运动,应用大体公式求解.——————[1个示范例] ——————(2021·四川高考)近来,我国多个城市开始重点治理“中国式过马路”行为.每一年全国由于行人不遵守交通规那么而引发的交通事故上万起,死亡上千人.只有科学设置交通管制,人人遵守交通规那么,才能保证行人的生命平安.如图1-2-3所示,停车线AB与前方斑马线边界CD间的距离为23 m.质量8 t、车长7 m的卡车以54 km/h的速度向北匀速行驶,当车前端刚驶过停车线AB,该车前方的机动车交通信号灯由绿灯变黄灯.图1-2-3(1)假设现在前方C处人行横道路边等待的行人就抢先过马路,卡车司机发觉行人,当即制动,卡车受到的阻力为3×104 N.求卡车的制动距离;(2)假设人人遵守交通规那么,该车将不受阻碍地驶过前方斑马线边界CD.为确保行人平安,D处人行横道信号灯应该在南北向机动车信号灯变黄灯后至少多久变成绿灯?【审题指导】此题以生活中“过马路”为背景考查运动学大体规律的应用,求解的关键在于:(1)中卡车抵达前方C处人行横道时,速度恰好减为零;(2)中要明确卡车不受阻碍的距离所对应的时刻为黄灯闪烁时刻.【解析】此题运用动能定明白得答较简单,也可依照卡车刹车做匀减速直线运动,应用牛顿第二定律和运动学公式解决问题.已知卡车质量m=8 t=8×103 kg、初速度v0=54 km/h=15 m/s.(1)从制动到停止,已知卡车所受阻力f=-3×104 N,a=fm设卡车的制动距离为s1,有0-v20=2as1①代入数据解得s1=30 m②(2)已知车长l=7 m,AB与CD的距离为s0=23 m.设卡车驶过的距离为s2,D处人行横道信号灯至少需要通过时刻Δt后变成绿灯,有s2=s0+l③s2=v0Δt④联立③④式,代入数据解得Δt=2 s.【答案】(1)30 m (2)2 s解匀变速直线运动应注意的问题(1)若是一个物体的运动包括几个时期,就要分段分析,各段交接处的速度往往是联系各段的纽带.(2)描述匀变速直线运动的大体物理量涉及v0、v、a、x、t五个量,每一个大体公式中都涉及四个量,选择公式时必然要注意分析已知量和待求量,依照所涉及的物理量选择适合的公式求解,会使问题简化.(3)关于刹车类问题,当车速度为零时,停止运动,其加速度也突变成零.求解此类问题应先判定车停下所历时刻,再选择适合公式求解.——————[1个预测例]——————一物体由静止开始沿滑腻斜面做匀加速直线运动,从斜面顶端运动6秒抵达斜面底端,已知斜面长为18米,那么(1)物体在第3秒内的位移多大?(2)前3秒内的位移多大?【解析】(1)第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m=2.5 m,(2)将6 s的时刻分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.【答案】(1)2.5 m (2)4.5 m考点二[05] 自由落体和竖直上抛运动一、自由落体运动自由落体运动是初速度为零,加速度为g的匀加速直线运动,因此一切匀加速直线运动的公式均适用于自由落体运动.专门是初速度为零的匀加速直线运动的比例关系式,在自由落体运动中应用更频繁.二、竖直上抛运动1.重要特性图1-2-4(1)对称性:如图1-2-4所示,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,那么:①时刻对称性:物体上升进程中从A→C所历时刻t AC和下降进程中从C→A所历时刻t CA相等,同理有t AB =t BA.②速度对称性:物体上升进程通过A点的速度与下降进程通过A点的速度大小相等.(2)多解性:在竖直上抛运动中,当物体通过抛出点上方某一名置时,可能处于上升时期,也可能处于下落时期,因此这种问题可能造成时刻多解或速度多解,也可能造成路程多解.2.处置方式(1)分段处置:①上升时期做匀减速直线运动;下降时期做自由落体运动. ②几个特点物理量:上升高度h =v 202g上升时刻T =v 0g,运动时刻t =2v 0g落地速度v =-v 0. (2)全程处置①初速度为v 0(设为正方向),加速度a =-g 的匀变速直线运动. ②运动规律:v =v 0-gt ,h =v 0t -12gt 2,v 2-v 20=-2gh .——————[1个示范例] ——————(多项选择)在塔顶上将一物体竖直向上抛出,抛出点为A ,物体上升的最大高度为20 m ,不计空气阻力,设塔足够高,那么物体位移大小为10 m 时,物体通过的路程可能为( )A .10 mB .20 mC .30 mD .50 m【解析】物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种进程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下降通过时,路程s 2=2H -x 1=2×20 m-10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m+10 m =50 m .故A 、C 、D 正确.【答案】 ACD——————[1个预测例]——————甲球从离地面H 高处从静止开始自由下落,同时使乙球从甲球的正下方地面处做竖直上抛运动.欲使乙球上升到H n处与甲球相撞,那么乙球上抛的初速度应为( )A.gH2B.ngH2n -1C.n -1gH2nD.ngH2n +1【审题指导】 (1)分析甲、乙各自运动规律.(2)充分利用相遇条件. 【解析】 方式一 解析法 由竖直上抛运动规律知H n=v 0t -12gt 2,由自由落体运动规律知H -H n =12gt 2,联立可得t =Hv 0,v 0=ngH2n -1,B 对.方式二 相对运动法以自由下落的甲球为参考系,那么乙球将向上做匀速运动,设乙球抛出时的初速度为v 0,那么从抛出到两球相遇的时刻为t =H v 0,在这段时刻内对甲球有:n -1H n =12gt 2,联立得v 0=ngH2n -1,B 对.方式三 图象法取向上为正方向,作出两球的v -t 图象,那么两图线平行,由图线所围面积的意义知v 0t =H ,而H -H n =12gt 2,因此v 0=ngH2n -1,B 对.【答案】 B巧解匀变速直线运动问题的六种方式运动学问题的求解一样有多种方式,除直接应用公式外,还有如下方式: 一、平均速度法概念式v =xt 对任何性质的运动都适用,而v =12(v 0+v )适用于匀变速直线运动.二、中间时刻速度法利用“任一时刻t ,中间时刻的瞬时速度等于这段时刻t 内的平均速度”,即v t2=v ,适用于任何一个匀变速直线运动,有些题目应用它能够幸免常规解法顶用位移公式列出的含有t 2的复杂式子,从而简化解题进程,提高解题速度.三、比例法关于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的重要特点的比例关系,用比例法求解.四、逆向思维法把运动进程的“末态”作为“初态”的反向研究问题的方式,一样用于末态已知的情形. 五、图象法应用v -t 图象,能够使比较复杂的问题变得形象、直观和简单,尤其是用图象定性分析,可躲开繁杂的计算,快速得出答案.六、推论法在匀变速直线运动中,两个持续相等的时刻T 内的位移之差为一恒量,即Δx =x n +1-x n =aT 2,假设显现相等的时刻距离问题,应优先考虑用Δx =aT 2求解.——————[1个示范例] —————— 图1-2-5物体以必然的初速度v 0冲上固定的滑腻斜面,抵达斜面最高点C 时速度恰为零,如图1-2-5所示.已知物体第一次运动到斜面长度3/4处的B 点时,所历时刻为t ,求物体从B 滑到C 所用的时刻.【标准解答】 解法一 比例法关于初速度为0的匀加速直线运动,通过持续相等的各段位移所用的时刻之比t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1)现将整个斜面分成相等的四段,如下图.设通过BC 段的时刻为t x ,那么通过BD 、DE 、EA 的时刻别离为:t BD =(2-1)t x ,t DE =(3-2)t x ,t EA =(2-3)t x ,又t BD +t DE +t EA =t ,得t x =t . 解法二 平均速度法利用教材中的推论:中间时刻的瞬时速度等于这段位移的平均速度.v AC =v 0+v 2=v 0+02=v 02,又v 20=2ax AC① v 2B =2ax BC ②x BC =14x AC ③由①②③解得:v B =v 02.能够看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置. 因此有t BC =t .【答案】 t—————————————[1个方式练]——————从斜面上某一名置,每隔0.1 s 释放一个小球,在持续释放几颗小球后,对在斜面上转动的小球拍下照片,如图1-2-6所示,测得x AB =15 cm ,x BC =20 cm ,求:图1-2-6(1)小球的加速度大小; (2)拍照时B 球的速度大小; (3)拍照时x CD 的大小.【解析】 (1)由a =Δx t 2得小球的加速度a =x BC -x ABt2=5 m/s 2 (2)B 点的速度等于AC 段上的平均速度,即v B =x AC2t=1.75 m/s(3)由相邻相等时刻内的位移差恒定,即x CD -x BC =x BC -x AB ,因此x CD =2x BC -x AB =0.25 m 【答案】 (1)5 m/s 2 (2)1.75 m/s (3)0.25 m⊙考查自由落体运动1.(2020·重庆高考)某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2 s 听到石头落底声,由此可知井深约为(不计声音传播时刻,重力加速度g 取10 m/s 2)( )A .10 mB .20 mC .30 mD .40 m【解析】 从井口由静止释放,石头做自由落体运动,由运动学公式h =12gt 2可得h =12×10×22 m =20 m. 【答案】 B⊙匀变速直线运动规律的一样应用2.(多项选择)滑腻的斜面长为L ,一物体自斜面顶端由静止开始匀加速滑至底端,所经历的时刻为t ,那么以下说法正确的选项是( )A .物体运动全程的平均速度为L tB .物体在t2时的瞬时速度为2LtC .物体运动到斜面中点时的瞬时速度为2LtD .物体从极点运动到斜面中点所需的时刻为22t【解析】 由平均速度的概念可知A 对;在匀变速运动中,全程的平均速度等于中间时刻的瞬时速度,即物体在t 2时的瞬时速度为L t ,B 错;由L =12at 2得a =2Lt2,v =2a L 2=2L t ,C 对;由L 2=12at 21得t 1=22t ,D 对.【答案】 ACD 3.图1-2-7如图1-2-7所示,一小球别离以不同的初速度,从滑腻斜面的底端A 点向上做直线运动,所能抵达的最高点位置别离为a 、b 、c ,它们距斜面底端A 点的距离别离为s 1、s 2、s 3,对应抵达最高点的时刻别离为t 1、t 2、t 3,那么以下关系正确的选项是( )A.s 1t 1=s 2t 2=s 3t 3B.s 3t 3>s 2t 2>s 1t 1C.s 1t 21=s 2t 22=s 3t 23D.s 1t 21>s 2t 22>s 3t 23【解析】 利用逆向思维,将小球的运动看做沿斜面向下的初速度为零的匀加速直线运动,由v =x t知选项A 、B 表达的是平均速度,由题意可知抵达a 点的小球初速度最大,由v =v 0+v t2可知该小球在此进程中的平均速度最大,A 、B 错;由x =12at 2知选项C 、D 表达的是加速度的一半,由受力情形可知三个进程的加速度相等,C 对、D 错.【答案】 C ⊙竖直上抛问题4.(多项选择)(2021·长沙雅礼中学模拟)某物体以30 m/s 的初速度竖直上抛,不计空气阻力,g 取10 m/s 2.那么5 s 内物体的( )A .路程为65 mB .位移大小为25 m ,方向向上C .速度改变量的大小为10 m/sD .平均速度大小为13 m/s ,方向向上 【解析】 上升时刻t 1=v 0g=3010 s =3 s ,上升位移为h 1=v 202g =3022×10m =45 m ,自由落体时刻t 2=2 s ,下降高度为h 2=12gt 22=12×10×22 m =20 m ,故5 s 内的路程为s =h 1+h 2=65 m ,故A 正确;现在位移为h =h 1-h 2=25 m ,方向竖直向上,故B 正确;现在速度大小为v =gt =10×2 m/s=20 m/s ,方向竖直向下,因此速度的改变量Δv =-20 m/s -30 m/s =-50 m/s ,故C 错;平均速度为v =x t=ht 1+t 2=253+2m/s =5m/s ,故D 错.【答案】 AB ⊙刹车问题5.一辆车正以20.0 m/s 的速度向前行驶.突然,司机看到一个小孩站在路上.她花了0.80 s 的时刻才反映过来,并当即踩下刹车,使车以7.0 m/s 2的加速度慢慢减慢车速.车在停止前还会前进多远?【解析】 0.80 s 反映时刻内,车匀速运动x 1=v 0·t =16 m.刹车进程为匀减速,a =-7.0 m/s 2. 由v 2-v 20=2ax ,得 x 2=-v 202a ≈28.6 m因此车在停止前还会前进x =x 1+x 2=44.6 m【答案】 44.6 m 即v n =x n +x n +12T,如图1-4-1所示.3.求加速度(1)“逐差法”求加速度,即a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,然后取平均值,即a =a 1+a 2+a 33,如此使所给数据全数取得利用,以提高准确性.(2)“图象法”求加速度,即由“平均速度法”求出多个点的速度,画出v -t 图,直线的斜率即为加速度. 实验器材与装置 图1-4-21.打点计时器的作用计时仪器,每隔0.02 s 打一次点. 2.打点计时器的工作条件(1)电磁打点计时器:6 V 以下交流电源. (2)电火花计时器:220 V 交流电源. 3.纸带上点的意义(1)表示和纸带相连的物体在不同时刻的位置.(2)通过研究纸带上各点之间的距离,能够判定物体的运动情形. 实验进程把一端附有滑轮的长木板平放在实验桌上,并使滑轮伸出桌面;把打点计时器固定在长木板上远离滑轮的一端,连接好电路;把一条细绳拴在小车上,使细绳跨过滑轮,下边挂上适合的钩码;接通电源,然后放开小车,让小车拖着纸带运动,随后当即关闭电源;重复实验取得多条纸带.纸带处置从几条纸带当选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地址找一个开始点,以后依次每五个点取一个计数点,确信好计数始点,并标明0、一、二、3、4…测量各计数点到0点的距离d ,计算出相邻的计数点之间的距离x 1、x 2、x 3…求出各计数点的速度v n ,由v n 数据作出v -t 图象.注意事项1.平行:纸带、细绳要和长木板平行.2.靠近:释放小车前,应使小车停在靠近打点计时器的位置.3.一先一后:实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带. 4.避免碰撞:在抵达长木板结尾前应让小车停止运动,避免钩码落地,小车与滑轮碰撞.5.减小误差:小车另一端挂的钩码个数要适当,幸免速度过大而使纸带上打的点太少,或速度过小,使纸带上打的点过于密集.6.准确作图:在座标纸上,纵、横轴选取适合的单位,认真描点连线,不能连成折线,应作一条直线,让各点尽可能落到这条直线上,落不到直线上的各点应均匀散布在直线的双侧.误差与改良钩码带动小车做加速运动时,因受摩擦等各方面的阻碍,致使小车加速度不恒定,即小车不能真正做匀加速直线运动.因此,可用阻力小的气垫导轨替代长木板,用频闪照相或光电计时的方法替代打点计时器,可幸免由于电源频率不稳固,造成相邻两点间的时刻距离不完全相等,提高实验的精准度.考点一 实验原理与操作在做“研究匀变速直线运动”的实验时,为了能够较准确地测出加速度,将你以为正确的选项前面的字母填在横线上:________.A .把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面B .把打点计时器固定在长木板上没有滑轮的一端,连接好电路C .再把一条细绳拴在小车上,细绳跨过滑轮,下边挂上适合的钩码,每次必需由静止释放小车D .把纸带穿过打点计时器,并把它的一端固定在小车的后面E .把小车停在靠近打点计时器处,接通直流电源后,放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次F .从三条纸带当选择一条比较理想的纸带,舍掉开头比较密集的点,在后边便于测量的地址找一个开始点,并把每打五个点的时刻作为时刻单位.在选好的开始点下面记作0,往后第五个点作为计数点1,依此标出计数点二、3、4、五、6,并测算出相邻两点间的距离G .依照公式a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2,及a =a 1+a 2+a 33求出a【解析】 在实验中尽可能地保证小车做匀变速直线运动,同时也要求纸带能尽可能地直接反映小车的运动情形,既要减小运动误差也要减小纸带的分析误差.其中E 项中的电源应采纳交流电源,而不是直流电源.【答案】 ABCDFG考点二 纸带的数据处置(2021·浙江高考)如图1-4-3所示,装置甲中挂有小桶的细线绕过定滑轮,固定在小车上;装置乙中橡皮筋的一端固定在导轨的左端,另一端系在小车上.一同窗用装置甲和乙别离进行实验,经正确操作取得两条纸带①和②,纸带上的a 、b 、c …均为打点计时器打出的点.图1-4-3(1)任选一条纸带读出b 、c 两点间距离为________;(2)任选一条纸带求出c 、e 两点间的平均速度大小为________,纸带①和②上c 、e 两点间的平均速度v ①________v②(选填“大于”、“等于”或“小于”);(3)图中________(填选项).A .两条纸带均为用装置甲实验所得B .两条纸带均为用装置乙实验所得C .纸带①为用装置甲实验所得,纸带②为用装置乙实验所得D .纸带①为用装置乙实验所得,纸带②为用装置甲实验所得【解析】 (1)由纸带①可读出b 、c 间距为2.10 cm ,由纸带②读出b 、c 间距为2.40 cm(±0.05 cm,有效数字位数要准确).(2)由v =x t,知t =0.04 s ,x ce =4.52 cm(纸带①)或x ce =5.00 cm(纸带②),代入数据得,vce =1.13 m/s(纸带①)或1.25 m/s(纸带②),v ①<v ②.(3)由纸带①各点间距分析可知,小车做匀加速运动,从纸带②各点间距来看,小车开始做加速运动,一段距离后做匀速运动,故可知纸带①是用装置甲实验所得,纸带②是用装置乙实验所得,选C.【答案】 (1)2.10 cm 或2.40 cm(±0.05 cm,有效数字位数要正确) (2)1.13 m/s 或1.25 m /s(±0.05 m/s,有效数字位数不作要求) 小于 (3)C 考点三 实验改良与创新(2021·山东高考)某同窗利用图1-4-4甲所示的实验装置,探讨物块在水平桌面上的运动规律.物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未抵达滑轮处).从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1-4-4乙所示.打点计时器电源的频率为50 Hz.甲 乙 图1-4-4 (1)通过度析纸带数据,可判定物块在两相邻计数点________________________________________________________________________和________之间某时刻开始减速.(2)计数点5对应的速度大小为________m/s ,计数点6对应的速度大小为________m/s.(保留三位有效数字) (3)物块减速运动进程中加速度的大小为a =________________________________________________________________________m/s 2,假设用ag来计算物块与桌面间的动摩擦因数(g 为重力加速度),那么计算结果比动摩擦因数的真实值________(填“偏大”或“偏小”).【解析】 (1)从计数点1到6相邻的相等时刻内的位移差Δx ≈2.00 cm,在六、7计数点间的位移比五、6之间增加了(12.28-11.01) cm =1.27 cm <2.00 cm ,因此,开始减速的时刻在计数点6和7之间.(2)计数点5对应的速度大小为v 5=x 4+x 52T=9.00+11.01×10-22×0.1m/s =1.00 m/s.计数点4对应的速度大小为v 4=x 3+x 42T=7.01+9.00×10-22×0.1m/s =0.80 m/s.依照v 5=v 4+v 62,得计数点6对应的速度大小为v 6=2v 5-v 4=(2×1.00-0.80) m/s =1.20 m/s.(3)物块在计数点7到11之间做减速运动,依照Δx =aT 2得x 9-x 7=2a 1T 2 x 10-x 8=2a 2T 2故a =a 1+a 22=x 9+x 10-x 8+x 72×2T 2≈-2.00 m/s 2物块做减速运动时受到的阻力包括水平桌面的摩擦阻力和打点计时器对纸带的摩擦阻力,因此依照牛顿第二定律,得μmg +f =ma ,即μ=ma -f mg,因此用μ′=ag计算出的动摩擦因数比μ的真实值偏大.【答案】 (1)6 7 (2)1.00 1.20 (3)2.00 偏大 [高考命题角度分析] 一、此题创新点分析1.真题溯源——本例中的实验器材、实验原理及利用纸带求速度、加速度的方式与教材实验是相同的. 2.创新亮点——本例中因计数点6位于物体从加速到减速转折的边缘,因此计数点6的速度不能采纳求平均速度的方式直接计算,另外本例中还指出了一种测量物体间动摩擦因数的方式.二、本实验的其他改良创新思路 (一)实验器材的创新1.若是提供光电门和刻度尺,咱们能够测出遮光的宽度d ,借助v =dΔt求出物体通过光电门的速度,再由v 22-v 21=2ax, 测出物体的加速度.2.若是提供闪光照相机和刻度尺,咱们能够用途理纸带的方式,求出物体的瞬时速度及物体的加速度. (二)数据处置若是测得物体运动的位移和对应时刻.1.假设初速度为零,那么x =12at 2,因此做出x -t 2图线,图线斜率的2倍即为物体的加速度.2.假设物体的初速度不为零,那么x =v0t +12at2,可得x t =v0+12at ,因此做出xt -t 图线,图线斜率的2倍即为物体的加速度.1在“研究匀变速直线运动”的实验中,利用电磁打点计时器(所用交流电的频率为50 Hz)取得如图1-4-5所示的纸带.图中的点为计数点,相邻两计数点间还有四个点未画出来,以下表述正确的选项是( )图1-4-5A .实验时应先放开纸带再接通电源B .(x 6-x 1)等于(x 2-x 1)的6倍C .从纸带可求出计数点B 对应的速度D .相邻两个计数点间的时刻距离为0.02 s【解析】 中间时刻的瞬时速度等于全程的平均速度,因此v B =x 2+x 32T,C 正确;x 6-x 1=5(x 2-x 1),因此B 错误;相邻计数点间的时刻距离是0.1 s ,D 错误;依如实验要求应该先接通电源再放开纸带,因此A 错误.【答案】 C2.(2020·重庆高考)某同窗用打点计时器测量做匀加速直线运动的物体的加速度,电源频率f =50 Hz ,在纸带上打出的点中,选出零点,每隔4个点取1个计数点,因保留不妥,纸带被污染,如图1-4-6所示,A 、B 、C 、D 是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离:s A =16.6 mm 、s B =126.5 mm 、s D =624.5 mm.图1-4-6假设无法再做实验,可由以上信息推知 (1)相邻两计数点的时刻距离为____s ;(2)打C 点时物体的速度大小为____m/s(取2位有效数字); (3)物体的加速度大小为________(用s A 、s B 、s D 和f 表示).【解析】 (1)打点计时器打出的纸带每隔4个点选择一个计数点,那么相邻两计数点的时刻距离为T =0.1 s. (2)依照BD 间的平均速度等于C 点的瞬时速度得v C =s D -s B2T=2.5 m/s.(3)匀加速运动的位移特点是相邻的相等时刻距离内的位移以aT 2均匀增大,那么有BC =AB +aT 2,CD =BC +aT 2=AB +2aT 2,BD =2AB +3aT 2,T =5f因此a =s D -s B -2×s B -s A3T 2=s D -3s B +2s A f 275.【答案】 (1)0.1 (2)2.5 (3)s D -3s B +2s A f 2753.(2020·广东高考)图1-4-7是“研究匀变速直线运动”实验中取得的一条纸带,O 、A 、B 、C 、D 和E 为纸带上六个计数点.加速度大小用a 表示.图1-4-7(1)OD 间的距离为________cm.(2)图1-4-8是依如实验数据绘出的s -t 2图线(s 为各计数点至同一路点的距离),斜率表示______________,其大小为______m/s 2(保留三位有效数字).图1-4-8【解析】 (1)由题图可知,OD =(22.1-10.0) mm =12.1 mm =1.21 cm(结果在1.18~1.22 cm 均正确).。

第1章 1.2 匀变速直线运动的规律及其应用

第1章 1.2  匀变速直线运动的规律及其应用

第2课时:匀变速直线运动的规律及其应用读基础知识基础回顾:一、匀变速直线运动的规律1.匀变速直线运动沿一条直线且加速度不变的运动.2.匀变速直线运动的基本规律(1)速度公式:v=v0+at.(2)位移公式:x=v0t+12at2.(3)位移速度关系式:v2-v02=2ax.二、匀变速直线运动的推论1.三个推论(1)连续相等的相邻时间间隔T内的位移差相等.即x2-x1=x3-x2=…=x n-x n-1=aT2.(2)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度.平均速度公式:v=v0+v2=2v t.(3)位移中点速度2xv=v02+v22.2.初速度为零的匀加速直线运动的四个重要推论(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n.(2)T内、2T内、3T内、…、nT内的位移之比为x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2.(3)第1个T内、第2个T内、第3个T内、…、第n个T内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶x N=1∶3∶5∶…∶(2n-1).(4)从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶(2-3)∶…∶(n-n-1).自查自纠:(1)匀变速直线运动是加速度均匀变化的运动。

()(2)匀变速直线运动是速度均匀变化的运动。

()(3)匀加速直线运动的位移是均匀增大的。

()(4)某物体从静止开始做匀加速直线运动,速度由0到v运动距离是由v到2v运动距离的2倍。

() (5)对任意直线运动,其中间时刻的瞬时速度一定等于其平均速度。

()(6)在匀变速直线运动中,中间时刻的速度一定小于该段时间内位移中点的速度。

()答案(1)×(2)√(3)×(4)×(5)×(6)√研考纲考题要点1匀变速直线运动规律的基本应用1.匀变速直线运动公式为矢量式,一般规定初速度v0的方向为正方向(当v0=0时,一般以加速度a的方向为正方向),与正方向同向的物理量取正值,反向的物理量取负值。

2 第二节 匀变速直线运动的规律及应用

2 第二节 匀变速直线运动的规律及应用
()
A.8 s C.16 s
B.10 s D.20 s
上一页
返回导航
下一页
第一章 运动的描述 匀变速直线运动的研究
22
解析:选 C.设物体运动的加速度为 a,运动总时间为 t,把物体上滑的运动看成反向的 初速度为 0 的匀加速直线运动,则有:最后 5 s 内位移为 s1=12a×52=225a;最初 5 s 内 位移为 s2=a(t-5)×5+12a×52=5at-225a,又因为 s2∶s1=11∶5,解得 t=8 s;由于斜 面光滑,上滑和下滑的时间相同,则物块从底端开始上滑到返回斜面底端一共经历的时 间是 16 s,故 A、B、D 错误,C 正确.
上一页
返回导航
下一页
第一章 运动的描述 匀变速直线运动的研究
23
上一页
返回导航
下一页
第一章 运动的描述 匀变速直线运动的研究
24
处理匀变速直线运动的常用方法
【知识提炼】
1.解决问题常用的“六法”
上一页
返回导航
下一页
第一章 运动的描述 匀变速直线运动的研究
25
2.匀变速直线运动问题的解题“四步骤”
D.经 0.2 s 处才开始刹车制动,汽车前端恰好能停止在停车线处
上一页
返回导航
下一页
第一章 运动的描述 匀变速直线运动的研究
7
提示:选 AD.根据题意知刹车过程的位移与时间的关系为 s=12t-3.75t2,由位移公式
x=v0t+12at2,得 v0=12 m/s,12a=-3.75,即 a=-7.5 m/s2,减速所需时间为:t=va0=
()
A.48 m
B.50 m
C.72 m
D.120 m

匀变速直线运动规律的应用

匀变速直线运动规律的应用

匀变速直线运动规律的应用1. 引言匀变速直线运动是物理学中最基本的运动形式之一,也是我们日常生活和工作中常见的运动形式之一。

了解和掌握匀变速直线运动的规律对于描述和解决问题至关重要。

本文将介绍匀变速直线运动规律的应用场景和相关计算公式。

2. 定义匀变速直线运动是指物体在运动过程中,速度大小和方向都会发生变化,但是变化的方式是均匀的。

也就是说,物体在单位时间内运动的距离增量以及速度的变化量都是相等的。

3. 应用场景匀变速直线运动的规律在许多实际场景中得到了应用。

以下是一些常见的应用场景:3.1 汽车行驶汽车在行驶过程中往往需要根据道路情况调整速度,使得车辆始终保持在安全的行驶范围内。

匀变速直线运动的规律可以用来计算汽车加速度、行驶时间和行驶距离等,从而帮助驾驶员合理安排行驶计划。

3.2 抛物运动抛物运动是一种特殊的匀变速直线运动,常见于抛掷物体或投掷物体的运动过程中。

物体在竖直方向上受到重力的作用,导致加速度的大小恒定。

匀变速直线运动的规律可以用来计算抛物运动的最大高度、飞行时间和飞行距离等重要参数。

3.3 升降机运行升降机在运行过程中往往需要根据乘客的需求调整速度,使得乘客在规定的时间内到达目的地。

匀变速直线运动的规律可以用来计算升降机的加速度、运行时间和运行距离,从而帮助调整升降机的工作参数。

3.4 砲弹射击炮弹的射击过程也可以视为匀变速直线运动,通过计算炮弹的发射速度和发射角度,可以预测炮弹的落点和射程等重要指标,从而提高射击的精确度和效果。

4. 计算公式匀变速直线运动的计算公式可以通过运动学的基本原理推导得出。

以下是常见的计算公式:4.1 位移公式位移公式用于计算物体在匀变速直线运动过程中的位移。

假设物体的初速度为v0,末速度为v,运动时间为t,位移为s,加速度为a。

则位移公式可以表示为:s = v0 * t + 1/2 * a * t^24.2 速度公式速度公式用于计算物体在匀变速直线运动过程中的速度。

高中物理必修一 讲义 专题提升二 匀变速直线运动规律及推论的应用

高中物理必修一 讲义 专题提升二 匀变速直线运动规律及推论的应用

专题提升二 匀变速直线运动规律及推论的应用[学习目标要求] 1.熟悉匀变速直线运动规律的应用。

2.掌握初速度为零的匀加速直线运动比例式的应用。

提升1 匀变速直线运动规律的应用匀变速直线运动公式的比较【例1】 一辆汽车以10 m/s 的初速度在水平地面上匀减速直线运动,加速度大小为2 m/s 2,求: (1)汽车在2 s 末的速度; (2)汽车在6 s 内的位移; (3)汽车在最后1 s 内的平均速度。

答案 (1)6 m/s (2)25 m (3)1 m/s 解析 (1)由v =v 0+at 得,2 s 末的速度 v =v 0+at =(10-2×2) m/s =6 m/s 。

(2)设汽车经过t 0停止,则 t 0=v -v 0a =0-10 m/s -2 m/s2=5 s而t =6 s>5 s ,此时汽车已停止 汽车在6 s 内的位移x =v 2-v 202a =0-(10 m/s )22×(-2 m/s 2)=25 m 。

(3)前4 s 内汽车的位移x 1=v 0t 1+12at 21 =⎝ ⎛⎭⎪⎫10×4-12×2×42 m =24 m 最后1 s 内的位移Δx =x 总-x 1=25 m -24 m =1 mv -=Δx Δt =1 m1 s =1 m/s 。

【训练1】 符合国家安全技术标准的汽车满载时以54 km/h 的速度行驶,若刹车的加速度大小为4.5 m/s 2,求 (1)制动距离;(2)该汽车刹车后3 s 的速度和位移大小分别是多少? (3)刹车后6 s 的速度和位移大小分别是多少? 答案 (1)25 m (2)1.5 m/s 24.75 m (3)0 25 m 解析 (1)v 0=54 km/h =15 m/s , a =-4.5 m/s 2由v 2-v 20=2ax 得x =v 2-v 202a =0-(15 m/s )22×(-4.5 m/s 2)=25 m 。

第2讲-匀变速直线运动的规律及应用

第2讲-匀变速直线运动的规律及应用
返回
考点一 匀变速直线运动规律及应用
短跑运动员完成 100 m 赛跑的过程可简化为匀加速直线运动和匀速 直线运动两个阶段。一次比赛中,某运动员用 11.00 s 跑完全程,已知运 动员在加速阶段的第 2 s 内通过的位移为 7.5 m,求 (1)该运动员的加速度; (2)在加速阶段通过的位移。
思维关键: 画出过程示意图
返回
考点一 匀变速直线运动规律及应用
解析: 根据题意,在第 1 s 和第 2 s 内运 动员都做匀加速直线运动,设运动员在 匀加速阶段的加速度为 a,在第 1 s 和第 2 s 内通过的位移分别为 x1 和 x2,由运动 学规律得: x1=21at20① x1+x2=12a(2t0)2② t0=1 s③ 联立①②③求得 a=5 m/s2④ 设运动员做匀加速运动的时间为 t1,匀速
开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域
时的速度之比和穿过每个矩形区域所用的时间分别是( )
A.v1∶v2∶v3=3∶2∶1 B.v1∶v2∶v3= 3∶2∶1 C.t1∶t2∶t3=1∶2∶3 D.t1∶t2∶t3=( 3- 2)∶( 2-1)∶1
由 v2-v20=2ax 可得初速度为零的匀加速直线运动中 通过连续相等位移的速度之比为 1∶2∶3,则所求的 速度之比为 3∶2∶1,故选项 A 错,B 正确。
xAB=34xAC③
物设故由因物变vv根 面 O所对 的 现 t(利 2可 t对 比 因x2202BBB,aC==C-体以体速为C据 积 时 将 于x以 用tx=于 为 为 ===那AB2vC匀 之 41间 整 初从直物向上看 推Ctta,20=3初么+t=2-xxx变 比 之 个速 )线成 论体上三=t1CBAv2s通xt速∶tCaB,22BB速 等 度 比 斜x+:运2沿s=①滑∶ Cv匀式tat22过x。2B。 2B中B度 又∶直 于 为 面为xtsBCxC动2斜B到正A减解A3,Ca间B线 对 分零= 为∶ Bttx②… 的B好面12DB速得CD∶,时x运 应 成的tCx零+2A等 、规∶,向4∶A所x解刻Ct冲动 边 相匀3Cttn=的于D∶BD律x上∶=…得的 用的 平 等加3BCE上EC+=ax匀可A4∶、做=瞬1的规 方 的速ttAn斜CBt∶tC=Et得加C3Ex时 +匀律 比 四直=时= A=段4A∶A面=215C速速, , 段线减t∶。间2t的∶ 1(Bt=… 的,,C∶度作 得 ,运s由 直 3速平为22时∶ ,2解相-等出 SS如(动,以均s运线2△ △间t。而得1于BnAB图当,上速v又)C动OD运- 分∶通,CC这(所通t三于-度=x,t由= 别动1x段3示过 过图式,CBC)向-t为设匀。C,=位DO,连象解因=x下222移在B设 ,续,2t得此BxA)s由又v由匀D4的∶A通 且相如连的B…=vCB=①④B平 加,v过 SS等图∶续 (=点 时(△ △Ba②⑤均=AB的速所tv2是BODn2相间B0-CC速③⑥-CC各示 v。滑= 这⑥等 0为1度-解解段段。41段 )下tn, 的,x位的a利得得t-,位,斜tvO⑤时移时用1t移所AvtDD)B面CE。B所间相间C==的==以=。用为似tv中里(,v2通t0三 =0+2间3④通-过角v2时=过s形刻x2v2的B的)0,Ct。x,位的规又因t律移时 此EvA20, =有 =之间

匀变速直线运动规律的九个应用

匀变速直线运动规律的九个应用

一、速度与时间的关系式v =v 0+at 的应用1、(v-t 关系基本应用)一物体从静止开始以2m/s 2的加速度做匀加速直线运动,经5s 后做匀速直线运动,最后2s 的时间内物体做匀减速直线运动直至静止.求:(1)物体做匀速直线运动的速度的大小;(2)物体做匀减速直线运动时的加速度.2、(v-t 关系在刹车问题中的应用)一汽车在平直的公路上以20m/s 的速度匀速行驶,前面有情况需紧急刹车,刹车后可视为匀减速直线运动,加速度大小为8 m/s 2.求刹车3s 后汽车的速度.二、v -t 图象的理解和应用3、A 、B 是做匀变速直线运动的两个物体,其速度图象如图所示.(1)A 、B 各做什么运动并求其加速度;(2)两图象交点的意义;(3)求1s 末A 、B 的速度;(4)求6s 末A 、B 的速度.4、如图所示是某物体做直线运动的v -t 图象,由图象可知( )A .物体在0~2s 内做匀速直线运动B .物体在2~8s 内静止C .t =1s 时物体的加速度为6m/s 2D .t =5s 时物体的加速度为12m/s 2三、位移时间关系式x =v 0t +12at 2的基本应用1、一物体做初速度为零的匀加速直线运动,加速度为a=2m/s2,求:(1)第5s末物体的速度多大?(2)前4s的位移多大?(3)第4s内的位移多大?四、利用v-t图象求物体的位移2、如图所示是直升机由地面竖直向上起飞的v-t图象,试计算直升机能到达的最大高度及25s时直升机所在的高度.五、对x-t图象的认识3、如图所示为在同一直线上运动的A、B两质点的x-t图象,由图可知()A.t=0时,A在B的前面B.B在t2时刻追上A,并在此后运动到A的前面C.B开始运动的速度比A的小,t2时刻后才大于A的速度D.A运动的速度始终比B的大六、刹车类问题4、一辆汽车正在平直的公路上以72km/h的速度行驶,司机看见红色信号灯便立即踩下制动器,此后,汽车开始做匀减速直线运动.设汽车减速过程的加速度大小为5 m/s2,求:(1)开始制动后,前2s内汽车行驶的距离.(2)开始制动后,前5s内汽车行驶的距离.七、速度与位移关系的简单应用1、A、B、C三点在同一条直线上,一物体从A点由静止开始做匀加速直线运动,经过B 点的速度是v,到C点的速度是3v,则x AB∶x BC等于()A .1∶8B .1∶6C .1∶5D .1∶3八、v =2t v =v 0+v 2的灵活运用 2、 一质点做匀变速直线运动,初速度v 0=2m/s,4s 内位移为20m ,求:(1)质点4s 末的速度;(2)质点2s 末的速度.九、对Δx =aT 2的理解与应用3、做匀加速直线运动的物体,从开始计时起连续两个4s 的时间间隔内通过的位移分别是48m 和80m ,则这个物体的初速度和加速度各是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二匀变速直线运动规律的应用
要点复习
1、匀变速直线运动规律及推论
2、初速度为零的匀变速直线运动规律及推论
针对性练习
1、某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2s听到石头落地声,
由此可知井深约为(不计声音传播时间,重力加速度g取10m/s2)()
A.10m
B. 20m
C. 30m
D. 40m
2、汽车以20 m/s的速度做匀速直线运动,刹车后的加速度为5m/s2,那么开始刹车后2 s
与开始刹车后6 s汽车通过的位移之比为()
A.1∶4 B.3∶5 C.3∶4 D.5∶9
3、如图所示,三块完全相同的木块固定在地板上,一初速度为v0的子弹水平射穿第三块木板
后速度恰好为零.设木板对子弹的阻力不随子弹的速度而变化,求子
弹分别通过三块木板的时间之比()
A、3∶2∶1
B、1∶2∶3
C、(3-2)∶(2-1)∶1
D、1∶(2-1) ∶(3-2)
4、一物体由静止开始做匀加速直线运动,加速度大小为a1,经时间t后做匀减速直线运动,
加速度大小为a2,若再经时间t恰能回到出发点,则a1∶a2应为 ( )
A.1∶1
B.1∶2
C.1∶3
D.1∶4
5、物体沿一直线运动,它在某段时间内中间位置处的速度为v1,在中间时刻的速度为v2.则
以下说法正确的是( )
A.当物体做匀加速直线运动时,v1>v2
B.当物体做匀减速直线运动时,v1>v2
C.当物体做匀加速直线运动时,v1<v2
D.当物体做匀减速直线运动时,v1<v2
6、一杂技演员,用一只手抛球、接球.他每隔0.40 s抛出一球,接到球便立即把球抛出,已
知除抛、接球的时刻外,空中总有4个球.将球的运动近似看作是竖直方向的运动,球到达的最大高度是(高度从抛球点算起,取g=10 m/s2) ( )
A.1.6 m
B.2.4 m
C.3.2 m
D.4.0 m
7、一个小石块从空中a点自由落下,先后经过b点和c点,不计空气阻力.已知它经过b点时
的速度为v,经过c点时的速度为3v.,则ab段与ac段位移之比为( )
A.1∶3
B.1∶5
C.1∶8
D.1∶9
8、一只气球以10 m/s的速度匀速上升,某时刻在气球正下方距气球6 m处有一小石子以20
m/s的初速度竖直上抛,若g取10 m/s2,不计空气阻力,则以下说法正确的是()
A.石子一定能追上气球
B.石子一定追不上气球
C.若气球上升速度等于9 m/s,其余条件不变,则石子在抛出后1 s末追上气球
D.若气球上升速度等于7 m/s,其余条件不变,则石子在到达最高点时追上气球
9、水滴从屋顶自由落下,经过高1.8m 的窗户,用时0.2s。

求屋顶到窗户上沿的高度。

3.2m
10、气球以5m/s的速度匀速上升,在高100m处,物体A从气球上落下,求物体A经过多
长时间落地?(不计空气阻力,g取9.8m/s2)5s
11、以54 km/h的速度行驶的火车因故需要在中途停车,如果停留的时间是1 min,刹车引
起的加速度大小是30 cm/s2,启动产生的加速度大小是50 cm/s2,求火车因临时停车所延误的时间?
12、火车紧急刹车后经7 s停止,设火车匀减速直线运动,它在最后1 s内的位移是2 m,则火车
在刹车过程中通过的位移和开始刹车时的速度各是多少?
13、一辆客车在平直公路上以30 m/s的速度行驶,突然发现正前方40 m处有一货车正以
20 m/s的速度沿同一方向匀速行驶,于是客车立即刹车,以2 m/s2的加速度做匀减速直线
运动,问此后的过程中客车能否会撞到货车上?
答案不会相撞
高考真题
1、(2010上海)降落伞在匀速下降过程中遇到水平方向吹来的风,若风速越大,则降落伞
A、下落的时间越短
B、下落的时间越长
C、落地时速度越小
D、落地时速度越大
2、(2011山东)如图所示,将小球a从地面以初速度v0竖直上抛的同时,将另一相同质量
的小球b从距地面h处由静止释放,两球恰在h/2处相遇(不计空气阻力)。


A.两球同时落地
B.相遇时两球速度大小相等
C.从开始运动到相遇,球a动能的减少量等于球b动能的增加量
D.相遇后的任意时刻,重力对球a做功功率和对球b做功功率相等
附加题
1、由于某种错误致使两列车相向行驶在同一轨道上,两车司机同时发现了
对方,同时刹车,设两车的行驶速度分别为54 km/h和36 km/h,刹车加速度分别为1.5 m/s2和0.5 m/s2,司机需在多远处同时发现对方才不会相碰?
2、有若干相同的钢球,从斜面上的某一位置每隔0.1 s无初速度地释放一颗,在连续释放若
干钢球后,对准斜面上正在滚动的若干钢球拍摄到如图所示的照片,测得AB=15 cm,BC=20 cm.求:
(1)拍摄照片时B球的速度.
(2)A球上面还有几颗正在滚动的钢球?。

相关文档
最新文档