1.1.2《集合间的基本关系》课件(新人教A版必修1)
合集下载
数学:1.1.2《集合间的基本关系1》课件(新人教A版必修1)1
课堂小结
子集:AB任意x∈A x∈B. AB x∈A,x∈B,但存在 真子集: x0∈B且x0A. 集合相等:A=B AB且BA. 空集:. 性质:①A,若A非空, 则A. ②AA. ③AB,BCAC.
课后作业:
2 1.已知集合A 1,3,2m 1 ,集合B 3 ,m , 若 B A ,求实数m。
例3设集合A={1, a, b},B={a, a2, ab},
若A=B,求实数a, b.
例4已知A={x | x2-2x-3=0},
B={x | ax-1=0},
若BA, 求实数a的值.
课堂练习
1.教科书7面练习第2、3题
2.教科书12面习题1.1第5题
补充练习:
1.判断正误: (×) (1)空集没有子集, (×) (2)空集是任何集合的真子集, (3)任一集合必有两个或两个以上子集, (×) (4)若B A,那么凡不属于集合A的元 (√) 素,则必不属于集合B。
2.下列命题正确的是(C )
A.无限集的真子集是有限集
B.任何一个集合必定有两个子集
C.自然数集是整数集的真子集
D. ﹛1﹜是质数集的真子集
a 则下列关系正 3.集合 M x源自3 x 4 , 确的是 ( D)
A.
a M B. a M C. a M D. a M
Venn图
1.子 集 A={1,2,3} C={1,2,3,4,5} 这时, 我们说集合A是集合C的子集.
(若x A, 则x C , 则A C )
2.集合相等 示例2:
A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形}, 有AB,BA,则A=B.
1.1.2集合间的基本关系(2)课件(新人教版A必修一)
6:子集有关的性质。
(1)任何一个集合是它本身的子集,即 A⊆A; (2) A⊆B, B⊆C⇒ A⊆C;
A⊊B, B⊊C ⇒ A⊊C。
上一页
例
(1)写出集合{a,b}的所有子集;
(2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集;
做一做
(4)写出∅的所有子集. 请归纳出规律来!
思考:
观察下面两个例子,你能发现两个集合间的关系 吗?
(1) A={1,2,3},B={1,2,3,4,5}
(2) 设A为高Biblioteka (2)班全体女生组成的集合,B为高一(2)班全体学生组成的集合。
共性:集合A中的任何一个元素都是集合B的元素
对于两个集合A,B,如果集合A中任意一个元 素都是B中的元素,就说这两个集合有包含关系, 称集合A为集合B的子集,记作:AB(或B⊉A)。
返回
练一练
元素个数与集合子集个数的关系:
集合
∅
{a} {a,b} {a,b,c} {a,b,c,d} …
集合元素的个数 集合子集个数 0 1
1 2 3 4 … n个元素
2 4 8 16 …
2n
返回
试一试
例:以下六个写法错误写法的个数( )
①{0} ∈ {0,1} ② ∅ ⊊{0}
③{0,-1,1} ⊆{-1,0,1} ④0 ∈ ∅ ⑤Z={全体整数} ⑥{(0,0)}={0}
做一做 例4:已知A{x|x=8m+14n,m,n ∈Z} , B ={x|x=2k,k ∈Z。 问题:(1)数2和集合A的关系如何? (2)集合A与集合B的关系如何 分析(1):2是否属于A,即2能否表示成 8m+14n形式; (2):判断两个集合A,B的关系先考察包 含关系,即A⊆B, B⊆A是否成立?两个都成立 则A=B。只有一个方面成立考虑是否是真子集如 两方都不成立则两集合不具备包含关系。
人教版高中数学必修1(A版) 1.1.2集合间的基本关系 PPT课件
回到目录
三、教师点拨
1.集合的相等
回到目录
三、教师点拨
2.真子集定义
一般地,若集合A中的元素都是集合B的元素, B中至少有一个元素不属于A。我们称集合A是 集合B的真子集。记作:
AÞ B
回到目录
三、教师点拨
2.真子集定义
回到目录
三、教师点拨
3.子集定义 如果集合A的任何一个元素都是集合B的元素, 那么,集合A就叫做集合B的一个子集.记作:
A B
说明:(1)子集包含相等与真子集两种情况, 任何一个集合都是它自身的子集; (2)空集是任何集合的子集,包括它本身;
回到目录
பைடு நூலகம்
三、教师点拨
3.子集的定义
回到目录
四、课堂小结
(1)集合相等定义 (2)真子集的定义 (3)子集的定义 (4)体会类比发现新结论与数形结合的思想
回到目录
自主探究 时间15分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨
1.集合的相等
一般地,如果集合A的每一个元素都是集合B的元素, 反过来集合B的每一个元素也都是集合A的元素,我们 就说集合A等于集合B。记作:
AB
这里的符号“=”是借用了数学中的等号,它表示两 个集合中的元素完全相同 ( 即两个集合中的元素个数 相等且相应的元素都相同).
标题
§1.1.2集合间的基本关系
§1.1.2集合间的基本关系
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景 山东人组成的集合为A,中国人组成的集 合为B, 某人说:“我是一个山东人”,
那我们马上能反应出这个人也是一个中 国人,集合A与集合B有什么关系呢?
人教版高中数学必修一1.1.2集合间的基本关系ppt课件
【类题试解】已知集合P={x|x2+x-6=0},M={x|mx-1=0},若
M P,求满足条件的实数m取值的集合Q.
【解析】P={x|x2+x-6=0}={-3,2}.∵M P,∴M=∅或M≠∅.
(1)当M=∅,即m=0时,满足M P.
(2)当M≠∅,即m≠0时,M={x|mx-1=0}={
=-3或2,解得m= 或 .
1 1, ∴a a≤-2.…………………………11分
2
a
1,
a 0, 综上可知,a≤-2或a=0或a≥2.…………………………12分
【失分警示】
【防范措施】 1.特别关注空集 此题含有条件A⊆B,解答此类含有集合包含关系的问题时,一定要考虑集合 为空集,此类问题往往因为对空集的关注不够而出现不必要的失误. 2.分类讨论的意识 本题中由于a的取值未限定,因而要考虑不等式组解的情况,即需要分a=0, <0三种情况讨论,也就是在解题时要有分类讨论的意识.
1.空集:指的是_____不__含__任__何_的元集素合,记作__,并规定: ∅
空集是________的子集. 任何集合
2.集合间关系具有的性质
(1)任何一个集合是它本身的_____,即______. (2)对于集合A,B,C,如果A⊆B,且B⊆C子,那集么_____. A⊆A
判断:(正确的打“√”,错误的打“×”) (1)集合{0}是空集.( ) (2)集合{x|x2+1=0,x∈R}是空集.( ) (3)空集没有子集.( ) 提示:(1)错误.集合{0}含有一个元素0,是非空集合. (2)正确.由于方程x2+1=0在实数范围内无解,故此集合是空集. (3)错误.空集是任何集合的子集,也是它本身的子集. 答案:(1)× (2)√ (3)×
1.1.2集合间的基本关系 课件2(人教A版必修1)
又 0∈N,但 0∉M,∴M⫋ N.
反思:判断两个集合间的关系时,主要是根据这两个集合中元素的特征,结合有
关定义来判断.对于用列举法表示的集合,只需要观察其元素即可得它们之间的
关系;对于用描述法表示的集合,要从所含元素的特征来分析,分析之前可以用
列举法多取几个元素来估计它们之间可能有什么关系,然后再加以证明.当
m=
.
解析:∵B⊆ A,5∈B,
∴5∈A.∴m=5.
答案:5
3.集合相等与真子集
定义
记法
如果集合 A 是
集
集合 B 的子集,
合
且集合 B 是集
相
合 A 的子集,那 A=B
等
么称集合 A 与
集合 B 相等
如果集合 A⊆ B,
真 子 集
但存在元素 x∈ B,且 x∉A,我们 就称集合 A 是 集合 B 的真子
题型二
判断集合间的关系
【例 2】 集合 M={x|x2+x-6=0},N={x|2x+7>0},试判断集合 M 和 N 的关系.
分析:明确集合 M 和 N 中的元素,再依据有关的定义判断.
解:M={-3,2},N=
x|x
7 2
}
.
∵-3>- 7 ,2>- 7 , 22
∴-3∈N,2∈N.∴M⊆ N.
M⊆ N 和 M⫋ N 均成立时,M⫋ N 较准确地表达了 M 和 N 的关系.
空集是任何非空集合的真子集, 即⌀ ⫋ A(A≠⌀ ).
【做一做 4】 集合 M={x∈R|2x2+3=0}中元素的个数是( ).
A.不确定
B.2
C.1
D.0
解析:由于方程 2x2+3=0 无实根,则 M=⌀ .
人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系
[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D
人教A版高中数学必修一《1.1.2集合间的基本关系》课件
1.∈,∉用在元素与集合之间,表示从属关 系;⊆,(或 )用在集合与集合之间,表示包含(真 包含)关系.
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=
2.a与{a}的区别:一般地,a表示一个元素, 而{a}表示只有一个元素的一个集合,我们常称之为 单元素集.1∈{1},不能写成1⊆{1}.
3.关于空集∅:空集是不含任何元素的集合, 它既不是有限集又不是无限集,不能认为∅={0}, 也不能认为{∅}=∅或{空集}=∅.
高中数学课件
(金戈铁骑 整理制作)
1.1.2集合间的基本关系
冠县一中 姚增珍
2012.9.7
1.理解集合之间包含与相等的含义,能识别给 定集合的子集.
2.在具体情境中,了解空集的含义.
自学导引
1.一般地,对于两个集合A、B,如果集合A中 _任__意__一__个__元素都是集合B中的元素,我们就说这两 个集合有包含关系,称集合A为集合B的子集,记作 _A_⊆__B_(或_B__⊇_A_),读作“_A_含__于__B_”(或“_B_包__含__A__”).
误区解密 因忽略空集而出错
【例4】设A={x|2≤x≤6},B={x|2a≤x≤a+ 3},若B⊆A,则实数a的取值范围是( )
A.{a|1≤a≤3}B.{a|a>3} C.{a|a≥1}D.{a|1<a<3}
错解:∵B⊆A,∴2aa+≥32≤6 , 解得 1≤a≤3,故选 A.
错因分析:空集是任何集合的子集,忽视这一 点,会导致漏解,产生错误结论.对于形如 {x|a<x<b}一类的集合,当a≥b时,它表示空集,解 题中要引起注意.
解析:(1)为元素与集合的关系,(2)(3)(4)为集 合与集合的关系.
易知a∈{a,b,c}; ∵x2+1=0在实数范围内的解集为空集, 故∅={x∈R|x2+1=0}; ∵{x|x2=x}={0,1}, ∴{0} {x|x2=x}; ∵x2-3x+2=0的解为x1=1,x2=2. ∴{2,1}={x|x2-3x+2=0}. 答案:(1)∈ (2)= (3) (4)=
高中数学新人教A版必修第一册 1.2 集合间的基本关系 课件(37张)
判断以下各组中集合之间的关系:
(1)A={x|x是12的约数},B={x|x是36的约数};
(2)A={x|x2-x=0},B={x∈R|x2+1=0};
(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方
形};
(4)M= {x|x=n,nZ} ,N= {x|x=1+n,nZ}.
【解析】由题意得1-2a=3或1-2a=a,解得a=-1或a= 1 .当a=-1时,A={1,3,-1},
3
B={1,3},符合条件.
当a= 1 时,A= { 1 ,3 ,1 } ,B= { 1 , 1 } ,符合条件.所以a的值为-1或 1 .
3
3
3
3
答案:-1或 1
3
本课结束
【知识生成】 1.子集:对于两个集合A,B,如果集合A中_任__意__一__个__元素都是集合B中的元素,那么 称集合A为集合B的子集. 记作:_A_⊆__B_(或_B_⊇__A_). 读作:“A包含于B〞(或“B包含A〞). 2.真子集:如果集合A⊆B,但存在元素__x_∈_B__,_且__x_∉_A,称集合A是集合B的真子集. 记作:A B(或B A).
3.以下四个集合中是空集的是 ( )
A.{∅}
B.{x∈R|x2+1=0}
C.{x|x<4或x>8}
D.{x|x2+2x+1=0}
【解析】选B.A,D选项各有一个元素,C项中有无穷多个元素,x2+1=0无实数解.
4.设集合A={1,3,a},B={1,1-2a},且B⊆A,那么a的值为________.
2
2
探究点二 子集、真子集的个数问题 【典例2】(1)集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},那么满足条件 A C B的集合C的个数为 ( )
新教材人教A版数学必修第一册课件:第一章1.2集合间的基本关系
(2)集合A:高一全体学生,集合B:高一全体男生
(3)集合M:所有等腰三角形,集合N:所有等边三角形
可以发现,在(1)(2)(3)中的两个集合A和B,集合B中的
每一个元素都是集合A中的元素,我们就说集合A包含集合B,或者说
集合B包含于集合A。像这样,对于两个集合A,B,如果集合B中任意
一个元素都是集合A中的元素,就称集合B为集合A的子集,
也可以是其他封闭曲线
②Venn图的优点是形象直观,缺点是公共特征不明显,画图时要注意
区分大小关系。
即时巩固
A和B两个集合的大小情况如图所示,则A和B的关系是(
A. ∈
B. ∈
B
A
C. ⊆
D. ⊆
【解】由Venn图易知B是A的子集,即 ⊆ ,选D
D
)
两个集合相等是什么意思?
a∈{ a, b, c }
由上述集合间的基本关系,我们可以得到如下结论:
(1)任何一个集合是它本身的子集,即 ⊆ ;
(2)对于集合A,B,C,如果 ⊆ ,且 ⊆ ,那么 ⊆
即:包含关系具有传递性
即时巩固
1.用适当的数学符号填空。
∈
∈
(1) _____ {, , }
(2) 0 _____ { 2 = 0}
举例说明,若A={1,2,3},B={1,2,3,4},C={1,2,5},则有
⊆ , ⊈ , ⊉
即时巩固
设集合A={0,1,2},集合B={ | = + , ∈ , ∈ },求A与B的关系。
【解】由题意易知的情况有如下几种:
= 0+0=0, = 0+1=1, = 0+2=2, = 1+1=2,
(3)集合M:所有等腰三角形,集合N:所有等边三角形
可以发现,在(1)(2)(3)中的两个集合A和B,集合B中的
每一个元素都是集合A中的元素,我们就说集合A包含集合B,或者说
集合B包含于集合A。像这样,对于两个集合A,B,如果集合B中任意
一个元素都是集合A中的元素,就称集合B为集合A的子集,
也可以是其他封闭曲线
②Venn图的优点是形象直观,缺点是公共特征不明显,画图时要注意
区分大小关系。
即时巩固
A和B两个集合的大小情况如图所示,则A和B的关系是(
A. ∈
B. ∈
B
A
C. ⊆
D. ⊆
【解】由Venn图易知B是A的子集,即 ⊆ ,选D
D
)
两个集合相等是什么意思?
a∈{ a, b, c }
由上述集合间的基本关系,我们可以得到如下结论:
(1)任何一个集合是它本身的子集,即 ⊆ ;
(2)对于集合A,B,C,如果 ⊆ ,且 ⊆ ,那么 ⊆
即:包含关系具有传递性
即时巩固
1.用适当的数学符号填空。
∈
∈
(1) _____ {, , }
(2) 0 _____ { 2 = 0}
举例说明,若A={1,2,3},B={1,2,3,4},C={1,2,5},则有
⊆ , ⊈ , ⊉
即时巩固
设集合A={0,1,2},集合B={ | = + , ∈ , ∈ },求A与B的关系。
【解】由题意易知的情况有如下几种:
= 0+0=0, = 0+1=1, = 0+2=2, = 1+1=2,
1.2 集合间的基本关系(教学课件)2024-2025学年高一年级(人教A版2019必修第一册)
跟踪训练2 满足{2,4}⫋M⊆{2,4,6,8,10}的集合M有__7___个.
由题意可得{2,4}⫋M⊆{2,4,6,8,10},可以确定集合M必含有元素2,4, 且含有元素6,8,10中的至少一个,因此集合M的元素个数分类如下: 含有三个元素:{2,4,6},{2,4,8},{2,4,10}; 含有四个元素:{2,4,6,8},{2,4,6,10},{2,4,8,10}; 含有五个元素:{2,4,6,8,10}. 故满足题意的集合M共有7个.
反思感悟
判断集合间关系的常用方法
跟踪训练1 (1)已知A={x|x是有理数},B={x|x是分数},C={x|x是实
数},那么A,B,C之间的关系是
A.A⊆B⊆C
√B.B⊆A⊆C
C.C⊆A⊆B
D.A=B⊆C
集合A,B,C的关系如图.
(2)已知集合M={x|x=2m-1,m∈Z},集合N={x|x=2n+1,n∈Z},则 M,N之间的关系为__M__=__N__.
例1 指出下列各对集合之间的关系: (1)A={x|-1<x<4},B={x|x-5<0};
集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A⊆B.
(2)A={x|x是等边三角形},B={x|x是等腰三角形}; 等边三角形是等腰三角形,故A⊆B.
(3)A={-2,2},B={(-2,-2),(-2,2),(2,-1),(2,2)};
§1.2 集合间的基本关系
学习目标
1.认识并理解两个集合间的包含关系. 2.掌握两个集合间的包含关系:能用符号和Venn图表示两个集合间的关系.(重点) 3.理解空集与子集、真子集之间的关系.(难点) 4.能计算子集和真子集与非空真子集的个数
1.2集合间的基本关系课件2024-2025学年高一上学期数学人教A版(2019)必修第一册 (1)
前者为集合之间关系,后者为元素与集合之间的关系.
【例5】 用适当的符号填空
1 5______{| < 0}
3 ∅________{ ∈ | 2 + + 1 = 0}
5 ∅________ 0
(7) Q
N
2 0_______{| 2 = 0}
(4) {0,1}_____N
(6) 1,2 ____{| 2 − 3 + 2 = 0}
A
的真子集共有
个,A的非空真子集共有
归纳
【例7】 若 , ⫋ ⊆ ,,, ,写出满足条件的集合A
课堂检测
1.集合 A={-1,0,1},A 的子集中含有元素 0 的子集共有(
A.2 个
B.4 个
C.6 个
D.8 个
)
【解析】 根据题意,在集合 A 的子集中,含有元素 0 的子集有{0}、{0,1}、
【答案】 B
4.设集合 A={x|1<x<2},B={x|x<a},若 A⊆B,则 a 的取值范围是(
A.{a|a≤2}
B.{a|a≤1}
C.{a|a≥1}
D.{a|a≥2}
【解析】 由 A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.
【答案】 D
)
5.已知集合 A={(x,y)|x+y=2,x,y∈N},试写出 A 的所有子集.
x x a 0 的解集为 ,
则实数 a 的取值范围是_____________.
x a 1 0
(a 0) 的解集为 ,
(2)不等式组
ax 0
则实数 a 的取值范围是_____________.
1.1.2_集合间的基本关系_课件(人教A版必修1)
③从集合之间的关系看,Ø⊆{Ø},Ø {Ø}. (2)分别写出集合{a},{a,b}和{a,b,c}的所有子集, 通过子集个数你能得出一个规律吗?
提示:集合{a}的所有子集是Ø,{a},共有2个子集; 集合{a,b}的所有子集是Ø,{a},{b},{a,b},共 有4个,即22个子集; 集合{a,b,c}的所有子集可以分成四类:即Ø;含 一个元素的子集:{a},{b},{c};含两个元素的子集{a, b},{a,c},{b,c};含三个元素的子集{a,b,c}.共有 8个,即23个子集. 规律:集合{a1,a2,a3,…,an}的子集有2n个;真 子集有(2n-1)个;非空真子集有(2n-2)个.
图6 当a<1时,B=Ф,此时B⊆A成立. 综述,当a≤2时,B⊆A.
• 类型三 集合相等及应用 • [例4] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}, 若A=B,求c的值.
[解]
a+b=ac ①若 2 a+2b=ac
,消去b得a+ac2-2ac
=0,即a(c2-2c+1)=0, 当a=0时,集合B中的三个元素相同,不满足集 合中元素的互异性, 故a≠0,c2-2c+1=0,即c=1. 当c=1时,集合B中的三个元素也相同, ∴c=1舍去,即此时无解.
[例3]
已知集合A={x|-2≤x≤5},B={x|m+
1≤x≤2m-1},若B⊆A,求实数m的取值范围.
-2≤m+1 2m-1≤5
[错解] 欲使B⊆A,只需
⇒-
3≤m≤3. ∴m的取值范围是-3≤m≤3.
[错因] 空集是一个特殊的集合,是任何集合 的子集,因此需要对B=Ø与B≠Ø两种情况分别确 定m的取值范围.
3.对于A B可以分为两类去讨论: (1)A=Ø,(2)A≠Ø,特别注意不要遗漏A=Ø的 情况。在解决子集的有关问题时,常常需要数形结 合,借助于数轴,通过图示找到相应的关系式,从而 使问题获得解决.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的特性 1.复习引入: 含义与表示 基本关系 元素和集合间的关系 集合的表示方法
集合
基本运算
2.类比学习 实数有相等关系,大小关系,如2=2,2<3,4>3等等, 类比实数之间的关系,你会想到集合间有什么关系?
包含
B A
真包含 相等
观察下面几个例子,你能发现两个 问题1: 集合间的关系吗?
1. A={1,3,5,7};B={1,2,3,4,5,6,7}.
解:
1、本节课主要学习了哪些基本概念?学习了哪些 集合符号?你能理解吗?集合的子集有哪些性质?
2、基本概念有: 子集
真子集 相等
= ≠
空集
3、基本符号有:
(1) A A 4、性质有:
(2)A B,且B C,则A C (3) A (4)若A≠ ,则 A。
注:可以类比实数的关系来帮助识记一些集合关系的符号。
2. 集合相等
文字语言 集合A与集合B的元素完全一样。 且 数学语言 图形语言 B(A) (Veen图)
3. 真子集
文字语言 若集合A是集合B的子集,且集合B中至少还有一个元
素不属于集合A,则称集合A是集合B的真子集。 若集合A B,但存在元素x∈B,且x A,我们把集合A 叫做集合B的真子集(proper subset), 记做:A B(或B A)。
数学语言
图形语言 (Veen图)
B
A
即
4. 空集
A
空集是任何非空集合的真子集,即若A≠ ,则
A。
5. 子集的性质
由上述集合之间的基本关系,可以得到下列结论: 1) 任何一个集合是它本身的子集,即 2) 对于集合A、B、C,如果 么 . ,且 ,那
C B
A
5. 子集的个数
写集合子集的一般方法:先写空集,然后按照集合元素从少 到多的顺序写出来,一直到集合本身.写集合真子集时除去集 合本身外其余子集都是它的真子集. 例 1.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
1. 子集的定义
文字语言 一般地,对于集合A、B我们就说集合A与集合B有
包含关系,称集合A为集合B的子集(subset)记做 读做“A包含于B”(或“B包含A”)
数学语言
对于集合A,B,若任意x∈A,都有x∈B,则称A B
图形语言 上面集合的包含关系我们可以用下面的图形来表示: (Veen图) 用平面上封闭曲线的内部代
必做题: 1、教材P12 5
2、已知M={x|2-x<0},集合N{x|ax=1},若N 实数a的取值范围。 M,求
1、已知集合 A {x | a x 5} 选做题:
B {x | x 2} 且满足 A B
D {正方形}
,求a的值。
2、设集合 A {四边形},B {平行四边形},C {矩形}
解:集合{a,b}的所有子集为ø,{a},{b},{a,b}.真子集为 ø ,{a},{b}.
练习1 写出集合{a,b,c}的所有子集. 解:集合{a,b,c}的所有子集为○,{a},{b},{c},{a,b}, {a,c},{b,c},{a,b,c}.
问题3 根据上面两例,你能归纳出子集的个数与集合 结论: 含有n个元素的集合的子集数为2n,真子集数为2n-1,非
沾化一中
孔超
教学目标
• • • • • • • • • • • • • • 1.知识与技能 (1)了解集合之间包含与相等的含义,能识别给定集合的子集。 (2)理解子集.真子集的概念。 (3)能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用. 2. 过程与方法 让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义. 3.情感.态度与价值观 (1)树立数形结合的思想 . (2)体会类比对发现新结论的作用. 二.教学重点.难点 重点:集合间的包含与相等关系,子集与其子集的概念. 难点:难点是属于关系与包含关系的区别. 三.学法与教学用具 1.学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系. 2.学习用具:多媒体.
答案
练习3 判断下列两个集合之间的关系: 1) A={1,2,4},B={x|x是8的约数}; 2) A={x|x=3k,k∈N},B={x|x=6z,z∈N}; 3) A={x|x是4与10的公倍数},B={x|x=20m,m∈N*}.
答案
练习4 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若 A=B,求c的值.
B
层含义?
A
表集合,这种图称为Venn 图.
问题2:实数中a≤b怎样理解?有几层意思?类比A 结论: B A 真子集
又有几 B
B(A) 集合相等
再看上面例子的3,5集合 3. A={x|x是两边相等的三角形};B={x|x是等腰三角形}. 5. A={x|x2-1=0};B={-1,1}.
在3中,由于“两边相等的三角形”是等腰三角形,因此集合A、B都是由所 有等腰三角形组成的集合,即集合A中任何一个元素都是集合B中的元素,同 时,集合B中任何一个元素都是集合A中的元素.这样集合A与集合B的元素是 一样的.
试用Venn图表示它们之间的关系。
2. A= {沾化一中高一4班的男生} B= {沾化一中高一4班的学生} . 3. A={x|x是两边相等的三角形};B={x|x是等腰三角形}. 4. A= {x∈Z|x>7} ;B= {x|x>7} . 5. A={x|x2-1=0};B={-1,1}.
结论:在上面五组集合中,我们可以发现:在第一 组中集合A 中的任何一个元素都是集合B的元素. 这时我们说集合A与集合B有包含关系.第二组的 集合A与集合 B也有这种关系。
空真子集数为2n-2。解题时可以依据上面的结论检验解 答正确与否.
元素个数的关系吗?
练习2 用适当的符号填空: 1)a____{a,b,c}; 2) 0____{x|x2=0}; 3)○ ____{x∈R|x2+1=0};4){0,1} ____N; 5){0} ____{x|x2=x}; 6){2,1} ____{x|x2-3x+2=0}.