最优化理论与算法 第7章 最优性条件

合集下载

最优化理论与方法

最优化理论与方法

最优化理论与方法综述李超雄最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

最优化方法的主要研究对象是各种管理问题及其生产经营活动。

最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。

实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。

这就是我理解的整个课程的流程。

在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。

下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。

20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。

因此最优化理论和算法迅速发展起来,形成一个新的学科。

至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。

最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。

最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。

这类问题普遍存在。

例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。

优化理论

优化理论

有限维空间的优化理论与算法
引言
刘红英 数学与系统科学学院
1.1 数学描述与例子
• 目 标:系统性能的一种“量的度量”(利润、时间、 势能)--任何数量或某些量的组合--数
• 变 量:目标所依赖的系统的“某些可控的特征” • 约束条件:经常变量以某种方式受限制(分子中电子密度
的量、贷款利率的量,不能是负的)
故必要条件即对所有 p,有
等价地
(一阶条件),G*半正定(二阶条件)
稳定点/驻点(stationary point):使得 g(x*)=0 的 x*
局部极小点的充分条件
定理. x*是严格局部极小点的充分条件是 ,G*正定.
例.考虑Rosenbrock函数
在x*=(1, 1)处 严格局部极小点-全局极小点 充分非必要:
优化问题的一般模型--数学规划问题
一个小例子
• 可行域/可行集 • 最优解/解 • 图解法
1
优化建模(modeling): 识别出给定问题的目标、变量和约束的过程。
• 建立恰当模型:第一步、最重要的一步(太简单-不能给 实际问题提供有用的信息;太复杂-不易求解)
• 选择特定算法:很重要--决定求解速度及质量(无通用优化 算法,有求解特定类型优化问题的算法)
积极(约束指标)集 x2
x*
x1 Lagrange函数:
一阶条件:KKT条件
正则性假设1:
定理(一阶条件). 若 x* 是局部极小点且在 x* 处正则性假设1成立,则存在
Lagrange乘子 使得
满足
◎ Karush-Kuhn-Tucker条件, KKT条件/KKT点
局部极小的条件-充分条件(续)
定理.可微凸函数的稳定点是全局极小点

最优化理论与优化算法的应用

最优化理论与优化算法的应用

最优化理论与优化算法的应用最优化理论和优化算法作为数学和计算机科学领域的重要研究内容,被广泛应用于各个领域,如工程、经济、物流和电子商务等。

本文将以实际案例为基础,探讨最优化理论和优化算法在不同领域的应用。

一、工程领域的应用工程领域常涉及复杂系统的设计和优化,最优化理论和优化算法可以提供有效的解决方案。

以工业制造为例,在制造过程中,如何合理地安排机器设备的流程和投入,以最大化产出或最小化成本,是一个典型的优化问题。

最优化算法如线性规划、整数规划和动态规划等可以帮助工程师在有限的资源条件下实现最佳组合。

二、经济领域的应用经济学领域的决策问题可以看作是最优化问题,通过最优化理论和优化算法可以得到经济系统的最优解。

例如,在资源的有限性和人力成本等因素的制约下,如何合理地分配资源和规划生产任务,使企业实现最大利润,是一个典型的经济优化问题。

最优化算法如线性规划、整数规划和动态规划等可以帮助经济学家在不同条件下进行决策,并达到最优的效果。

三、物流领域的应用物流领域是一个充满优化问题的领域,如何在有限时间和有限资源的情况下,实现物品的快速运输是一个重要问题。

最优化算法可以在多个因素制约下,通过对路线、车辆选择和装载策略等进行优化,实现物流系统的高效运作。

例如,旅行商问题是一个典型的物流优化问题,通过遗传算法和模拟退火算法等最优化算法,可以有效求解出最优的路径和最小的成本。

四、电子商务领域的应用随着电子商务的快速发展,如何提高在线交易的效率和用户体验成为了关键问题。

最优化理论和算法在电子商务领域的应用也愈发重要。

以推荐系统为例,通过分析用户行为和商品特征,最优化算法可以为用户推荐最感兴趣的商品,从而提高销售量和用户满意度。

此外,在电子商务中进行供应链优化、库存管理优化等问题中,最优化算法也发挥着重要作用。

综上所述,最优化理论和优化算法在工程、经济、物流和电子商务等领域的应用都能够提供有效的解决方案。

随着技术的不断进步和算法的优化,相信最优化理论和优化算法在未来的应用领域将会更加广泛,并为各行业的发展和创新提供强有力的支持。

最优化理论与算法

最优化理论与算法

最优化理论与算法(数学专业研究生)第一章 引论§ 引言一、历史与现状最优化理论最早可追溯到古老的极值问题,但成为一门独立的学科则是在20世纪四十年代末至五十年代初。

其奠基性工作包括Fritz John 最优性条件(1948),Kuhn-Tucker 最优性条件(1951),和Karush 最优性条件(1939)。

近几十年来最优化理论与算法发展十分迅速,应用也越来越广泛。

现在已形成一个相当庞大的研究领域。

关于最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:线性规划、非线性规划、动态规划、整数规划、几何规划、多目标规划、随机规划甚至还包括变分、最优控制等动态优化内容。

本课程所涉及的内容属于前者。

二、最优化问题的一般形式 1、无约束最优化问题min ()nx Rf x ∈ () 2、约束最优化问题min ()()0, ..()0, i i f x c x i E s t c x i I=∈⎧⎨≥∈⎩ ()这里E 和I 均为指标集。

§数学基础一、 范数 1. 向量范数max i x x ∞= (l ∞范数) ()11ni i x x ==∑ (1l 范数) ()12221()ni i x x ==∑ (2l 范数) ()11()np pi pi xx ==∑ (p l 范数) ()12()TAxx Ax = (A 正定) (椭球范数) ()事实上1-范数、2-范数与∞-范数分别是 p -范数当 p =1、2和p →∞时情形。

2.矩阵范数定义 方阵A 的范数是指与A 相关联并记做A 的一个非负数,它具有下列性质: ① 对于0A ≠都有0A >,而0A =时0A =; ② 对于任意k R ∈,都有kA k A =; ③ A B A B +≤+; ④ AB A B ≤; 若还进一步满足: ⑤ pp AxA x ≤则称之为与向量范数p g 相协调(相容)的方阵范数。

最优化理论与算法习题答案

最优化理论与算法习题答案

最优化理论与算法习题答案最优化理论与算法习题答案最优化理论与算法是应用数学中的一个重要分支,它研究如何在给定的约束条件下,找到一个使目标函数取得最优值的解。

在实际应用中,最优化问题广泛存在于各个领域,如经济学、管理学、物理学等。

本文将回答一些与最优化理论与算法相关的习题,帮助读者更好地理解和应用这一领域的知识。

1. 什么是最优化问题?最优化问题是指在给定的约束条件下,寻找一个使目标函数取得最优值的解。

其中,目标函数是需要最大化或最小化的函数,约束条件是对解的限制条件。

最优化问题可以分为无约束最优化和有约束最优化两种情况。

2. 什么是凸优化问题?凸优化问题是指目标函数和约束条件均为凸函数的最优化问题。

凸函数具有良好的性质,例如局部最小值即为全局最小值,因此凸优化问题的求解相对容易。

常见的凸优化问题有线性规划、二次规划等。

3. 什么是拉格朗日乘子法?拉格朗日乘子法是一种求解有约束最优化问题的方法。

它通过引入拉格朗日乘子,将有约束最优化问题转化为无约束最优化问题。

具体地,对于一个有约束最优化问题,我们可以构造拉格朗日函数,然后通过求解无约束最优化问题来获得原问题的解。

4. 什么是线性规划?线性规划是一种特殊的最优化问题,其中目标函数和约束条件均为线性函数。

线性规划在实际应用中非常广泛,例如在生产计划、资源分配等方面都有重要的应用。

线性规划可以使用单纯形法等算法进行求解。

5. 什么是整数规划?整数规划是一种最优化问题,其中变量需要取整数值。

与线性规划相比,整数规划的求解更加困难,因为整数约束条件使得问题的解空间变得离散。

常见的整数规划问题有旅行商问题、装箱问题等。

6. 什么是非线性规划?非线性规划是一种最优化问题,其中目标函数或约束条件为非线性函数。

非线性规划的求解相对复杂,通常需要使用迭代算法进行求解,例如牛顿法、拟牛顿法等。

非线性规划在实际应用中非常广泛,例如在经济学、工程学等领域都有重要的应用。

7. 什么是梯度下降法?梯度下降法是一种常用的优化算法,用于求解无约束最优化问题。

最优化理论与方法

最优化理论与方法

最优化理论与方法
近代科学技术发展迅猛,人类从不同的领域对事物的探索也日益深入,把握规律的重要性也日益凸显。

最优化理论与方法,就是人类探索规律的一种重要工具,也是科技发展的先锋派之一。

它被广泛应用于解决实际问题,成为众多科技领域的最佳实践方法。

最优化理论与方法,是理解和阐释许多复杂现象的有效方式。

它是一类工具,可以通过对复杂系统建模、设计实验并仿真分析,解决现实世界中的复杂问题。

它具有优势,能够让我们整合系统中的数据,分析出各种潜在的解决方案,以达到全局最优的效果。

最优化理论与方法,主要涉及优化原理、数学建模、数理算法等知识体系。

在建立数学模型时,意在求解满足一系列优化约束条件下,极小或极大化某一函数或变量,以达到系统最优化目标。

它采用各种优化算法,其中包括最小二乘法、牛顿法、拟牛顿法、多层约束算法和动态规划等,不仅可以实现数学模型的构建,而且可以对数学模型进行有效的优化计算。

当前,最优化理论与方法已在工业技术、决策与决策分析、知识工程、经济学等诸多领域中得到广泛应用,从而解决了实际中许多复杂问题。

例如,在决策分析中,它可以改善决策机制,从而使我们能够达到更完美的决策效果;在工程技术中,它可以为解决因参数设置不当而导致的质量问题提供有效方案;在机器学习领域,它可以为神经网络设计提供技术支持。

未来,随着科技的发展高速发展,最优化理论与方法将在解决实
际问题中发挥越来越大的作用,它将会帮助我们更好地理解世界,给我们更便捷地解决实际问题,从而为人类提供更大的实际利益和价值。

综上所述,最优化理论与方法,不仅是实现科学技术进步最有效方法之一,更是解决实际问题的重要工具,它将在解决实际问题中发挥越来越大的作用。

最优化理论与方法概述

最优化理论与方法概述

x 的二阶偏导
2 f X 2 f X x2x1 xnx1 2 f X 2 f X 2 x n x 2 x2 2 2 fX f X 2 x 2 x n x n
定义1:整体(全局)最优解:若x* D,对于一切 x D , 恒有 f x* f x 则称 x *是最优化问题的整体最优解。
) 定义2:局部最优解:若 x* D,存在某邻域 N ( x* ,使得对于 * 一切 x N ( x* ) D ,恒有 f x f x 则称 x *是最优化问题 的局部最优解。其中 N ( x* ) { x | x x* , 0}
例:求目标函数 f ( x) x12 x22 x32 2 x1 x2 2 x2 x3 3x3 的梯度和Hesse矩阵。 f X f X 解:因为 2 x1 2 x2 2 x2 2 x1 2 x3 3 x
1
x2
f X 2 x3 2 x2 x3
f x f x0 f x0 ( x x0 )
T
1 ( x x0 )T 2 f x0 ( x x0 ) o(|| x x0 ||2 ) 2
4、极小点及其判定条件
对于一元连续可微函数 ( ) ,有如下最优性条件:
(i )
(一阶必要条件) 若 *为 ( ) 的局部极小点,则 ( * ) 0 ;
T 2
t f X 0 tp p
T
3、 多元函数的Taylor展开
多元函数Taylor展开式在最优化理论中十分重要。 许多方法及其收敛性的证明都是从它出发的。
1 定理:设 f : Rn R具有二阶连续偏导数。则:

最优性条件

最优性条件

) f (x
(k )
) | | f ( x
( k 1)
) f ( x *) f ( x *) f ( x
)|
当f(x)二阶连续可微时
| f (x
( k 1)
) f (x
(k )
) | O (|| x
( k 1)
x
(k )
|| )
2
对于快速收敛的算法
| f (x
( k 1)
反证法.假设 G ( x *) 不 定 . 设 x x * d .

f ( x ) f ( x *)
1 2
d G ( x *) d o (|| g ( x *) || ).
2 T 2
由连续性知 x N ( x *), G ( x ) 不 定 .
, d , s .t . x * d N ( x *), 且 d G ( x *) d 0.
证明: 必要性显然.证明充分性. 因为f是可微的凸函数, g ( x *) 0,
T 所 以 f ( x ) f ( x *) g ( x *) ( x x *) f ( x *), x D .


即x 是 总体极小点.

考虑等式约束最优化问题
m in s .t .
f (x) c i ( x ) o , i 1, , m .


定理(二阶充分条件)
设 f : D R R 在 开 集 D上 二 阶 连 续 可 微 ,
n 1
则 x D是 f 的 一 个 严 格 局 部 极 小 点 的 充 分 条 件 是 g ( x ) 0 和 G ( x )是 正 定 矩 阵 .

最优化理论与方法

最优化理论与方法

最优化理论与方法最优化理论与方法是数学领域中的一个重要分支,它研究如何找到一个函数的最大值或最小值。

在实际应用中,最优化理论与方法被广泛应用于工程、经济、管理等领域,对于提高效率、降低成本、优化资源分配具有重要意义。

最优化问题的数学模型可以用数学函数来描述,通常包括目标函数和约束条件。

目标函数是需要优化的目标,而约束条件则是限制优化过程的条件。

最优化理论与方法的研究旨在寻找使目标函数取得最优值的变量取值,同时满足约束条件。

最优化问题可以分为线性规划、非线性规划、整数规划等不同类型。

线性规划是寻找线性目标函数在线性约束条件下的最优解,而非线性规划则是针对非线性目标函数和约束条件的最优化问题。

整数规划则是在变量取值受整数限制的条件下进行优化。

在最优化理论与方法中,常用的解法包括梯度下降法、牛顿法、拟牛顿法、单纯形法等。

这些方法各有特点,适用于不同类型的最优化问题。

梯度下降法是一种迭代算法,通过沿着目标函数梯度的反方向逐步更新变量的取值,以达到最优解。

牛顿法则利用目标函数的二阶导数信息进行迭代,收敛速度较快,但计算代价较高。

拟牛顿法是一种近似牛顿法,通过估计目标函数的Hessian矩阵来进行迭代。

单纯形法则是用于线性规划问题的一种解法,通过不断调整顶点的位置来逼近最优解。

除了上述经典的最优化方法外,近年来,元启发式算法如遗传算法、粒子群算法、模拟退火算法等也得到了广泛应用。

这些算法通过模拟自然界的进化、群体行为等机制来寻找最优解,适用于复杂的非线性、非凸优化问题。

最优化理论与方法的研究不仅在理论上有重要意义,也在实际应用中发挥着重要作用。

在工程领域,最优化方法被应用于设计优化、控制优化、资源分配等问题的求解。

在经济学中,最优化方法被用来优化生产计划、投资组合、市场营销策略等方面。

在管理学中,最优化方法被应用于生产调度、供应链优化、运输路径规划等方面。

总之,最优化理论与方法是一个具有重要理论意义和广泛应用价值的学科领域。

最优化理论与算法

最优化理论与算法

最优化理论与算法在当今的科技时代,最优化理论与算法已经成为解决各种实际问题的重要工具。

从经济决策到工程设计,从物流运输到人工智能,其应用几乎无处不在。

那么,什么是最优化理论与算法呢?简单来说,最优化就是在众多可能的选择中找到最好的那个。

想象一下你要从家去学校,有多种路线可供选择,你会选择距离最短、花费时间最少或者最省钱的那一条,这就是一个最优化的问题。

而最优化理论就是研究如何找到这样的最优解,算法则是实现这个目标的具体步骤和方法。

最优化问题可以分为无约束优化和约束优化两大类。

无约束优化问题就是在没有任何限制条件的情况下寻找最优解。

比如,找到一个函数的最小值或者最大值。

举个例子,对于函数 f(x) = x^2 2x + 3,我们要找到 x 使得 f(x) 最小。

通过求导并令导数为 0,可以得到 x = 1 时,f(x) 取得最小值 2。

约束优化问题则是在一定的条件限制下寻找最优解。

比如说,你有一定的预算去购买几种商品,每种商品都有价格和所能带来的满足感,你需要在不超过预算的情况下,让总的满足感最大。

这时候就需要考虑各种约束条件来找到最优的购买方案。

在解决最优化问题时,常用的算法有很多。

比如梯度下降法,它就像是在一个山坡上,沿着山坡最陡峭的方向往下走,逐步接近最低点。

这种方法简单直观,但也可能会陷入局部最优解,而找不到全局最优解。

还有牛顿法,它利用了函数的二阶导数信息,收敛速度比梯度下降法快,但计算复杂度较高。

此外,还有模拟退火算法、遗传算法等启发式算法。

模拟退火算法模仿了金属退火的过程,通过在搜索过程中随机地接受一些较差的解,避免陷入局部最优。

遗传算法则借鉴了生物进化的思想,通过选择、交叉和变异等操作来逐步优化解。

最优化理论与算法在实际生活中的应用非常广泛。

在工业生产中,为了提高生产效率、降低成本,需要对生产流程进行优化。

比如,在制造汽车的过程中,如何安排各个零部件的生产顺序,如何分配工人的工作时间,以使得整个生产过程最快、成本最低,这都可以通过最优化算法来解决。

最优化理论:理解最优解和最优化算法

最优化理论:理解最优解和最优化算法

局部最优解和全局最优解
全局最优解:在整个解空间中 的最优解,是真正的最优解
局部最优解和全局最优解的 区别与联系
局部最优解:在一定范围内的 最优解,不一定是全局最优
如何从局部最优解过渡到全 局最优解
最优解的性质
唯一性:在一定条件下,最优解是唯一的 存在性:在一定条件下,一定存在最优解 稳定性:在一定条件下,最优解是稳定的 可行性:在一定条件下,最优解是可行的
求解方法:常见的求 解线性规划的方法有 单纯形法、椭球法等。
优缺点:线性规划具有 简单易行、计算量小等 优点,但也可能存在无 解或无穷多解的情况。
非线性规划
定义:求解非线性 函数的最优解的问 题
特点:约束条件和 目标函数都是非线 性的
应用领域:经济、 金融、工程、运筹 等领域
最优化算法:梯度 下降法、牛顿法、 拟牛顿法等
最优化理论
汇报人:XX
目录
最优化问题的定义
01
最优解的概念
02
最优化算法的概述
03
最优化算法的应用
04
最优化算法的局限性和未 来发展
05
最优化问题的定 义
什么是最优化问题
分类:线性规划、非线性规 划、动态规划、整数规划等
最优化问题的定义:在所有可 行方案中选择最优方案,使得 目标函数达到最优值
应用领域:经济、 金融、工程、物 流等
算法类型:进化算 法、粒子群算法、 模拟退火算法等
案例分析:以实际 案例说明多目标规 划的应用和效果
最优化算法的局 限性和未来发展
最优化算法的局限性
计算复杂度高: 最优化算法通常 需要大量的计算 资源,对于大规 模问题,计算时 间较长。
对初始解敏感: 最优化算法的初 始解对最终结果 有很大影响,有 时会陷入局部最 优解而非全局最 优解。

最优化理论与方法

最优化理论与方法

最优化理论与方法
最优化理论是一门涉及数学、物理学和工程的多学科交叉的学科,它的目的是求解最优值问题,以满足某些特定的约束条件。

它主要分两大类:线性最优化和非线性最优化。

最优化理论在不同的领域中有着广泛的应用,比如科学计算、经济管理、装备设计以及系统优化等。

因此,最优化理论在现代社会生活中发挥着重要的作用。

最优化理论的本质是寻找一种方法,使得某些指标的值得到最大化或最小化。

可以用极值原理来描述最优化理论,即所有可能的参数空间函数都有一个极值,而最优解就是在这些极值中的最优的一种。

最优化理论可以用一种比较简单的方法来解决最优化问题,这种方法就是最优化方法,它提供了一种以精确或近似求解最优解的方法。

最优化方法主要有以下几种:随机搜索法、梯度下降法、优化逻辑控制法、最小二乘法、算法改进法、约束优化法、参数优化法、拟牛顿法、概率证明法、模糊规则搜索法等。

这些方法具有不同的特点,在不同的最优化问题中有不同的应用,具体应用哪种方法要根据具体问题来决定。

除了以上几种常用的最优化方法还有一些其他的最优化方法,比如逼近法、贪婪法、爬山法、遗传算法、粒子群算法等。

这些方法在特定的问题中也有其应用。

最优化理论和方法在不同场合中有着广泛的应用,它们的发展有助于我们更准确、更有效地解决各种各样的问题。

未来,最优化理论和方法将在更多的领域中发挥更大的作用,为我们社会带来更多的科
技进步。

综上所述,最优化理论和方法是一种为解决各种复杂最优化问题提供实用性解决方案的科学技术。

它们的发展可以改善人们的生活,帮助解决各类复杂问题,为整个社会发展和创新做出贡献。

最优化理论与算法完整版课件

最优化理论与算法完整版课件



n
xij ai
j
m
s.t xij bj
i1

xij 0
i 1, 2, , m
j 1, 2, n i 1, 2, , m j 1, 2, n
TP SHUAI
15
3 税下投资问题
• 以价格qi 购买了si份股票i,i=1,2,…,n
• 股票i的现价是pi
TP SHUAI
12
1. 食谱问题(续)
令x表示要买的奶的量,y为要买的蛋的量。食谱问题可以写 成如下的数学形式:
Min 3x +2.5y s.t. 2x + 4y 40
3x + 2y 50 x, y 0.
极小化目标函数
可行区域(单纯形) 可行解
运筹学工作者参与建立关于何时出现最小费用 (或者最大利润)的排序,或者计划,早期被标示为programs。 求最优安排或计划的问题,称作programming问题。
29
基本概念
Df 1. 1 设f(x)为目标函数,S为可行域,x0S,若对 每一个x S,成立f(x)f(x0),则称x0为极小化问题min f(x),
x S的最优解(整体最优解)
Df 1.2 设f(x)为目标函数,S为可行域,
若存在x0的邻域 N (x0 ) {x | x x0 , 0} 使得对每个x S N (x0),成立f (x) f (x0)
称为可行点,全体可行点组成的集合称为 可行集或可行域.如果一个问题的可行域 是整个空间,则称此问题为无约束问题.
TP SHUAI
28
基本概念
• 最优化问题可写成如下形式:
min f (x)

最优化理论与方法

最优化理论与方法

最优化理论与方法最优化是指从数量上的角度,以尽量减少成本或增加收益为目标,按照科学的方法和原则,系统地求解给定条件下最好的决策。

其中最优化理论和最优化方法是实现最优化的根本。

1、最优化理论最优化理论是一门广泛的理论,包括最优化的基本原理、最优化目标的定义、最优化参数的表示、最优化的数值模型以及求解最优化模型的方法。

(1)最优化的基本原理:最优化就是找出满足限制条件下最好的解决问题的方法,它是实现经济效益最大化的手段。

因此,最优化的基本原理是:在给定的约束条件下,优化给定的目标函数,寻求其最优解。

(2)最优化目标的定义:最优化目标指的是用以表示被优化的性能的函数,有时只是一个函数,有时可以是多个组合的函数。

例如,机器学习中的损失函数;优化调度中的时间耗费或成本函数等。

(3)最优化参数的表示:最优化参数用于描述优化过程中的自由参数。

它们是寻求最优解的主角,可以有数量上的约束,也可以没有约束。

(4)最优化的数值模型:最优化的数值模型是特定场合下,根据实际问题和最优化原理,把目标函数和约束条件表示为数学模型的过程。

(5)求解最优化模型的方法:求解最优化模型的方法指的是对特定最优化模型求解最优解的方法,主要有迭代法、梯度下降法、拟牛顿法、单纯形法及类比应用等。

2、最优化方法最优化方法是指用数学方法、统计方法、计算机技术等实际工具,在满足给定条件的情况下,尽可能求得最优解的技术,它是实现最优化的有效手段。

常用的最优化方法有线性规划、非线性规划、动态规划、博弈论、贪心法等。

(1)线性规划:线性规划是指在一系列约束条件下,优化一系列线性函数的方法。

它的目标是找到一个可行的决策,使目标函数达到最优值,要求目标函数和约束条件都是线性的。

(2)非线性规划:非线性规划是指在一系列非线性约束条件下,优化非线性函数的方法。

它的特点是目标函数和约束条件可以是非线性的,可以通过分析非线性函数的定义域和最优解,找到最优化解。

(3)动态规划:动态规划是指在一系列约束条件下,优化某一函数的最优解的过程,其特点是无论多少步,最优解都是一致的,具有很强的计算和递推性。

最优化理论与算法ppt

最优化理论与算法ppt

x 为的严格局部极小值点(极大值)
Page 17
凸集、凸函数与凸优化问题
凸组合:已知 D ,Rn任取k个点,如果存在常 数
k
使得ai
0
(i 1则, 2称,, k为) ai i 1
1
如果函数在点P(x, y) 是可微分的,那末函数在该点沿任意 方向L的方向导数都存在,且有
f f cos f sin
l x
y
其中为x轴到方向L的转角
Page 11
函数的方向导数与极值问题
梯度
函数在一点的梯度是这样一个向量, 它的方向与取得最 大方向导数的方向一致, 而它的模为方向导数的最大值。
(2) 若 f (x0)T P 0,则P的方向是函数在点x0 处的上升方向。
方向导数的正负决定了函数值 的升降,而升降的快慢就由它的 绝对值大小决定.绝对值越大, 升降的速度就越快
Page 14
结论:
(1)梯度方向是函数值的最速上升方向; (2)函数在与其梯度正交的方向上变化率为零; (3)函数在与其梯度成锐角的方向上是上升的,而在与其梯度
以 f (x) 的n个偏导数为分量的向量称为在处的梯度,
记为
f
(
x)
f (x) x1
,
f (x) ,
x2
,
f (x)T
xn
梯度也可以称为函数关于向量的一阶导数。
Page 12
Hesse矩阵
2 f (x)
x12
2 f (x)
2
f
( x)
H (x)
x2x1
2 f (x)
2c 0
xnx1
目标函数的等值面(线) 对于简单的问题,可用等值线或等值面来描述函数的

最优化理论与算法第二版教学设计

最优化理论与算法第二版教学设计

最优化理论与算法第二版教学设计一、课程背景随着社会的发展,各行各业对效率的要求越来越高。

优化理论与算法作为一门重要的数学工具,已经成为计算机科学、工业工程、运筹学、统计学等诸多领域必不可少的一部分。

本课程主要介绍常见的最优化算法、模型与理论,旨在让学生在课程学习中掌握优化问题的建模与求解方法,了解常见的优化算法及其应用,并培养学生解决实际问题的能力。

二、课程目标本课程旨在培养学生以下能力:•掌握最优化问题的概念与一般形式;•熟悉线性规划、整数规划、动态规划、贪心算法、分治算法、模拟退火等常见的最优化算法及其应用;•熟练运用MATLAB等工具对优化问题进行数值求解;•能够分析、解决实际问题中的优化问题。

三、教学大纲第一章最优化理论基础•最优化问题与应用•最优化问题的概率与形式化描述•不等式约束条件的最优化问题•拉格朗日乘数法第二章线性规划•线性规划的基本概念•线性规划模型的构建•单纯形法与其扩展算法•求解线性规划的MATLAB工具箱lpSolve第三章整数规划•整数规划的基本概念•分支限界法、割平面法等求解整数规划的方法•求解整数规划的MATLAB工具箱IntLinProg 第四章动态规划•动态规划的基本思想与模型•背包问题的动态规划算法•求解非线性规划的MATLAB工具箱fmincon 第五章贪心算法与分治算法•贪心算法的基本思想与模型•贪心算法求解集合覆盖、活动选择等问题•分治算法的基本思想与模型•分治算法求解归并排序、快速排序等算法第六章模拟退火与遗传算法•模拟退火算法的基本思想及其应用•遗传算法的基本思想及其应用•求解非线性规划的MATLAB工具箱fminsearch四、课程教学教学方式本课程为理论与实践相结合的课程,采用教师讲解、案例分析、课堂练习和课程论文等多种教学方式。

课程中将提供足够的例子和案例分析,以丰富课程内容。

教材主教材为《最优化理论与算法第二版》(作者:D.M.库珀等,译者:范玉平、钱启祥)。

最优化方法及其matlab程序设计 马昌凤 课后答案

最优化方法及其matlab程序设计 马昌凤 课后答案

yT
Gy)

[
1 2
(λx)T
G(λx)
+
1 2
(1

λ)yT G(1

λ)y
+
1 2
λxT
G(1

λ)y
+
1 2
(1

λ)yT Gλx]
=
1 2
λxT
G(1

λ)x
+
1 2
(1

λ)yT
Gλy

1 2
λxT
G(1

λ)y

1 2
(1

λ)yT
Gλx
2
= =
1 21 2
λxT λ(1
G(1

λ)(x
0 1.1459 1.8541 3.0000
0 0.7082 1.1459 1.8541
0 0.4377 0.7082 1.1459
0.4377 0.7082 0.8754 1.1459 0.7082 0.8754 0.9787 1.1459
(6)
0.7082 0.8115 0.8754 0.9787

y)
+
1 2
(1
− λ)(x − y)T G(x − y)
− >
λ)yT Gλ(y − x) 0 G正定保障了严格不等式成立。
反之,必要性:严格凸函数=》Hesse矩阵G正定.
类似,当对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx + (1 − λ)y) < λf (x) + (1 − λ)f (y).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又Hessian阵2
f'(x)=
2x1 0
0 2x2-2
2
f'(x
(1))=
2 0
0 2
,
2
f'(x
(2))=
2 0
0 2
2
f'(x
(3))=
2
0
0 2
,
2
f'(x
(4))=
2 0
0 2
由于2f'(x(1)), 2f'(x(3)), 2f'(x(4))不定或负定,仅2f'(x(2) )正定,
证明. 因 f 在 x* 二次可微,故对任意 x, 有
f(x)=f(x*)+f(x*)(x-x*)+(x-x*)H(x*)(x-x*)/2+||x- x*||2(x*; x- x*),
这里 (x*; x- x*) 0,当 xx*.
假设命题不真, x* 不是局部极小, 则存在序列 {xk }收敛到 x* 并使得 f(xk)<f(x*) 对每一 k成立。定义序列 (xk- x*)/|| xk- x*||=dk.
证明. 由 f(x) 在 x* 可微, 则
f(x*+d)=f(x*) + f(x*)d+||d||(x*;d),
其中 (x*;d) 0(当 0).
2020/12/20
最优化理论
4
7. 最优性条件-无约束3
移项且两边同除以( 0),得
(f(x*+d)-f(x*))/ = f(x*)d+||d||(x*;d)
2x2
令f'(x)=0,即4x13 2x1 2 0,2x2=0
解得驻点x*=(1,0)
又Hessian阵
2
f'(x)=
12
x12-2 0
0 2
2
f'(x*)=
10
0
0 2
正定,故x*=(1,0) 是局部极小点。
2020/12/20
最优化理论
10
7. 最优性条件-无约束9
例7.1.2 利用极值条件解下列问题:
矩阵 H(x*) 是半正定的
2020/12/20
最优化理论
5
7. 最优性条件-无约束4
证明(1). 若f(x*)0, 作 d=-f(x*). 则有 f(x*) d<0
由Th7.1.1 , 存在 > 0 使得 f(x*+d)<f(x*), (0, ), 此与
x* 为局部极小相矛盾,故 f(x*)=0.
由于 f(x*)d<0 且 (x*;d) 0 当 0. 从而存在 > 0 使得对 任意(0, ), f(x*)d+||d||(x*;d)<0 .
定理立明.
定理7.1.2-3(极小点的必要条件)设x*处是问题 (UNLP)的局部极小点.
(1)当 f(x) 在 x*可微时,则梯度 f(x*)=0. (2) 当f(x) 在 x*二次可微时. 则 f(x*)=0 且 Hessian
最优化理论与算法
§7, 最优性条件
2020/12/20
最优化理论
1
第七章 最优性条件
• 无约束问题的极值条件 • 约束极值问题的最优性条件 • 对偶及鞍点
2020/12/20
最优化理论
2
7. 最优性条件-无约束1
7.1无约束问题的极值条件 1,无约束极值问题 考虑非线性规划问题 min f (x), x En
驻点或平稳点.d(0)Rn, 既不是极大点也不是极小点的驻
点称为鞍点.
Th7.1.4 (二阶充分条件). 假设 f(x) 在 x*点二次可微,若 f(x*)=0 且 Hessian 矩阵 H(x*) 是正定的,则 x* 是(UNLP) 的一个(严格)局部极小点
2020/12/20
最优化理论
7
7. 最优性条件-无约束6
其中 f (x)是定义在En上的实值函数
——称为无约束极值问题(UNLP)
2020/12/20
最优化理论
3
7. 最优性条件-无约束2
2,必要条件 Th7.1.1(非极小点的充分条件) 设f(x)在点x*处可微, 若存在方向d(0)Rn,使得f(x*)'d<0, 则存在>0, 使得对任意(0,),有f(x*+d)<f(x*).此时,我们称 d 为f(x)在x*的一个下降方向.
4,充要条件 定理7.1.5 (充要条件). 假设 f(x):RnR 是 可微的凸函 数,则x* 是(UNLP)的全局最小点当且仅当f(x*)=0.
证明. (必要性)若 x* 全局最优, 由Th7.1.2, f(x*)=0. (充分性)设 f(x*)=0, 则 f(x*)(x-x*)=0 , x* En 由 f(x)可微凸,有(Th1.4.14)
(2). 给定任意向量 d. 由 f(x) 在 x*的二次可微性,有
f(x*+d)=f(x*) +f(x*)d+2dH(x*)d/2+ 2||d||2(x*;d) (I),
其中 (x*;d) 0( 0). 由(1)的证明有 f(x*)=0. 移项整理并两端除以 2, 得 f(x*+d)-f(x*)=dH(x*)d/2+||d|| 2(x*;d) (II).
min
f
(x)
1 3
x13
1 3
x23
x22
x1
解:先求驻点, 由于
f x1
x12
1, f x2
x22
2x2
令f'(x)=0,即12 1=0, x22 2x2 0
解得驻点x(1)=
1 0
,
x(2)=
1 2
,
x(3)=
-1
0
,x(4)=
-1
2
2020/12/20
最优化理论
11
7. 最优性条件-无约束10
则上述方程蕴含 d’kH(x*)dk/2+(x*; xk- x*)0 ( k)
但 对每一 k, ||dk||=1 ,从而{dkj } d, 当 kj , 这里 ||d||=1. 由f(x*)=0, 我们有 dH(x*)d0, 此与其正定性矛盾.
2020/12/20
最优化理论
8
7. 最优性条件-无约束7
f (x)f(x*)+ f(x*)(x-x*) = f(x*) 定理得证.
2020/12/20
最优化理论
9
7. 最优性条件-无约束8
例7.1.1 利用极值条件解下列问题:
min f (x) (x12 1)2 x12 x22 2x1
解:先求驻Байду номын сангаас, 由于
f x1
4x13
2x1
2, f x2
2 因 x* 局部极小, 对充分小 有f(x*+d)f(x*)
2020/12/20
最优化理论
6
7. 最优性条件-无约束5
由(II), 显见
2
d’H(x*)d/2+||d|| (x*;d)0
对充分小的 成立 , 对 0取极限, 则有 d’H(x*)d 0,
从而,H(x*) 半正定
3,二阶充分条件
定义1 若f(x)在点x*处可微,且f(x*)=0,则称x*为f(x)的一个
相关文档
最新文档