以平行四边形为背景的计算和证明(2)
2024年湖北武汉中考数学试卷试题解读及答案解析
2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。
在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。
试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。
与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。
试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。
例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。
填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。
在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。
因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。
平行四边形点坐标关系
平行四边形点坐标关系1.引言1.1 概述平行四边形是初中数学中的一个重要概念,它是由四条线段组成的四边形,其中相邻的两条边是平行的。
平行四边形在几何学以及应用数学中有着广泛的应用,研究平行四边形的点坐标关系对于解决各种几何问题有着重要的意义。
本文旨在详细介绍平行四边形的点坐标关系,通过分析平行四边形的定义、性质以及相关的公式,探讨平行四边形的各个点的坐标之间的关系,进而提供解决平行四边形相关问题的方法和思路。
首先,我们将介绍平行四边形的定义和性质,包括平行四边形的边和角的特点,以及它们与平行性的关系。
通过理解平行四边形的性质,我们可以更好地把握平行四边形的整体结构和特征。
接着,我们将重点讨论平行四边形的点坐标关系。
通过推导和分析,我们将给出平行四边形两对对角线的交点的坐标表示公式,以及边和对角线的中点、四个顶点之间的坐标关系。
这些公式和关系将为解决与平行四边形相关的几何问题提供宝贵的工具。
最后,我们将总结平行四边形的点坐标关系,并讨论其应用和意义。
平行四边形的点坐标关系在解决实际问题中有着广泛的应用,例如在建筑设计、地图制作等领域中,我们可以利用这些关系计算和描述不同点之间的位置关系,从而更好地解决空间布局和测量的需求。
通过深入研究平行四边形的点坐标关系,我们将能够更好地理解和应用平行四边形的性质,为解决与平行四边形相关的几何问题提供清晰的思路和方法。
希望本文能够对读者对平行四边形的认识和应用有所启发,并在几何学的学习和实践中发挥积极的指导作用。
1.2文章结构1.2 文章结构本文将围绕着平行四边形的点坐标关系展开讨论。
文章分为引言、正文和结论三个部分,每个部分的内容如下:1. 引言部分将对平行四边形进行概述,介绍其定义和性质。
我们将简要阐述平行四边形的几何特征,以及与它相关的基本概念和术语。
此外,还会介绍文章的结构以及目的,以帮助读者更好地理解文章的内容和结构。
2. 正文部分将重点讨论平行四边形的点坐标关系。
平行四边形四年级知识点
平行四边形四年级知识点平行四边形(包括特殊的平行四边形)中各性质、判定定理繁多;几何证明的方法亦可多条,学生极易搞混。
我们如何去灵活的记忆整理呢?下面小编给大家分享一些平行四边形四年级知识点,希望能够帮助大家,欢迎阅读!平行四边形四年级知识1平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的两条对角线互相平分;平行四边形是中心对称图形,对称中心是两条对角线的交点;平行四边形的判定:两组对边分别相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;矩形矩形特有的性质:矩形的四个角都是直角;矩形的对角线相等;(外垂直内相等)矩形的判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;菱形菱形特有的性质:四条边都相等;对角线互相垂直;(外相等内垂直)每条对角线平分一组对角;菱形的判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形;正方形正方形特有的性质:四条边都相等;四个角都是90°;对角线相等且互相垂直平分;每条对角线平分一组对角。
正方形的判定:四边相等,有三个角是直角的四边形是正方形;一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形;有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;平行四边形四年级知识21.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
2020年中考数学基础题型提分讲练 专题21 以平行四边形为背景的证明与计算(含解析)
专题21 以平行四边形为背景的证明与计算考点分析【例1】(2019·重庆中考真题)在ABCD 中,BE 平分ABC ∠交AD 于点E .(1)如图1,若30D ︒∠=,AB 6=求ABE ∆的面积;(2)如图2,过点A 作AF DC ⊥,交DC 的延长线于点F ,分别交BE ,BC 于点G ,H ,且 AB AF =.求证:ED AG FC -=.【答案】(1)32;(2)证明见解析.【解析】(1)解:作BO AD ⊥于O ,如图1所示:∵四边形ABCD 是平行四边形,∴AD BC ∥,AB CD ∥,AB CD =,30ABC D ︒∠=∠=,∴AEB CBE ∠=∠,30BAO D ︒∠=∠=, ∴1622BQ AB ==, ∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴ABE AEB ∠=∠, ∴6AE AB ==∴ABE ∆的面积11636222AE BO =⨯=⨯=; (2)证明:作AQ BE ⊥交DF 的延长线于P ,垂足为Q ,连接PB 、PE ,如图2所示:∵AB AE =,AQ BE ⊥,∴ABE AEB ∠=∠,BQ EQ =,∴PB PE =,∴PBE PEB ∠=∠,∴ABP AEP ∠=∠,∵AB CD ∥,AF CD ⊥,∴AF AB ⊥,∴90BAF ︒∠=,∵AQ BE ⊥,∴ABG FAP ∠=∠,在ABG ∆和FAP ∆中,90ABG FAP AB AF BAG AFP ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴(ASA)ABG AFP ∆≅∆,∴AG FP =,∵AB CD ∥,AD BC ∥,∴180ABP BPC ︒∠+∠=,BCP D ∠=∠,∵180AEP PED ︒∠+∠=,∴BPC PED ∠=∠,在BPC ∆和PED ∆中,BCP D BPC PED PB PE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)BPC PED ∆≅∆,∴PC ED =,∴---===.ED AG PC AG PC FP FC【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.【例2】(2019·山东初二期末)在正方形ABCD中,E是边CD上一点(点E不与点C、D 重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE 的中点M ,连结CM .过点C 作CG ⊥BE 交AD 于点G ,连结EG 、MG .若CM=3,则四边形GMCE的面积为 .【答案】(1)证明见解析;(2)2,9.【解析】感知:∵四边形ABCD 是正方形,∴AB=BC ,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF ⊥BE ,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF 和△BCE 中,90BAF CBE AB BCABC BCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ABF ≌△BCE (ASA );探究:(1)如图②,过点G 作GP ⊥BC 于P ,∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠ABC=90°,∴四边形ABPG 是矩形,∴PG=AB ,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF 和△CBE 中,90PQF CBE PQ BCPFG ECB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△PGF ≌△CBE (ASA ),∴BE=FG ;(2)由(1)知,FG=BE ,连接CM,∵∠BCE=90°,点M 是BE 的中点,∴BE=2CM=2,∴FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE ⊥CG ,∴S 四边形CEGM =12CG×ME=12×6×3=9, 故答案为:9.【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE 是解本题的关键.考点集训1.(2019·四川初三期末)在矩形ABCD 中,AB=12,P 是边AB 上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE ⊥CG ,垂足为E 且在AD 上,BE 交PC 于点F .(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;(2)如图2,①求证:BP=BF ;②当AD=25,且AE <DE 时,求cos ∠PCB 的值;③当BP=9时,求BE •EF 的值.【答案】(1)证明见解析;(2310;③108。
《平行四边形及其性质(一)》说课稿
2011年中学中青年教师说课稿《平行四边形及其性质(一)》说课稿武陵源二中杜猛各位评委、老师,你们好!今天我给大家说课的内容是湘教版八年级下册第三章第67页《平行四边形及其性质(一)》。
我将从以下几个方面对本节课进行讲述。
一、背景分析:1、学习任务平行四边形的性质是在学习了平行线和全等三角形之后编排的,是平行线和三角形知识的应用和深化。
在探究平行四边形的定义和性质的过程中,渗透学生类比,分类,数形结合的思想,培养学生观察,分析,发现问题并解决问题的能力。
同时在利用性质解决实际问题的过程中,进一步让学生感受数学源于生活,又服务于生活。
本节课的教学重点:平行四边形的定义及性质。
突破重点的方法:首先教师引导学生分组交流,学会用类比的方法,归纳出平行四边形的定义,接着让学生操作,从直观上得到性质,最后引导学生利用已有知识推理证明得到性质。
2、学生情况首先是学生心理特征,八年级学生具有好奇、好动、好表现的特点。
我们的课堂教学就要创设生动的教学情景,抓住学生的好奇心,通过学生动手操作,进一步调动学生的求知欲。
其次是学生的知识特征,此时学生动手能力强,合作交流能力融洽,但在归纳定义和性质时不够严密,而且推理能力和语言表达都比较薄弱。
因此在教学过程中,让学生主动交流,并通过教师的指导归纳,形成定义和定理。
本节课的教学难点:探究平行四边形的性质。
突破难点的方法:充分调动学生的自主学习,以及利用多媒体展示,使学生由直观的视觉认识提升为感性认识,最后上升为理性认识。
二、教学目标1、知识、技能目标:(1)理解平行四边形的定义和探究平行四边形的性质。
(2)了解平行四边形在生活中的应用,能根据平行四边形的性质解决实际问题。
2、教学目标:根据平行四边形的性质进行简单的计算,培养学生的推理能力和逻辑思维能力。
进一步提高学生应用知识解决数学问题的能力。
3、情感、态度目标:在应用平行四边形的性质的过程中培养独立思考的习惯,在数学学习活动中获得成功的体验。
2020年中考数学考点提分专题二十二 以特殊的平行四边形为背景的证明与计算(解析版)
2020年中考数学考点提分专题二十二以特殊的平行四边形为背景的证明与计算(解析版)考点分析【例1】(2020·安徽初三)(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【例2】(2019·江苏泰州中学附属初中初三月考)如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,(1)如图1,当F点落在边AD上时,求∠EDC的度数;(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=2时,求EG的长;(3)如图3,设EF与边AD交于点N,当tan∠ECD=13时,求△NED的面积.考点集训1.(2020·陕西初三期中)问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=63PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB 是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=°,所以∠BPC =∠AP′B=°,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=°,∠BPC=∠AP′B=°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1.求∠BPC 的度数和正方形ABCD的边长.2.(2019·云南初三月考)如图,矩形ABCD中,AB=4,AD=3,E是边AB上一点,将△CBE沿直线CE对折,得到△CFE,连接DF.(1)当D、E、F三点共线时,证明:DE=CD;(2)当BE=1时,求△CDF的面积;(3)若射线DF交线段AB于点P,求BP的最大值.3.(2019·江苏初二期末)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.(1)直接写出AM=;(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.①AP=,AQ=;②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)4.(2019·江苏初二期末)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.5.(2020·山东初三期末)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.6.(2020·深圳市龙岗区石芽岭学校初三月考)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.7.(2020·河南初三)如下图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF 与线段EG 的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由: (3)拓展延伸:如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =、BC b ,求EF EG的值. 8.(2020·江苏初二期中)如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图1,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长;(2)如图2,当折痕的另一端F 在AD 边上且BG =10时,①求证:△EFG 是等腰三角形;②求AF 的长;(3)如图3,当折痕的另一端F 在AD 边上,B 点的对应点E 到AD 的距离是4,且BG =5时,求AF 的长.9.(2019·河南初三期中)正方形ABCD 与正方形DEFG 按如图1放置,点A ,D ,G 在同一条直线上,点E 在CD 边上,AD =3,DE 2,连接AE ,CG .(1)线段AE 与CC 的关系为______;(2)将正方形DEFG 绕点D 顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG 绕点D 顺时针旋转一周的过程中,当∠AEC =90°时,请直接写出AE 的长.10.(2019·云南初三)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,(1)求证:△CBE ≌△CPE ;(2)求证:四边形AECF 为平行四边形;(3)若矩形ABCD 的边AB =6,BC =4,求△CPF 的面积.11.(2019·江西初三期中)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、•D•作BE ⊥PA 、DF ⊥PA ,垂足为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系,若点P 在DC 的延长线上(如图②),那么这三条线段的长度之间又有怎样的数量关系?若点P 在CD 的延长线上呢(如图③)?请分别直接写出结论.(2)请在(1)中的三个结论中选择一个加以证明.12.(2020·河北初三期末)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 的延长线上,且满足90MAN ∠=︒,连接MN 、AC ,MN 与边AD 交于点E .(1)求证:AM AN =;(2)如果2CAD NAD ∠=∠,求证:2AN AE AC =⋅.2020年中考数学考点提分专题二十二以特殊的平行四边形为背景的证明与计算(解析版)考点分析【例1】(2020·安徽初三)(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)24cm;(3)存在,过E作EP⊥AD交AC于P,则P就是所求的点,证明见解析.【解析】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,由折叠的性质可得:OA=OC,AC⊥EF,在△AOE和△COF中,∵EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形,∴AF=AE=10cm,∵四边形ABCD是矩形,∴∠B=90°,∴S△ABF=12AB•BF=24cm2,∴AB•BF=48(cm2),∴AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),∴AB+BF=14(cm)∴△ABF的周长为:AB+BF+AF=14+10=24(cm).(3)证明:过E作EP⊥AD交AC于P,则P就是所求的点.当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°,∵在平行四边形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF,∴OE=OF∴四边形AFCE是菱形.∴∠AOE=90°,又∠EAO=∠EAP,由作法得∠AEP=90°,∴△AOE∽△AEP,∴AE AOAP AE,则AE2=AO•AP,∵四边形AFCE是菱形,∴AO=12 AC,∴AE2=12 AC•AP,∴2AE2=AC•AP.【点睛】本题考查翻折变换(折叠问题);菱形的判定;矩形的性质,相似三角形的判定和性质,综合性较强,掌握相关性质定理,正确推理论证是解题关键.【例2】(2019·江苏泰州中学附属初中初三月考)如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,(1)如图1,当F点落在边AD上时,求∠EDC的度数;(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=2时,求EG的长;(3)如图3,设EF与边AD交于点N,当tan∠ECD=13时,求△NED的面积.【答案】(1)15°;(2)3;(3)18 5【解析】解:(1)如图1中,作EH⊥BC于H,EM⊥CD于M.则四边形EMCH是矩形.∵四边形ABCD是正方形,∴BA=BC=CD,∠ABC=∠BCD=90°,∵BC=BE,∴AB=BE=CD,在Rt△BFA和Rt△BFE中,BF BF AB BE=⎧⎨=⎩,∴Rt△BFA≌△Rt△BFE(HL),∴∠ABF=∠EBF=30°,∵∠ABC=90°,∴∠EBC=30°,∴EH=MC=12BE=12CD,∴DM=CM,∵EM⊥CD,∴ED=EC,∵∠BCE=12(180°﹣30°)=75°,∴∠EDC=∠ECD=15°.(2)如图2中,连接BM、BG.∵AM=2,∴DM=AD﹣AM=4,由(1)可知△BMA≌△BME,△BGE≌△BGC,∴AM=EM=2,EG=CG,设EG=CG=x,则DG=6﹣x.在Rt△DMG中,MG2=DG2+DM2,∴(2+x)2=(6﹣x)2+42,∴x=3,∴EG=3.(3)如图3中,连接BN,延长FE交CD于G,连接BG.AN=NE,EG=CG,∵BE=BC,∴BG垂直平分CE,∴∠ECG+∠BCG=90°,∵∠GBC+∠ECB=90°,∴∠ECD=∠GCB,∴tan∠GBC=tan∠ECD=13,∴CGBC=13,∴CG=13BC=2,∵CD=6,∴DG=CD﹣CG=4,设AN=EN=y,则DN=6﹣y,在Rt△DNG中,(6﹣y)2+42=(2+y)2,解得:y=3,∴AN=NE=3,DN=3,NG=5,∴S△NED=35•S△DNG=35×12×3×4=185.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.考点集训1.(2020·陕西初三期中)问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=°,所以∠BPC =∠AP′B=°,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=°,∠BPC=∠AP′B=°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA PB,PC=1.求∠BPC 的度数和正方形ABCD的边长.【答案】(1)∠AP′B =150°,∠BPC =∠AP′B =150°,等边三角形ABC 7;(2)∠BPC =135°,正方形ABCD 5【解析】(1)∵等边△ABC ,∴∠ABC=60°,将△BPC 绕点B 逆时针旋转60°得出△ABP′,∴AP′=CP=1,3,∠PBC=∠P′BA ,∠AP′B=∠BPC ,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴3BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP 2,∴∠AP′P=90°,∴∠BPC=∠AP′B=90°+60°=150°,过点B 作BM ⊥AP′,交AP′的延长线于点M ,∴∠MP′B=30°,BM=32由勾股定理得:P′M=32, ∴AM=1+32=52, 由勾股定理得:22=7AM BM故答案为:150°7(2)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,2,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=12(180°-90°)=45°,由勾股定理得:EP=2,∵AE=1,5EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°,过点B作BF⊥AE,交AE的延长线于点F;∴∠FEB=45°,∴FE=BF=1,∴AF=2;∴在Rt△ABF中,由勾股定理,得5∴∠BPC=135°5答:∠BPC的度数是135°,正方形ABCD5【点睛】本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.2.(2019·云南初三月考)如图,矩形ABCD中,AB=4,AD=3,E是边AB上一点,将△CBE沿直线CE对折,得到△CFE,连接DF.(1)当D、E、F三点共线时,证明:DE=CD;(2)当BE=1时,求△CDF的面积;(3)若射线DF交线段AB于点P,求BP的最大值.【答案】(1)见解析;(2)245;(3)47【解析】证明:(1)∵四边形ABCD是矩形∴AB=CD=4,AD=BC=3,AB∥CD,∴∠DCE=∠CEB∵△CBE翻折得到△CFE∴∠FEC=∠CEB∴∠DCE=∠FEC∴DE=CD(2)如图1,延长EF交CD的延长线于点G,∵四边形ABCD是矩形∴AB=CD=4,AD=BC=3,AB∥CD,∴∠DCE=∠CEB∵△CBE翻折得到△CFE∴∠FEC=CEB,CF=BC=3,EF=BE=1,∠CFE=90°∴∠DCE=∠FEC,∠CFG=90°∴CG=EG,∴GF=GE﹣EF=CG﹣1∵在Rt△CGF中,CG2=CF2+GF2,∴CG2=9+(CG﹣1)2,解得:CG=5∵△CDF与△CGF分别以CD、CG为底时,高相等∴45CDFCGFS CDS CG==VV∴S△CDF=45S△CGF=413452⨯⨯⨯=245(3)如图2,过点C作CH⊥DP于点H,连接CP,∵CD∥AB∴∠CDP=∠APD,且∠A=∠CHD=90°∴△ADP∽△HCD∴CD CHDP AD==DHAP,∵CH≤CF,CF=BC=AD=3∴CH≤3∴当点H与点F重合时,CH最大,DH最小,AP最小,BP最大,此时,在△ADP与△HCDAPD CDPA CHD90AD CH︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△ADP≌△HCD(AAS)∴CD=DP=4,AP=DF∵AP=22DP AD-=7∴BP的最大值为4﹣7.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、勾股定理及相似三角形的判定与性质.3.(2019·江苏初二期末)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.(1)直接写出AM=;(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.①AP=,AQ=;②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)【答案】(1)2(2)①2x,x;②S222x x=-+(0<x≤2.【解析】解:(1)∵正方形ABCD的边长为4,∴对角线AC22AB==2,又∴AM12AC==2.故答案为:2.(2)①Q是AP的中点,设PQ=x,∴AP=2PQ=2x,AQ=x.故答案为:2x;x.②如图:∵以PQ为对角线作正方形,∴∠GQM=∠FQM=45°∵正方形ABCD对角线AC、BD交于点M,∴∠FMQ=∠GMQ=90°,∴△FMQ和△GMQ均为等腰直角三角形,∴FM=QM=MG.∵QM=AM﹣2x,∴S12=FG•QM()12222x x=⋅,∴S222x x=-+,∵依题意得:20xx⎧⎪⎨⎪⎩>>,∴0<2,综上所述:S222x x=-+(0<2),【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.4.(2019·江苏初二期末)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.【答案】(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解析】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.【点睛】此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.5.(2020·山东初三期末)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH ∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.【答案】(1)见解析;(2)EM=5 4【解析】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5.∵AD∥EF,∴53EM EFDM AD==,且DE=2.∴EM=54.【点睛】本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,综合性较强难度大灵活运用这些知识进行推理是本题的关键.6.(2020·深圳市龙岗区石芽岭学校初三月考)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.【答案】(1)证明见解析;(2)23【解析】解:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC.∴∠ANM=∠CMN.∴∠CMN=∠CNM.∴CM=CN.(2)过点N作NH⊥BC于点H,则四边形NHCD是矩形.∴HC=DN,NH=DC.∵△CMN的面积与△CDN的面积比为3:1,∴12312CMNCDNMC NHS MCS NDDN NH===VVgg.∴MC=3ND=3HC.∴MH=2HC.设DN=x,则HC=x,MH=2x,∴CM=3x=CN.在Rt △CDN 中,2222DC CN DN x =-=,∴HN=22x .在Rt △MNH 中,2223MN MH HN x =+=,∴2323MN x DF x==. 7.(2020·河南初三)如下图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F .另一边交CB 的延长线于点G .(1)观察猜想:线段EF 与线段EG 的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =、BC b =,求EF EG的值. 【答案】(1)EF EG =;(2)成立,证明过程见解析;(3)EF b EG a =. 【解析】(1)EF EG =,理由如下:由直角三角板和正方形的性质得90ED EB D EBC BED GEF =⎧⎨∠=∠=∠=∠=︒⎩9090FED BEF GEB BEF D EBG ∠+∠=∠+∠=︒⎧∴⎨∠=∠=︒⎩ FED GEB ∴∠=∠在FED ∆和GEB ∆中,90FED GEB ED EBD EBG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FED GEB ASA ∴∆≅∆EF EG ∴=;(2)成立,证明如下:如图,过点E 分别作,EH BC EI CD ⊥⊥,垂足分别为,H I ,则四边形EHCI 是矩形90HEI ∴∠=︒90,90FEI HEF GEH HEF ∴∠+∠=︒∠+∠=︒FEI GEH ∴∠=∠由正方形对角线的性质得,AC 为BCD ∠的角平分线则EI EH =在FEI ∆和GEH ∆中,90FEI GEH EI EHFIE GHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FEI GEH ASA ∴∆≅∆EF EG ∴=;(3)如图,过点E 分别作,EM BC EN CD ⊥⊥,垂足分别为,M N同(2)可知,FEN GEM ∠=∠由长方形性质得:90,90,D ENC ABC EMC AD BC b ∠=∠=︒∠=∠=︒==//,//EN AD EM AB ∴,CEN CAD CEM CAB ∴∆~∆∆~∆,EN CE EM CE AD CA AB CA∴== EN EM AD AB ∴=,即EN AD b EM AB a== 在FEN ∆和GEM ∆中,90FEN GEM FNE GME ∠=∠⎧⎨∠=∠=︒⎩∴∆~∆FEN GEMEF EN b∴==.EG EM a【点睛】本题考查了正方形的性质、矩形的性质、三角形全等的判定定理与性质、相似三角形的判定定理与性质,较难的是题(3),通过作辅助线,构造两个相似三角形是解题关键.8.(2020·江苏初二期中)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长;(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:△EFG是等腰三角形;②求AF的长;(3)如图3,当折痕的另一端F在AD边上,B点的对应点E到AD的距离是4,且BG=5时,求AF的长.【答案】(1)AF=3;(2)①见解析;②AF=6;(3)AF=1【解析】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG,∴△EFG是等腰三角形;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH=2222108EF HE-=-=6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为4,∴EM=4,EN=8﹣4=4,在Rt△ENG中,EG=BG=5,∴GN222254EG EN-=-3,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EK KM EM EG EN GN==,即4 543 EK KM==,解得EK=203,KM=163,∴KH=EH﹣EK=8﹣203=43,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FH KHEM KM=,即431643FH=,解得FH=1,∴AF=FH=1.【点睛】此题考查折叠的性质,勾股定理,相似三角形的判定及性质定理,每个小问的问题都是求AF的长度,故解题中注意思路和方法的总结,(3)中的解题思路与(2)相类似,求出FH问题得解,故将问题转化是解题的一种特别重要的思路.9.(2019·河南初三期中)正方形ABCD与正方形DEFG按如图1放置,点A,D,G在同一条直线上,点E 在CD边上,AD=3,DE=2,连接AE,CG.(1)线段AE与CC的关系为______;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG绕点D顺时针旋转一周的过程中,当∠AEC=90°时,请直接写出AE的长.【答案】(1)AE=CG,AE⊥CG;(2)仍然成立;理由见解析;(3)AE的长为2+1或2﹣1.【解析】(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;(3)如图3﹣1,当点E旋转到线段CG上时,过点D作DM⊥AE于点M,∵∠AEC=90°,∠DEG=45°,∴∠AED=45°,∴Rt△DME是等腰直角三角形,DE=1,∴ME=MD=2在Rt⊈△AMD中,ME=1,AD=3,∴AM,∴AE =AM+ME =22+1; 如图3﹣2,当点E 旋转到线段CG 的延长线上时,过点D 作DN ⊥CE 于点N ,则∠END =90°,∵∠DEN =45°,∴∠EDN =45°,∴Rt △DNE 是等腰直角三角形,∴NE =ND =22DE =1, 在Rt △CND 中,ND =1,CD =3,∴CN =22CD ND -=2231-=22,∴CE =NE+CN =22+1,∵AC =2AD =32,∴在Rt △AEC 中,AE =22AC CE -=22(32)(221)-+=22﹣1,综上所述,AE 的长为22+1或22﹣1.【点睛】本题考查全等三角形的判定(SAS )与性质,正方形的性质,旋转的性质以及勾股定理,解题关键是在第(3)问中能够根据题意分情况讨论并画出图形,才能保证解答的完整性.10.(2019·云南初三)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,(1)求证:△CBE ≌△CPE ;(2)求证:四边形AECF 为平行四边形;(3)若矩形ABCD 的边AB =6,BC =4,求△CPF 的面积.【答案】(1)见解析;(2)见解析;(3)4225【解析】 (1)解:由折叠可知,EP =EB ,CP =CB ,∵EC =EC ,∴△ECP ≌△ECB (SSS ).(2)证明:由折叠得到BE =PE ,EC ⊥PB ,∵E 为AB 的中点,∴AE =EB =PE ,∴AP ⊥BP ,∴AF ∥EC ,∵AE ∥FC ,∴四边形AECF 为平行四边形;(3)过P 作PM ⊥DC ,交DC 于点M ,在Rt △EBC 中,EB =3,BC =4, 根据勾股定理得:2222345EC EB BC =+=+=1122EBC S EB BQ EC BQ =⋅=⋅V Q ,341255EB BC BQ EC ⋅⨯∴===, 由折叠得:BP =2BQ =245, 在Rt △ABP 中,AB =6,BP =245, 根据勾股定理得: 22222418655AP AB BP ⎛⎫=-=-= ⎪⎝⎭, ∵四边形AECF 为平行四边形,∴AF =EC =5,FC =AE =3,∴PF =5﹣185=75, ∵PM ∥AD ,∴△FPM ∽△FADPF PM AF AD ∴=,即7554PM = 解得:PM =2825, 则S △PFC =12FC•PM =12×3×2825=4225.【点睛】本题考查的是利用折叠性质来证明三角形全等和平行四边形四边形,还考查了利用勾股定理、面积公式来求三角形的边长,利用相似三角形的性质对应边成比例来求出三角形的高,进而求出三角形的面积.本题第(3)中求也可利用△APB ∽△EBC ,对应边成比例AP BA BE EC=,求AP ,这样比较简便. 11.(2019·江西初三期中)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、•D•作BE ⊥PA 、DF ⊥PA ,垂足为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系,若点P 在DC 的延长线上(如图②),那么这三条线段的长度之间又有怎样的数量关系?若点P 在CD 的延长线上呢(如图③)?请分别直接写出结论.(2)请在(1)中的三个结论中选择一个加以证明.【答案】(1)图①中,BE=DF+EF ;图②中,BE=DF-EF ;图③中,BE=EF-DF ;(2)见解析【解析】解:(1)在正方形ABCD 中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵BE ⊥PA ,DF ⊥PA ,∴∠AEB=∠DFA=90°,∠ABE+∠BAE=90°,∴∠ABE=∠DAF ,在△ABE 和△DAF 中,90ABE DAF AEB DFA AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△DAF(AAS),∴AE=DF ,AF=BE ,如图①,∵AF=AE+EF ,∴BE=DF+EF ,如图②,∵AE=AF+EF ,∴BE = DF -EF ,如图③,∵EF=AE+AF ,∴BE = EF -DF(2)证明:如图题①,∵ABCD 是正方形,∴AB=AD ,∵BE ⊥PA ,DF ⊥PA ,∴∠AEB=∠AFD=90°,∠ABE+∠BAE=90°.∵∠DAF+∠BAE=90°,∴∠ABE=∠DAF ,∴Rt △ABE ≌Rt △DAF ,∴BE=AF ,AE=DF ,而AF=AE+EF ,∴BE=DF+EF ;【点睛】本题主要考查了正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题的关键.12.(2020·河北初三期末)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 的延长线上,且满足90MAN ∠=︒,连接MN 、AC ,MN 与边AD 交于点E .(1)求证:AM AN =;(2)如果2CAD NAD ∠=∠,求证:2AN AE AC =⋅.【答案】(1)见解析;(2)见解析【解析】解:证明(1)∵四边形ABCD 是正方形,∴AB =AD ,∠CAD =∠ACB =45°,∠BAD =∠CDA =∠B =90°,∴∠BAM +∠MAD =90°,∠ADN =90°∵∠MAN =90°,∴∠MAD +∠DAN =90°,∴∠BAM =∠DAN ,且AD=AB,∠ABC=∠ADN=90°∴△ABM≌△ADN(ASA)∴AM=AN,(2)∵AM=AN,∠MAN=90°,∴∠MNA=45°,∵∠CAD=2∠NAD=45°,∴∠NAD=22.5°∴∠CAM=∠MAN﹣∠CAD﹣∠NAD=22.5°∴∠CAM=∠NAD,∠ACB=∠MNA=45°,∴△AMC∽△AEN∴ANAC=AEAM,且AN=AM,∴AN2=AE•AC【点睛】本题主要考查正方形的性质,全等三角形和相似三角形的判定及性质,掌握正方形的性质,全等三角形和相似三角形的判定及性质是解题的关键.。
平行四边形的面积说课稿人教版8篇
平行四边形的面积说课稿人教版8篇平行四边形的面积说课稿人教版8篇说课稿通常包括教学设计的背景与依据、教学目标的设定、教学内容的安排与组织、教学方法与手段的选择、学生活动与任务的设计等方面的详细说明。
以及各个环节之间的衔接和过渡方式,确保教学过程的连贯性和流畅性。
现在随着小编一起往下看看平行四边形的面积说课稿人教版,希望你喜欢。
平行四边形的面积说课稿人教版(篇1)教学目标1.通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。
2.在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。
3.通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。
重点难点平行四边形面积的推导过程、平行四边形的面积公式。
平行四边形到长方形的转化过程。
教学方法猜想,动手操作,转化。
教具准备活动的长方形边框、PPT课件。
教学过程一、情境导入,揭示课题1.同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。
(板书课题)二、探究新知,操作实践(一)激发思维,寻求探究策略1.要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?方法一:数方格方法二:将平行四边形转化为长方形2.学生数方格。
(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?3.学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)请同学们拿出学具,四人一小组研究研究。
特殊的平行四边形中的最值模型-胡不归模型(解析版)
特殊的平行四边形中的最值模型--胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。
本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。
在解决胡不归问题主要依据是:点到线的距离垂线段最短。
【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.补充知识:在直角三角形中锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边。
若无法理解正弦,也可考虑特殊直角三角形(含30°,45°,60°)的三边关系。
【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.(注意与阿氏圆模型的区分)1)AC V 2+BC V 1=1V 1BC +V 1V 2AC,记k =V 1V 2,即求BC +kAC 的最小值.2)构造射线AD 使得sin ∠DAN =k ,CH AC=k ,CH =kAC ,将问题转化为求BC +CH 最小值.3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【解题关键】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。
四边形地证明和计算
四边形的证明和计算(一)一、以特殊平行四边形为背景图形1.已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形 ECGD是矩形.2.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.3.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.EDABGEDB OCA4. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE ∥BD ,DE ∥AC ,CE 和DE 交于点E .(1)求证:四边形ODEC 是矩形;(2)当∠ADB =60°,AD =时,求tan ∠EAD 的值.5.如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E 、F ,连接BE 、DF .(1)求证:四边形BFDE 是平行四边形; (2)若AB =4,CF =1,∠ABC =60°,求sin DEO ∠的值.23ODA7.如图,菱形ABCD 中,对角线AC ,BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为矩形;(2)在BC 上截取CF =CO ,连接OF ,若AC =8,BD =6, 求四边形OFCD 的面积.8.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.9.如图,已知点E ,F 分别是□ABCD 的边BC ,AD 上的中点,且∠BAC =90°. (1)求证:四边形AECF 是菱形;(2)若∠B =30°,BC =10,求菱形AECF 面积.DO FECABB10.如图,将平行四边形纸片ABCD 按如图方式折叠,使点C 与点A 重合,点D 的落点记为点D ′ ,折痕为EF ,连接CF . (1)求证:四边形AFCE 是菱形; (2)若∠B =45°,∠FCE =60°,AB=D ′F 的长.11. 如图,在矩形ABCD 中,AB =3,BC =6,对角线交于点O .将△BCD 沿直线BD 翻折,得到△BED . (1)画出△BED ,连接AE ;(2)求AE 的长.12. 如图,在□ABCD 中,E 为BC 边上的一点,将△ABE 沿AE 翻折得到△AFE ,点F 恰好落在线段DE 上.(1)求证:∠FAD =∠CDE ;(2)当AB =5,AD =6,且tan 2ABC ∠=时,求线段EC 的长.OABCDGF OB C DEA四边形的证明和计算(二)二、以三角形为背景的图形1.如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,EF ∥AC . (1)求证:BE =AF ;(2)若∠ABC =60°,BD =12,求DE 的长及四边形ADEF 的面积.2.如图,点O 是△ABC 一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.3.已知,ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,BFACE D4AE =,2EC = (1)求证:AD=CD ;(2)若tan B=3,求线段AB 的长.4. 如图,△ABC 中,BC >AC ,点D 在BC 上,且CA =CD ,∠ACB 的平分线交AD 于点F ,E 是AB 的中点.(1)求证:EF ∥BD ;(2)若∠ACB =60°,AC =8,BC =12,求四边形BDFE 的面积.5.如图,在△ABC 中,∠ACB =90º,∠ABC =30º,BC=AC 为边在△ABC 的外部作等边△ACD ,连接BD .(1)求四边形ABCD 的面积;(2)求BD 的长.6. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,延长DE 到点F ,使EF =DE ,连接CF .AB C D(1)求证: 四边形BCFD是平行四边形;(2)若BD=4,BC=6,∠F=60°,求CE的长.四边形的证明和计算(三)1.如图,点F在□ABCD的对角线AC上,过点F、 B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,21sin=∠CBE,求AC的长.2.如图,在△ABC中,D为AB边上一点,F为AC的中点,连接DF并延长至E,使得EF=DF,连接AE和EC.(1)求证:四边形ADCE为平行四边形;(2)如果DF=22∠FCD=30°,∠AED=45°,求DC的长.AEFDFEDCA3.如图,在ABC ∆中,M ,N 分别是边AB 、BC 的中点,E 、F 是边AC 上的三等分点,连接ME 、NF 且延长后交于点D ,连接BE 、BF (1)求证:四边形BFDE 是平行四边形(2)若32AB =,︒=∠45A ,︒=∠30C ,求:四边形BFDE 的面积4.如图.在直角梯形ABCD 中,AD //BC ,∠B =90°,AG //CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.5.如图,四边形ABCD 为矩形,DE ∥AC ,且DE =AB ,过点E 作AD 的垂线交AC 于点F . (1)依题意补全图,并证明四边形EFCD 是菱形; (2)若AB =3,BC =33,求平行线DE 与AC 间的距离DNMBCFAEFAEGADEGF ED CBA6.如图7,菱形ABCD 的对角线交于O 点,DE ∥AC ,CE ∥BD ,(1)求证:四边形OCED 是矩形; (2)若AD =5,BD =8,计算sin DCE ∠的值. 7. 如图,在ABC ∆中,AB AC =,AD 平分BAC ∠,//CE AD 且CE AD =.(1)求证:四边形ADCE 是矩形;(2)若ABC ∆是边长为4的等边三角形,AC ,DE 相交于点O ,在CE 上截取CF CO =,连接OF ,求线段FC 的长及四边形AOFE 的面积。
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。
平行四边形面积对角线乘积的一半推导
平行四边形面积对角线乘积的一半推导1. 引言1.1 背景介绍平行四边形是初中数学中的一个重要概念,学生在学习几何知识时必然会接触到。
平行四边形有着许多特点和性质,其中面积和对角线的关系是一个常见的问题。
通过研究平行四边形面积和对角线的关系,可以更好地理解这一几何图形的特性。
平行四边形是指四边形的对边是平行的图形,它包括矩形、菱形等特殊情况。
对角线是连接平行四边形的非相邻顶点的线段,可以将平行四边形分成两个三角形。
而平行四边形的面积则是两条对角线的乘积乘以正弦角的一半。
这一关系可以通过几何推导证明,让学生更深入地理解平行四边形的性质。
本文旨在通过详细的计算和推导过程,展示平行四边形面积和对角线乘积一半的关系,并对结果进行验证。
深入探究这一数学问题,将有助于学生掌握平行四边形的特性,提高他们的数学水平。
【内容结束】.1.2 研究目的研究目的是为了探讨平行四边形的特性,进一步理解其面积与对角线乘积之间的关系。
通过推导平行四边形面积和对角线的长度的计算方式,可以帮助我们更加深入地了解平行四边形的性质和几何关系。
通过本次研究,我们将能够推导出平行四边形面积对角线乘积的一半公式,这将有助于我们在解决几何问题的过程中更加便捷地计算平行四边形的面积和对角线长度。
研究平行四边形的面积与对角线乘积的关系也有助于拓展我们对几何学的认识,促使我们更深入地探究几何学的相关原理和定理。
通过本次研究,我们旨在提高对平行四边形及其相关概念的理解和运用能力,从而加深我们对几何学知识的掌握和应用。
【200字】2. 正文2.1 平行四边形面积的计算平行四边形是一个拥有对边平行的四边形。
为了计算平行四边形的面积,我们可以使用以下公式:面积= 底边长度x 高。
底边可以是任意一边,而高则是从底边到对边的垂直距离。
在计算平行四边形的面积时,我们需要知道底边的长度和高的长度。
通常情况下,我们可以通过给定的数据或几何知识来确定这些值。
如果已知平行四边形的底边长度为a,高的长度为h,则可以利用公式计算出面积为:面积= a x h。
平行四边形ppt课件
02
平行四边形在生活中的应 用
建筑设计中的应用
稳定性
平行四边形结构在建筑设 计中具有稳定性,能够承 受较大的压力和拉力。
空间利用率
平行四边形结构可以有效 地利用空间,提高建筑物 的使用效率。
美学价值
平行四边形在建筑立面上 的运用,可以增强建筑物 的立体感和现代感。
机械制造中的应用
平行四边形机构
理,即a²=b²+c²-2bc×cosA,其中A为夹角。
02
边长与高度关系
平行四边形的高h与底边长a及夹角θ有关,即h=a×sinθ。同时,高度
与面积之间满足的高度与夹角θ有关,当θ为90°时,高h即为直角边,此时
平行四边形为矩形。当θ小于90°时,高h在平行四边形内部;当θ大于
在机械制造中,平行四边形机构 常用于实现物体的平移、升降和
支撑等功能。
精度控制
平行四边形机构的运动轨迹较为稳 定,可以实现较高的精度控制。
传递力量
平行四边形机构可以有效地传递力 量,实现力的放大或减小。
美术与图案设计中的应用
图案构成
创意发挥
平行四边形可以作为美术和图案设计 中的基本元素,通过重复、旋转和对 称等方式构成各种图案。
梯形
平行四边形的一组对边可以看作梯形的上底和下底,而另一组对边则是梯形的 腰。通过作高可以将梯形划分为一个矩形和两个三角形,从而推导出梯形的面 积公式。
04
平行四边形的计算问题
周长、面积、对角线长度计算
周长计算
平行四边形的周长等于其四边之和,即P=2(a+b),其中a、b为相 邻两边长。
面积计算
平行四边形面积计算公式为S=ah,其中a为底边长,h为高。
高频集训(八) 以平行四边形为背景的中档计算题与证明题
分层次作业(二)[高频集训(八) 以平行四边形为背景的中档计算题与证明题]E,F.图G8-2结合小敏的思路作答:(1)若只改变图①中四边形ABCD的形状(如图G8-3②),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题的方法,解决问题:(2)如图G8-3②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形?写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形?直接写出结论.图G8-44.【2015·广安】如图G8-5,在▱ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.图G8-5C类型三四边形的平移、旋转问题6.【2015·随州】问题:如图G8-7①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与°,∠类型四四边形的创新问题7.【2017·百色】以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(-4,0),B(0,-2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.G,∠别交参考答案1.解:(1)证明:∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,G 为(52)2+(32)2=7.由折叠知,EF垂直平分AG,∴AF=FG,AE=EG.在Rt△HFG中,FH2+HG2=FG2,即(52-AF)2+(32)2=AF2,解得AF=75.在Rt△EBG中,BE2+BG2=EG2,即(2-AE)2+(3)2=AE2,解得AE=74.EF =72021.故答案为72021.OD ,即(3-x)2=x 2+(13-2)2, 解得x =2 13-43.∴当x =2 13-43时,直线AD 1过点C.(2)如图②,连接PE.∵E为BC中点,∴BE=CE=1.“证【探究应用】连接AF.要运用这个几何模型必须先证明∠EAF=75°.过点A作AH⊥CD于点H,解两个直角三角形——Rt△AHD和Rt△AHF来得以实现.解:【发现证明】证明:由旋转可得AE=AG,BE=DG,∠B=∠ADG=90°,∠EAG=∠BAD=90°.∵四边形ABCD为正方形,∴∠ADC=90°,∴∠ADC+∠ADG=180°,∴G、D、C三点共线.∵∠EAF =45°,∴∠GAF =45°,∴∠GAF =∠FAE. 又∵AF=AF ,∴△AFG ≌△AFE(SAS), ∴GF =EF.∵GF=GD +DF ,∴EF =BE +DF. 【类比引申】 ∠EAF=12∠BAD理由如下:如图①,将△ABE 绕点A 逆时针旋转∠BAD 的度数至△ADG,使AB 与AD 重合.运用上面的结论可得EF =BE +DF =80+40(3-1)=40+40 3≈109.即这条道路EF 的长约为109米. 7.解:(1)∵四边形ABCD 是菱形, ∴OC =OA =4,OB =OD =2, ∴C(4,0),D(0,2).设直线BC 解析式是y =kx +b ,把B ,C 两点坐标代入得⎩⎪⎨⎪⎧-2=b ,0=4k +b , 解得k =12,b =-2, =1x ∵EH 平分∠BEF,∴∠FEH =2∠BEF. ∵点A 、E 、B 在同一条直线上,∴∠AEB =180°,即∠A EF +∠BEF=180°,∴∠FEG +∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形.(2)答案不唯一,如由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证NM =NQ.由已知条件FG平分∠CFE,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH,∠GME=∠FQH,故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.。
《平行四边形性质》说课稿(精选10篇)
《平行四边形性质》说课稿(精选10篇)《平行四边形性质》说课稿篇1一、说教材本课内容是人教版课程标准实验教材三年级上册第三单元第二课时的《平行四边形的认识》。
这节课是在学生已经掌握了长方形和正方形的一些相关知识,并且在第一课时认识了四边形的特性的基础上教学的。
关于平行四边形的教学,小学阶段分两段编写,本单元是第一次出现,只要求学生能够从具体的实物或图形中识别出哪个是平行四边形,对它的一些特点有个初步的直观认识即可。
第二次将在第二学段出现,要求学生理解:两组对边平行且相等的四边形是平行四边形。
因此,我把本课时定位为初步认识平行四边形。
本课时的内容教材分两个层次编排,第一层次,感悟平行四边形的特性,通过推拉门和做一个小实验让学生感悟平行四边形易变形的特性。
第二层次,认识平行四边形,通过围一围、说一说、画一画、剪一剪等一系列的活动,让学生感知平行四边形的特征。
根据教材特点,我制定学习目标如下:1、结合生活情境和操作活动让学生感悟平行四边形易变形的特性。
2、让学生通过直观的操作活动,初步建立平行四边形的表象。
学会在方格纸上画平行四边形。
3、进一步培养学生操作、观察、推理、合作、探索的能力。
4、通过多种活动,使学生逐步形成空间观念,感受数学与生活的联系。
教学重点:初步认识平行四边形,会在方格纸上画平行四边形,感悟平行四边形的特性。
教学难点:感悟平行四边形的特征和特性。
二、说教法和学法根据《数学课程标准》的精神,为了让每个学生学得快乐、学得主动、学得有个性。
我力求在本课中体现以下两点:1、让学生在体验中学习。
数学的抽象乃属于操作性的,它的发生、发展要经过连续不断的、一系列的阶段,而最初的________又是十分具体的行为,因此,在本课的学习中,我注重让学生在观察、操作等活动中认识平行四边形,发现其特征。
创设观察的情境,让学生在情境中体验,获得新旧知识的链接;自己动手围一围、画一画、剪一剪平行四边形,让学生在实践中体验,感知平行四边形的一些特征;说一说你在哪儿见过这样的图形,让学生在生活中体验,养成用数学眼光观察周围事物的习惯。
平行四边形的表示字母顺序
平行四边形的表示字母顺序1.引言1.1 概述平行四边形是一个具有特殊性质的四边形,它的对边是平行的。
在几何学中,平行四边形是一个重要的概念,具有广泛的应用和意义。
本文主要介绍了平行四边形的表示字母顺序。
通过字母表示可以更清晰地描述和表达平行四边形的形态和性质。
平行四边形的表示字母顺序可以帮助我们更好地理解和记忆平行四边形的特点,进而应用到相关的问题中。
在本文中,我们将首先介绍平行四边形的定义和性质。
通过了解平行四边形的特点,我们可以更深入地理解平行四边形的表示字母顺序的重要性。
其次,我们将详细讨论平行四边形的表示方法,包括字母顺序的选取和表示字母的含义。
最后,我们将总结平行四边形的表示字母顺序的要点,并探讨其应用和意义。
通过本文的学习,读者可以更好地理解平行四边形的表示字母顺序,提高对平行四边形的认识和理解。
同时,该知识点在几何学和相关的应用领域中具有广泛的应用价值,能够帮助我们解决实际问题和丰富我们的几何知识。
下一节中,我们将开始介绍平行四边形的定义和性质,为后续对表示字母顺序的讨论做好准备。
文章结构部分的内容可以根据以下示例进行编写:1.2 文章结构为了系统地讨论平行四边形的表示字母顺序,本文按照以下结构进行组织:引言部分介绍了本文的主题以及对平行四边形及其表示字母顺序的概述,为读者提供了整体的背景信息。
正文部分将重点讨论平行四边形的定义和性质,并详细介绍了平行四边形的各类表示方法。
其中,平行四边形的定义和性质部分将从几何学的角度出发,探讨平行四边形的基本概念、特点以及与其他几何图形的关系。
接着,平行四边形的表示方法部分将介绍几种常见的表示字母顺序的方式,包括向量表示、符号表示等,以及它们的应用和适用范围。
结论部分将对整篇文章进行总结,重点强调平行四边形的表示字母顺序在实际问题中的应用和意义。
同时,该部分还将进一步讨论平行四边形的表示字母顺序可能存在的问题和改进方向,以及未来研究的方向和发展前景。
2021年人教版八年级下册第18章《平行四边形》专题提升:以平行四边形为背景的计算与证明
2021年人教版八年级下册第18章《平行四边形》专题提升以平行四边形为背景的计算与证明角度的计算与证明(一证一求)1.如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)证明:AD=CF.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.2.如图,平行四边形ABCD中,AD=2AB,E为AD的中点,CE的延长线交BA的延长线于点F.(1)求证:FB=AD.(2)若∠DAF=70°,求∠EBC的度数.3.如图,点E在BC上,△ABC≌△EAD.(1)求证:四边形ABCD是平行四边形;(2)若AE平分∠DAB.∠EDC=30°,求∠AED的度数.4.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.5.如图,在平行四边形ABCD中,AB=AE.若AE平分∠DAB.(1)求证:△ABC≌△EAD;(2)若∠EAC=25°,求:∠AED的度数.6.如图,矩形ABCD中,EF垂直平分对角线BD,垂足为O,点E和F分别在边AD,BC 上,连接BE,DF.(1)求证:四边形BFDE是菱形;(2)若AE=OF,求∠BDC的度数.7.如图,在正方形ABCD中,BE平分∠DBC交CD于点E,延长BC到F,使CF=CE,连接DF交BE的延长线于点G.(1)求∠BGF的度数;(2)求证:DE=CE.8.如图,四边形ABCD的对角线AC、BD相交于点O,∠ACB=∠ADB=90°,M为边AB 的中点,连接MC,MD.(1)求证:MC=MD;(2)若△MCD是等边三角形,求∠AOB的度数.9.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.10.如图,在正方形ABCD中,点E为线段BC上一动点(点E不与点B、C重合),点B 关于直线AE的对称点为F,作射线EF交CD于H,连接AF.(1)求证:AF⊥EH;(2)连接AH,小王通过观察、实验,提出猜想:点E在运动过程中,∠EAH的度数始终保持不变.你帮助小王求出∠EAH的度数.长度的计算与证明(一证一求)11.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.12.如图,四边形ABCD是平行四边形,延长CB至点E,使得BE=BC,连接DE交AB 于点F.(1)求证:△ADF≌△BEF.(2)连接DB,若AD=DB=5,CD=6,求DE的长.13.在Rt△ABC中,∠BAC=90°,E、F分别是BC、AC的中点,延长BA到点D,使AB =2AD,连接DE、DF、AE、EF,AF与DE交于点O.(1)试说明AF与DE互相平分;(2)若AB=8,BC=12,求DO的长.14.如图,在Rt△ABC中,∠ACB=90°,点E,F分别是边AC,AB的中点,延长BC到点D,使2CD=BC,连接DE.(1)如果AB=10,求DE的长;(2)延长DE交AF于点M,求证:点M是AF的中点.15.如图,在平行四边形ABCD中,AC⊥BC,点E是CD的中点,连接AE,作AF⊥AE,交BC于点F.(1)若AC=6,BC=8,求AE的长;(2)若G为BC延长线上一点,且AG+CG=BC,求证:AF=2EG.16.如图,在▱ABCD中,∠ACB=45°,AE⊥BC于点E,过点C作CF⊥AB于点F,交AE于点M.点N在边BC上,且AM=CN,连接DN.(1)若AB=,AC=4,求BC的长;(2)求证:AD+AM=DN.17.如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.18.如图,已知▱ABCD的对角线AC、BD交于点O,且∠1=∠2.(1)求证:▱ABCD是菱形.(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO的长.19.已知:如图,在▱ABCD中,∠BCD的平分线CE交AD于E,∠ABC的平分线BG交CE于F,交AD于G.(1)试找出图中的等腰三角形,并选择一个加以说明.(2)试说明:AE=DG.(3)若BG将AD分成3:2的两部分,且AD=10,求▱ABCD的周长.参考答案角度的计算与证明(一证一求)1.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=AD;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).2.【解答】(1)证明∵E为AD的中点,∴DE=AE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠EDC=∠EAF,在△DEC和△AEF中,,∴△DEC≌△AEF(AAS),∴DC=F A,∵AD=2AB,∴AB=DE=EA=F A,∴FB=AD;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠AEB=∠EBC,又∵AE=AB,∴∠AEB=∠ABE,∴∠EBC=∠ABE=35°.3.【解答】(1)证明:∵△ABC≌△EAD,∴BC=AD,∠B=∠EAD,AB=EA,∴∠B=∠AEB,∴∠EAD=∠AEB,∴BC∥AD,∴四边形ABCD是平行四边形;(2)解:由(1)得:∠B=∠AEB=∠EAD,四边形ABCD是平行四边形,∴∠ADC=∠B,∵AE平分∠DAB,∴∠BAE=∠EAD,∴∠B=∠AEB=∠BAE,∴△ABE是等边三角形,∴∠ADC=∠B=∠BAE=∠EAD=60°,∴∠ADE=∠ADC﹣∠EDC=60°﹣30°=30°,∴∠AED=190°﹣60°﹣30°=90°.4.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=80°,∠C=30°,∴∠ABC=180°﹣80°﹣30°=70°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=70°,∴∠BDE=∠EDF=35°.5.【解答】解:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.在△ABC和△AED中,,∴△ABC≌△EAD(SAS),(2)∵△ABC≌△EAD,∴∠AED=∠BAC,∵AE平分∠DAB(已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°,∴∠AED=85°.6.【解答】(1)证明:∵EF垂直平分对角线BD,∴∠DOE=∠BOF=90°,OB=OD,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEO=∠BFO,在△DEO和△BFO中,,∴△DEO≌△BFO(AAS),∴DE=BF,∵EF垂直平分对角线BD,∴DE=BE,BF=DF,∴DE=BE=BF=DF,∴四边形BFDE是菱形;(2)解:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90°,∵∠BOF=90°,∴∠A=∠BOF=90°,在Rt△BAE和Rt△BOF中,,∴Rt△BAE≌Rt△BOF(HL),∴AB=OB,∵AB=CD,OB=OD,∴CD=BD,∵∠C=90°,∴∠CBD=30°,∴∠BDC=180°﹣∠C﹣∠CBD=60°.7.【解答】解:(1)∵在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴∠BEC=∠DFC,∵∠BEC+∠CBE=90°,∴∠CBE+∠DFC=90°,∴∠BGF=90°;(2)连接EF,∵BE平分∠DBC,∴∠DBG=∠CBG,∵BG=BG,∠BGD=∠BGF=90°,∴△BDG≌△BFG(ASA),∴DG=FG,∴BG垂直平分DF,∴DE=FE,∵CE2+CF2=EF2,CE=CF,∴,∴DE=CE.8.【解答】(1)证明:∵∠ACB=∠ADB=90°,M为边AB的中点,∴MC=AB,MD=AB,∴MC=MD;(2)解:∵MC=MD=AB=AM=BM,∴∠BAC=∠ACM,∠ABD=∠BDM,∴∠BMC=2∠BAC,∠AMD=2∠ABD,∵△MCD是等边三角形,∴∠DMC=60°,∴∠BMC+∠AMD=120°,∴2∠BAC+2∠ABD=120°,∴∠BAO+∠ABO=60°,∴∠AOB=180°﹣60°=120°.9.【解答】(1)证明:∵BF=BE,CG=CE,∴BC为△FEG的中位线,∴BC∥FG,BC=FG,又∵H是FG的中点,∴FH=FG,∴BC=FH.又∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,∵CE=CB,∴∠BEC=∠EBC=75°,∴∠BCE=180°﹣75°﹣75°=30°,∴∠DCB=∠DCE+∠BCE=10°+30°=40°,∴∠DAB=40°.10.【解答】解:(1)证明:∵点B关于直线AE的对称点为F,∴AB=AF,BE=EF,又∵AE=AE,∴△ABE≌△AFE(SSS),∴∠AFE=∠B=90°,∴AF⊥EH;(2)连接AH,如图:由(1)得AB=AF,AF⊥EH,∴AF=AD,∠D=∠AFH=90°,AH=AH,∴△AFH≌△ADH(HL),∴∠F AH=∠DAH,又∵∠BAE=∠F AE,在正方形ABCD中,∠BAD=90°,∴∠EAH=45°.长度的计算与证明(一证一求)11.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又E是AD的中点,,∴AE∥BF,AE=BF,∴四边形AFBE是平行四边形;(2)过点A作AG⊥BF于G,由▱ABCD可知∠ABF=∠C=60°,又AB=6,AD=8,∴BG=3,FG=1,AG=,∴BE=AF=.12.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠A=∠FBE,∠ADF=∠E又∵BC=BE,∴AD=BE,在△ADF和△BEF中,,∴△ADF≌△BEF(ASA);(2)解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC,由(1)得:△ADF≌△BEF,∴AD=BE,EF=DF,AF=BF=AB=3,∵AD=DB=5,∴DB=BE=5,∴BF⊥DE,在Rt△BEF中,EF===4,∴DE=2EF=2×4=8.13.【解答】解:(1)∵E、F分别是BC、AC的中点,∴EF是△ABC的中位线,∴EF∥AB且EF=AB.又AB=2AD,即AD=AB,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∴AF与DE互相平分;(2)∵在Rt△ABC中,∠BAC=90°,AB=8,BC=12,∴由勾股定理得AC===4又由(1)知,OA=OF,且AF=CF,∴OA=AC=.∴在△AOD中,∠DAO=90°,AD=AB=4,OA=,∴由勾股定理得DO===.14.【解答】解:(1)连接CF,在Rt△ABC中,F是AB的中点,∴CF=AB=5,∵点E,F分别是边AC,AB的中点,∴EF∥BC,EF=BC,∵2CD=BC,∴EF=CD,EF∥CD,∴四边形EDCF是平行四边形,∴DE=CF=5;(2)如图2,∵四边形EDCF是平行四边形,∴CF∥DM,∵点E是边AC的中点,∴点M是AF的中点.15.【解答】(1)解:∵AC⊥BC,∴∠ACB=90°,∵AC=6,BC=8,∴AB==10,∵四边形ABCD是平行四边形,∴CD=AB=10,AD∥BC∴CA⊥AD,∴∠CAD=90°,∵CE=ED,∴AE=CD=5.(2)证明:延长AE交BC的延长线于M,在CB上取一点N,使得CN=CG,连接AN.∵AD∥CM,∴∠DAE=∠M,在△DAE和△MCE中,,∴△DAE≌△MCE(AAS),∴AE=EM,∵AE=ED=EC,∴AM=CD=AB,∵AC⊥BM,∴BC=CM,∵AC⊥NG,CN=CG,∴AG=AN,∵AG+CG=BC,∴BN=AG=AN,∵CB=CM,CN=CG,∴BN=GM,∴GA=GM,∵AE=EM,∴EG⊥AM,∵F A⊥AM,∴EG∥AF,∵AE=EM,∴FG=GM,∴EG=AF,即AF=2EG.16.【解答】(1)解:∵∠ACB=45°,AE⊥BC,∴∠AEC=∠AEB=90°,△ACE是等腰直角三角形,∴∠EAC=45°,AE=CE===2,由勾股定理得:BE===,∴BC=BE+CE=3;(2)证明:延长AD至G,使DG=AM,连接CG,如图所示:∵AM=CN,∴DG=CN,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠ADC,∴DG∥CN,∴四边形CGDN是平行四边形,∴CG=DN,∴∠CFB=90°=∠AEB=∠CEA,∴∠BAE=∠MCE,在△ABE和△CME中,,∴△ABE≌△CME(AAS),∴AB=CM,∠B=∠CME,∴CM=CD,∠CME=∠ADC,∴∠AMC=∠GDC,在△ACM和△GCD中,,∴△ACM≌△GCD(SAS),∴∠G=∠MAC=45°,∵AD∥BC,∴∠DAC=∠ACB=45°,∴△ACG是等腰直角三角形,∴AG=CG,∵AG=AD+DG=AD+AM,CG=DN,∴AD+AM=DN.17.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=CB,∴▱ABCD是菱形.(2)解:由(1)得:▱ABCD是菱形,∴BC=AB=5,AO=CO,∵AD∥BC,∴∠AFE=∠CBE,∵AE=AF=3,∴∠AFE=∠AEF,又∵∠AEF=∠CEB,∴∠CBE=∠CEB,∴CE=BC=5,∴AC=AE+CE=3+5=8,∴AO=AC=4.19.【解答】解:(1)△ABG,△DCE是等腰三角形.在平行四边形ABCD中,则AD∥BC,∴∠AGB=∠GBC,又BG平分∠ABC,∴∠ABG=∠CBG,∴∠ABG=∠AGB,即AB=AG,∴△ABG是等腰三角形;(2)由(1)可得AB=AG=CD=DE,∴AE=DG;(3)假设AG:GD=3:2,∵AD=10,∴AB=AG=AD=6,∴平行四边形的周长为2(10+6)=32;当AG:GD=2:3时,则AB=AG=AD=4,∴平行四边形的周长为2(10+4)=28.所以平行四边形ABCD的周长为32或28.。
平行四边形的性质说课课件
周长应用
平行四边形的周长可以应用于各种场景,如标志设计、图形 周长比较、道路规划等。
04
CATALOGUE
平行四边形与三角形的关系
平行四边形与三角形的联系
平行四边形可以看作是两个三角 形组成的
平行四边形的对角线将其分成两 个全等三角形
三角形和平行四边形之间存在密 切的联系,可以通过对三角形的
操作来研究平行四边形的性质
日常用品
列举一些日常用品中平行 四边形的应用,如相框、 书本封面等。
02
CATALOGUE
平行四边形的性质
平行四边形的定义
总结词
两组对边分别平行的四边形
详细描述
首先,我们要了解平行四边形的定义。平行四边形是一个四边形,它的两组对 边分别平行。这种定义不仅给出了平行四边形的一种特性,也为我们提供了识 别平行四边形的方法。
平行四边形的性质说课课 件
CATALOGUE
目 录
• 引入 • 平行四边形的性质 • 平行四边形的面积与周长 • 平行四边形与三角形的关系 • 平行四边形的实际应用 • 总结与回顾
01
CATALOGUE
引入
引入平行四边形的概念
定义
平行四边形是一种四边形,它的 两组对边分别平行。
图形示例
展示常见的平行四边形示例,如 矩形、菱形、正方形等。
介绍平行四边形的历史背景
起源
介绍平行四边形的起源和早期发展, 突出其在几何学中的重要地位。
数学家贡献
简要介绍一些数学家对平行四边形性 质的研究和贡献。
展示平行四边形的应用场景
01
02
03
建筑设计
展示一些建筑设计中使用 平行四边形的案例,如窗 户、门等。
第1部分 第5章 核心素养之逻辑推理——与四边形有关的计算与证明
图形
分析 分别延长AF,DC交于点N,证 △ABF和△CFN是等边三角形⇒ 利用△AEG和△NDG相似求解 分别延长CB,DE交于点M,证 △ADE≌△BME,利用△ADG和 △FMG相似求解 过点E作EP∥AD交AF于点P,证 △ABF是等边三角形⇒利用 △ADG和△PEG相似求解
学霸笔记 平行四边形或三角形中有中点、三等分点时,一般考虑以下思路: 1.利用平行四边形的对边平行且相等来构造全等、相似或等腰三角形. 2.过分点作平行线构造平行型相似(A型或X型),从而得到线段的比例关系来求 解. 3.遇到中点,倍长线段(包括倍长中线)来构造中心对称式的全等三角形也是常用 方法.
以平行四边形为背景的计算与证明 例1 (2019·百校联考三改编)如图,平行四边形ABCD的边长AD=6,AB=4,∠B
=60°,E为AB的中点,F在边BC上,且BC=3FC,AF与DE交于点G,则AG的长为
3
2
.
【思路分析】 方法
方法1:延长线段构 造特殊三角形
方法2:倍长线段构 造全等
方法3:过中点作平 行线
△AHG∽△ABE 求
AM⇒在 Rt△ABM 中求 AB
解
【方法点拨】 本题是矩形与特殊三角形综合求线段长度的问题,方法1中利用勾股方程的代数方 法计算比较复杂,而通过作辅助线构造相似的基本模型,数形结合求解计算量较小, 因此解题时充分利用图形的几何特性,构建基本模型求解是关键.
【跟踪训练】
5.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆
由①知AP=EF,即1-x=1+2 x,解得x=13. ∴DP=13,AP=23. 在Rt△PDE中,DE=12, ∴PE= PD2+DE2= 613. ∵AP≠PE, ∴四边形AFEP不是菱形.
小学数学《平行四边形的面积》教案5篇
小学数学《平行四边形的面积》教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!小学数学《平行四边形的面积》教案5篇本文将为您介绍五篇关于小学数学《平行四边形的面积》的教案。
平行四边形面积教案及说明
第一部分:教案背景、教学课题、教材分析、教学方法、教学过程教学课题:平行四边形的面积教材分析:本节课是小学数学关于几何知识的安排,是按由易到难的顺序进行的。
本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。
平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。
本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。
同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
(一)教学目标:知识与能力目标:使学生在理解的基础上掌握平行四边形的面积计算公式,并运用公式解决简单的实际问题,形成一定的操作、观察、思考、概括能力。
过程与方法目标:通过操作、观察、思考、比较的过程,让学生体会转化与猜想的数学思想。
情感态度与价值观目标:通过自主探究与合作学习,培养学生的合作意识和探究精神,感受数学学习的快乐。
(二)教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过转化,发现长方形和平行四边形之间的联系,从而推导出平行四边形面积计算公式。
关键点:利用知识迁移与剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。
关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,与面积始终不变的特点,归纳出平行四边形等积转化成长方形。
教学方法:教法:1、发展迁移原则:运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
2、学生为主体,教师为主导的教学原则:针对几何知识教学的特点、本节课的教学内容以与小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过实践操作,以激发学生的学习兴趣,调动学生的学习积极性。