12.振动与波

合集下载

第12节振动和波之3 用Excel研究振动与波问题-电脑Excel在物理教与学中的应用

第12节振动和波之3 用Excel研究振动与波问题-电脑Excel在物理教与学中的应用

“振动与波”问题解题通常有三种方法:公式法、图象法、EXCEL 作图法电脑作图,常用两种方法,一是在“附件”里的“画图”作图,二是用“Excel”作图。

“画图”里的作图,很直观,但不太精确,较精确,但不直观,Excel 作图法既直观又精确,但比较麻烦。

内容提要:“振动和波”问题,传统方法是分析法和图象法,本文介绍另一种方法——鲜为人知的“波函数法”,波函数法比传统方法更“数学”一些,是“用数学工具解决物理问题”吧。

关键词:波函数,振动方程,波动公式,振动和波,一、什么是波函数?波函数的定义:为了定量地描述介质中波动的情况,必修求得介质中各质元的位移与该质元所处的平衡位置及时间的定量关系,这种定量关系就是波的表达式,也叫做波函数(wave function )。

二、简谐波函数的推导设有一波前为平面的简谐波,在均匀介质中沿x 轴正方向传播,波速为v 。

由于这是一种平面波,所以在与x 轴垂直的平面上,各点的振动情况是一样的。

所以只要讨论x 轴上各点的振动,就可以知道空间中各点的情况。

以O 点为波源,设该处质元做简谐振动,其位移u 与时间t 的关系为t A y ωcos =式中A 为振幅,ω为角频率。

考察波线O x 上的任一点P ,它离O 点的距离为x ,当波源O 的振动传到P 点时,P 点的质元将重复O 点的质元的振动,角频率也相同,但振动的相位要落后于O 点。

因为O 点的振动传到P 点需要时间vx,所以P 处质元在时刻t 的振动相位和O 点质元在时刻-=t t 'vx的振动相位一样,即其相位为 )('vxt t -=ωω因为平面简谐波传播时各质元的振幅相等,P 处质元在时刻t 的位移为)(cos vxt A y -=ω,这就是平面简谐波的波函数。

因为T πω2=,Tv λ=,所以波函数也可以写为 )(2cos λπxT t A y -=当x 取某一确定值时,波函数便是某质点的振动方程,例如0=x ,t A y ωcos =便是振源O 的振动方程。

振动与波复习题及答案

振动与波复习题及答案

第九章振动复习题1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=. [ B ] 2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) gl π2. (B) g l 22π.(C) g l 322π. (D) gl3π. [ C ] 3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) . (B) /2. (C) 0 . (D) . [ C ] 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ B ] [ ]l6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6.(D) -/6. (E) -2/3. [ ]7. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'. (C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 8. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x(C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x(E) t m /k A x cos = [ B ] 9. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为(A) 1 s . (B) (2/3) s .(C) (4/3) s . (D) 2 s . [ B ]10.一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ] 11. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后/2. (B) 超前.(C) 落后. (D) 超前.[ B ]v (m/s)t (s)Omm v 21tOx 1 x 212. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ B ]13. 一简谐振动曲线如图所示.则振动周期是 (A) s . (B) s .(C) s . (D) s .[ B ]15. 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为 (A) /6. (B) /3.(C) /2. (D) 2/3. (E) 5/6.[ A ]17. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为x o A ϖ x A 21 ω A 21ωA 21-(D) oo o A 21 xx x A ϖA ϖxA ϖxω ωx (cm)t (s)O42 1A21-A21-A21 21A21 AA21- oo 2T2T A21- t21 xtx(A)(B)(C)(D)2T2Tottxxv (m/s)t (s)Om 21- -m(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ D ]18 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A) kA 2. (B)221kA . (C) (1/4)kA 2. (D) 0. [ D ]19. 一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1.(D) 2:1. (E) 4:1. [ D ]20.动的初相为 (A) π23. (B) π.(C) π21. (D) 0. [ B ]二. 填空题21. 在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________.23. 在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振(c)A/ -A 2cos()2x A t T ππ=+2cos()2x A t Tππ=+2cos()x A t T ππ=+动的周期之比为___2:1___.24. 一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有 正最大值的那一时刻为t = 0,则振动表达式为_____50.02cos()22x t π=-___.25. 一物体作余弦振动,振幅为15×10-2m ,角频率为6 s -1,初相为,则振动方程为 __0.15cos(6)2x t ππ=+(SI).27. 一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A = ,初相 =____3arcsin 5-____________.30. 已知两个简谐振动的振动曲线如图所示.两简谐振动的最大速率之比为_______1:1__________.31. 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =; =_____/6rad s π_____;=_____3π__________. .34. 已知三个简谐振动曲线如图所示,则振动方程分别为: x 1 =10cos t π______________________,x 2 =10cos()2t ππ-_____________________,x 3 =10cos()t ππ+_______________________.x (cm)t (s)105-101471013Ox (cm)t (s)O x 1x 2x 3100-101234 32-1 1 to x 1 x 21 -2237.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为_____4π_______.振动方程为__0.02cos()4x t ππ=+____________.41. 一作简谐振动的振动系统,振子质量为2 kg ,系统振动频率为1000 Hz ,振 幅为0.5 cm ,则其振动能量为______1002πJ________.43. 一弹簧振子系统具有 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率, 则弹簧的劲度系数为____200N/m_______,振子的振动频率为_5πHZ________. 44.两个同方向的简谐振动曲线如图所示.合振动的振幅 为______21A A -___________,合振动的振动方程 为_____212()cos()2x A A t T ππ=-+______. 50. 一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为,初相为____6π_____.第十章波复习题一、选择题1. 在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.t ·--(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于计)[ C ]2. 机械波的表达式为y =(t + ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ] 3.一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = s 时刻的波形图是 [ A ]4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 [ D ](A) A 点振动速度大于零. (B) B 点静止不动. (C) C 点向下运动. (D) D 点振动速度小于零.5. 把一根十分长的绳子拉成水平,用手握其一端.维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A) 振动频率越高,波长越长. (B) 振动频率越低,波长越长.(C) 振动频率越高,波速越大. (D) 振动频率越低,波速越大.[ B ] 6. 一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相为:(A) 0. (B)π21x (m)O 20.10(A)x O 20.10y (m)(B)x (m)O 2-0.10y (m)(C)x O2y (m)(D)-0.10 xuA BC D OxyOu(C) (D)π23(或π-21) [ B ] 7. 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为(A) ])/(cos[0φω+-=u x t A y .(B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y .(D)})]/([cos{0φω++=u x t A y . [ C ]8.如图所示为一平面简谐波在t = 0 时刻的波形图,该波的波速u = 200 m/s ,则P 处质点的振动曲线为[ C ]9. 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形图如图所示,则P处质点的振动在t = 0时刻的旋转矢量图是 [ A ]xy u BO |x|x (m)1000.1u OPy (m)t (s)(A)0.102t (s)(B)0.10.5P t (s)(C)0.10.5y P (m)t (s)(D)0.11y P (m)ωS A ϖO ′ωSA ϖO ′ωA ϖO ′ωSAϖO ′(A)(B)(C)(D) xS A uPO10. 一平面简谐波沿Ox 轴正方向传播,t = 0 时刻的波形图如图所示,则P 处介质质点的振动方程是(A) )314cos(10.0π+π=t y P (SI).(B) )314cos(10.0π-π=t y P (SI).(C))312cos(10.0π+π=t y P (SI).(D) )612cos(10.0π+π=t y P (SI). [ A ]11. 图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则P 处质点的振动速度表达式为 [ C ] (A) )2cos(2.0π-ππ-=t v (SI). (B) )cos(2.0π-ππ-=t v (SI).(C) )2/2cos(2.0π-ππ=t v(SI). (D) )2/3cos(2.0π-ππ=t v(SI).12.在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是 (A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ C ] 13. 一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f . [ B ]14. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [C ]15. 一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中 (A) 它的势能转换成动能. (B) 它的动能转换成势能. (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.[ C ] 16. 如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为的简谐波,P 点是两列波相遇区域中的一点,已知 λ21=PS ,λ2.22=P S ,两列波在P 点发生相消干涉.若S 1的振动方程为)212cos(1π+π=t A y ,则S 2的振动方程为(A))212cos(2π-π=t A y . (B) )2cos(2π-π=t A y .(C))212cos(2π+π=t A y . (D) )1.02cos(22π-π=t A y . [ D ]17. 两相干波源S 1和S 2相距 /4,(为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) . (D)π23. [ C ] 18. S 1和S 2是波长均为 的两个相干波的波源,相距3/4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0. (C) 0,4I 0 . (D) 4I 0,0. [ A ] 19 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ B ] 20 在波长为 的驻波中,两个相邻波腹之间的距离为(A)/4. (B) /2.(C) 3/4. (D). [ B ]21.沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是 (A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]S 1S PS 1S 2Pλ/4二、填空题22.一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A _____________;B_____________ ;C ______________ . 23. 一平面简谐波的表达式为)37.0125cos(025.0x t y -= (SI),其角频率=__________________________,波速u =______________________,波 长= _________________.24. 频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为________________.25. 图为t = T / 4 时一平面简谐波的波形曲线,则其波的表达式为______________________________________________. 26、一平面简谐波沿Ox 轴正方向传播,波长为.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________. 27、一简谐波沿x 轴正方向传播.x 1和x 2两点处的振动曲线分别如图(a)和(b)所示.已知x 2 .> x 1且x 2 - x 1 < (为波长),则x 2点的相位比x 1点的相位滞后 ___________________.28、已知某平面简谐波的波源的振动方程为t y π=21sin 06.0(SI),波速为2 m/s .则在波传播前方离波源5 m 处质点的振动方程为_______________________.xy u OA B Cx (m)O -0.101u =330 m/sy (m)234xOP 1P 2L 1L 2ty 1ty 2(a)(b)29、(1)一列波长为的平面简谐波沿x 轴正方向传播.已知在λ21=x 处振动的方程为y = A cos t ,则该平面简谐波的表达式为______________________________________. (2) 如果在上述波的波线上x = L (λ21>L)处放一如图所示的反射面,且假设反射波的振幅为A ',则反射波的表达式为 _______________________________________ (x ≤L ).30、一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)cos(φω+=t A y ,若波速为u ,则此波的表达式为 _________________________________________________________. 31、一个波源位于O 点,以O 为圆心作两个同心球面,它们的半径分别为R 1和R 2,在两个球面上分别取相等的面积S 1和S 2,则通过它们的平均能流之比=21P /P ___________________.32、一点波源发出均匀球面波,发射功率为4 W .不计媒质对波的吸收,则距离 波源为2 m 处的强度是__________________.33、如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3和103 ,为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P 点的振动频率___________,波源S 1的相位比S 2的相位领先_________________.34、如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是,则P 点振幅A =_________________________________________________________. 35、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差 是____________.xO 反射面波疏媒质波密媒质LPS 1S 3λ10λ/312Lr36、 S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(为波长)如图.已知S 1的初相为π21. (1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________. (2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的 振动均干涉相消,则S 2的初位相应为_______________________. 37、 两列波在一根很长的弦线上传播,其表达式为 y 1 = ×10-2cos (x - 40t ) /2 (SI) y 2 = ×10-2cos (x + 40t ) /2 (SI)则合成波的表达式为__________________________________________________; 在x = 0至x = 10.0 m 内波节的位置是_____________________________________ __________________________________;波腹的位置是________________________________________________________. 38、设入射波的表达式为)(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________. 39、 一驻波表达式为t x A y ππ=100cos 2cos .位于x 1= 3 /8 m 的质元P 1与位于x 2= 5 /8 m 处的质元P 2的振动相位差为_____________________________. 40、 在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.S 1S 2MNC。

振动和波动要点习题

振动和波动要点习题

振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。

高考物理总复习专题练习:振动和波

高考物理总复习专题练习:振动和波

高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。

关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。

则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。

则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。

声音的振动与波动解析声音的振动特性与波动规律

声音的振动与波动解析声音的振动特性与波动规律

声音的振动与波动解析声音的振动特性与波动规律声音是一种能够被人类听到的物理现象,它是由于物体的振动而产生的。

声音的振动特性与波动规律是我们理解声音本质的重要方面。

本文将对声音的振动与波动进行深入解析。

一、声音的产生与传播声音的产生是由物体的振动引起的。

当物体振动时,它会引起周围空气分子的振动,形成一系列的气体压缩和稀薄的变化,这种变化以波的形式向外传播,最终到达人的耳朵使得我们能够听到声音。

声音的传播是通过介质传递的,大部分情况下是通过空气传播。

当声源振动时,空气中的分子受到振动的影响,分子之间的相互作用导致声波的传播。

声波是一种纵波,其传播方向和振动方向相同,即沿着波的传播方向,分子的振动方向也与波的振动方向一致。

二、声音的振动特性声音的振动特性通常包括频率、振幅和波长三个方面。

1. 频率频率是指声音波的振动次数,单位是赫兹(Hz)。

频率越高,振动次数越多,声音就越高音调,频率越低,振动次数越少,声音就越低音调。

人类可听到的声音频率范围约为20Hz到20kHz。

2. 振幅振幅是指声音波的振动幅度,也可以理解为声音的强度。

振幅越大,声音越响亮;振幅越小,声音越微弱。

振幅通常用分贝(dB)来表示。

3. 波长波长是指声波的一个完整周期所对应的长度。

波长与频率成反比,频率越高,波长越短;频率越低,波长越长。

三、声音的波动规律声音的波动遵循一些基本规律,包括反射、折射、干涉和衍射等。

1. 反射当声波遇到边界或障碍物时,会发生反射现象。

根据反射定律,入射角等于反射角,声波的入射方向与反射方向相对称。

这一规律使得声波能够绕过障碍物传播,并且产生回声现象。

2. 折射当声波由一种介质传播到另一种介质时,由于介质的密度和声速不同,声波会发生折射现象。

折射使声波偏离原来的传播方向,这一现象在日常生活中常见于声音经过空气层的传播。

3. 干涉当两个或多个声波相遇时,会产生干涉现象。

根据干涉原理,当两个波峰或两个波谷相遇时,它们会相互增强,产生增强干涉;当一个波峰和一个波谷相遇时,它们会相互抵消,产生减弱干涉。

振动和波详述

振动和波详述

第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*

y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.

高中物理的振动与波动教案

高中物理的振动与波动教案

高中物理的振动与波动教案教学目标:1. 理解振动和波动的概念,掌握相关词汇和定义。

2. 掌握振动和波动的特点和分类。

3. 理解振动和波动在日常生活中的应用。

4. 训练学生观察、实验和逻辑思维能力。

教学重点与难点:1. 振动和波动的概念及其特点。

2. 振动和波动的分类及日常应用。

教学准备:1. 教师准备:教案、教学PPT、实验器材、振动和波测量仪器等。

2. 学生准备:学习笔记、实验记录本等。

教学过程:一、引入振动和波动概念(10分钟)1.1师生互动,讨论振动和波动的概念及特点。

1.2通过图片、实物等展示振动和波动的例子,引导学生理解概念。

二、振动的特点与分类(20分钟)2.1讲解振动的定义、特点及种类。

2.2进行实验观察不同种类的振动现象,让学生亲自实验、感受振动。

三、波动的特点与分类(20分钟)3.1讲解波动的定义、特点及种类。

3.2展示各种类型的波动实例,帮助学生理解波动的本质及分类。

四、振动和波动在日常生活中的应用(15分钟)4.1探讨振动和波动在日常生活中的各种应用,如声波、光波的传播与应用等。

4.2展示相关实例,让学生体会振动和波动的实际应用价值。

五、实验操作与总结(15分钟)5.1学生根据教师指导进行相关实验操作。

5.2总结振动和波动的知识点,检查学生对概念的掌握程度。

六、课堂讨论与提升(10分钟)6.1师生讨论振动和波动相关问题,梳理知识点,解决学生疑问。

6.2鼓励学生展示自己对振动和波动的理解,提出自己的见解。

教学反馈:1. 收集学生对本节课程的反馈意见,帮助教师改进教学方法与内容。

2. 师生共同总结学生在振动和波动方面的学习成果和不足之处,为下节课的教学做准备。

布置作业:1. 作业:根据本节课内容,写一篇关于振动和波动的简单作文。

2. 预习:预习下节课的内容,做好相关概念的准备。

教学反思:通过本节课的教学,学生对振动和波动的概念有了更深入的理解,实验操作增加了学生的学习兴趣与参与度。

大学物理题库-振动与波动

大学物理题库-振动与波动

振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

当0=t 时, 位移为cm 6,且向x 轴正方向运动。

则振动表达式为( )(A) )(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( )>(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)…7、一平面简谐波,沿X 轴负方向 传播。

x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π(C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)发生共振条件:f驱动力=f固,A=max,共振的防止和应用机械波、横波、纵波注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律能源的开发与利用.环保物体的内能.分子的动能.分子势能。

质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

物理另说 12振动和波

物理另说 12振动和波

物理另说12振动和波振动是物质的存在现象——一切物体内部都是由大量微观粒子的无规则振动构成的;波,可以说是这个世界微观构成的最基本的方式。

只是,我们眼睛所熟悉的,是宏观的匀速直线、变速直线运动、变速曲线运动等。

振动和波,给我们的感受,是往复与节奏,更能体现出物理的艺术性,正如音乐与绘画一般,抑扬顿挫,千变万化。

在中学阶段我们从入门级别的、最简单的部分开始吧——机械振动和机械波一、机械振动1、机械振动,指的是以机械运动的方式来体现的振动。

是我们掌握振动知识的入门。

从原理上,简单说,机械振动就是弹性与惯性之间的你来我往、此消彼长。

前者代表物质存在的结构(弹性),后者代表物质存在的依据(质量)。

——结构弹性与质量惯性,就是机械振动的本质从振动的规律性来说,又分为最简单的简谐振动和其他振动,如受迫振动、阻尼振动等。

其中1)简谐振动是中学物理研究的重点。

定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

①一般可以用四种方法去描述简谐振动。

a.动力学。

即∑F=-kx(这也是简谐振动的基本证明途径)a=-kx/m图像运动趋势表示其速度方向.即牛顿第2定律。

b.运动学。

即正弦函数关系以A为振幅,周期T=2π/ω,初始相位φo(中学阶段一般为零)的简谐振动,有:位移S= Asin(ωt+φo),速度V=Aωcos(ωt+φo),加速度a=- Aω^2*sin(ωt+φo)。

这个不用记,参看后边的相位圆的图就可以很容易理解:位移=在y轴上的位移投影分量、速度=在y轴上的速度投影分量、回复力=向心力在y轴的投影分量、加速度=向心加速度在y轴的投影分量。

c.振动图:.x轴为时间t,y轴为物体的位移S(常见的φo=0的情况)d.相位圆分析。

II2_振动和波+详细解答

II2_振动和波+详细解答

振动1. 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T (B )1T (C )1T /2 (D )1T /2 (E )1T /4(C )弹簧的弹性系数问题:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。

为什么?因为我们知道胡克定律为:f kx =(力的大小),即 f k x=。

下面两根弹簧,本来材料、长度、弹性系数都是完全一样的,但是把其中的一根截短,加上相等的拉力f ,截短以后的弹簧伸长量要小于原来长度的弹簧的伸长量,弹性系数k 增大了。

f12T = 22k k =,下端挂一质量为12m的物体,则系统振动周期2T 为:2T 1112222T π⎛=== ⎝2. 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线。

(B )曲线2、1、3分别表示x 、v 、a 曲线。

(C )曲线1、3、2分别表示x 、v 、a 曲线。

(D )曲线2、3、1分别表示x 、v 、a 曲线。

(E )曲线1、2、3分别表示x 、v 、a 曲线。

(E )位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线; 曲线2比1超前了2π,1是位移曲线。

3. 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) 。

关键是写出初位相,用旋转矢量法最方便:0v (a)(b)t(a )φ= -π/2(b )φ= π/2(c )φ= π所以: (1)Y=Acos (t T π2-2π) (2)Y=Acos (t T π2+2π) (3)Y=Acos (t Tπ2+π)4.一系统作谐振动,周期为T ,以余弦函数表达振动时,初位相为零,在0≤t ≤T /2范围内,系统在t = 、 时刻动能和势能相等。

高中物理振动和波教案

高中物理振动和波教案

高中物理振动和波教案
教学内容:振动和波
教学目标:
1. 了解振动和波的基本概念;
2. 能够区分不同类型的振动和波;
3. 能够应用振动和波的知识解决相关问题。

教学重难点:
1. 振动的特点和分类;
2. 波的传播和性质。

教学准备:
1. 实验装置和材料;
2. 教学PPT。

教学步骤:
一、导入(5分钟)
通过展示一些生活中的振动和波的例子引起学生的兴趣,激发学生对本课知识的探究欲望。

二、讲授(25分钟)
1. 振动的定义、特点和分类;
2. 波的定义、传播和性质。

三、实验(20分钟)
进行一个关于波的实验,让学生亲自观察和实验,加深他们对波的理解。

四、练习(15分钟)
进行一些与振动和波相关的练习题,检验学生对本课知识的掌握情况。

五、讨论(10分钟)
学生分组讨论,探讨振动和波的应用及相关问题,提高他们的思维能力。

六、作业布置(5分钟)
布置相关作业,巩固学生对本课知识的理解,并做好定期检查。

教学反思:
在教学过程中,要注重引导学生从生活中的实际例子中理解振动和波的概念,激发学生的学习兴趣,提高他们的学习效果。

同时,要注重培养学生的实验能力和动手能力,让学生亲自实践和操作,加深对知识的理解和掌握。

大学物理复习纲要〔振动和波〕

大学物理复习纲要〔振动和波〕

振 动 学 基 础内容提要一、振动的基本概念1、振动 某物理量随时间变化,如果其数值总在一有限范围内变动,就说该物理量在振动;2、周期振动 如果物理量在振动时,每隔一定的时间间隔其数值就重复一次,称为周期振动;3、机械振动 物体在一定的位置附近作往复运动称为机械振动;4、简谐振动 如果物体振动的位移随时间按余(正)弦函数规律变化,即:()0cos ϕω+=t A x这样振动称为简谐振动;5、周期T 物体进行一次完全振动所需的时间称为周期,单位:秒。

一次完全振动指物体由某一位置出发连续两次经过平衡位置又回到原来的状态。

6、振动频率ν 单位时间内振动的次数,单位:次/秒,称为赫兹〔Hz 〕;7、振动圆频率ω 振动频率的π2倍,单位是弧度/秒〔rad /s 〕,即Tππνω22== 8、振幅A 物体离开平衡位置〔0=x 〕的最大位移的绝对值; 9、相位ϕ0ϕωϕ+=t 称为相位或相,单位:弧()rad 。

它是时间的单值增函数,每经历一个周期T ,相位增加π2,完成一次振动; 10、初相位0ϕ 开始计时时刻的相位;11、振动速度v 表示振动物体位移快慢的物理量,即:()⎪⎭⎫ ⎝⎛++=+-==2cos sin 00πϕωωϕωωt A t A dt dx v 说明速度的相位比位移的相位超前2π; 12、振动加速度a 表示振动物体速度变化快慢的物理量,即:()()πϕωωϕωω++=+-===020222cos cos t A t A dtx d dt dv a加速度的相位比速度的相位超前2π,比位移的相位超前π; 13、初始条件 在0=t 时刻的运动状态〔位移和速度〕称为初始条件,它决定振动的振幅和初位相,即:⎪⎩⎪⎨⎧-======000000sin cos ϕωϕA v v A x x t t 则可求得: ⎪⎪⎩⎪⎪⎨⎧-=+=00022020x v tg v x A ωϕω二、旋转矢量法简谐振动可以用一旋转矢量在x 轴上的投影来表示。

振动和波动计算题及答案

振动和波动计算题及答案

振动和波动计算题1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为,则t A x ωcos =t A ωωsin -=v (1)在x = 6 cm ,v = 24 cm/s 状态下有 t ωcos 126=t ωωsin 1224-=解得 ,∴ s 2分3/4=ω72.2s 2/3/2=π=π=ωT (2) 设对应于v =12 cm/s 的时刻为t 2,则由 t A ωωsin -=v 得 ,2sin )3/4(1212t ω⨯⨯-=解上式得1875.0sin 2-=t ω相应的位移为 cm3分8.10sin 1cos 222±=-±==t A t A x ωω2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求 (1) 物体的振动方程;(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间. 解: k = f/x =200 N/m , rad/s2分07.7/≈=m k ω (1) 选平衡位置为原点,x 轴指向下方(如图所示), t = 0时, x 0 = 10A cos φ ,v 0 = 0 = -A ωsin φ. 解以上二式得 A = 10 cm ,φ = 0. 2分∴ 振动方程x = 0.1 cos(7.07t ) (SI) 1分 (2) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 f = m (g -a ),而a = -ω2x = 2.5 m/s 2 ∴ f =4 (9.8-3分(3) 设t 1时刻物体在平衡位置,此时x = 0,即 0 = A cos ω t 1或cos ω t 1 = 0. ∵ 此时物体向上运动, v < 0 ∴ ω t 1 = π/2, t 1= π/2ω1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即-5 = A cos ω t 1,cos ω t 1 =-1/23. 一质点作简谐振动,其振动方程为 (SI))4131cos(100.62π-π⨯=-t x(1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 总能量 221kx W P =221kA E =由题意,, m 2分4/2122kA kx =21024.42-⨯±=±=A x (2) 周期 T = 2π/ω = 6 s从平衡位置运动到 的最短时间 ∆t 为 T /8.2A x ±=∴ ∆t = 0.75 s .3分4. 一质点作简谐振动,其振动方程为x = 0.24 (SI),试用旋转矢量法求出)3121cos(π+πt 质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .解:旋转矢量如图所示. 图3分由振动方程可得, 1分π21=ωπ=∆31φ s1分667.0/=∆=∆ωφt 5. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为的位置向平衡位置运动时,第二个物体也2/A 经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.解:依题意画出旋转矢量图.3分由图可知两简谐振动的位相差为. 2分π216. 一简谐振动的振动曲线如图所示.求振动方程.解:(1) 设振动方程为)cos(φω+=t A x 由曲线可知 A = 10 cm , t = 0,,φcos 1050=-=x 0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得-(SI))3/22cos(100π+=ω则有,∴ ω = 5 π/122分2/33/22π=π+ω故所求振动方程为 (SI)1分)3/212/5cos(1.0π+π=t x 7. 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程. 解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示.图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3.2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分8. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π (SI), x 2 = 3×10-2cos2π (SI) )81(+t 41(+t 求合振动方程.解:由题意 x 1 = 4×10-2cos (SI))42(π+πtx 2 =3×10-2cos (SI))22(π+πt 按合成振动公式代入已知量,可得合振幅及初相为m22210)4/2/cos(2434-⨯π-π++=A = 6.48×10-2 m 2分=1.12 rad2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ合振动方程为x = 6.48×10-2 cos(2πt +1.12) (SI) 1分9. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为)2cos(φν+π=t A y 由图可知,t = t '时1分0)2cos(=+'π=φνt A y1分0)2sin(2d /d <+'ππ-=φννt A t y 所以 ,2分2/2π=+'πφνt t 'π-π=νφ221x = 0处的振动方程为1分]21)(2cos[π+'-π=t t A y νxO ωωπ/3-2π/3A1A2A xu Ot =t ′y(2) 该波的表达式为3分]21)/(2cos[π+-'-π=u x t t A y ν10. 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线.(2) 求解并画出t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为, (SI)2分)2121cos(1022π-π⨯=-t y 波的表达式为, (SI)2分)21)5/(21cos(1022π--π⨯=-x t yx = 25 m 处质元的振动方程为, (SI))321cos(1022π-π⨯=-t y 振动曲线见图 (a)2分(2) t = 3 s 时的波形曲线方程, (SI)2分)10/cos(1022x y π-π⨯=-波形曲线见图2分2×11. 已知一平面简谐波的表达式为 (SI) )37.0125cos(25.0x t y -= (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.解:(1) x 1 = 10 m 的振动方程为(SI) 1分)7.3125cos(25.010-==t y xx 2 = 25 m 的振动方程为(SI)1分)25.9125cos(25.025-==t y x (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分(3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125×4-3.7) m= 0.249 m2分12. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 (SI).t y π⨯=-4cos 1032(1)以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.t (s)O -2×10-21y (m)234(a)ABxu解:(1) 坐标为x 点的振动相位为 2分)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π=波的表达式为 (SI) 2分)]20/([4cos 1032x t y +π⨯=-(2) 以B 点为坐标原点,则坐标为x 点的振动相位为(SI) 2分]205[4-+π='+x t t φω波的表达式为(SI)2分])20(4cos[1032π-+π⨯=-xt y 13. 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为,0cos 0==φA y0sin 0<-=φωA v 所以π=21φ波的表达式为4分]21)/(cos[π+-=u x t A y ωω(2) 处振动方程为 8/λ=x1分]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω 的振动方程为8/3λ=x1分]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω(3))21/2sin(/d d π+π--=λωωx t A t y t = 0,处质点振动速度8/λ=x1分]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -= t = 0,处质点振动速度8/3λ=x1分]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =14. 如图,一平面简谐波沿Ox 轴传播,波动表达式为 (SI),])/(2cos[φλν+-π=x t A y 求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.xuO yOP解:(1) 振动方程}]/)([2cos{φλν+--π=L t A y P2分])/(2cos[φλν++π=L t A (2) 速度表达式 2分])/(2sin[2φλνπν++π-=L t A P v 加速度表达式1分])/(2cos[422φλνν++ππ-=L t A a P 15. 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程(SI) 3分)22cos(06.00π+π=ty )cos(06.0π+π=t (2) 波动表达式3分])/(cos[06.0π+-π=u x t y(SI) ])21(cos[06.0π+-π=x t (3) 波长 m2分4==uT λ16. 如图所示,一平面简谐波沿Ox 轴的负方向传播,波速大小为u ,若P 处介质质点的振动方程为 ,求 )cos(φω+=t A y P(1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些点的位置.解:(1) O 处质点的振动方程为2分](cos[0φω++=uLt A y (2) 波动表达式为 2分])(cos[φω+++=uLx t A y (3)x = -L ± k( k = 1,2,3,…) 1分ωuπ217.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 ,求 )cos(φω+=t A y P (1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.解:(1) O 处质点振动方程2分])(cos[0φω++=uLt A y (2) 波动表达式 2分])(cos[φω+--=uLx t A y (3) (k = 0,1,2,3,…) 1分ωuk L x L x π±=±=218. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点,φcos 0A =,φωsin 00A -=<v 故2分π-=21φ又t = 2 s ,O 处质点位移为)214cos(2/π-π=νA A 所以, ν = 1/16 Hz 2分振动方π-π=π-21441ν程为(SI) 1分)218/cos(0π-π=t A y(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式(SI) 3分]2116016(2cos[π-+π=x t A y 19. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差]2[]2[1112λφλφx x d π---π-π+=)12(K 即①2分π+=-π--)12(22)(112K x d λφφ在x 2点两波引起的振动相位差]2[]2[2122λφλφx x d π---π-π+=)32(K 即②3分π+=-π--)32(22)(212K x d λφφ②-①得π=-π2/)(412λx x m2分6)(212=-=x x λ由①2分π+=-π+π+=-)52(22)12(112K x d K λφφ当K = -2、-3时相位差最小1分π±=-12φφ20. 两波在一很长的弦线上传播,其表达式分别为:(SI))244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=-求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 对比可得:)/(2cos λνx t A y -π= ν = 4 Hz , λ = 1.50 m , 各1分波速 u = λν = 6.00 m/s 1分(2) 节点位置)21(3/4π+π±=πn x m , n = 0,1,2,3, … 3分)21(3+±=n x (3) 波腹位置π±=πn x 3/4 m , n = 0,1,2,3, …2分 4/3n x ±=21. 设入射波的表达式为 ,在x = 0处发生反射,反射点为一固定)(2cos 1Ttx A y +π=λ端.设反射时无能量损失,求 (1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 3分])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y +=3分)21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置:, 2分π=π+πn x 21/2λ, n = 1, 2, 3, 4,… λ)21(21-=n x波节位置:2分π+π=π+π2121/2n x λ, n = 1, 2, 3, 4,…λn x 21=22. 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,= 3λ /4, = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运OP DP 动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为2分])/(2cos[1φλν+-π=x t A y 则反射波的表达式是2分](2cos[2π++-+-π=φλνxDP OP t A y 合成波表达式(驻波)为2分)2cos()/2cos(2φνλ+ππ=t x A y 在t = 0时,x = 0处的质点y 0 = 0, ,0)/(0<∂∂t y 故得2分π=21φ因此,D 点处的合成振动方程是2分22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 323. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;; (2) P 点的振动方程.解:设O 处振动方程为)cos(0φω+=t A y 当t = 0时,y 0 = 0,v 0 < 0,∴π=21φ∴)21cos(0π+=t A y ω2分故入射波表达式为2分)22cos(x t A y λωπ-π+=在O ′处入射波引起的振动方程为)4722cos(1λλω⋅π-π+=t A y )cos(π-=t A ω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ 2分)cos(1π+π-='t A y ωt A ωcos =反射波表达式 )](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω2分]22cos[π+π+=x t A λω合成波为 y y y '+=22cos[π+π-=x t A λω22cos[π+π++x t A λω 2分)2cos(2cos 2π+π=t x A ωλ将P 点坐标 代入上述方程得P 点的振动方程λλλ234147=-=x2分2cos(2π+-=t A y ω。

重难点12 机械振动和机械波(解析版)

重难点12 机械振动和机械波(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点12 机械振动和机械波【知识梳理】一 简谐运动的特征 受力特征 回复力F =-kx ,F (或a )的大小与x 的大小成正比,方向相反运动特征靠近平衡位置时,a 、F 、x 都减小,v 增大;远离平衡位置时,a 、F 、x 都增大,v 减小能量特征振幅越大,能量越大.在运动过程中,系统的动能和势能相互转化,机械能守恒周期性特征质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就是简谐运动的周期T ;动能和势能也随时间做周期性变化,其变化周期为T 2对称性特征关于平衡位置O 对称的两点,速度的大小、动能、势能相等,相对平衡位置的位移大小相等;由对称点到平衡位置O 用时相等二 简谐运动的振动图象 1.对简谐运动图象的认识(1)简谐运动的图象是一条正弦或余弦曲线,如图所示.(2)图象反映的是位移随时间的变化规律,随时间的增加而延伸,图象不代表质点运动的轨迹.(3)任一时刻图象上过该点切线的斜率数值表示该时刻振子的速度大小.正负表示速度的方向,正时沿x 正方向,负时沿x 负方向.2.图象信息(1)由图象可以得出质点做简谐运动的振幅、周期. (2)可以确定某时刻质点离开平衡位置的位移.(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向.①回复力和加速度的方向:因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴.②速度的方向:速度的方向可以通过下一时刻位移的变化来判断,下一时刻位移如增加,振动质点的速度方向就是远离t轴,下一时刻位移如减小,振动质点的速度方向就是指向t轴.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x-t图象的意义,其次要把x-t图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三波的形成、传播与图象1.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同.(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同.(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变.(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v =λT=λf. 2.波的图象特点(1)质点振动nT(波传播nλ)时,波形不变.(2)在波的传播方向上,当两质点平衡位置间的距离为nλ(n=1,2,3…)时,它们的振动步调总相同;当两质点平衡位置间的距离为(2n+1)λ2(n=0,1,2,3…)时,它们的振动步调总相反.(3)波源的起振方向决定了它后面的质点的起振方向,各质点的起振方向与波源的起振方向相同.3.波的传播方向与质点振动方向的互判方法内容图象“上下坡”法沿波的传播方向,“上坡”时质点向下振动,“下坡”时质点向上振动“同侧”法波形图上某点表示传播方向和振动方向的箭头在图线同侧“微平移”法将波形沿传播方向进行微小的平移,再由对应同一x坐标的两波形曲线上的点来判断振动方向四振动图象和波动图象的综合应用振动图象波动图象研究对象一个振动质点沿波传播方向的所有质点研究内容某一质点的位移随时间的变化规律某时刻所有质点的空间分布规律图象物理意义表示同一质点在各时刻的位移表示某时刻各质点的位移图象信息(1)质点振动周期(2)质点振幅(3)某一质点在各时刻的位移(4)各时刻速度、加速度的方向(1)波长、振幅(2)任意一质点在该时刻的位移(3)任意一质点在该时刻加速度的方向(4)传播方向、振动方向的互判图象变化随时间推移图象延续,但已有形状不变随时间推移,图象沿传播方向平移一个完整曲线占横坐标的距离表示一个周期表示一个波长五波的多解问题1.造成波动问题的多解的三大因素周期性(1)时间周期性:时间间隔Δt与周期T的关系不明确(2)空间周期性:波传播距离Δx与波长λ的关系不明确双向性(1)传播方向双向性:波的传播方向不确定(2)振动方向双向性:质点振动方向不确定波形的隐含性问题中,只给出完整波形的一部分,或给出几个特殊点,而其余信息均处隐含状态,波形就有多种情况2.解决波的多解问题的思路一般采用从特殊到一般的思维方法,即找出一个周期内满足条件的关系Δt 或Δx ,若此关系为时间,则t =nT +Δt (n =0,1,2…);若此关系为距离,则x =nλ+Δx (n =0,1,2…).六 波的干涉和衍射 多普勒效应1.波的干涉中振动加强点和减弱点的判断:某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr .(1)当两波源振动步调一致时若Δr =nλ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =nλ(n =0,1,2,…),则振动减弱.2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析(1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.【命题特点】这部分知识主要考查机械振动和机械波相结合的问题,尤其要注意机械波的多解问题和机械波传播方向与介质中质点振动方向的关系问题。

高中物理练习振动与波(习题含答案)

高中物理练习振动与波(习题含答案)

1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。

对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。

以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。

若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。

振动和波的基础知识

振动和波的基础知识

1.机械振动:(1):机械振动即物体或物体的一部分在某一中心位置两侧所做的往返的运动(2):回复力F 回:指向“平衡”位置的合力叫回复力(3):振动位移x :都以“平衡”位置为位移的起点(4):振幅A :振动物体离开“平衡”位置的最大距离,振幅越大,振动的能量就越大(5):振动的周期T :指完成一次全振动的时间;周期表示振动的快慢,周期小表示振动的快(6):振动的频率f :指单位时间内完成振动的次数;频率大,表示振动的快;单位为:赫兹Hz(7):T=f 1;振动的周期T 的大小与振幅的大小无关:对于同一个振动系统,当振动的振幅变大时,其周期将保持不变,所以物体振动的周期又叫固有周期(8):平衡位置:振动的中心位置,是假冒的“平衡”,F 合不一定为0,如:单摆的“平衡”位置的加速度为:022≠==⇒==m F R v R v a m F F 指向圆心的合力向心向心指向圆心的合力2:简谐振动: 1:回复力F 回和位移x 成正比,但它们的方向相反;F 回=-kxx 为物体离开“平衡”位置的位移负号表示回复力F 回和位移x 的方向相反回复力就是一个指向“平衡”位置的合力(2):对于同一个振动系统,当振动的振幅变大时,其周期仍保持不变(3):简谐振动的x-t 图像:是一条正弦或余弦曲线(4):振动的周期T 的大小与振幅的大小无关所以把它叫国有周期;弹簧振子的T 与小球的质量、弹簧的劲度序数有关;单摆的T 与摆长、重力加速度g 有关3.单摆(1):当单摆的摆角小于80时,单摆的振动可以看做简谐振动(2):单摆振动时,也可以把它看做圆周运动R m R m m F F T R v 2222)(向心指向圆心的合力πω====多多从不同的角度分析问题(3):单摆的回复力由重力在切线方向的分力提供;当摆角小于80时,L x≈θsin ,mg F L x -=回复力如右图(3):当单摆的摆角小于80时,g LT π2=L 为物体摆动时的圆心悬点到物体重心的距离g 为当地的重力加速度g =2R GM;g ´=222)()(H R gR H R GM ++= g ´为离天体表面H 高处的重力加速度;g为天体表面的重力加速度;R 为天体的半经;M 为中心天体的质量;H 为离天体表面的高公式说明T 与振幅A 无关(4):单摆振动时,由于拉力始终与速度垂直,所以拉力不做功,如无阻力,则物体的机械能守恒(5):单摆振动时,如有阻力,则在短时间内,仍可把它看做简谐振动4、任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A 了多多用位移时间图像帮助分析问题5、受迫振动:(1):物体在周期性外力的作用下的振动叫受迫振动(2):物体做受迫振动时,它的频率等于驱动力的频率,而跟物体的固有频率无关,如图:假如L=g,则单摆的固有周期g L T π2==2π秒,如果每隔八秒推一下小球,则单摆的周期就为8秒,而不是2π秒(3):波在传播时,各质点都在做受迫振动各质点都在模仿波源的振动,所以波由一种介质传到另一介质时,波的频率不变等于波源的振动频率(4):物体在做受迫振动时,驱动力的频率跟物体的固有频率相等的时侯,物体的振幅最大,这种现象叫共振;驱动力的频率跟物体的固有频率越接近,物体的振幅也越大,如图为共振曲线(5):当f 驱动力=f 固时物体会发生共振,共振时的振幅比不共振时的振幅大(6):利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……6:简谐振动的图像如右图为水平振动的弹簧振子的振动图像:由图像可知:(1):振动图像表示的是某一质点在各个时刻的位移(2):振幅A 为15cm(3): 周期T 为8s(4):a 点对应的时刻,速度在增大,速度的方向向负方向;加速度在减小,加速度的方向负方向和位移的方向相反,此时位移为正10cm回复力在减小,回复力的方向向负方向和位移的方向相反动能在增大,弹性势能在减小机械能守恒b 点对应的时刻,速度在减小,速度的方向向负方向;加速度在增大,加速度的方向向正方向和位移的方向相反,此时位移为-5cm回复力在增大,回复力的方向向正方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒d 点对应的时刻,速度在减小,速度的方向向正方向;加速度在增大,加速度的方向向负方向和位移的方向相反,此时位移为正5cm回复力在增大,回复力的方向向负方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒(5):V a < V b = V d7:解振动问题的方法:(1):振动问题都是变力问题,一般选用动能定理、能量守恒定律解题;注意应用弹簧的弹性势能不变、了解:弹性势能221kx E P ,k 弹簧的劲度系数,x 为弹簧的形变量、弹力做的功= - 弹性势能的变化量等条件 (2):充分利用振动的对称性,如在两个对称点的加速度a 、速度v 、位移、动能E k 、弹性势能相等等条件(3):充分利用振动的图像解题画出振动的图像帮助解决问题(4):注意应用临界点的条件:如弹力为0、加速度a 、速度v 、位移相等等等(5):两物体的加速度a 1、a 2相等时,两物体可能将要分开物体分开的瞬间,物体间的弹力为零(6):弹簧的形变量或两次的形变量之差可能等于物体的位移:S=X 2-X 18:机械波:机械振动在介质中的传播过程所形成的波叫做机械波(1):有振源和传播介质时就会产生机械波(2):波是传播能量的一种方式,即传递某种信息(3):波信息向前传播时,各介质只在自己的平衡位置附近振动,并不会随波信息向前传播(4):波信息向前传播时,波形波形代表信息的内容不会发生变化;如下图,波信息向右传播过后,A 、B 、C 、D 各质点仍然回到各自原来的位置;当波信息传递到E 点时,它就开始振动,并按后面的波形振动即开始模仿振源的所有动作,所以质点起到了传递信息的作用;要判断E 如何振动,就看和它相邻的前一质点的运动情况即可解波动问题,就是逻辑推理的过程,由A 质点的情况推及到D 质点的情况,由9秒的情况推及到8秒的情况……(5):每经过一个周期,波就向前传播一个波长的距离;每经过41个周期,波就向前传播41个波长的距离 (6):波的频率就等于波源的振动频率,介质的振动频率也等于波源的振动频率受迫振动9:波速V :(1):T V λ=;t SV f V ==;λ(2):波速V 只与介质有关,与波长、频率无关;当介质相同时,波速就相同(3):当波由一种介质传播到另一介质时,频率不变各质点都在做受迫振动,波速、波长会发生改变 10:波长:(1):两个相邻的,在振动过程中对平衡位置的位移总是相等的质点间的距离,叫波长9秒末(2):在一个周期里,波向前传播的距离,叫波长(3):两个相邻的波峰之间的距离,叫波长;两个相邻的波谷之间的距离,叫波长11:波的周期、频率:波的频率就等于波源的振动频率,它们与速度、介质无关12:波的图像:由图像可知(1):波的图像表示的是某一时刻各个质点的位移的图像(2):振幅A 为15cm(3):波长为8cn(4):在9秒末,a 质点向下运动它模仿的前一质点在它的右下方(5):在9秒末,a 质点的速度在变大,加速度在变小,加速度的方向向下各质点的运动规律仍然遵循振动的规律13:波的衍射:(1): 波在传播中遇到障碍物时能绕过障碍物的现象,叫波的衍射(2):一切波均能发生衍射,即任何条件下波均能发生衍射,只是有的衍射我们觉擦不到,但是仍然存在(3):发生明显的衍射的条件是:障碍物或孔的直径比波长小或相差不多(4):楼上房间的人能听到楼底下人的声音,单缝衍射、眯眼看灯、隔并齐笔缝看灯、隔羽毛纱布缝看灯等呈彩色看到彩色的光,这些都是衍射14:波的干涉:(1):频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫波的干涉(2):两个波源的振动方向相同,频率相同的同类波干涉时,就能得到稳定的干涉图样(3):围绕正在发声的音叉走一圈,听到声音忽强忽弱,双缝干涉、肥皂泡膜、蝉翼、雨天公路上汽油等呈彩色,这些都是干涉(4):波的干涉加强区是波峰和波峰相遇处或波谷和波谷相遇处,加强区仍在振动,其位移有可能小于减弱区的,但它的振幅一定大于减弱区的;波的干涉减弱区则是波峰和波谷相遇处(5):当两个波源的振动方向相同,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的加强点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的减弱点;当两个波源的振动方向相反,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的减弱点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的加强点; 15:多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同波源与观测者相互接近时,接收频率变大;反之,变小16:波的分类:波分为横波和纵波;声波为纵波17:波的反射:遵循反射定律如:反射角等于入射角等等18:解波动问题的方法:(1):一定要画出波动图像(2):注意应用波形不变把整个波形拿来平移,一般不要把波形延长,各质点都在模仿波源的振动,通过逻辑推理导出答案由“现在”推导出“将来”,由“现在”推导出“过去”(3):还应考虑到波的周期性、重复性,质点振动的周期性、重复性。

振动与波

振动与波

§4- 简谐波
三、波长、波的周期和频率、波速 波长、波的周期和频率、 1.波长 沿波的传播方向,两个相邻的、 1.波长 λ :沿波的传播方向,两个相邻的、相位差 的振动质点之间的距离。 为 2 π 的振动质点之间的距离。 反映波在空间的周期性 2.周期 波传过一个波长的距离所需要的时间。 2.周期 T:波传过一个波长的距离所需要的时间。 等于质点振动周期。 等于质点振动周期。
角波数 k =

质点的振动速度,加速度 质点的振动速度,
∂y x v= = −ωA sin[ω (t − ) + ϕ ] ∂2t u ∂ y x 2 a = 2 = −ω A cos[ω (t − ) + ϕ ] ∂t u
λ
§4-4 简谐波
4.波函数的物理意义 4.波函数的物理意义 x t x y = A cos[ω (t − ) + ϕ ] = A cos[2 π( − ) + ϕ ] u T λ 固定时, 波动表式表示该点的简谐运动方程, 当 x 固定时, 波动表式表示该点的简谐运动方程, 并给出该点与原点O 振动的相位差. 并给出该点与原点O 振动的相位差.
y /cm
M1
0.5 0.4 0.2 0 − 0.2
M1'
M2
M2 '
a
10 20
b
30 40 50 60 70
− 0.4 − 0.5
x /cm t=3T/4 =3T
§4-4 简谐波
振动动能 + 形变势能= 波的能量 形变势能= 六.波的能量 设波沿x 方向传播, 设波沿 方向传播,取线元 以绳索上传播的横波为例: 以绳索上传播的横波为例: 线元的动能 y 1 1 ∂y 2 2 Wk = ∆mv = ∆m( ) 2 2 ∂t T2 线元的势能(原长为势能零点) 线元的势能(原长为势能零点) ( 1 ∂y 2) O Wp = F ∆x 2 ∂x

高中物理:振动和波练习及详解

高中物理:振动和波练习及详解

高中物理振动和波练习及详解一、单项选择题1.一个单摆从甲地到乙地,发现振动变快了,为了调整到原来的快慢,下述说法正确的是( ) A. 因 g 甲>g 乙,故应缩短摆长 B. 因为g 甲>g 乙,故应加长摆长 C. 因为g 甲<g 乙,故应缩短摆长 D. 因为g 甲<g 乙,故应加长摆长 【答案】D【详解】一单摆因从甲地移到乙地,振动变快了,即周期减小了,根据2T =,得到g增大,T 才会减小,所以甲地的重力加速度小于乙地的重力加速度,即g 甲<g 乙;要使T 还要恢复,只要增大T ,故只能将摆长适当增长,故D 正确,ABC 错误.2.如图所示,弹簧左端固定,右端系一物块,物块可以在粗糙水平桌面上滑动,物块与水平面各处动摩擦因数相同,弹簧原长时物块位于O 点.当先后分别把物块拉到P1和P2点由静止释放后,物块都能运动到O 点左方,设两次运动过程中物块速度最大时的位置分别为Q1和Q2点,则这两点( )A. 都在O 点右方,且Q1离O 点较近B. 都在O 点右方,且Q2离O 点较近C. 都在O 点右方,且Q1、Q2为同一位置D. 都正好与O 点重合 【答案】C【详解】先后分别把物块拉到P1和P2点由静止释放,开始弹簧的弹力大于摩擦力的大小,物体做加速运动,加速度逐渐减小,当加速度减小到零时,即F=kx=f 时,速度最大,此时弹簧的形变量f x k=,知Q1和Q2点都在O 点右方,且Q1、Q2在同一位置,故C 正确,ABD错误.3.在相同的时间内单摆甲作了10次全振动,单摆乙作了6次全振动,两个单摆的摆长相差16cm ,则甲摆的摆长为( ) A. 25cm B. 9cm C. 18cm D. 12cm 【答案】B【详解】在相同时间内单摆甲做了n1=10次全振动,单摆乙做了n2=6次全振动,知甲乙单摆的周期比为3:5,根据2T =224gT L π=,则有:211222925L T L T ==,又L2-L1=16cm .所以L1=9cm ,L2=25cm ,故B 正确,ACD 错误.4.一个质量分布均匀的空心小球,用一根长线把它悬挂起来,球中充满水,然后让球小角度摆动起来,摆动过程中水在小孔中缓慢均匀漏出,那么,它的摆动周期将( ) A. 变大 B. 变小C. 先变大后变小D. 先变小后变大 【答案】C【详解】单摆在摆角小于5°时的振动是简谐运动,其周期是2T =球,重心在球心,当水从底部的小孔流出,直到流完的过程,金属球(包括水)的重心先下降,水流完后,重心升高,回到球心,则摆长先增大,后减小,最后恢复到原来的长度,所以单摆的周期先变大后变小,最终恢复到原来的大小,故C 正确,ABD 错误. 5.一弹簧振子做简谐运动,周期为T( )A. 若t 时刻和(t+△t)时刻振子位移相同,则△t 一定等于T 的整数倍B. 若t 时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t 一定等于T/2的整数倍C. 若△t=T/2,则在t 时刻和(t+△t)时刻弹簧的长度一定相等D. 若△t=T/2,则在t 时刻和(t+△t)时刻振子运动的加速度大小一定相等 【答案】D【详解】在t 时刻和(t+△t )时刻振子的位移相同,所以这两时刻振子通过同一个位置,而每一个周期内,振子两次出现在同一个位置上.所以当速度方向相同时,则△t 可以等于T 的整数;当速度方向相反时,则△t 不等于T 的整数,故A 错误;若t 时刻和(t+△t )时刻振子运动速度大小相等,方向相反,则△t可能等于2T的整数倍,也可能大于2T的整数倍,也可能小于 的整数倍,故B 错误;若△t=2T ,则在t 时刻和(t+△t )时刻振子的位置关于平衡位置对称或经过平衡位置,所以这两时刻位移的大小一定相等,由kxa m =-知加速度大小一定相等.但弹簧的状态不一定相同,则长度不一定相等,故D 正确,C 错误.所以D 正确,ABC 错误.6.关于机械振动和机械波,下列说法中正确的是( )A. 物体作机械振动时,一定产生机械波B. 没有机械振动,也可能形成机械波C. 有机械波,一定有质点作机械振动D. 机械振动和机械波的产生无关 【答案】C【详解】机械振动在介质中的传播称为机械波,所以有机械波必有机械振动,而有机械振动若没介质不会形成机械波,故C 正确,ABD 错误. 7.关于波长,下列说法中正确的是( )A. 横波的两个波峰之间的距离等于一个波长B. 一个周期内介质质点通过的路程是一个波长C. 横波上相邻的波峰和波谷间的距离等于一个波长D. 波源开始振动后,在振动的一个周期里波传播的距离等于一个波长 【答案】D 【详解】横波的两个波峰之间的距离等于若干个波长,只有相邻两个波峰之间的距离等于一个波长,故A 错误;质点只在自由的平衡位置附近做简谐运动,通过一个周期内介质质点通过的路程是四个振幅,与波长没有关系,故B 错误;横波上相邻的波峰和波谷间的距离等于半个波长,故C 错误;波源开始振动后,在振动的一个周期里波传播的距离等于一个波长,故D 正确.所以D 正确,ABC 错误.8.关于波的叠加和干涉,下列说法中正确的是( )A. 两列频率不相同的波相遇时,因为没有稳定的干涉图样,所以波没有叠加B. 两列频率相同的波相遇时,振动加强的点只是波峰与波峰相遇的点C. 两列频率相同的波相遇时,如果介质中的某点振动是加强的,某时刻该质点的位移可能是零D. 两列频率相同的波相遇时,振动加强点的位移总是比振动减弱点的位移大 【答案】C【解析】根据波的叠加原理,只要两列波相遇就会叠加,所以选项A 错误.两列频率相同的波相遇时,振动加强的点是波峰与波峰、波谷与波谷相遇,所以B 选项错.振动加强的点仅是振幅加大,但仍在平衡位置附近振动,也一定有位移为零的时刻,所以选项C 正确,D 错误.故选C.二、多项选择题9.关于简谐运动的位移、速度、加速度的关系,下列说法正确的是( ) A. 加速度增大时,速度必减小 B. 速度、加速度方向始终相反C. 通过平衡位置时,v 、a 均改变方向D. 远离平衡位置时,v 、a 方向相反 【答案】AD 【详解】加速度满足kx a m =-,所以加速度增大时,位移也增大,所以速度必减小,故A 正确;向平衡位置运动时,速度、加速度方向相同,故B 错误;通过平衡位置时,速度方向不改变,故C 错误;远离平衡位置时,加速度方向指向平衡位置,速度方向背离平衡位置,即v 、a 方向相反,故D 正确.所以D 正确,BC 错误.10.如图所示,在O 点悬一根细长直杆,杆上串有一个小球A,用长为l 的细线系着另一个小球B,上端也固定在O 点,将B 拉开,使细线偏离竖直方向一个小角度,将A 停在距O 点L/2处,同时释放,若B 第一次回到平衡位置时与A 正好相碰(g 取10m/s2,π2取10),则( ) A. A 球与细杆之间不应有摩擦力 B. A 球的加速度必须等于4m/s2C. A 球受到的摩擦力等于其重力的0.6倍D. 只有知道细线偏离竖直方向的角度大小才能求出A 球受到的摩擦力【答案】BC【详解】球B 是单摆,根据单摆的周期公式2T =B 第一次回到平衡位置过程的时间:4T t =,球A匀加速下降,根据位移时间关系公式,有2122L at=,解得:2244/ga m s π=≈ ,故B 正确;球A 匀加速下降,根据牛顿第二定律,有:mg-f=ma ,解得:f=m (g-a )=0.6mg ,A 球受到的摩擦力等于其重力的0.6倍,故AD 错误,C 正确.所以BC 正确,AD 错误. 11.一弹簧振子做简谐振动,t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻一定相同的物理量有( ) A. 速度 B. 加速度 C. 位移 D. 机械能 【答案】AD【详解】t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻质点位置关于平衡位置对称,此时速度和机械能相同,加速度和位移方向相反,故AD 正确,BC 错误.12.细长轻绳下端拴一小球构成单摆,在悬挂点正下方1/2摆长处有一个能挡住摆线的钉子A ,如图所示.现将单摆向左拉开一个小角度,无初速度释放.对于以后的运动,下列说法正确的是( )A. 摆球往返一次的时间比无钉子时短B. 摆球往左右两侧上升的最大高度相同C. 摆球往在平衡位置左右两侧走过的最大弧长相等D. 摆球往在平衡位置右侧的最大摆角是左侧最大摆角的两倍. 【答案】AB【详解】无钉子时,单摆的周期2T =,有钉子后,在半个周期内绕悬挂点摆动,半个周期内绕钉子摆动,周期T '=A 正确;根据机械能守恒定律,左右两侧上升的高度相同.有钉子子时走过的弧长小于无钉子走过的弧长.摆角不是2倍关系,故B 正确,CD 错误.所以AB 正确,CD 错误.13.关于机械波,下列说法不正确的是( ) A. 在传播过程中能传递能量 B. 频率由波源决定C. 能产生干涉、衍射现象D. 能在真空中传播 【答案】D【详解】A .波传播振动这种运动形式的同时传递能量,故A 正确,不符合题意; B .波的频率是由波源决定的,故B 正确,不符合题意; C .干涉、衍射是波的特有现象,机械波在一定条件下也能发生干涉和衍射现象,故C 正确,不符合题意;D .机械波传播要借助于介质,真空中不能传播,故D 错误,符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1 A1 cos( t 1 )
x2 A2 cos( t 2 )
两振动的位相差 2 1 =常数
第12章 振动与波
x x1 x2 A A1 A2 2 A1 A2 cos( 2 1 ) A A1 sin 1 A2 sin 2 A2 tan 2 A1 cos1 A2 cos 2 A
,T ,

2π 角频率 2π T
都表示简谐运动的周期性,反映振动的快慢.
2
k m
弹簧振子周期 T 2π
m k
第12章 振动与波 振幅和初相位
振幅:质点在振动过程中离开平衡位置最大位移的绝对值
x A cos(t ) v A sin(t )
第12章 振动与波 例1 在室温下,已知空气中的声速 u1 为340 m·-1,水中的声速 u2 为1 450 m·-1,求 s s 频率为200 Hz和2 000 Hz 的声波在空气中 和水中的波长各为多少? 解 由 u ,频率为200 Hz和2 000 Hz 的声波在 空气中的波长
F mg
当货轮向下移动x时
c
o
c
mg
mg
x
x
F合 mg F mg ( F gSx) d 2x F合 gSx m 2 dt
第12章 振动与波
d x gS x0 2 dt m
2
令 2 gS
m
d 2x 2x 0 得: dt 2
振幅
(弹簧振子振动的运动方程)
初位相
速度:
dx v A sin(t ) dt
d2 x 2 2 加速度: a 2 A cos(t ) x dt
第12章 振动与波
简谐振动的描述和特征
1)物体受线性回复力作用
2)简谐振动的微分方程 3)简谐振动的振动方程
A2 y x A1
o
A1
x
第12章 振动与波 2 2 x y 2 xy 2 2 cos( 2 1 ) sin ( 2 1 ) 2 A1 A2 A1 A2
2) 2 1 π
3) 2 1 π 2
A2 y x A1
y
A2
o
A1
x
x y 2 1 2 A1 A2
第12章 振动与波 2 纵波(又称疏密波)
特点:质点的振动方向与波传播方向一致 例如:弹簧波、 声波
ቤተ መጻሕፍቲ ባይዱ
2
第12章 振动与波
12.6.3 描述波动过程的物理量 1 波长
沿波的传播方向,两个相邻的、相位差 为 2 的振动质点之间的距离,即一个完 整波形的长度.
A O A
y
u


x
第12章 振动与波 横波:相邻 波峰——波峰 波谷—— 波谷
第12章 振动与波 12.1 简谐振动
12.1.1概述
机械振动 物体在一定位置附近的来回重复的运动.
任一物理量在某一定值附近往复变化均称为振动. 简谐振动 最简单、最基本的振动.
简谐运动
合成
分解
复杂振动
第12章 振动与波
12.1.2、弹簧振子
弹簧振子的振动
l0
k
x0 F 0
m
A
o
x
A
第12章 振动与波
解:由题可知,两振动是振动方向相同、频率 相同的简谐振动。合振动仍是简谐振动,设为
第12章 振动与波
x A cos(t )
合振动的振幅为 A
2 A12 A2 2 A1 A2 cos( 2 1 )
A1 sin 1 A2 sin 2 4 合振动的初相位为 arctan A1 cos1 A2 cos 2 3 4 合振动为 x 2 cos( 3t ) 3
弹簧振子的总的机械能:
1 2 E Ek Ep kA 2
第12章 振动与波
弹簧振子在振动过程中,系统的动能和势能都随时 间发生周期性变化,但动能和势能的总合保持为一个常 量,即作简谐运动的系统机械能守恒. E
1 kA 2 2
Ek
Ep
o
T
4
T
2
3T
4
T
t
简谐运动能量图
第12章 振动与波 12.4 振动的合成 12.4.1两个同方向同频率简谐运动的合成 设一质点同时参与两独立的同方向、同频 率的简谐振动:
· ·· · ·· · · · ·· · · · · · · t= T/2 · · · · · ·· ·
·· · · · · · · · · · · · · · 3T/4 · · · · ·· t= · ·· · ··· · · · · · ·· ·t = T · ·· ·· ···· · ·· · ·
2(m)
第12章 振动与波
12.4.3振动方向相互垂直、频率相同的简谐振动的合成
x A1 cos(t 1 ) y A2 cos(t 2 )
质点运动轨迹 (椭圆方程)
x 2 y 2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) 2 A1 A2 A1 A2 y A2 讨论 1) 2 1 0 或 2π


a 0.24 ( ) cos( 1 ) 0.513(m / s 2 ) 2 2 3
2



第12章 振动与波 相位
在 x A cos( t )中,t
称为振动的相位.
即其决
1) t x ,存在一一对应的关系; 定质点在时刻的t的位置.
2)初相位

x
A/ 2
第12章 振动与波
12.1.6 简谐振动的能量
1 1 2 2 2 2 动能: Ek mv m A sin (t ) 2 2

k/m
2
1 2 2 E k kA sin (t ) 2
1 2 1 2 2 势能: Ep kx kA cos (t ) 2 2
初始条件
t 0 x x0 v v0
x0 A cos
2 A x0

2 v0 2
v0 A sin
v0 t an x0
对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
第12章 振动与波
[例]一物体作简谐振动,振幅为0.24m,振动周期为 4S,开始时物体位于0.12m,向负方向运动。求 (1)物体的振动方程; (2)t=1.0s时物体的位置、速度、加速度。
F kx 平衡位置 x 0
d2 x 2 x 0 2 dt
x A cos(t )
v A sin(t )
4)加速度与位移成正比而方向相反 弹簧振子
a x
2
km
第12章 振动与波
[例1]一远洋货轮,质量m=2.0×104T,浮在水面时 其水平截面S= 2.0×103m2,设在水面附近货轮的截 面积与船体的高度无关,证明此货轮在水中的铅直 自由运动是简谐振动。 F F 解:在平衡位置
x A cos(t )
矢量 A的
端点在 轴上的投 影点的运
旋转
x
动为简谐
运动.
第12章 振动与波
[例] 试用旋转矢量法求简谐振动在下列情况下的初位 相:(1)起始时物体处于平衡位置,向正方向运动; (2)起始时物体位移为A/2,且向负方向运动。 解:(1)



2
A
x
A
(2)
3
F mg k ( x L) mg kx kL F kx 物体作简谐振动
o x
m m
x
12.1.1 简谐振动的物理量
周期(T):振动往复一次所需时间.
x A cos(t ) A cos[(t T ) ] A cos(t T ) 1 2π 周期:T 频率 T 2π
第12章 振动与波
12.6.2 机械波的分类
1 横波
特点: 波传播方向上各点的振动方向与波传播方向垂直
第12章 振动与波
0 · · 4 · · · · · · · ··· t = 0 · · · 8 · 12 · 16 ·20 · · · · · · ·
·· ·· · · · · · · · ·· · · t = T/4 · · · · · · · · ··
例如,声波在空气中 340 m s 1
水 中 1 500 m s 1 钢铁中 5 000 m s
1
决定于介质的弹性(弹性模量)和惯性(密度)
第12章 振动与波 四个物理量的联系
1 T
注意
u

T

u Tu
周期或频率只决定于波源的振动
波速只决定于介质的性质
2 1 2k π
A A1 A2
(k 0 , 1, )
相互加强
2)相位差 2
1 (2k 1)π (k 0 , 1, )
A A1 A2
3)一般情况
相互削弱
A1 A2 A A1 A2
4 [例1]求振动 x1 5 cos( 3t ) 和 x2 7 cos( 3t )( m) 3 3 的合振动
解: (1)设简谐振动方程为: x A cos(t )
2 , t 0, x 0.12 m 代入上式得 由 T 2 0.12 0.24cos ,即cos 0.5

3
由题意已知A=0.24m,只要求出
, 即可
相关文档
最新文档