2019年威海市初二数学下期末第一次模拟试卷含答案
山东省威海市八年级下学期数学期末考试试卷
山东省威海市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·江津月考) 下列二次根式中,能与合并的是().A .B .C .D .2. (2分)弹簧挂上物体后会伸长,测得一弹簧的长度与所挂的物体的质量之间有下面的关系.下列说法不正确的是().A . 与都是变量,且是自变量,是因变量B . 弹簧不挂重物时的长度为C . 物体质量每增加,弹簧长度增加D . 所挂物体质量为时,弹簧长度为3. (2分)球的体积V(m3)与球的半径R(m)之间的关系式为V=πR3 ,当球的大小发生变化时,关于π、R的说法中,最准确的是()A . R是常量B . π是变量C . R是自变量D . R是因变量4. (2分)在四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是()A . 一组对边平行而另一组对边不平行B . 对角线相等C . 对角线互相垂直D . 对角线互相平分5. (2分) (2019九上·大通月考) 已知二次函数的图象如图所示,则一次函数的图象大致是()A .B .C .D .6. (2分) (2020八下·莲湖期末) 下列定理中没有逆定理的是()A . 等腰三角形的两底角相等B . 平行四边形的对角线互相平分C . 角平分线上的点到角两边的距离相等D . 全等三角形的对应角相等7. (2分) (2019八上·陕西期中) 如图,在平面直角坐标系中,一次函数的图象分别交轴于点,直线与轴交于点,若,则直线的函数表达式是()A .B .C .D .8. (2分) (2019八下·南安期末) 甲、乙两八年级学生在一学期里多次检测中,其数学成绩的平均分相等,但他们成绩的方差不等,那么符合题意评价他们的数学学习情况的是()A . 学习水平一样B . 虽然平均成绩一样,但方差小的学习成绩稳定C . 方差大的学生学习潜力大D . 方差较小的学习成绩不稳定,忽高忽低9. (2分) (2018八上·叶县期中) 如图(图在第二页)所示是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3、5、2、3,则最大正方形E的面积()A . 13B . 26C . 47D . 9410. (2分) (2017九上·怀柔期末) 在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是()A . 1月份B . 2月份C . 5月份D . 7月份二、填空题 (共5题;共6分)11. (1分) (2019八上·虹口月考) 若正比例函数的图像经过一、三象限,则函数解析式是________.12. (1分) (2018九上·东台月考) 如图,两边平行的刻度尺在圆上移动,当刻度尺的一边与直径为6.5cm的圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则刻度尺的宽为________cm.13. (1分) (2019九上·上饶期中) 在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.14. (1分) (2019八下·尚志期中) 已知菱形的周长为,两个相邻角度数之比为1:2,则较短对角线的长为________ .15. (2分) (2017·天津模拟) 已知直线y=2x﹣4,则此直线与两坐标轴围成的三角形面积为________.三、解答题 (共8题;共96分)16. (10分) (2019八下·北京期中)(1)(2)(3)17. (10分)(2018·崇仁模拟) 在四边形OABC中,AB∥OC,∠OAB=90°,∠OCB=60°,AB=2,OA=2 .(1)如图①,连接OB,请直接写出OB的长度;(2)如图②,过点O作OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,设点P运动的时间为t秒,△OPQ的面积为S(平方单位).①求S与t之间的函数关系式;②设PQ与OB交于点M,当△OPM为等腰三角形时,试求出△OPQ的面积S的值.18. (11分) (2020八下·上虞期末) 我区某校德育处积极开展“预防新冠病毒知识知多少”宣传活动,组织举办了一次防病毒知识竞赛,本次竞赛满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀。
山东省威海市八年级下学期数学期末试卷
山东省威海市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019八下·南岸期中) 已知点A(2-a,a+1)在第一象限,则a的取值范围是()A . a>2B . -1<a<2C . a<-1D . a<12. (2分)(2017·深圳模拟) 一个多边形的内角和是720°,这个多边形的边数是()A . 3B . 4C . 5D . 63. (2分) (2018九上·晋江期中) 一元二次方程2x2-x-3=0的而次项系数、常数项分别是()A . 2,1,3B . 2,1,﹣3C . 2,﹣1,3D . 2,﹣1,﹣34. (2分)已知函数y=,则下列函数图象正确的是()A .B .C .D .5. (2分)下列图形中,既是轴对称又是中心对称的图形是()A . 直角三角形B . 正五边形C . 正六边形D . 等腰梯形6. (2分) (2019八下·武安期末) 某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A . 平均数变小,方差变小B . 平均数变大,方差变大C . 平均数变大,方差不变D . 平均数变大,方差变小7. (2分)(2020·广州) 直线不经过第二象限,则关于的方程实数解的个数是().A . 0个B . 1个C . 2个D . 1个或2个8. (2分) (2019七下·织金期中) 星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是()A . 小王去时的速度大于回家的速度B . 小王在朋友家停留了10分C . 小王去时所花的时间少于回家所花的时间D . 小王去时走上坡路,回家时走下坡路二、填空题 (共11题;共15分)9. (1分) (2016七下·潮南期中) 如果式子有意义,则x的取值范围是________.10. (1分) (2015七上·海南期末) 长方形的周长为12cm,长是宽的2倍,则长为________ cm.11. (1分) (2019九上·获嘉月考) 方程3x2=5的二次项系数是________,一次项系数是________,常数项是________.12. (1分)(2019·贵港模拟) 一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是________.13. (1分) (2018七下·潮安期末) 点C在x轴上方,y轴右侧,距离x轴4个单位长度,距离y轴3个单位长度,则点C的坐标为________.14. (1分) (2020八下·高新期末) 如图,在▱ABCD中,AB=2,BC=3,∠ABC=60°,对角线AC与BD交于点O,将直线l绕点O按顺时针方向旋转,分别交AD、BC于点E、F,则四边形ABFE周长的最小值是________.15. (1分)(2017·吉林模拟) 如图,直线y=x﹣4与x轴、y轴分别交于M、N两点,以坐标原点O为圆心的⊙O半径为2,将⊙O沿x轴向右平移,当⊙O恰好与直线MN相切时,平移的最小距离为________.16. (1分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,则对角线AC的长度为________ .17. (1分) (2017八下·普陀期中) 顺次连接等腰梯形各边中点所成的四边形是________18. (4分) (2019八下·林西期末) 如图,直线与轴、轴分别交于,两点,是的中点,是上一点,四边形是菱形,则的面积为________.19. (2分) (2020八下·禹城期末) 已知一次函数为常数),当x<2时,y>0,则的取值范围为________.三、解答题 (共9题;共65分)20. (5分) (2019九上·鼓楼期中) 解方程:(1) x2+2x-1=0(2) x(x-1)=4(x-1)21. (5分) (2019九上·吉林月考) 已知关于x的方程x2-2x+2m-1=0有实数根,且m为正整数,求m的值及此时方程的根。
2019年初二数学下期末一模试卷含答案
2019年初二数学下期末一模试卷含答案一、选择题1.若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.如图,矩形OABC 的顶点O 与平面直角坐标系的原点重合,点A ,C 分别在x 轴,y 轴上,点B 的坐标为(-5,4),点D 为边BC 上一点,连接OD ,若线段OD 绕点D 顺时针旋转90°后,点O 恰好落在AB 边上的点E 处,则点E 的坐标为( )A .(-5,3)B .(-5,4)C .(-5,52) D .(-5,2)3.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B4.若代数式1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1B .x≥﹣1C .x≠1D .x≥﹣1且x≠15.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.56.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有A.4个B.3个C.2个D.1个7.如图,菱形中,分别是的中点,连接,则的周长为()A.B.C.D.8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线互相垂直的四边形D.对角线相等的四边形9.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个10.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )A.23B.1C.32D.211.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m12.如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若AFDV的周长为18,ECFV的周长为6,四边形纸片ABCD的周长为()A .20B .24C .32D .48二、填空题13.如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,DF∥AB,交BC 于点F ,当△ABC 满足_________条件 时,四边形BEDF 是正方形.14.若x=2-1, 则x 2+2x+1=__________.15.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 16.一次函数的图象过点()1,3且与直线21y x =-+平行,那么该函数解析式为__________.17.如图,如果正方形ABCD 的面积为5,正方形BEFG 的面积为7,则ACE △的面积_________.18.已知一次函数y=kx+b 的图象如图,则关于x 的不等式kx+b >0的解集是______.19.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. (1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.22.一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.计算:32231(2)(4)()272--⨯-+--.24.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据: 成绩x 人数 部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.2.A解析:A 【解析】 【分析】先判定△DBE ≌△OCD ,可得BD =OC =4,设AE =x ,则BE =4﹣x =CD ,依据BD +CD =5,可得4+4﹣x =5,进而得到AE =3,据此可得E (﹣5,3). 【详解】由题可得:AO =BC =5,AB =CO =4,由旋转可得:DE =OD ,∠EDO =90°.又∵∠B =∠OCD =90°,∴∠EDB +∠CDO =90°=∠COD +∠CDO ,∴∠EDB =∠DOC ,∴△DBE ≌△OCD ,∴BD =OC =4,设AE =x ,则BE =4﹣x =CD . ∵BD +CD =5,∴4+4﹣x =5,解得:x =3,∴AE =3,∴E (﹣5,3). 故选A .【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.3.C解析:C 【解析】 【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形. 【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形; C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C . 【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.4.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D . 【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形是关键.6.B解析:B 【解析】 【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF . 【详解】解:∵四边形ABCD 为正方形, ∴AB=AD=DC ,∠BAD=∠D=90°, 而CE=DF , ∴AF=DE , 在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE , ∴AE=BF ,所以(1)正确; ∴∠ABF=∠EAD , 而∠EAD+∠EAB=90°, ∴∠ABF+∠EAB=90°, ∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确; 连结BE ,∵BE >BC , ∴BA≠BE ,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.7.D解析:D【解析】【分析】首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=AB=1cm,∴△AEF是等边三角形,AE=,∴周长是.故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.8.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.9.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为5∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.10.B解析:B【解析】【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.11.C解析:C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m ,AB=12m , ∴22AB BC +22125+=13m ,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.12.B解析:B【解析】【分析】根据折叠的性质易知矩形ABCD 的周长等于△AFD 和△CFE 的周长的和.【详解】由折叠的性质知,AF=AB ,EF=BE .所以矩形的周长等于△AFD 和△CFE 的周长的和为18+6=24cm .故矩形ABCD 的周长为24cm .故答案为:B .【点睛】本题考查了折叠的性质,解题关键是折叠前后图形的形状和大小不变,对应边和对应角相等.二、填空题13.∠ABC=90°【解析】分析:由题意知四边形DEBF 是平行四边形再通过证明一组邻边相等可知四边形DEBF 是菱形进而得出∠ABC=90°时四边形BEDF 是正方形详解:当△ABC 满足条件∠ABC=90°解析:∠ABC=90°【解析】分析: 由题意知,四边形DEBF 是平行四边形,再通过证明一组邻边相等,可知四边形DEBF 是菱形, 进而得出∠ABC =90°时,四边形BEDF 是正方形.详解: 当△ABC 满足条件∠ABC =90°,四边形DEBF 是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.点睛: 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.14.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式解析:2【解析】【分析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】∵,∴x2+2x+1=(x+1)22=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.15.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab (a+b )是解题的关键.16.【解析】【分析】根据两直线平行可设把点代入即可求出解析式【详解】解:∵一次函数图像与直线平行∴设一次函数为把点代入方程得:∴∴一次函数的解析式为:;故答案为:【点睛】本题考查了一次函数的图像和性质解 解析:25y x =-+【解析】【分析】根据两直线平行,可设2y x b =-+,把点()1,3代入,即可求出解析式.【详解】解:∵一次函数图像与直线21y x =-+平行,∴设一次函数为2y x b =-+,把点()1,3代入方程,得:213b -⨯+=,∴5b =,∴一次函数的解析式为:25y x =-+;故答案为:25y x =-+.【点睛】本题考查了一次函数的图像和性质,解题的关键是掌握两条直线平行,则斜率相等. 17.【解析】【分析】根据正方形的面积分别求出BCBE 的长继而可得CE 的长再利用三角形面积公式进行求解即可【详解】∵正方形的面积为正方形的面积为∴BC=AB=BE=∴CE=BE-BC=-∴S △ACE==故解析:52 【解析】【分析】根据正方形的面积分别求出BC 、BE 的长,继而可得CE 的长,再利用三角形面积公式进行求解即可.【详解】∵正方形ABCD 的面积为5,正方形BEFG 的面积为7,∴,∴∴S △ACE =1122CE AB =⨯g ,故答案为:355 2-.【点睛】本题考查了算术平方根的应用,三角形面积,二次根式的混合运算等,熟练掌握并灵活运用相关知识是解题的关键.18.【解析】【分析】直接利用一次函数图象结合式kx+b>0时则y的值>0时对应x的取值范围进而得出答案【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2故答案为:x<2【点睛】此题主要考查了一解析:2x<【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键.19.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差解析:2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4,再计算方差(一般地设n个数据,x1,x2,…x n的平均数为x,x=1n(12nx x x++⋯+),则方差2 S=1n[222 12nx xx x x x-+-+⋯+-()()()]),2 S=15[222222434445464-+-+-+-+-()()()()()]=2.考点:平均数,方差20.y=6+03x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间即y=6+03x考点:一次函数的应用解析:y=6+0.3x【解析】试题分析:根据题意可得:水库的水位=初始水位高度+每小时上升的速度×时间,即y=6+0.3x.考点:一次函数的应用.三、解答题21.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.22.(1)该一次函数解析式为y=﹣x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+60;(2)当y=﹣x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键. 23.-31【解析】【分析】根据整数指数幂,二次根式立方根的定义,化简计算即可.【详解】=-⨯+-原式8443=+-3243=-31故答案是-31.【点睛】本题考查了实数的运算,将二次根式及整数指数幂化简是解决本题的关键.24.(1)证明见解析;(2)4.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×4×2=4,故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.25.a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:12100%60%40⨯=,则整个乙部门的优秀率也是60%,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×40=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.。
2019年八年级数学下期末一模试题含答案(1)
2019年八年级数学下期末一模试题含答案(1)一、选择题1.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等2.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 3.已知函数y =1x +,则自变量x 的取值范围是( ) A .﹣1<x <1B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠14.下列说法: ①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个.A .4B .3C .2D .1 5.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .726.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A.B.C.D.7.函数的自变量取值范围是( )A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 8.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD9.无论m为任何实数,关于x的一次函数y=x+2m与y=-x+4的图象的交点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.每条对角线平分一组对角C.对边相等D.对角线相等11.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8012.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4B.5C.6D.3二、填空题13.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.14.计算:182-=______. 15.函数y=x 的定义域____.16.已知一次函数y =kx +b(k≠0)经过(2,-1),(-3,4)两点,则其图象不经过第________象限.17.函数1y x =-的自变量x 的取值范围是 . 18.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .19.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为___.20.如图,直线1y kx b =+过点A(0,2),且与直线2y mx =交于点P(1,m),则不等式组mx > +kx b > mx -2的解集是_________三、解答题21.如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使CF=BC ,连接CD 和EF .(1)求证:DE=CF ;(2)求EF 的长.22.如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.23.先阅读下列材料,再解决问题: 阅读材料:数学上有一种根号内又带根号的数,形如2a b ±,如果你能找到两个数m 、n ,使22m n a +=,且mn b =,则2a b ±可变形为2222()m n mn m n m n +±=±=±,从而达到化去一层根号的目的.例如:22232212221(2)212(12)-=+-=+-⨯⨯=-1221=-=-仿照上例完成下面各题:填上适当的数:②试将1263743-++予以化简.24.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF . (1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.25.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.B解析:B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选B.点睛:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.5.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5, 则BE=15,在△BDE 中,∵BD 2+DE 2=144+81=225=BE 2,∴△BDE 是直角三角形,且∠BDE=90°,过D 作DF ⊥BE 于F ,则DF=365BD DE BE ⋅=, ∴S ▱ABCD =BC•FD=10×365=72. 故选D .【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.6.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.7.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.8.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.9.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C.10.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.【点睛】本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.11.C解析:C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=76.故选C.考点:勾股定理.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°,AB∥CD,得出∠BAD=180°﹣∠D=60°,由等腰三角形的性质和三角形内角和定理求出∠ABE=75°,即可得出∠EBC的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=120°,AB∥CD,∴∠BAD=180°﹣∠D=60°,∵AE平分∠DAB,∴∠BAE=60°÷2=30°,∵AE=AB,∴∠ABE=(180°﹣30°)÷2=75°,∴∠EBC=∠ABC﹣∠ABE=45°;故答案为:45°.本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.14.【解析】【分析】先化简二次根式然后再合并同类二次根式【详解】解:=故答案为:【点睛】本题考查二次根式的减法化成最简二次根式再计算这是通常最直接的做法【解析】【分析】先化简二次根式,然后再合并同类二次根式.【详解】2=1(22-【点睛】本题考查二次根式的减法,化成最简二次根式再计算,这是通常最直接的做法. 15.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x 的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变 解析:0x >.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x 的取值即可.【详解】根据题意得,00x x ≥⎧⎨≠⎩解得,0x >故答案为:0x >.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题. 16.三【解析】设y=kx+b 得方程组-1=2k+b4=-3k+b 解得:k=-1b=1故一次函数为y=-x+1根据一次函数的性质易得图象经过一二四象限故不经过第三象限故答案:三解析:三【解析】设y=kx+b ,得方程组 解得:k=-1,b=1,故一次函数为y=-x+1,根据一次函数的性质,易得,图象经过一、二、四象限,故不经过第三象限.故答案:三.17.x >1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x >1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >18.【解析】【分析】过C 作CD⊥AB 于D 根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD⊥AB 于D∵AC2+B解析:【解析】【分析】过C 作CD ⊥AB 于D ,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB =25是最长边,AC =15,BC =20,过C 作CD ⊥AB 于D .∵AC 2+BC 2=152+202=625,AB 2=252=625,∴AC 2+BC 2=AB 2,∴∠C =90°.∵S △ACB =12AC ×BC =12AB ×CD ,∴AC ×BC =AB ×CD ,∴15×20=25CD ,∴CD =12(cm ).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.19.2【解析】试题分析:根据方差的性质当一组数据同时加减一个数时方差不变进而得出答案∵一组数据12345的方差为2∴则另一组数据1112131415的方差为2故答案为2考点:方差解析:2【解析】试题分析:根据方差的性质,当一组数据同时加减一个数时方差不变,进而得出答案.∵一组数据1,2,3,4,5的方差为2,∴则另一组数据11,12,13,14,15的方差为2.故答案为2考点:方差20.【解析】【分析】【详解】解:由于直线过点A (02)P (1m )则解得故所求不等式组可化为:mx >(m-2)x+2>mx-20>-2x+2>-2解得:1<x <2 解析:12x <<【解析】【分析】【详解】 解:由于直线过点A (0,2),P (1,m ),则2k b m b +=⎧⎨=⎩,解得22k m b =-⎧⎨=⎩, 1(2)2y m x ∴=-+,故所求不等式组可化为:mx >(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x <2,三、解答题21.见解析;【解析】试题分析:(1)直接利用三角形中位线定理得出DE BC ,进而得出DE=FC ; (2)利用平行四边形的判定与性质得出DC=EF ,进而利用等边三角形的性质以及勾股定理得出EF 的长试题解析:(1)证明:∵D 、E 分别为AB 、AC 的中点, ∴DEBC , ∵延长BC 至点F ,使CF=BC , ∴DEFC , 即DE=CF ; (2)解:∵DE FC , ∴四边形DEFC 是平行四边形, ∴DC=EF ,∵D 为AB 的中点,等边△ABC 的边长是2, ∴AD=BD=1,CD ⊥AB ,BC=2, ∴DC=EF=.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质22.(1) y=43x+53;(2)52.【解析】【分析】(1)求经过已知两点坐标的直线解析式,一般是按待定系数法步骤求得;(2)△AOB的面积=S△AOD+S△BOD,因为点D 是在y轴上,据其坐标特点可求出DO的长,又因为已知A、B点的坐标则可分别求三角形S△AOD与S△BOD的面积.【详解】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得213k bk b-+=-⎧⎨+=⎩,解得4353kb⎧=⎪⎪⎨⎪=⎪⎩.所以一次函数解析式为y=43x+53;(2)把x=0代入y=43x+53得y=53,所以D点坐标为(0,53),所以△AOB的面积=S△AOD+S△BOD=12×y=43x+53;×2+12×y=43x+53×1=52.【点睛】本题考查了待定系数法求一次函数解析式.用待定系数法求一次函数的步骤:(1)设出函数关系式;(2)把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组).23.【解析】【分析】①直接利用完全平方公式将原式变形进而得出答案;②直接利用完全平方公式将原式变形进而得出答案.【详解】先阅读下列材料,再解决问题:①填上适当的数:====②解:原式==325=+=【点睛】 本题主要考查了二次根式的性质与化简,正确应用完全平方公式时关键是记住公式形式,把握公式特征.24.(1)证明见解析;(2)【解析】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD ,EC=12BC , ∵四边形ABCD 是菱形,∴AD ∥BC 且AD=BC ,∴AF ∥EC 且AF=EC , ∴四边形AECF 是平行四边形,又∵∠AEC=90°,∴四边形AECF 是矩形;(2)在Rt △ABE 中,AE==,所以,S 菱形ABCD考点:1.菱形的性质;2..矩形的判定.25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m 的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg 的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
山东省威海市2019-2020学年初二下期末统考数学试题含解析
山东省威海市2019-2020学年初二下期末统考数学试题一、选择题(每题只有一个答案正确)1.下列判定中,正确的个数有( )①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形,A .1个B .2个C .3个D .4个2.下列等式从左到右的变形,属于因式分解的是( )A .2221(1)x x x +-=-B .22()()a b a b a b +-=-C .2244(2)x x x ++=+D .1(1)1ax a a x -+=-+ 3.小明在画函数6y x=(x >0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A .(1,6)B .(2,3)C .(3,2)D .(4,1)4.如图 ,△ABC 中,∠B =90°,AD 是∠BAC 的平分线,DE ⊥AC ,垂足为 E ,则下列结论中不正确的是( )A .AB =AE B .BD =DEC .∠ADE =∠CDED .∠ADB =∠ADE5.下列各图中,∠1>∠2的是( )A .B .C .D . 6.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是( )A .52B .42C .76D .727.如图,已知△ABC 和△PBD 都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC ∽ΔPBD ,则点P 的位置应落在A .点1P 上B .点2P 上C .点3P 上D .点4P 上 8.已知32a >-,若当12x ≤≤时,函数(0)a y a x =≠的最大值与最小值之差是1,则a 的值为( ) A .1- B .2- C .2 D .39.在同一平面直角坐标系中,函数y =2x ﹣a 与y =a x(a≠0)的图象可能是( ) A . B .C .D .10.如图,已知正比例函数1y ax =与一次函数212y x b =-+的图象交于点P .下面有四个结论:①0a >;②0b <;③当0x <时,10y <;④当2x >时,12y y <.其中正确的是()A .①②B .②④C .③④D .①③二、填空题11.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD .请你添加一个适当的条件:______________,使四边形ABCD 成为菱形.12.判断下列各式是否成立: 223=223;338 =338;4415 =4415;5524 =5524 类比上述式子,再写出两个同类的式子_____、_____,你能看出其中的规律吗?用字母表示这一规律_____,13.已知110a b ++-=,则20172018a b +=__________.14.在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 是平行四边形,请添加一个条件,使得▱ABCD 是矩形.”经过思考,小明说:“添加AC=BD .”小红说:“添加AC ⊥BD .”你同意______的观点,理由是______.15.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,且90A ABC ∠+∠=,则PEF ∠=______.16.写出一个图象经过点(1,﹣2)的函数的表达式:_____.17.工人师傅给一幅长为120cm ,宽为40cm 的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为27000cm . 设上面留白部分的宽度为xcm ,可列得方程为________。
山东省威海市八年级下学期数学期末考试试卷
山东省威海市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若代数式有意义,则的取值范围是()A . 且B .C .D . 且2. (2分)(2018·金华模拟) 当实数x的取值使得有意义时,函数y=x+1中y的取值范围是()A . y>-1B . y≥-1C . y≥-3D . y≤-33. (2分)(2020·朝阳模拟) 已知x1 , x2 , x3的平均数=2,方差S2=3,则2x1 , 2x2 , 2x3的平均数和方差分别为()A . 2,3B . 4,6C . 2,12D . 4,124. (2分) (2017八上·西安期末) 一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A . 8B . 5C .D . 35. (2分) (2019七下·乐亭期末) △ABC 的内角分别为∠A 、∠B 、∠C ,下列能判定△ABC 是直角三角形的条件是()A . ∠A = 2∠B = 3∠CB . ∠C = 2∠BC . ∠A : ∠B :∠C = 3 : 4 : 5D . ∠A + ∠B = ∠C6. (2分) (2016八下·石城期中) 如图中,边长k等于5的直角三角形有()A . 1个B . 2个C . 3个D . 4个7. (2分)如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A . 9个B . 8个C . 6个D . 4个8. (2分) (2020八下·岱岳期中) 如图,在□ABCD中,按以下步骤作图:①以点A为圆心,AB的长为半径作弧,交AD于点F;②分别以点F,B为圆心大于 FB的长为半径作弧,两弧在∠DAB内交于点G;③作射线AG,交边BC于点E,连接EF.若AB=5,BF=8,则四边形ABEF的面积为()A . 12B . 20C . 24D . 489. (2分) (2018八上·埇桥期末) 点A(x1 , y1),点B(x2 , y2)是一次函数y=﹣2x﹣4图象上的两点,且x1<x2 ,则y1与y2的大小关系是()A . y1>y2B . y1>y2>0C . y1<y2D . y1=y210. (2分)(2017·石景山模拟) 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A . 当行驶速度为40km/h时,每消耗1升汽油,甲车能行驶20kmB . 消耗1升汽油,丙车最多可行驶5kmC . 当行驶速度为80km/h时,每消耗1升汽油,乙车和丙车行驶的最大公里数相同D . 当行驶速度为60km/h时,若行驶相同的路程,丙车消耗的汽油最少二、填空题 (共5题;共5分)11. (1分)如图:A,B,C三点表示的数分别为a,b,c.利用图形化简: =________.12. (1分)某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数136541这20户家庭日用电量的众数、中位数分别是________ .13. (1分) (2019八上·西安月考) 若点P( 1,y1)和点Q( 2,y2)是一次函数y= x+b的图象上的两点,则y1 , y2的大小关系是________.14. (1分)(2020·合肥模拟) 如图,在中,,,,以点A 为圆心,以AC为半径画弧,交AB于D,则扇形CAD的周长是________(结果保留).15. (1分) AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为________.三、解答题 (共10题;共96分)16. (5分) (2020八下·奉化期末) 计算:(1)(2)17. (10分)(2020·深圳模拟) 为了实现伟大的强国复兴梦,全社会都在开展扫黑除恶专项斗争,某区为了解各学校老师对扫黑除恶应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5,甲、乙两校参与测试的老师成绩的平均数、中位数、众数如下表:学校平均数中位数众数甲校96.35m99乙校95.8597.599根据以上信息,回答下列问题:(1) m=________;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则他们在各自学校参与测试的老师中成绩的名次相比较更靠前的是________(选填王或李)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.18. (5分)如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?19. (10分)(2019·凉山) 如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F(1)求证:DF是⊙O的切线;(2)若,求AD的长.20. (10分)根据不等式的基本性质,将下列各式化为x>a或x<a的形式。
2019学年山东省威海市乳山市八年级下学期期末数学试卷【含答案及解析】
2019学年山东省威海市乳山市八年级下学期期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列计算正确的是().A.B.C.D.2. 下列说法错误的是().A.两个等边三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个全等三角形一定相似3. 在下列各组根式中,是同类二次根式的是().A.和 B.和C.和 D.和4. 若x=1是一元二次方程(x+1)2﹣a(x+1)﹣2=0的一个根,则a的值是().A.﹣2 B.﹣1 C.1 D.25. 若函数y=(k≠0)的图象过点(,),则此函数图象位于().A.第一、二象限 B.第一、三象限C.第二、三象限 D.第二、四象限6. 化简:=().A. B. C. D.7. x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是().A.x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于38. 如图,AD平分∠BAC,AC2=BC•CD,∠C=105°,则∠B=().A.25° B.30° C.35° D.40°9. 反比例函数y=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为().A.2 B.﹣2 C.4 D.﹣410. 如图,反比例反数y=与正比例函数y=k2x的图象交于A(﹣2,4),B两点,若>k2x,则x的取值范围是().A.﹣2<x<0B.﹣2<x<2C.﹣2<x<0或x>2D.x<﹣2或0<x<211. 已知m2﹣m﹣3=0,﹣﹣3=0,m,n为实数,且m≠,则m•的值为().A.﹣3 B.﹣1 C.3 D.112. 如图,在△ABC中,∠ACB=90°,AC=BC,点F在AB上,连接CF,AE⊥CF于E,BD垂直CF的延长线于点D.若AE=4cm,BD=2cm,则EF的长是().A.cm B.cm C.1cm D.cm二、填空题13. 若一元二次方程x2﹣x+k=0有实数根,则k的取值范围是.14. 函数y=(k为常数)的图象过点(﹣2,y1)和(﹣,y2),则y1,y2的大小关系是(填“>”,“=”,“<”).15. 若a≥1,则的最小值是.16. 五边形ABCDE与五边形A1B1C1D1E1A是位似图形,它们在位似中心的同侧,其面积比为9:16,若位似中心O到A的距离为3,则A到A1的距离为.17. 如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为 cm.18. 如图,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿对角线AC对折,然后放在桌面上,折叠后所成的图形覆盖的面积(阴影部分的面积)是.三、计算题19. (7分)计算:(2﹣1)2﹣( +)(﹣).四、解答题20. (8分)小明家的玉米产量从2012年的5吨增加到2014年的6.05吨,平均每年增长的百分率是多少?21. (9分)如图,点A在双曲线y=(x>0)上,过点A作AC⊥x轴,垂足为C,线段OA的垂直平分线BD交x轴于点B,△ABC的周长为4,求点A的坐标.22. (9分)在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B (﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.(1)在图中标出位似中心P的位置,并写出点的坐标及△O1A1B1与△OAB的相似比;(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标;(3)在(2)条件下,若点M(a,b)是△OAB边上一点(不与顶点重合),写出M在△OA2B2中的对应点M2的坐标.23. (10分)如图,点A,D在反比例函数y=(x>0)的图象上,点A的坐标是(2,4),接AD,过点A作AB⊥AD,交y轴于点B,过点D作DC⊥AD,交x轴于点C,连接BC,四边形ABCD为正方形.(1)求点C的坐标;(2)求点D的坐标.24. (11分)如图,在四边形ABCD中,AB=AD,AC与BD相交于点E,∠ADB=∠ACB.(1)求证:AD2=AE•AC;(2)若AB⊥AC,CE=2AE,F是BC的中点,连接AF,判断△ABF的形状,并说明理由.25. (12分)如图,在四边形ABCD中,AD∥BC,AE=2EB,AD=2,BC=5,EF∥DC,交BC于点F,连接AF.(1)求CF的长;(2)若∠BFE=∠FAB,求AB的长.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2019年八年级数学下期末一模试题(含答案)
2019年八年级数学下期末一模试题(含答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥2.下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形3.如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.54.正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .5.下列计算正确的是( ) A .2(4)-=2B .52=3-C .52=10⨯D .62=3÷6.下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小 B .函数图象与y 轴的交点坐标为(0,2) C .函数图象经过第一、二、四象限 D .图象经过点(1,5)7.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .8.若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( ) A .±1 B .-1C .1D .29.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .310.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .-2B .﹣1+2C .﹣1-2D .1-211.某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数12.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤二、填空题13.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.14.如果二次根式4x -有意义,那么x 的取值范围是__________. 15.若3的整数部分是a ,小数部分是b ,则3a b -=______.16.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时. 17.如图,将边长为的正方形折叠,使点落在边的中点处,点落在处,折痕为,则线段的长为____.18.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.19.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.20.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .三、解答题21.计算:0221218(2020)()(21)2π-+---+-22.2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下: 甲:1,9,7,4,2,3,3,2,7,2 乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表: 班级 平均数 众数中位数 方差甲 43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人; (2)你认为哪个班同学寒假读书情况更好,写出理由.23.某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?24.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):度数91011天数311(1)求这5天的用电量的平均数;(2)求这5天用电量的众数、中位数;(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.25.观察下列一组等式,然后解答后面的问题=,21)(21)1(32)(32)1=,=,(43)(43)1=⋯⋯(54)(54)1(1)观察以上规律,请写出第n个等式:(n为正整数).(2++++21324310099(318171918【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集. 【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤. 故选:A . 【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键. 2.D解析:D【解析】A 、两条对角线垂直并且相互平分的四边形是菱形,故选项A 错误; B 、对角线垂直且相等的平行四边形是正方形,故选项B 错误; C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确; 故选D .3.D解析:D 【解析】 【分析】由▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上一点E ,易证得△ABE ,△CDE 是等腰三角形,△BEC 是直角三角形,则可求得BC 的长,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠CBE ,∠DEC=∠BCE ,∠ABC+∠DCB=90°, ∵BE ,CE 分别是∠ABC 和∠BCD 的平分线,∴∠ABE=∠CBE=12∠ABC ,∠DCE=∠BCE=12∠DCB , ∴∠ABE=∠AEB ,∠DCE=∠DEC ,∠EBC+∠ECB=90°, ∴AB=AE ,CD=DE , ∴AD=BC=2AB , ∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.4.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:Q正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.5.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.6.D解析:D【解析】A 、由k =﹣3<0,可得出:当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意;B 、利用一次函数图象上点的坐标特征,可得出:函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意;C 、由k =﹣3<0,b =2>0,利用一次函数图象与系数的关系可得出:一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意;D 、利用一次函数图象上点的坐标特征,可得出:一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.此题得解. 【详解】解:A 、∵k =﹣3<0,∴当x 值增大时,y 的值随着x 增大而减小,选项A 不符合题意; B 、当x =0时,y =﹣3x +2=2,∴函数图象与y 轴的交点坐标为(0,2),选项B 不符合题意; C 、∵k =﹣3<0,b =2>0,∴一次函数y =﹣3x +2的图象经过第一、二、四象限,选项C 不符合题意; D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意. 故选:D . 【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.7.C解析:C 【解析】 【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解. 【详解】∵函数()0y kx k =≠的值随自变量的增大而增大, ∴k >0,∵一次函数2y x k =+, ∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限; 故答案为C. 【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.B【解析】根据一次函数的概念,形如y=kx+b (k≠0,k 、b 为常数)的函数为一次函数,故可知m-1≠0,|m|=1,解得m≠1,m=±1,故m=-1. 故选B点睛:此题主要考查了一次函数的概念,利用一次函数的一般式y=kx+b (k≠0,k 、b 为常数),可得相应的关系式,然后求解即可,这是一个中考常考题题,比较简单.9.D解析:D 【解析】 【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:,214ab a b 252(),∴⨯+-= 2a b 25169∴-=-=(),a b 3∴-=,故选D. 【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.10.D解析:D 【解析】 【分析】 【详解】∵边长为1=∴∵A 在数轴上原点的左侧,∴点A 表示的数为负数,即1 故选D11.C解析:C 【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.12.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222+=+=17,则在杯外的最小长度是24-17=7cm,158AB BC所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.二、填空题13.﹣1【解析】【分析】首先证明△ADE≌△GCE推出EG=AE=AD=CG=1再求出FG即可解决问题【详解】∵四边形ABCD是平行四边形∴AD∥BGAD=BC∴∠DAE=∠G=30°∵DE=EC∠AE31【解析】【分析】首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵∴,-1.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.14.x≥4【解析】分析:根据二次根式有意义的条件列出不等式解不等式即可详解:由题意得x−4⩾0解得x⩾4故答案为x⩾4点睛:此题考查二次根式有意义的条件二次根式有意义的条件是被开方部分大于或等于零二次根解析:x≥4【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,x−4⩾0,解得,x⩾4,故答案为x⩾4.点睛:此题考查二次根式有意义的条件,二次根式有意义的条件是被开方部分大于或等于零,二次根式无意义的条件是被开方部分小于0.15.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.16.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC ∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ=3AQ=403,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+403=3x,解得:x=404033+.即该船行驶的速度为404033+海里/时;故答案为:40403+.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.17.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN 中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN的长【详解】设CN=x则DN=8-x由折叠的性解析:【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,而EC=BC=4,在Rt△ECN中,由勾股定理可知,即整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.18.①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0a<0所以当x>3时相应的x的值y1图象均低于y2的图象【详解】根据图示及数据可知:①k<0正确;②a<0原来的说法错误;③方解析:①③④【解析】【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:①k<0正确;②a<0,原来的说法错误;③方程kx+b=x+a的解是x=3,正确;④当x>3时,y1<y2正确.故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.19.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.20.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。
2019-2020学年山东省威海市八年级第二学期期末统考数学试题含解析
【解析】
试题分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可:
A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;
B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;
C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;
A.4B.5C.6D.7
8.已知点A的坐标为(3,﹣6),则点A所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
9.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
…
-3
-2
-1
1
1
3
…
y
…
-27
-13
-3
3
5
-3
…
下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1,x2=2;③当x>2时,y<1.
117.解方程:(1)2x2﹣5x+1=0(用配方法);
(2)5(x﹣2)2=2(2﹣x).
三、解答题
18.某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.
(1)填空: _________, _________.
(2)补全频数分布直方图.
(3)该校有2000名学生,估计这次活动中爱心捐款额在 的学生人数.
参考答案
一、选择题(每题只有一个答案正确)
1.C
【解析】
【分析】
山东省威海市八年级下学期数学期末试卷
山东省威海市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·高阳模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分) (2017八下·临泽期末) 下列各式从左到右的变形中,为因式分解的是().A . x(a﹣b)=ax﹣bxB .C . ﹣1=(y+1)(y﹣1)D . ax+by+c=x(a+b)+c3. (2分) (2016九上·惠山期末) 若,则的值为()A .B .C . 1D .4. (2分)如果关于x的分式方程 =2﹣的解为正数,且关于x的不等式组无解,那么符合条件的所有整数m的和为()A . 5B . 3C . 1D . 05. (2分)一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()A . ①B . ②C . ③D . ④6. (2分) (2017七下·合浦期中) 因式分解x²y-4y的正确结果是()A . y(x+4)(x-4)B . y(x²-4 )C . y(x-2)²D . y(x+2)(x-2)7. (2分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF的长为()A .B .C .D .8. (2分)化简(﹣)÷ 的结果是()A . ﹣x﹣1B . ﹣x+1C . ﹣D .9. (2分)(2018·毕节模拟) 如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B 点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③∠BED=30°;④ED=2AB.其中正确的是()A . ①②③B . ①②④C . ②③④D . ①②③④10. (2分)若方程组的解x,y满足0<x+y<1,则k的取值范围是()A . ﹣1<k<0B . ﹣4<k<﹣1C . 0<k<1D . k>﹣411. (2分)如果一个图形绕着一个点至少需要旋转72°才能与它本身重合,则下列说法正确的是()A . 这个图形一定是中心对称图形B . 这个图形可能是中心对称图形C . 这个图形旋转216°后能与它本身重合D . 以上都不对12. (2分)(2017·丹东模拟) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .二、填空题 (共6题;共8分)13. (1分) (2015九下·海盐期中) 分解因式:a2﹣4=________.14. (1分)(2017·集宁模拟) 化简:( + )÷ =________.15. (1分)Rt△ABC中,如果斜边上的中线CD=4cm,那么斜边AB=________ cm.16. (2分) (2017八上·中江期中) 一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为________度.17. (1分) (2015八上·应城期末) 关于x的方程 = 无解,则m的值是________.18. (2分) (2016八下·番禺期末) 如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为________.三、解答题 (共6题;共44分)19. (10分) (2017八下·南京期中) 约分:(1);(2).20. (10分)(2017·高安模拟) 先化简:(1+ )÷ ,再从1、﹣1、0、2中选择一个合适的数代入求值.21. (2分) (2019八下·淮安月考) 证明:一组对边平行,一组对角相等的四边形是平行四边形.22. (10分)(2019·扬州模拟) 某市五月遭遇了持续强降雨,造成部分地区洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用300元购买甲种物品的件数恰好与用240元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这4000件物品,需筹集资金多少元?23. (10分)(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.(2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.24. (2分)(2017·西城模拟) △ABC是等边三角形,以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1.①求证:AC垂直平分BD;①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共44分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、。
2019年初二数学下期末一模试卷(附答案)
2019年初二数学下期末一模试卷(附答案)一、选择题1.一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 2.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .3.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >4.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形5.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A .90万元B .450万元C .3万元D .15万元6.已知正比例函数y kx =(k ≠0)的图象如图所示,则在下列选项中k 值可能是( )A .1B .2C .3D .47.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .8.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .310.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .11.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤12.正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题13.如图,在ABC V 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC V 中再添加一个条件为__________.14.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____. 15.函数1y x =-的自变量x 的取值范围是 . 16.已知20n 是整数,则正整数n 的最小值为___17.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .18.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.19.已知0,0a b <>2()a b -=________20.直角三角形两直角边长分别为31,31,则它的斜边长为____.三、解答题21.如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.22.在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.23.如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x 轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).(1)求点D、点C的坐标;(2)求直线l2的函数解析式;(3)利用函数图象写出关于x、y的二元一次方程组22y xy kx b=-⎧⎨=+⎩的解.24.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE 与BE 的大小关系,并证明你的结论.25.如图,将□ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,证:四边形AECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.2.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.3.B解析:B【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4.D解析:D【解析】A 、两条对角线垂直并且相互平分的四边形是菱形,故选项A 错误;B 、对角线垂直且相等的平行四边形是正方形,故选项B 错误;C 、两条对角线相等的平行四边形是矩形,故选项C 错误;D 、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D 正确;故选D .5.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元). 6.B解析:B【解析】由图象可得2535k k <⎧⎨>⎩ ,解得5532k << ,故符合的只有2;故选B. 7.D解析:D【解析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D .【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.8.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.9.D解析:D【解析】【分析】已知ab =8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】a b -由题意可知:中间小正方形的边长为:,11ab 8422=⨯=Q 每一个直角三角形的面积为:, 214ab a b 252(),∴⨯+-=2(),∴-=-=a b25169∴-=,a b3故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.10.A解析:A【解析】【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【详解】解:根据题意可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,反映到图象上应选A.故选:A.【点睛】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)=,则在杯外的最小长度是24-17=7cm,所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.12.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.【点睛】本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题13.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则14.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a2解析:【解析】【分析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,∴a+b=142=7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70,故答案为:70.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.15.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是解析:x>1【解析】【分析】【详解】解:依题意可得10x ->,解得1x >,所以函数的自变量x 的取值范围是1x >16.5【解析】【分析】因为是整数且则5n 是完全平方数满足条件的最小正整数n 为5【详解】∵且是整数∴是整数即5n 是完全平方数;∴n 的最小正整数值为5故答案为:5【点睛】主要考查了二次根式的定义关键是根据乘 解析:5【解析】【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴5n 是完全平方数;∴n 的最小正整数值为5.故答案为:5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17.【解析】试题解析:根据题意将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF 则AD=1BF=BC+CF=BC+1DF=AC 又∵AB+BC+AC=10∴四边形ABFD 的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC 沿边BC 向右平移1个单位得到△DEF , 则AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=10,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.18.x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1观解析:x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x >1时,x+b >ax+3;考点:一次函数与一元一次不等式.19.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式解析:b a-【解析】【分析】根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.【详解】∵a<0<b,=|a−b|=b−a.故答案为:b a-.【点睛】本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.20.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+(−1)2=斜边2,斜边,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.三、解答题21.(1)证明见解析;(2)2165.【解析】【分析】(1)由DE∥AC,CE∥BD可得四边形OCED为平行四边形,又AC⊥BD从而得四边形OCED为矩形;(2)过点O作OH⊥BC,垂足为H,由已知可得三角形OBC、OCD的面积,BC的长,由面积法可得OH的长,从而可得三角形OCF的面积,三角形OCD与三角形OCF的和即为所求.【详解】(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四边形OCED为矩形.(2)∵菱形ABCD,∴AC与BD互相垂直平分于点O,∴OD=OB=12BD=6,OA=OC=1 2AC=8,∴CF=CO=8,S△BOC=S△DOC=12OD OC⋅=24,在Rt△OBC中,BC=22OB OC+=10,.作OH⊥BC于点H,则有12BC·OH=24,∴OH=245,∴S△COF=12CF·OH=965.∴S四边形OFCD =S△DOC+S△OCF=2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH的长度是解题关键.22.(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.23.(1)D(1,0),C(2,2);(2)y=–x+4;(3)22 xy=⎧⎨=⎩.【解析】【分析】(1)求函数值为0时一次函数y=2x-2所对应的自变量的值即可得到D点横坐标,把C (m,2)代入y=2x-2求出m得到C点坐标;(2)把C、B坐标代入y=kx+b中,利用待定系数法求直线l2的解析式;(3)利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】(1)∵点D为直线l1:y=2x–2与x轴的交点,∴当y=0时,0=2x–2,解得x=1,∴D(1,0);∵点C在直线l1:y=2x–2上,∴2=2m–2,解得m=2,∴点C的坐标为(2,2);(2)∵点C(2,2)、B(3,1)在直线l2上,∴22 31k bk b+=⎧⎨+=⎩,解得14kb=-⎧⎨=⎩,∴直线l2的解析式为y=–x+4;(3)由图可知二元一次方程组22y xy kx b=-⎧⎨=+⎩的解为22xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.24.(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】【分析】(1)利用勾股定理求出OB ,求出OC ,再根据勾股定理求出OD ,即可求出答案;(2)求出△AOB 和△DOC 全等,根据全等三角形的性质得出OC=OB ,∠ABO=∠DCO ,求出∠OCB=∠OBC ,求出∠EBC=∠ECB ,根据等腰三角形的判定得出即可.【详解】(1)∵AO ⊥OD ,AO=4m ,AB=5m ,∴OB=22AB AO -=3m ,∵梯子的顶端A 沿墙下滑1m 至C 点,∴OC=AO ﹣AC=3m ,∵CD=AB=5m ,∴由勾股定理得:OD=4m ,∴BD=OD ﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下:连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m ,∵∠AOB=∠DOC=90°,在Rt △AOB 和Rt △DOC 中AB DC AO DO=⎧⎨=⎩, ∴Rt △AOB ≌Rt △DOC (HL ),∴∠ABO=∠DCO ,OC=OB ,∴∠OCB=∠OBC ,∴∠ABO ﹣∠OBC=∠DCO ﹣∠OCB ,∴∠EBC=∠ECB ,∴CE=BE .【点睛】本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出∠DCO=∠ABO 和OC=OB 是解(2)的关键.25.答案见解析【解析】【分析】首先连接AC 交EF 于点O ,由平行四边形ABCD 的性质,可知OA=OC ,OB=OD ,又因为BE=DF,可得OE=OF,即可判定AECF是平行四边形.【详解】证明:连接AC交EF于点O;∵平行四边形ABCD∴OA=OC,OB=OD∵BE=DF,∴OE=OF∴四边形AECF是平行四边形.【点睛】此题主要考查平行四边形的判定定理,关键是找出对角线互相平分,即可解题.。
山东省威海市2018-2019学年度第二学期八年级下数学期末模拟试卷及答案(一)
(第6题)山东省威海市2018-2019学年度第二学期八年级下数学期末模拟试卷及答案(一)一、精心选一选,你会快乐!(每小题3分,共30分)1.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ②对角线相等且互相平分的四边形是矩形; ③对角线垂直且互相平分的四边形是菱形;④顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形。
其中你认为正确的个数有( )A 、1个B 、2个C 、3个D 、4个2.如图,梯形ABCD 中,AD ∥BC ,E 是BC 上一点,且∠EAD =∠C ,AD = 5,△ABE 的周长是18,则梯形ABCD 的周长为( )A .23B .26C .28D .29CB ADE3.我国南宋数学家杨辉曾提出这样一个问题:"直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步."如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是 ( )A . (12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-= 4.下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是( ) A .这些工人日加工零件数的众数是9,中位数是6 B .这些工人日加工零件数的众数是6,中位数是6 C .这些工人日加工零件数的众数是9,中位数是5. 5 D .这些工人日加工零件数的众数是6,中位数是5. 55.如图,在四边形ABCD 中,∠DAB =∠BCD = 90°,分别以四边形的四条边为边向外作四个正方形,若S 1+ S 4= 100,S 3= 36,则S 2=( )A .136B .64C .50D .816.如图,四边形ABCD 是矩形,F 是AD 上一点,E 是CB 延长线 上一点,且四边形AECF 是等腰梯形.下列结论中不一定...正确的是( ). C BAD S 4S 1S 3S 2(A )AE =FC (B )AD =BC (C )∠AEB =∠CFD (D )BE =AF 7.已知:如图,梯形ABCD 是等腰梯形,AB ∥CD ,AD=BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF=2∠BAC ;③AD=DF ; ④AC=CE+EF. 其中正确的结论有( )A .1个B .2个C .3个D .4个 8.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43 C .143≤<m D .43≤m ≤19.如图,观察下列用纸折叠成的图案.其中,轴对称图形和中心对称图形的个数分别为( )A.4,1 B.3,1 C.2,2 D.1,310.已知样本数据1,2,4,3,5,下列说法不正确...的是( ) A .平均数是3 B .中位数是4C .极差是4D .方差是2二、认真填一填,你会轻松!(每小题3分,共24分)1.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 .2.为庆祝十一国庆节,八年级(1)班同学要在广场上布置一个矩形的花坛,计划用“串红”摆成两条对角线,如果一条对角线用了38盆“串红”,那么还需从花房运来_________盆“串红”; 如果一条对角线用了49盆“串红”,那么还需从花房运来_________盆“串红”。
2019年八年级数学下期末一模试卷含答案(1)
2019年八年级数学下期末一模试卷含答案(1)一、选择题1.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC 一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.以下命题,正确的是().A.对角线相等的菱形是正方形B.对角线相等的平行四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分的四边形是正方形3.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.724.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个5.若一个直角三角形的两边长为12、13,则第三边长为()A.5B.17C.5或17D.5或6.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.77.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法不一定成立的是( )A .∠ABC=90°B .AC=BDC .OA=OBD .OA=AD 8.直角三角形中,有两条边长分别为3和4,则第三条边长是( ) A .1B .5C .7D .5或7 9.无论m 为任何实数,关于x 的一次函数y =x +2m 与y =-x +4的图象的交点一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限10.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤ 11.正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等 12.如图,四边形ABCD 是菱形,∠ABC =120°,BD =4,则BC 的长是( )A .4B .5C .6D .43二、填空题13.函数y=x 的定义域____.14.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.15.如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.16.直角三角形两直角边长分别为23+1,23-1,则它的斜边长为____.17.如图,直线y =kx +b (k >0)与x 轴的交点为(﹣2,0),则关于x 的不等式kx +b <0的解集是_____.18.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______19.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.20.已知一直角三角形两直角边的长分别为6cm 和8cm ,则第三边上的高为________.三、解答题21.如图,在平面直角坐标系中,直线4y x =-+过点(6,m)A 且与y 轴交于点B ,把点A 向左平移2个单位,再向上平移4个单位,得到点C .过点C 且与3y x =平行的直线交y 轴于点D .(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E ,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.22.如图,在ABC ∆中,13,23AB AC ==,点D 在AC 上,若10BD CD ==,AE 平分BAC ∠.(1)求AE 的长;(2)若F 是BC 中点,求线段EF 的长.23.为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表 平均数(环)中位数(环) 方差 命中10环的次数 甲7 0 乙1 甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?24.如图,一个长5m 的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为4m ,如果梯子的顶端A 沿墙下滑1m 至C 点.(1)求梯子底端B 外移距离BD 的长度;(2)猜想CE 与BE 的大小关系,并证明你的结论.25.已知:如图,在▱ABCD 中,设BA u u u r =a r ,BC uuu r =b r.(1)填空:CA u u u r = (用a r 、b r 的式子表示)(2)在图中求作a r +b r.(不要求写出作法,只需写出结论即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.2.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.3.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.4.C解析:C【解析】【分析】根据勾股定理可得①中第三条边长为5或7,根据勾股定理逆定理可得②中应该是∠C =90°,根据三角形内角和定理计算出∠C =90°,可得③正确,再根据勾股定理逆定理可得④正确.【详解】 ①Rt △ABC 中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或7.②△ABC 的三边长分别为AB ,BC ,AC ,若2BC +2AC =2AB ,则∠A =90°,说法错误,应该是∠C =90°.③△ABC 中,若∠A :∠B :∠C =1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.故选C .【点睛】本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.D解析:D【解析】【分析】根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边==, 当13,12分别是斜边和一直角边时,第三边==5. 故选D .【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想. 6.B解析:B【解析】【分析】根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P 运动到BC 中点时,梯形ABCD 的中位线也是△APD 的高,求出梯形ABCD 的中位线长,再代入三角形面积公式即可得出结果.【详解】解:根据题意得:四边形ABCD是梯形,AB+BC=6,CD=10-6=4,∵12AD×CD=8,∴AD=4,又∵12AD×AB=2,∴AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,∵梯形ABCD的中位线长=12(AB+CD)=52,∴△PAD的面积1545 22;=⨯⨯=故选B.【点睛】本题考查了动点问题的函数图象、三角形面积公式、梯形中位线定理等知识;看懂函数图象是解决问题的关键.7.D解析:D【解析】【分析】根据矩形性质可判定选项A、B、C正确,选项D错误.【详解】∵四边形ABCD为矩形,∴∠ABC=90°,AC=BD,OA=OB ,故选D【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.8.D解析:D【解析】【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边;当第三边为斜边时,3和4为直角边,第三边=5,故选:D.本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.9.C解析:C【解析】由于直线y=-x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选C.10.C解析:C【解析】【分析】观察图形,找出图中的直角三角形,利用勾股定理解答即可.【详解】首先根据圆柱的高,知筷子在杯内的最小长度是8cm,则在杯外的最大长度是24-8=16cm;再根据勾股定理求得筷子在杯内的最大长度是(如图)AC=2222+=+=17,则在杯外的最小长度是24-17=7cm,158AB BC所以h的取值范围是7cm≤h≤16cm,故选C.【点睛】本题考查了勾股定理的应用,注意此题要求的是筷子露在杯外的取值范围.主要是根据勾股定理求出筷子在杯内的最大长度.11.D解析:D【解析】【分析】列举出正方形具有而菱形不一定具有的所有性质,由此即可得出答案.【详解】正方形具有而菱形不一定具有的性质是:①正方形的对角线相等,而菱形不一定对角线相等;②正方形的四个角是直角,而菱形的四个角不一定是直角.故选D.本题考查了正方形、菱形的性质,熟知正方形及菱形的性质是解决问题的关键.12.A解析:A【解析】【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题13.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩解得,0x>故答案为:0x>.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.14.【解析】在Rt△ABC中AB=5米BC=3米∠ACB=90°∴AC=∴AC+BC=3+4=7米故答案是:7解析:【解析】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,=4∴AC+BC=3+4=7米.故答案是:7.15.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.16.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股【解析】【分析】已知直角三角形的两条直角边,由勾股定理直角三角形两条直角边的平方和等于斜边的平方,即可求得斜边的长度.【详解】由勾股定理得( +1)2+(−1)2=斜边2,斜边,【点睛】勾股定理:直角三角形两条直角边的平方和等于斜边的平方,我们应熟练正确的运用这个定理,在以后复杂的题目中这是最为常见也最为基础的定理公式.17.x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大当x<﹣2时y<0即可求出答案【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣20)∴y随x的增大而增大当x<﹣2时y<0即解析:x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为:x<﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.18.—1【解析】【分析】首先根据勾股定理计算出AC的长进而得到AE的长再根据A点表示-1可得E点表示的数【详解】∵AD长为2AB长为1∴AC=∵A点表示-1∴E点表示的数为:-1故答案为-1【点睛】本题1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴,∵A点表示-1,∴E-1,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.19.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3, 32. 【解析】 【分析】 根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 20.8cm 【解析】【分析】先由勾股定理求出斜边的长再用面积法求解【详解】解:如图在Rt △ABC 中∠ACB=90°AC=6cmBC=8cmCD ⊥AB 则(cm )由得解得CD =48(cm)故答案为48cm 【点解析:8cm【解析】【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB ,则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==V g g , 得6810CD ⨯=g ,解得CD =4.8(cm).故答案为4.8cm.【点睛】本题考查了勾股定理和用直角三角形的面积求斜边上的高的知识,属于基础题型.三、解答题21.(1)y=3x-10;(2)410 33x-≤≤【解析】【分析】(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(103,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.【详解】解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),∵点A向左平移2个单位,再向上平移4个单位,得到点C,∴C(4,2),∵过点C且与y=3x平行的直线交y轴于点D,∴CD的解析式可设为y=3x+b,把C(4,2)代入得12+b=2,解得b=-10,∴直线CD的解析式为y=3x-10;(2)当x=0时,y=4,则B(0,4),当y=0时,3x-10=0,解得x=103,则直线CD与x轴的交点坐标为(103,0),易得CD平移到经过点B时的直线解析式为y=3x+4,当y=0时,3x+4=0,解得x=43-,则直线y=3x+4与x轴的交点坐标为(43-,0),∴直线CD在平移过程中与x轴交点的横坐标的取值范围为410 33x-≤≤.【点睛】本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.22.(1)12;(2)5【解析】【分析】(1)先证明△ABD是等腰三角形,再根据三线合一得到AE BD⊥,利用勾股定理求得AE 的长;(2)利用三角线的中位线定理可得:12EF CD=,再进行求解.【详解】解:(1)13AD AC CD =-=∴AB AD =∵AE 平分BAC ∠,∴5,EB ED AE BD ==⊥根据勾股定理,得12AE == (2)由(1),知EB ED =,又∵FB FC =, ∴152EF CD ==. 【点睛】 考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.23.(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】【分析】(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,7,7,8,9,9,10, 则平均数为1(24687789910)710⨯+++++++++=(环),中位数为7.5环, 方差为22222221(27)(47)(67)(87)(77)(77)(87)10⎡-+-+-+-+-+-+-⎣ 222(97)(97)(107) 5.4⎤+-+-+-=⎦.由图和表可得甲的射击成绩为9,6,7,6,2,7,7,8,9,平均数为7环.则甲第8次成绩为710(967627789)9⨯-++++++++=(环).所以甲的10次成绩为2,6,6,7,7,7,8,9,9,9,中位数为7环, 方差为22222221(97)(67)(77)(67)(27)(77)(77)10⎡-+-+-+-+-+-+-⎣222(97)(87)(97)4⎤+-+-+-=⎦.补全表格如下:甲、乙射击成绩统计表甲、乙射击成绩折线统计图(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第5次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第5次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.【点睛】本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.24.(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根据勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根据全等三角形的性质得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根据等腰三角形的判定得出即可.【详解】(1)∵AO⊥OD,AO=4m,AB=5m,∴22,AB AO∵梯子的顶端A沿墙下滑1m至C点,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE与BE的大小关系是CE=BE,证明如下:连接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt △AOB 和Rt △DOC 中AB DC AO DO=⎧⎨=⎩, ∴Rt △AOB ≌Rt △DOC (HL ),∴∠ABO=∠DCO ,OC=OB ,∴∠OCB=∠OBC ,∴∠ABO ﹣∠OBC=∠DCO ﹣∠OCB ,∴∠EBC=∠ECB ,∴CE=BE .【点睛】本题考查了勾股定理,等腰三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出∠DCO=∠ABO 和OC=OB 是解(2)的关键. 25.(1) a r -b r ;(2) BD u u u r【解析】【分析】(1)根据三角形法则可知:,CA CB BA =+u u u v u u u v u u u v延长即可解决问题; (2)连接BD .因为,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v 即可推出.BD a b =+r u u u v r【详解】 解:(1)∵,CA CB BA =+u u u v u u u v u u u v BA u u u v =a r ,BC uuu v =b r∴.CA a b =-r u u u v r故答案为a r -b r .(2)连接BD .∵,BD BA AD =+u u u v u u u v u u u v ,AD BC =u u u v u u u v∴.BD a b =+r u u u v r∴BD u u u v 即为所求;【点睛】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2019年初二数学下期末一模试卷(带答案)
2019年初二数学下期末一模试卷(带答案)一、选择题1.如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.52.直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2 B .a 2+b 2=2h 2C .111a b h +=D .222111a b h += 3.三角形的三边长为22()2a b c ab +=+,则这个三角形是( )A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形 4.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有 A .4个 B .3个 C .2个 D .1个5.下列有关一次函数y =﹣3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)6.如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形 BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =2,那么 AC 的长等于( )A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.39.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m210.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .611.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①15BAE DAF ∠=∠=o ;②AG=3GC ;③BE +DF =EF ;④2CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .5二、填空题13.若x=2-1, 则x 2+2x+1=__________.14.函数y =21x x -中,自变量x 的取值范围是_____. 15.已知20n 是整数,则正整数n 的最小值为___16.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.17.菱形两条对角线的长分别为6和8,它的高为 .18.182=__________. 19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能甲83 79 90 乙85 80 75 丙 80 90 73该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≦x ≦5)的函数关系式为___三、解答题21.小颖用的签字笔可在甲、乙两个商店买到.已知两个商店的标价都是每支签字笔2元.但甲商店的优惠条件是:购买10支以上,从第11支开始按标价的7折卖;乙商店的优惠条件是:从第1支开始就按标价的8.5折卖.(1)小颖要买20支签字笔,到哪个商店购买较省钱?(2)小颖现有40元,最多可买多少支签字笔?22.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t (小时)分成A ,B ,C ,D 四组,并绘制了统计图(部分).A 组:0.5tB <组:0.51tC <„组:1 1.5tD <„组: 1.5t …请根据上述信息解答下列问题:(1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.23.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y 与x 之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.24.已知:如图,在▱ABCD 中,设BA u u u r =a r ,BC uuu r =b r . (1)填空:CA u u u r = (用a r 、b r 的式子表示)(2)在图中求作a r +b r .(不要求写出作法,只需写出结论即可)25.如图,将□ABCD 的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,证:四边形AECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果.【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形,∴∠B=90°,AE=12AC , ∴222251213AB BC +=+=,∴AE=6.5,∵点A 表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5;故选A .【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.2.D解析:D【解析】【分析】【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2. 进行等量代换,得a 2+b 2=222a b h , 两边同除以a 2b 2, 得222111a b h+=. 故选D . 3.C解析:C【解析】【分析】利用完全平方公式把等式变形为a 2+b 2=c 2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【详解】∵22()2a b c ab +=+,∴a 2+2ab+b 2=c 2+2ab ,∴a 2+b 2=c 2,∴这个三角形是直角三角形,故选:C .【点睛】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.4.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC ,∠BAD=∠D=90°,则由CE=DF 易得AF=DE ,根据“SAS”可判断△ABF ≌△DAE ,所以AE=BF ;根据全等的性质得∠ABF=∠EAD , 利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE ⊥BF ;连结BE ,BE >BC ,BA≠BE ,而BO ⊥AE ,根据垂直平分线的性质得到OA≠OE ;最后根据△ABF ≌△DAE 得S △ABF =S △DAE ,则S △ABF -S △AOF =S △DAE -S △AOF ,即S △AOB =S 四边形DEOF .【详解】解:∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DA BAD ADE AF DE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DAE ,∴AE=BF ,所以(1)正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以(2)正确;连结BE ,∵BE>BC,∴BA≠BE,而BO⊥AE,∴OA≠OE,所以(3)错误;∵△ABF≌△DAE,∴S△ABF=S△DAE,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以(4)正确.故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.5.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.6.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2018-2019学年山东省威海市八年级下学期期末数学试题及参考答案
山东省威海市2018-2019学年八年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________1.下列根式中是最简二次根式的是( )A B CD 2.已知函数()13a y a x +=+是反比例函数,则此反比例函数的图象在( )A .第一、三象限B .第二、四象限C .第一、四象限D .第二、三象限3.关于x 的一元二次方程22(3)90m x x m -++-=有一个根为0,则m 的值为( )A .3B .-3C .3±D .04.若234a b c ==,则a bb c+-的值为( ) A .5 B .15C .5-D .15-5.小明做了四道题:(22=①;2=-;2=±;24=④;做对的有( ) A .①②③④B .①②④C .②④D .①④6.如图,平行四边形ABCD ,对角线, AC BD 交于点O ,下列选项错误的是( )A ., AC BD 互相平分B .OA OB =时,平行四边形ABCD 为矩形C .AC BD ⊥时,平行四边形ABCD 为菱形 D .45BAC ∠=时,平行四边形ABCD 为正方形 7.下列计算正确的是A =B .=C =D 9=8.如图ABC △中,点D 为BC 边上一点,点E 在AD 上,过点E 作//EF BD 交AB 于点F ,过点E 作//EG AC 交CD 于G , 下列结论错误的是( )A .EF CGBD GD=B .AC ADEG DE=C .BF DGAF GC=D .1EG EFAC BD+= 9.如图,在同一平面直角坐标系中,函数ky x=与函数1y kx =-的图象大致是( ) A . B .C .D .10.设23A a =+,27B a a =-+,则A 与B 的大小关系是( ) A .A B >B .A B <C .A B ≥D .A B ≤11.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是( )A .4月份的利润为50万元B .污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元12.在平面直角坐标系中,平行四边形ABCO 的顶点A C ,的坐标分别是()8, 0,()3, 4 ,点, D E 把线段OB 三等分,延长, CD CE 分别交, OA AB 于点, F G ,连接FG , 则下列结论:OF AF =①; OFD ②BEG ③四边形DEGF 的面积为203;④OD =,其中正确的有( ).A .①②③④B .①②C .①③D .①③④131x -=x 的取值范围是__________.14.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到1000美元,设2017年到2019年该地区人均收入平均增长率为x ,可列方程为__________.15.实数,a b =__________.16.如图,矩形ABCD 中,BC =2,将矩形ABCD 绕点D 顺时针旋转90°,点A ,B ,C 分别落在点A',B',C'处,且点A',C',B 在同一条直线上,则AB 的长为__________.17.如图,直线5y x =+分别与x 轴、y 轴交于点, A B ,点P 是反比例函数ky x=的图象上位于直线5y x =+下方的点,过点P 分别作x 轴、y 轴的垂线,垂足分别为点,M N ,交直线AB 于点, E F ,若6BE AF =,则k 的值为__________.18.如图,矩形ABCD 中,1, 2AB CB ==,连接AC ,以对角线AC 为边按逆时针方向作矩形11ACC B ,使矩形11ACC B 矩形ADCB ;再连接AC ,以对角线1AC 为边,按逆时针方向作矩形,使矩形22ACC B 矩形11ACC B , ..按照此规律作下去,若矩形ABCD 的面积记作1S ,矩形11ACC B 的面积记作2S ,矩形22ACC B 的面积记作3S , ... 则2019S 的值为__________.19.计算:(1)1382⎛⎫+÷ ⎪ ⎪⎝(2)12x -=,12y =,求y x x y +的值.20.用适当的方法解下列方程: (1)()()2 518x x +-= (2)()()2221 92x x -=-21.关于x 的方程()220a b x cx a b ++-+=,其中, , a b c 分别是ABC △的三边长.(1)若方程有两个相等的实数根,试判断ABC △的形状,并说明理由; (2)若ABC △为等边三角形,试求出这个方程的解. 22.已知,直线12y x =-与双曲线k y x=交于点(),2A m ,点B .(1)求反比例函数kyx=的表达式;(2)根据图象直接写出不等式12kxx->的解集 .(3)将直线12y x=-沿y轴向下平移后,分别与x轴,y轴交于点C,点D,当四边形ABDC为平行四边形时,求直线CD的表达式.23.随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买3张电影票的费用比现场购买2张电影票的费用少10元:从网上购买5张电影票的费用和现场购买1张电影票的费用共200元.(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为500张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低2元,售出总票数就比五一当天增加4张.经统计,5月5日售出的总票数中有60%的电影票通过网上售出,其余通过现场售出,且当天票房总收入为17680元,试求出5月5日当天现场购票每张电影票的价格为多少元?24.如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.25.已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S,求ED的长;四边形BCED(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.①试判断四边形AEMF的形状,并说明理由;②求折痕EF的长.参考答案1.A【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】B.原式=B不是最简二次根式;C.原式=C不是最简二次根式;D.原式2=,故D不是最简二次根式;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.A【解析】【分析】首先根据反比例函数的定义,即可得出2a=-,进而得出反比例函数解析式,然后根据其性质,即可判定其所在的象限.【详解】根据已知条件,得11a+=-即2a=-∴函数解析式为1 yx =∴此反比例函数的图象在第一、三象限故答案为A.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题. 3.B【解析】【分析】把x =0代入方程22(3)90m x x m -++-=中,解关于m 的一元二次方程,注意m 的取值不能使原方程对二次项系数为0. 【详解】把x =0代入方程22(3)90m x x m -++-=中,得 m 2−9=0, 解得m =−3或3,当m =3时,原方程二次项系数m−3=0,舍去, 故选:B . 【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念. 4.C 【解析】 【分析】 首先设234a b ct ===,将代数式化为含有同类项的代数式,即可得解. 【详解】 设234a b ct === ∴2,3,4a t b t c t === ∴235534a b t t tb c t t t++===---- 故答案为C. 【点睛】此题主要考查分式计算,关键是设参数求值. 5.D 【解析】 【分析】根据无理数的运算法则,逐一计算即可.【详解】(2①,正确;=2=,错误;2=,错误;224④,正确;=故答案为D.【点睛】此题主要考查无理数的运算,熟练掌握,即可解题.6.D【解析】【分析】根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.【详解】A选项,根据平行四边形对角线互相平分的性质,即可判定正确;B选项,对角线相等的平行四边形是矩形,正确;C选项,对角线互相垂直的平行四边形为菱形,正确;D选项,并不能判定其为正方形;故答案为D.【点睛】此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题. 7.B【解析】【分析】根据二次根式的运算法则,逐一计算即可得解.【详解】A≠B 选项,=C =≠,错误;D 39==≠,错误;故答案为B. 【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题. 8.A 【解析】 【分析】根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的 直线 ,截得的三角形的三边与原三角形的三边对应成比例,即可得解. 【详解】根据三角形的平行线定理,可得A 选项,EF AE CGBD AD CD ==,错误; B 选项,AC ADEG DE =,正确; C 选项,BF DGAF GC=,正确; D 选项,1EG EF DE AE DE AE ADAC BD AD AD AD AD++=+===,正确; 故答案为A. 【点睛】此题主要考查三角形的平行线定理,熟练掌握,即可解题. 9.A 【解析】 【分析】分情况讨论:0k >和0k <时,根据图像的性质,即可判定. 【详解】当0k >时,函数k y x=的图像位于第一、三象限,函数1y kx =-的图像第一、三、四象限; 当0k <时,函数k y x =的图像位于第二、四象限,函数1y kx =-的图像第二、三、四象限; 故答案为A.【点睛】此题主要考查一次函数和反比例函数的性质,熟练掌握,即可解题.10.B【解析】【分析】通过作差法来判断A 与B 的大小,即可得解.【详解】根据已知条件,得()2723340a a a a a B A -+--=-+-=>∴A B <故答案为B .【点睛】此题主要考查求差比较大小,熟练运用,即可解题.11.C【解析】【分析】首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为y =k x (x ≠0)根据题意,图像过点(1,200),则可得出y =200x (x ≠0)当x =4时,y =50,即4月份的利润为50万元,A 选项正确;设一次函数解析式为y =kx +b根据题意,图像过点(4,50)和(6,110)则有{4k +b =506k +b =110解得{k =30b =−70∴一次函数解析式为y =30x −70,其斜率为30,即污改造完成后每月利润比前一个月增加30万元,B 选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、2003万元、50万元、110万元,共有3个月的利润低于100万元,C 选项错误;9月份的利润为30×9−70=200万元,D 选项正确;故答案为C .【点睛】此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.12.C【解析】【分析】① 根据题意证明ODF BDC △△,得出对应边成比例,再根据, D E 把线段OB 三等分,证得1122OF BC OA ==,即可证得结论; ② 延长BC 交y 轴于H ,证明OA≠AB ,则∠AOB≠∠EBG ,所以△OFD ∽△BEG 不成立;③ 利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断; ④ 根据勾股定理,计算出OB 的长,根据三等分线段OB 可得结论.【详解】作AN ⊥OB 于点N ,BM ⊥x 轴于点M ,如图所示:在平行四边形OABC 中,点A C ,的坐标分别是()8, 0,()3, 4 ,∴(11,4),B OB =又∵, D E 把线段OB 三等分, ∴12OD BD = 又∵CB OF ∥,∴ODF BDC △△ ∴12OF OD BC BD == ∴1122OF BC OA == 即OF AF =,①结论正确;∵()3,4C ,∴5OC OA =≠∴平行四边形OABC 不是菱形,∴,DOF COD EBG ODF COD EBG ≠=≠==∠∠∠∠∠∠∵()4,0F∴CF OC =∴CFO COF ∠>∠∴,DFO EBG ≠∠∠故△OFD 和△BEG 不相似,故②错误;由①得,点G 是AB 的中点,∴FG 是△OAB 的中位线,∴FG OB ∥,12FG OB ==又∵, D E 把线段OB 三等分,∴DE =∵1118416222OAB S OB AN OA BM ===⨯⨯=△ ∴1162AN OB = ∵DF FG∴四边形DEGH 是梯形∴()551202121223DEGF DE FG h SOB h OB AN -====四边形,故③正确; 13OD OB == 综上:①③正确,故答案为C.【点睛】此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.13.11x -≤≤【解析】【分析】根据二次根式有意义的条件,列出不等式组,即可得解.【详解】根据题意,得2101010x x x +≥⎧⎪-≥⎨⎪-≥⎩解得11x -≤≤.【点睛】此题主要考查二次根式有意义的条件,熟练掌握,即可解题.14.()230011000x +=【解析】【分析】根据题意列出2018年人均收入将达到的美元的式子,即可得出2019年人均收入将达到的美元的方程,进而得解.【详解】根据题意,可得2018年人均收入将达到()3001x +,2019年人均收入将达到()()30011x x ++即为()230011000x +=【点睛】此题主要考查一元二次方程的实际应用,熟练掌握,即可解题.15.2b +【解析】【分析】首先根据数轴的含义,得出0,20a b a +-<>,然后化简所求式子,即可得解.【详解】 根据数轴,可得,02b a a ><<∴0,20a b a +-<>原式222a a b a a b b =--+=-++=+故答案为2b +.【点睛】此题主要考查绝对值的性质,熟练掌握,即可解题.161【解析】【分析】 由C ′D ∥BC ,可得比例式'''C D A D BC A C=,设AB =a ,构造方程即可. 【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴'''C D A DBC A C=,即222aa=+,解得a=−1− −1所以AB1.1.【点睛】本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.17.-3【解析】【分析】首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出3xy=,又因为反比例函数在第二象限,进而得解. 【详解】过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,设PN=x,PM=y,由已知条件,得EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)∴OA=OB=5∴∠OAB=∠OBA=45°∴FF′=AF′=y,EE′=BE′=x,∴,又∵6BE AF=26y=∴3xy=又∵反比例函数在第二象限,∴3k=-.【点睛】此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.18.2018 4035 52【解析】【分析】首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解. 【详解】∵四边形ABCD是矩形,∴AD⊥DC,∴=,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD 2∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积=52,依此类推,矩形AB 2C 2C 1的面积和矩形AB 1C 1C 的面积的比5:4∴矩形AB 2C 2C 1的面积=2352∴矩形AB 3C 3C 2的面积=3552, 按此规律第n 个矩形的面积为:2152nn - 则20182018220181401935205522S ⨯-== 故答案为:2018403552. 【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.19.(1) 14;(2)4. 【解析】【分析】(1)运用二次根式运算法则,直接计算即可;(2)首先转化代数式,然后代入即可得解.【详解】(1) 原式=13222÷ 31122=⨯+ 14= (2)22y x x y x y xy++=22+⎝⎭⎝⎭4=【点睛】此题主要考查二次根式的运算,熟练运用,即可解题.20.(1)127,4x x ==-;(2)127,55x x ==. 【解析】【分析】(1)首先分解因式,再用十字相乘法计算;(2)首先转化形式,然后直接采用平方差公式计算.【详解】 1()原方程可转化为:23280x x --=()()740x x -+=127,4x x ==-()2原方程可转化为:()()2221 203x x ---=⎡⎤⎣⎦ ()()213621360x x x x -+---+=127,55x x == 【点睛】此题主要考查一元二次方程的解法,熟练运用,即可解题.21.(1)ABC △是直角三角形;理由见解析;(2)1201x x ==,-,.【解析】【分析】(1)根据根的判别式为0,计算出, , a b c 的关系,即可判定;(2)根据题意,将方程进行转化形式,即可得解.【详解】(1)直角三角形根据题意,得()()2440c a b a b =++-=△ 即222a c b +=所以ABC △是直角三角形(2)根据题意,可得2220ax ax +=20x x +=解出1201x x ==,-【点睛】此题主要考查一元二次方程和三角形的综合应用,熟练运用,即可解题.22.(1)8y x=-;(2)4x <-或04x <<;(3)142y x =--, 【解析】【分析】 (1)将点A 代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解; (2)首先联立两个函数,解得即可得出点B 坐标,直接观察图像,即可得出解集; (3)首先过点A 作AM y ⊥轴,过点B 作BN x ⊥轴,AM BN ,交于点E ,根据平行线的性质,得出ABE CDO ≌,得出4OD =,进而得出直线CD 解析式.【详解】解:(1)根据题意,可得点42A -(,)将其代入反比例函数解析式,即得8y x=- (2)根据题意,得128y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩解得4x =±∴点B (4,-2) ∴直接观察图像,可得12k x x->的解集为 4x <-或04x <<(3)过点A 作AM y ⊥轴,过点B 作BN x ⊥轴,AM BN ,交于点E根据题意,可得,AE CN AB CD ∥∥∴∠EAB=∠NOB=∠OCD ,∠AEB=∠COD=90°,AB=CD∴∠ABE=∠CDO∴ABE CDO ≌(ASA )∴4OD =则可得出直线CD 为142y x =-- 【点睛】此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题. 23.(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.【解析】【分析】(1)首先设网上每张电影票价格为x 元,现场每张电影票价格为y 元,然后根据题意,列出关系式,即可得解;(2)首先设现场购票每张电影票的价格下降x 元,然后根据题意列出关系式,即可得解.【详解】(1)设网上每张电影票价格为x 元,现场每张电影票价格为y 元.32105200x y x y -=-⎧⎨+=⎩解得:3050x y =⎧⎨=⎩答:网上购票价格30元,现场购票价格50元.(2)设现场购票每张电影票的价格下降x 元()()500460%305004160%501768022x x x ⎛⎫⎛⎫+⨯⨯⨯++⨯⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭ 解得1165x =-(舍去),210x =501040-=答:5月5日当天现场购票每张电影票的价格为40元.【点睛】此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.24.(1)△DPE ∽△QDA ,证明见解析;(2)DP=2或5【解析】【分析】(1)由∠ADC =∠DEP =∠A =90︒可证明△ADQ ∽△EPD ;(2)若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,当△ADQ ∽△EPQ时,设EQ =x ,则EP =2x ,则DE =x ,由△ADQ ∽△EPD 可得EP DE AD AQ=,可求出x 的值,则DP 可求出;同理当△ADQ ∽△EQP 时,设EQ =2a ,则EP =a ,可得2142==,可求出a 的值,则DP 可求. 【详解】(1)△ADQ ∽△EPD ,证明如下:∵PE ⊥DQ ,∴∠DEP =∠A =90︒,∵∠ADC =90︒,∴∠ADQ +∠EDP =90︒,∠EDP +∠DPE =90︒,∴∠ADQ =∠DPE ,∴△ADQ ∽△EPD ;(2)∵AB =4,点Q 为AB 的中点,∴AQ =BQ =2,∴DQ ==∵∠PEQ =∠A =90︒,∴若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,①当△ADQ ∽△EPQ 时,2AD PE AQ EQ==,设EQ =x ,则EP =2x ,则DE =x ,由(1)知△ADQ ∽△EPD , ∴EP DE AD AQ=,∴24x =,∴x∴DP=5;②当△ADQ∽△EQP时,设EQ=2a,则EP=a,同理可得22142aa==,∴aDP2==.综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.【点睛】本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.25.(1)DE=5;(2)①四边形AEMF是菱形,证明见解析;②EF=【解析】【分析】(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC =5S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;(2)①根据四边相等的四边形是菱形证明即可;②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x 后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.【详解】(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF=S△DEF,∵S△ADE=S四边形BCDE,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90︒,AB=10,BC=6,∴AC=8,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴2AEFABCS AES AB⎛⎫= ⎪⎝⎭,即21104AE⎛⎫=⎪⎝⎭,∴AE=5(负值舍去),由折叠知,DE=AE=5.(2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵ME∥AB,∴∠AFE=∠FEM∴∠MFE=∠FEM,∴ME=MF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.②设AE=x,则EM=x,CE=8−x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴CM CE EM CB CA AB==,即86810 CM x x-==,解得x =409,CM =83,在Rt △ACM 中,AM 3=, ∵S 菱形AEMF =12EF•AM =AE•CM ,∴EF =2×9AE CM AM ⋅=. 【点睛】 本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.。
2019年威海市初二数学下期中第一次模拟试卷含答案
解:设 BO xm ,依题意,得 AC 1, BD 1, AO 4 . 在 Rt AOB 中,根据勾股定理得 AB2 AO2 OB2 42 x2 , 在 Rt COD 中,根据勾股定理 CD2 CO2 OD2 (4 1)2 (x 1)2 ,
42 x2 (4 1)2 (x 1)2 , 解得 x 3 ,
A.图象过点 0, 1
D.2
B.图象与 x 轴的交点坐标为 (1 , 0) 2
C.图象沿 y 轴向上平移1个单位长度,得到直线 y 2x
D.图象经过第一、二、三象限 12.下列运算正确的是( )
A. 2 3 5
B. 3 2 6 2
C. 2 3 5
D. 3 1 3 3
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了 100 名学生开展植数造林活动, 其植树情况整理如下表:
A.x>-1
B.x>-1 且 x≠1
C.x≥一 1
D.x≥-1 且 x≠1
7.如图,菱 ABCD 的对角线 AC,BD 相交于点 O,E,F 分别是 AB,BC 边上的中点,
连接 EF.若 EF 3 ,BD=4,则菱形 ABCD 的周长为( )
A.4
B. 4 6
C. 4 7
D.28
8.如图,函数 y=2x 和 y=ax+4 的图象相交于 A(m,3),则不等式 2x <ax+4 的解集为( )
B.11 尺
C.12 尺
D.13 尺
3.如图,在 5×5 的正方形网格中,从在格点上的点 A,B,C,D 中任取三点,所构成的三
角形恰好是直角三角形的个数为( )
A.1
B.2
C.3
D.4
山东省威海市2019-2020学年八年级第二学期期末统考数学试题含解析
山东省威海市2019-2020学年八年级第二学期期末统考数学试题 一、选择题(每题只有一个答案正确) 1.为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )A .5B .10C .15D .202.下列二次根式中,属于最简二次根式的是( )A .13B .0.3C .3D .203.下列判断正确的是( )A .四条边相等的四边形是正方形B .四个角相等的四边形是矩形C .对角线垂直的四边形是菱形D .对角线相等的四边形是平行四边形 4.下列命题是真命题的是( )A .平行四边形对角线相等B .直角三角形两锐角互补C .不等式﹣2x ﹣1<0的解是x <﹣12D .多边形的外角和为360°5.下面计算正确的是( )A .3333+=B .2733÷=C .23=5⋅D .4=2±6.如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的平分线,DE AB ⊥于点E ,DE 平分ADB ∠,则B 等于( )A .1.5°B .30°C .25°D .40°7.一次函数y mx n =-+22()m n n -( )A .mB .m -C .2m n -D .2m n -8.一个三角形的三边分别是3、4、5,则它的面积是( )A .6B .12C .7.5D .109.下列方程中,有实数解的方程是( )A .4110x ++=;B .4210x -=;C .2360x x ++=;D .111x x x =-- 10.实数a 、b 在数轴上对应的位置如图所示,则22(a 1)(1b)---等于( )A .2a b --B .a b 2+-C .a b -D .b a -二、填空题11.如图,矩形ABCD 中,AB=4,BC=8,对角线AC 的垂直平分线分别交AD 、BC 于点E. F ,连接CE ,则△DCE 的面积为___.12.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)13.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且OA=OC ,OB=OD ,要使四边形ABCD 为矩形,则需要添加的条件是_______(只填一个即可).14.一组数据:3,5,9,12,6的极差是_________.15.若分式11x x --的值为零,则x 的值为______. 16.在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =6,则菱形ABCD 的对角线BD 的长是_____. 17.不等式814x x +>-的负整数解有__________. 三、解答题18.如图,已知A (﹣4,n ),B (1,﹣4)是一次函数y=kx+b 的图象和反比例函数y=m x 的图象的两个交点.、(1)求△AOB 的面积;(2)求不等式kx+b ﹣m x<0的解集(请直接写出答案).19.(6分)如图如图1,四边形ABCD 和四边形BCMD 都是菱形,(1)求证:∠M =60°(2)如图2,点E 在边AD 上,点F 在边CM 上,连接EF 交CD 于点H ,若AE =MF ,求证:EH =HF ; (3)如图3,在第(2)小题的条件下,连接BH ,若EF ⊥CM ,AB =3,求BH 的长20.(6分)如图,在ABCD 中,点E 是BC 边的中点,设AB a BE b ==,(1)试用向量a b 、表示向量DE ,则DE = ;(2)在图中求作:BA BE EC ED -+,.(保留作图痕迹,不要求写作法,但要写出结果)21.(6分)已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数表达式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.22.(8分)如图,将一个三角板放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .(1)当点Q 在DC 边上时,过点P 作//MN AD 分别交AB ,DC 于点M ,N ,证明:PQ BP =; (2)当点Q 在线段DC 的延长线上时,设A 、P 两点间的距离为x ,CQ 的长为y .①直接写出y 与x 之间的函数关系,并写出函数自变量x 的取值范围;②PCQ ∆能否为等腰三角形?如果能,直接写出相应的x 值;如果不能,说明理由.23.(8分)先化简,再求值:22214()244a a a a a a a a+--+÷--+,其中 a 满足2410a a --=. 24.(10分)如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.25.(10分)已知E 、F 分别是平行四边形ABCD 的BC 和DA 边上的点,且CE=AF ,问:DE 与FB 是否平行?说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据频率= 频数总数,即可求得总数,进而即可求得第四小组的频数.【详解】解:总数是5÷0.1=50人;则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,故选B.【点睛】本题考查频率的计算公式,解题关键是熟记公式.2.C【解析】【分析】满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【详解】A A不是;B,故B不是;C,是;D=D不是.故选C【点睛】考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.3.B【解析】【分析】由题意根据正方形、矩形、菱形、平行四边形的判定分别对每一项进行分析判断即可.【详解】解:A. 四条边相等的四边形是菱形,故本选项错误;B. 四个角相等的四边形是矩形,故本选项正确;C. 对角线垂直的平行四边形是菱形,故本选项错误;D. 对角线互相平分的四边形是平行四边形,故本选项错误.故选:B.【点睛】本题考查正方形、平行四边形、矩形以及菱形的判定.注意掌握正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.4.D【解析】【分析】根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.【详解】平行四边形对角线不一定相等,A是假命题;直角三角形两锐角互余,B是假命题;不等式-2x-1<0的解是x>-12,C是假命题;多边形的外角和为360°,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【解析】分析:A.根据合并二次根式的法则即可判定;B.根据二次根式的除法法则即可判定;C.根据二次根式的乘法法则即可判定;D.根据二次根式的性质即可判定.详解:A.不是同类二次根式,不能合并.故选项错误;B1.故选项正确;C=.故选项错误;D2.故选项错误.故选B.点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二次根式== 6.B【解析】【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED .在Rt △ACD 和Rt △AED 中, AD AD CD ED⎧⎨⎩== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】此题考查角平分线的性质.解题关键在于掌握角平分线的性质:角的平分线上的点到角的两边的距离相等. 7.D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx+n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.A【解析】【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【详解】∵32+42=52,∴此三角形是直角三角形,∴S△=12×3×4=1.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.9.B【解析】【分析】首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.【详解】解:A1=-,等式不成立,所以原方程没有实数解,故本选项错误;B项移项得421x=,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;C项2360x x++=是一元二次方程,△=2346-⨯=-15<0,方程无实数根,故本选项错误;D.111xx x=--化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;故选B.【点睛】本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.10.A【解析】【分析】直接利用数轴得出10a -<,10b -<,进而化简得出答案.【详解】解:由数轴可得:10a -<,10b -<,则原式()112a b a b =---=--.故选A .【点睛】此题主要考查了二次根式的性质与化简,正确得出各项的符号是解题关键.二、填空题11.6【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE ,设CE=x ,表示出ED 的长度,然后在Rt △CDE 中,利用勾股定理列式计算,再利用三角形面积公式解答即可.【详解】∵四边形ABCD 是矩形,∴CD=AB=4,AD=BC=8,∵EO 是AC 的垂直平分线,∴AE=CE ,设CE=x ,则ED=AD−AE=8−x ,在Rt △CDE 中,CE 2=CD 2+ED 2,即x 2=42 +(8−x)2, 解得:x=5,即CE 的长为5,DE=8−5=3,所以△DCE 的面积=12×3×4=6, 故答案为:6.【点睛】此题考查线段垂直平分线的性质,矩形的性质,解题关键在于得出AE=CE.12.中位数【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故答案为:中位数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.13.∠DAB=90°.【解析】【分析】根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为∠DAB=90°.【点睛】此题主要考查了矩形的判定,关键是掌握矩形的判定定理.14.1【解析】【分析】根据极差的定义求解.【详解】解:数据:3,5,1,12,6,所以极差=12-3=1.故答案为:1.【点睛】本题考查了极差的定义,它反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.15.-1【解析】【分析】【详解】试题分析:因为当10{-10-=≠xx时分式11xx--的值为零,解得1x=±且1x≠,所以x=-1.考点:分式的值为零的条件.16.6【解析】【分析】先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.【详解】如图,∵菱形ABCD中,AE垂直平分BC,∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,∴AB=BC=AC=6,∴OA=3,∴OB=,∴BD=2OB=6,故答案为:6.【点睛】本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.17.-5、-4、-3、-2、-1【解析】【分析】求出不等式的解集,取解集范围内的负整数即可.【详解】解:移项得:184x x +>- 合并同类项得:574x >- 系数化为1得:285x >- 即 5.6x >-所以原不等式的负整数解为:-5、-4、-3、-2、-1故答案为:-5、-4、-3、-2、-1【点睛】本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.三、解答题18.(1)152;(2)﹣4<x <0或x >1 【解析】【分析】(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(2)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.【详解】解:(1)∵反比例函数y=m x(m≠0)过点B (1,﹣4), ∴m=1×(﹣4)=﹣4, ∴y=﹣4x , 将x=﹣4,y=n 代入反比例解析式得:n=1,∴A (﹣4,1),∴将A 与B 坐标代入一次函数解析式得:k+b=-4,-4k+b=1,解得:k=-1,b=-3, ∴y=﹣x ﹣3;在直线y=﹣x ﹣3中,当y=0时,x=﹣3,∴C (﹣3,0),即OC=3,∴S △AOB =S △AOC +S △COB =12(3×1+3×4)=152; (2)不等式kx+b ﹣m x <0的解集是﹣4<x <0或x >1. 【点睛】本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x 的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.19.(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.【详解】(1)证明:∵四边形ABCD和四边形BCMD都是菱形,∴BC=CD=AD,BC=DM=CM∴CD=DM=CM=AD,∴△CDM是等边三角形,∴∠M=60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点睛】
本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.
6.D
解析:D 【解析】
【分析】
由(a-b)(a2-b2-c2)=0,可得:a-b=0,或 a2-b2-c2=0,进而可得 a=b 或 a2=b2+c2,进而判 断△ABC 的形状为等腰三角形或直角三角形. 【详解】
EDB FBO
则△DOE 和△BOF 中, OD OB
,
DOE BOF
∴△DOE≌△BOF,
∴DE=BF,
∴四边形 DEBF 是平行四边形.故选项正确;
D、∵∠AED=∠CFB,
∴∠DEO=∠BFO,
∴DE∥BF,
DOE BOF 在△DOE 和△BOF 中, DEO BFO ,
OD OB
11.D
解析:D 【解析】 【分析】 【详解】
解:∵AB=2.5 米,AC=0.7 米,∴BC= AB2 AC2 =2.4(米).
∵梯子的顶部下滑 0.4 米,∴BE=0.4 米,∴EC=BC﹣0.4=2(米),
∴DC= DE2 EC2 =1.5(米),
∴梯子的底部向外滑出 AD=1.5﹣0.7=0.8(米). 故选 D. 【点睛】 此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平 方和等于斜边的平方.
角三角形的是( )
A.b2﹣c2=a2
B.a:b:c=3:4:5
C.∠A:∠B:∠C=9:12:15
D.∠C=∠A﹣∠B
4.若代数式 x 1 有意义,则 x 的取值范围是( ) x 1
A.x>﹣1 且 x≠1 B.x≥﹣1
C.x≠1
D.x≥﹣1 且 x≠1
5.如图,在 ABCC 上的两个不同
度数
9
10
11
天数
3
1
1
(1)求这 5 天的用电量的平均数;
(2)求这 5 天用电量的众数、中位数;
(3)学校共有 36 个班级,若该月按 22 天计,试估计该校该月的总用电量.
22.如图,在菱形 ABCD 中,对角线 AC 与 BD 交于点 O.过点 C 作 BD 的平行线,过点
D 作 AC 的平行线,两直线相交于点 E.
数.二次根式的运算法则:乘法法则 a b ab ,除法法则 b b .解题关键是分解 aa
成一个完全平方数和一个代数式的积的形式.
3.C
解析:C 【解析】 【分析】 根据勾股定理逆定理可判断出 A、B 是否是直角三角形;根据三角形内角和定理可得 C、D 是否是直角三角形. 【详解】 A、∵b2-c2=a2,∴b2=c2+a2,故△ABC 为直角三角形; B、∵32+42=52,∴△ABC 为直角三角形;
C、∵∠A:∠B:∠C=9:12:15, C 15 180 75 ,故不能判定△ABC 是 9 12 15
直角三角形; D、∵∠C=∠A-∠B,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选 C. 【点睛】 考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形, 可利用勾股定理的逆定理和直角三角形的定义判断.
A.0.4
B.0.6
C.0.7
D.0.8
12.如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是 AC 的垂直平分线,DE 交
AB 于点 D ,交 AC 于点 E ,连接 CD ,则 CD 的长度为( )
A.3
B.4
C.4.8
D.5
二、填空题
13.如图所示, BE AC 于点 D ,且 AB BC , BD ED ,若 ABC 54 ,则
(1)求证:四边形 OCED 是矩形;
(2)若 CE=1,DE=2,ABCD 的面积是
.
23.先化简再求值:(a﹣ 2ab b2 )÷a2 b2 ,其中 a=1+ 2 ,b=1﹣ 2 .
a
a
24.已知:如图, E, F 是正方形 ABCD 的对角线 BD上的两点,且 BE DF.
求证:四边形 AECF 是菱形.
E ___ .
14.一次函数的图象过点 1,3 且与直线 y 2x 1平行,那么该函数解析式为
__________.
15.函数 y 1 的自变量 x 的取值范围是 . x 1
16.如图,将边长为 的正方形
折叠,使点 落在
痕为 ,则线段 的长为____.
边的中点 处,点 落在 处,折
17.将直线 y2x 向下平移 3 个单位长度得到的直线解析式为_____. 18.如图,已知函数 y=x+b 和 y=ax+3 的图象交点为 P,则不等式 x+b>ax+3 的解集为 _____.
5.B
解析:B 【解析】 【分析】
根据平行四边形的性质以及平行四边形的判定定理即可作出判断. 【详解】
解:A、∵在平行四边形 ABCD 中,OA=OC,OB=OD, 若 AE=CF,则 OE=OF, ∴四边形 DEBF 是平行四边形; B、若 DE=BF,没有条件能够说明四边形 DEBF 是平行四边形,则选项错误; C、∵在平行四边形 ABCD 中,OB=OD,AD∥BC, ∴∠ADB=∠CBD, 若∠ADE=∠CBF,则∠EDB=∠FBO, ∴DE∥BF,
△PAD 的面积为 S,S 关于 t 的函数图象如图(2)所示,当 P 运动到 BC 中点时,△APD
的面积为( )
A.4
B.5
C.6
D.7
9.如图,D3081 次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),
火车进入隧道的时间 x 与火车在隧道内的长度 y 之间的关系用图象描述大致是( )
解:∵(a-b)(a2-b2-c2)=0, ∴a-b=0,或 a2-b2-c2=0, 即 a=b 或 a2=b2+c2, ∴△ABC 的形状为等腰三角形或直角三角形. 故选:D. 【点睛】
本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形
是等腰三角形,满足 a2+b2=c2 的三角形是直角三角形.
4.D
解析:D 【解析】 【分析】
此题需要注意分式的分母不等于零,二次根式的被开方数是非负数. 【详解】
依题意,得 x+1≥0 且 x-1≠0, 解得 x≥-1 且 x≠1. 故选 A. 【点睛】 本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方
面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数非负.
12.D
解析:D 【解析】 【分析】 【详解】 已知 AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因 DE 为 AC 边的中垂线,可得 DE⊥AC,AE=CE=4,所以 DE 为三角形 ABC 的中位线,即可得
2019 年威海市初二数学下期末第一次模拟试卷含答案
一、选择题
1.当1 a 2 时,代数式 (a 2)2 a 1 的值为( )
A.1
B.-1
C.2a-3
D.3-2a
2.若 63n 是整数,则正整数 n 的最小值是( )
A.4
B.5
C.6
D.7
3.已知△ABC 中,a、b、c 分别是∠A、∠B、∠C 的对边,下列条件不能判断△ABC 是直
当火车开始出来时 y 逐渐变小,
反映到图象上应选 A.
故选:A. 【点睛】 本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的 关键是要知道本题是分段函数,分情况讨论 y 与 x 之间的函数关系.
10.B
解析:B 【解析】 试题解析:A、∵22+32≠42,∴不能构成直角三角形; B、∵72+242=252,∴能构成直角三角形; C、∵82+122≠202,∴不能构成直角三角形; D、∵52+132≠152,∴不能构成直角三角形. 故选 B.
求得答案. 详解:∵1<a<2,
∴ (a 2)2 =|a-2|=-(a-2),
|a-1|=a-1,
∴ (a 2)2 +|a-1|=-(a-2)+(a-1)=2-1=1.
故选 A. 点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌 握二次根式的性质.
2.D
解析:D 【解析】 【分析】
19.已知数据:﹣1,4,2,﹣2,x 的众数是 2,那么这组数据的平均数为_____. 20.某水库的水位在 5 小时内持续上涨,初始的水位高度为 6 米,水位以每小时 0.3 米的 速度匀速上升,则水库的水位高度 y 米与时间 x 小时(0≦x≦5)的函数关系式为___
三、解答题
21.某学校抽查了某班级某月 5 天的用电量,数据如下表(单位:度):
A.
B.
C.
D.
10.下列各组数,可以作为直角三角形的三边长的是( )
A.2,3,4
B.7,24,25
C.8,12,20
D.5,13,15
11.如图,一个工人拿一个 2.5 米长的梯子,底端 A 放在距离墙根 C 点 0.7 米处,另一头
B 点靠墙,如果梯子的顶部下滑 0.4 米,梯子的底部向外滑( )米
∵ 1 AD×CD=8, 2
∴AD=4,
又∵ 1 AD×AB=2, 2
∴AB=1,
当 P 运动到 BC 中点时,梯形 ABCD 的中位线也是△APD 的高,
∵梯形 ABCD 的中位线长= 1 (AB+CD)= 5 ,