2019年高考数学二轮复习第1部分知识专题突破专题限时集训8概率与统计算法推理与证明复数

合集下载

专题八 概率与统计 第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计  第二讲 概率,随机变量及分布列——2023届高考数学二轮复习重点练(含解析)

专题八 概率与统计 第二讲 概率,随机变量及分布列1.为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为( ) A.112B.16C.15D.132.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A.14B.13C.49D.3163.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A.110B.15C.310D.254.某次战役中,狙击手A 受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 至多射击2次,则他能击落敌机的概率为( ) A.0.23B.0.2C.0.16D.0.15.设两个相互独立事件A ,B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A.80,9⎡⎤⎢⎥⎣⎦B.15,99⎡⎤⎢⎥⎣⎦C.28,39⎡⎤⎢⎥⎣⎦D.40,9⎡⎤⎢⎥⎣⎦6.一个旅行团到漳州旅游,有百花村与云洞岩两个景点可选择,该旅行团选择去哪个景点相互独立.若旅行团选择两个景点都去的概率是49,只去百花村不去云洞岩与只去云洞岩不去百花村的概率相等,则旅行团选择去百花村的概率是( ) A.23B.13C.49D.197.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师各自分别将活动通知的信息独立且随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A.25B.1225C.1625D.458.(多选)从甲袋中摸出1个红球的概率是13,从乙袋中摸出1个红球的概率是12.从甲袋、乙袋各摸出1个球,则下列结论正确的是( )A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为129. (多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )A.两件都是一等品的概率是13B.两件中有1件是次品的概率是12C.两件都是正品的概率是13D.两件中至少有1件是一等品的概率是5610. (多选)在一次随机试验中,A,B,C,D是彼此互斥的事件,且A B C D+++是必然事件,则下列说法正确的是( )A.A B+与C是互斥事件,也是对立事件B.B+C与D是互斥事件,但不是对立事件C.A C+与B D+是互斥事件,但不是对立事件D.A与B C D++是互斥事件,也是对立事件11.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________.12.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.13.从甲、乙、丙、丁四人中随机选取两人,则甲、乙两人中有且只有一人被选取的概率为_____________.14.一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求2n m<+的概率..假定甲、乙两位同学15.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案以及解析1.答案:D解析:6架飞机的降落顺序有66A 种,而1号与6号相邻降落的顺序有2525A A 种,所以所求事件的概率252566A A 1A 3P ==.故选D.2.答案:A解析:甲、乙各摸一次球,有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种. 其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有4种,则所求概率41164P ==. 3.答案:D解析:先后有放回地抽取2张卡片的情况有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种.其中满足条件的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10种情况.因此所求的概率102255P ==.故选D. 4.答案:A解析:A 每次射击,命中机首、机中、机尾的概率分别为0.2,0.4,0.1,未命中敌机的概率为0.3,且各次射击相互独立.若A 射击1次就击落敌机,则他击中了敌机的机尾,概率为0.1;若A 射击2次就击落敌机,则他2次都击中了敌机的机首,概率为0.20.20.04⨯=或者第1次没有击中机尾且第2次击中了机尾,概率为0.90.10.09⨯=,因此若A 至多射击2次,则他能击落敌机的概率为0.10.040.090.23++=.故选A. 5.答案:D解析:设事件A ,B 发生的概率分别为()P A x =,()P B y =,则1()()()(1)(1)9P AB P A P B x y ==-⋅-=,即11199xy x y +=++≥+x y =时取“=”,211)9∴≥23≤43(舍去),409xy ∴≤≤.4()()()0,9P AB P A P B xy ⎡⎤∴==∈⎢⎥⎣⎦.6.答案:A解析:用事件A 表示“旅行团选择去百花村”,事件B 表示“旅行团选择去云洞岩”,A ,B 相互独立,则4()9P AB =,()()P AB P AB =.设()P A x =,()P B y =,则4,9(1)(1),xy x y x y ⎧=⎪⎨⎪-=-⎩解得2,323x y ⎧=⎪⎪⎨⎪=⎪⎩或2,323x y ⎧=-⎪⎪⎨⎪=-⎪⎩(舍去),故旅行团选择去百花村的概率是23.故选A.7.答案:C解析:设“甲同学收到李老师的信息”为事件A ,“收到张老师的信息”为事件B ,A ,B 相互独立,42()()105P A P B ===,则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C. 8.答案:ACD解析:设“从甲袋中摸出1个红球”为事件1A ,“从乙袋中摸出1个红球为事件2A ,则()113P A =,()212P A =,且1A ,2A 独立.对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 正确;对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 错误;对于C 选项,2个球中至少有1个红球的概率为()()1221211323P A P A -=-⨯=,故C 正确;对于D 选项,2个球中恰有1个红球的概率为1121132322⨯+⨯=,故D 正确.故选ACD. 9.答案:BD解析:由题意设一等品编号为a ,b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种. 对于A ,两件都是一等品的基本情况有(,)a b ,共1种,故两件都是一等品的概率116P =,故A 错误; 对于B ,两件中有1件是次品的基本情况有(,)a d ,(,)b d ,(,)c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确;对于C ,两件都是正品的基本情况有(,)a b ,(,)a c ,(,)b c ,共3种,故两件都是正品的概率33162P ==,故C 错误;对于D ,两件中至少有1件是一等品的基本情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确. 10.答案:BD解析:由于A ,B ,C ,D 彼此互斥,且A B C D +++是必然事件,故事件的关系如图所示.由图可知,任何一个事件与其余三个事件的和事件互为对立,任何两个事件的和事件与其余两个事件中任何一个是互斥事件,任何两个事件的和事件与其余两个事件的和事件互为对立,故B,D 中的说法正确.11.答案:35解析:设此队员每次罚球的命中率为p ,则216125p -=,所以35p =. 12.答案:16;23解析:甲,乙两球都落入盒子的概率为111236⨯=.方法一:甲、乙两球至少有一个落入盒子的情形包括:①甲落入、乙未落入的概率为121233⨯=;②甲未落入,乙落入的概率为111236⨯=;③甲,乙均落入的概率为111236⨯=.所以甲、乙两球至少有一个落入盒子的概率为11123663++=.方法二:甲,乙两球均未落入盒子的概率为121233⨯=,则甲、乙两球至少有一个落入盒子的概率为12133-=.13.答案:23解析:从甲、乙、丙、丁四人中随机选取两人,有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},共6种结果;其中甲、乙两人中有且只有一人被选取,有甲,丙},{甲,丁},{乙,丙},{乙,丁},共4种结果. 故甲、乙两人中有且只有一人被选取的概率为4263=. 14.答案:(1)13. (2)概率为1316. 解析:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个, 因此所求事件的概率为2163P ==.(2)先从袋中随机取一个球,记下编号为,放回后,再从袋中随机取一个球,记下编号为m , 试验的样本空间{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),Ω=(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件2n m ≥+的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件2n m ≥+的事件的概率为1316P =,故满足条件2n m <+的事件的概率为1313111616P -=-=. 15.答案:(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C ,0,1,2,333kkk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以随机变量X的分布列为随机变量X 的数学期望2()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭,且{3,1}{2,0}M X Y X Y ===⋃==.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(1)知()P M =({3,1}{2,0})(3,1)(2,P X Y X Y P X Y P X ==⋃=====+=8240)(3)(1)(2)(0)2799Y P X P Y P X P Y ====+===⨯+⨯12027243=.。

2019年高考数学(理)二轮专题练习:概率与统计(含答案)

2019年高考数学(理)二轮专题练习:概率与统计(含答案)

高考数学精品复习资料2019.5概率与统计1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[问题1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________. 答案 24解析 由抽样比例可知6x =480-200-160480,则x =24.2.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了. [问题2] 从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为________.答案 203.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数. 众数为频率分布直方图中最高矩形的底边中点的横坐标.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).平均数等于频率分布直方图中每个小矩形的面积乘以小距形底边中点的横坐标之和. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n (x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[问题3] 已知一个样本中的数据为0.12,0.15,0.13,0.15,0.14,0.17,0.15,0.16,0.13,0.14,则该样本的众数、中位数分别是________. 答案 0.15、0.145 4.变量间的相关关系假设我们有如下一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ).回归方程y ^=b ^x +a ^,其中⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y∑i =1n x 2i-n x2,a ^=y -b ^x .[问题4] 回归直线方程y ^=b ^x +a ^必经过点________. 答案 (x ,y )5.独立性检验的基本方法一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表如表:根据观测数据计算由公式k =n (ad -bc )(a +b )(a +c )(b +d )(c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y 有关系”的可信程度.[问题5] 为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则至少有________附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )答案 6.互斥事件有一个发生的概率P (A +B )=P (A )+P (B ) (1)公式适合范围:事件A 与B 互斥. (2)P (A )=1-P (A ).[问题6] 抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.答案 237.古典概型P (A )=mn (其中,n 为一次试验中可能出现的结果总数,m 为事件A 在试验中包含的基本事件个数)[问题7] 若将一枚质地均匀的骰子先后抛掷2次,则出现向上的点数之和为4的概率为________. 答案1128.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点在其内部一个区域d 内”为事件A ,则事件A 发生的概率为P (A )=d 的度量D 的度量.此处D 的度量不为0,其中“度量”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的度量分别为长度、面积和体积等. 即P (A )=构成事件A 的区域长度(面积和体积)试验的全部结果所构成的区域长度(面积和体积)[问题8] 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B .1-π12C.π6 D .1-π6答案 B解析 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12. 9.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列、组合问题的规律是:相邻问题捆绑法;不相邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配分步法;综合问题先选后排法;至多至少问题间接法. (1)排列数公式A m n =n (n -1)(n -2)…[n -(m -1)]=n !(n -m )!,其中m ,n ∈N *,m ≤n .当m =n 时,A n n =n ·(n -1)·……·2·1=n !,规定0!=1. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…[n -(m -1)]m !=n !m !(n -m )!.(3)组合数性质C m n =C n-mn,C m n +C m -1n =C m n +1,规定C 0n =1,其中m ,n ∈N *,m ≤n .[问题9] (1)将5封信投入3个邮筒,不同的投法共有________种.(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有________种. 答案 (1)35 (2)70 10.二项式定理(1)定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n -1n ab n -1+C n n b n (n ∈N *).通项(展开式的第r +1项):T r +1=C rna n -r b r ,其中C r n (r =0,1,…,n )叫做二项式系数.(2)二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n .②二项式系数的和等于2n (组合数公式),即C 0n +C 1n +C 2n +…+C n n =2n .③二项式展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.特别提醒:二项式系数最大项与展开式系数最大项是两个不同的概念,在求法上也有很大的差别,往往因为概念不清导致出错. [问题10] 设⎝⎛⎭⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A ∶B =________. 答案 4∶1解析 T r +1=C r 6x6-r(-1)r ⎝⎛⎭⎫2x r=C r 6(-1)r 2r362r x-,6-32r =3,r =2,系数A =60,二项式系数B =C 26=15,所以A ∶B =4∶1.4∶1.11.要注意概率P (A |B )与P (AB )的区别:(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ).[问题11] 设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.答案 3512.求分布列,要检验概率的和是否为1,如果不是,要重新检查修正.还要注意识别独立重复试验和二项分布,然后用公式.如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k ·(1-p )n -k . [问题12] 若随机变量ξ的分布列如下表,则E (ξ)的值为________.答案209解析 根据概率之和为1,求出x =118,则E (ξ)=0×2x +1×3x +…+5x =40x =209.13.一般地,如果对于任意实数a <b ,随机变量X 满足P (a <X ≤b )=ʃba φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X ~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.9974.[问题13] 已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3 D .0.2 答案 C解析 ∵P (ξ<4)=0.8,∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2, P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3.易错点1 统计图表识图不准致误例1 如图所示是某公司(共有员工300人)20xx 年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的大约有________人.错解 由频率分布直方图,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10+0.10+0.08)=0.62.∴估计年薪在1.4万元~1.6万元之间约有300×0.62=186(人).找准失分点 本题主要混淆频率分布直方图与条形图纵轴的意义,频率分布直方图中,纵轴(矩形高)表示“频率组距”,每个小矩形的面积才表示落在该区间上的频率,由于概念不清,识图不准导致计算错误.正解 由所给图形可知,员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24.所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人). 答案 72易错点2 在几何概型中“测度”确定不准致误例2 如图所示,在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求AM <AC 的概率.错解 记AM <AC 为事件E ,设CA =CB =a ,因为△ABC 是直角三角形, 所以,AB =2a ,在AB 上取一点D ,使AD =AC =a ,那么对线段AD 上的任意一点M 都有AM <AD ,即AM <AC , 因此AM <AC 的概率为P (E )=AD AB =a 2a =22. 找准失分点 据题意,过直角顶点C 在∠ACB 内部作一条射线CM ,射线CM 在∠ACB 内部均匀分布,但是点M 在AB 上的分布不是均匀的.正解 在AB 上取一点D ,使AD =AC ,因为AD =AC =a ,∠A =π4,所以∠ACD =∠ADC =3π8,则P (E )=∠ACD ∠ACB =3π8π2=34.易错点3 分不清是排列还是组合致误例3 如图所示,A ,B ,C ,D 是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有多少种?错解 对于有一个中心的结构形式有A 44,对于四个岛依次相连的形式有A 44,∴共有2A 44=48(种).找准失分点 没有分清是排列还是组合. 正解 由题意可能有两种结构,如图:第一种:,第二种:对于第一种结构,连接方式只需考虑中心位置的情况,共有C 14种方法.对于第二种结构,有C 24A 22种方法. ∴总共有C 14+C 24A 22=16(种).易错点4 均匀分组与非均匀分组混淆致误例4 4个不同的小球放入编号为1、2、3、4的4个盒中,则恰有1个空盒的放法共有________种.(用数字作答) 错解 288错误!未找到引用源。

2019年高考数学二轮复习 概率与统计解答题专题训练(含解析)

2019年高考数学二轮复习 概率与统计解答题专题训练(含解析)

2019年高考数学二轮复习 概率与统计解答题专题训练(含解析)1.(xx·保定调研)近年来,我国的高铁技术发展迅速,铁道部门计划在A 、B 两城之间开通高速列车,假设在试运行期间,每天8:00-9:00,9:00-10:00两个时段内各发一趟列车由A 城到B 城(两车发生情况互不影响),A 城发车时间及其概率如下表所示:8:00和周日8:20.(只考虑候车时间,不考虑其他因素)(1)设乙侯车所需时间为随机变量X ,求X 的分布列和数学期望; (2)求甲、乙二人候车时间相等的概率.解 (1)X 的所有可能取值为10、30、50、70、90(分钟),其概率分布列如下X 的数学期望E (X )=10×12+30×13+50×136+70×112+90×118=2459(分钟).(2)甲、乙二人候车时间分别为10分钟、30分钟、50分钟的概率为 P 甲10=16,P 甲30=12,P 甲50=13;P 乙10=12,P 乙30=13,P 乙50=16×16=136.所以所求概率P =16×12+12×13+13×136=28108=727,即甲、乙二人候车时间相等的概率为727.2.(xx·皖南八校联考)从正方体的各个表面上的12条面对角线中任取2条,设ξ为2条面对角线所成的角(用弧度制表示),如当2条面对角线垂直时,ξ=π2.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).解 (1)当ξ=0时,即所选的2条面对角线平行,则P (ξ=0)=6C 212=111.(2)ξ的可能取值为0,π3,π2.则P (ξ=0)=6C 212=111,P ⎝⎛⎭⎫ξ=π3=48C 212=811,P ⎝⎛⎭⎫ξ=π2=12C 212=211. ξ的分布列如下:ξ 0 π3 π2 P111811211E (ξ)=0×111+π3×811+π2×211=π3.3.(xx·广州调研)空气质量指数PM2.5(单位:μg/m 3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250 空气质量类别优良轻度污染中度污染重度污染严重污染从甲城市xx 年9月份的30天中随机抽取15天的PM 2.5日均浓度指数数据茎叶图如图所示.(1)试估计甲城市在xx 年9月份30天的空气质量类别为优或良的天数;(2)在甲城市这15个监测数据中任取2个,设X 为空气质量类别为优或良的天数,求X 的分布列及数学期望.解 (1)由茎叶图可知,甲城市在xx 年9月份随机抽取的15天中的空气质量类别为优或良的天数为5.所以可估计甲城市在xx 年9月份30天的空气质量类别为优或良的天数为10. (2)X 的所有可能取值为0,1,2,因为P (X =0)=C 05C 210C 215=37,P (X =1)=C 15C 110C 215=1021,P (X =2)=C 25C 010C 215=221,所以X 的分布列为:X 0 1 2 P371021221数学期望E (X )=0×37+1×1021+2×221=23.4.(xx·浙江名校联考)甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛结束.因两队实力相当,每场比赛两队获胜的可能性均为12.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为300万元的概率; (2)设总决赛中获得门票总收入为X ,求X 的均值E (X ).解 (1)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列. 设此数列为{a n },则易知a 1=40,a n =10n +30, 所以S n =n10n +702=300.解得n =-12(舍去)或n =5, 所以总决赛共比赛了5场.则前4场比赛中,一支球队共赢了3场,且第5场比赛中,领先的球队获胜,其概率为C 14⎝⎛⎭⎫124=14. (2)随机变量X 可取的值为S 4,S 5,S 6,S 7,即220,300,390,490.又P (X =220)=2×⎝⎛⎭⎫124=18, P (X =300)=C 14⎝⎛⎭⎫124=14, P (X =390)=C 25⎝⎛⎭⎫125=516, P (X =490)=C 36⎝⎛⎭⎫126=516, 所以X 的分布列为X 220 300 390 490 P1814516516所以X 的均值E (X )=5.自驾游从A 地到B 地有甲、乙两条线路,甲线路是A -C -D -B ,乙线路是A -E -F -G -H -B ,其中CD 段、EF 段、GH 段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率x 在⎝⎛⎭⎫23,1上变化,y 在⎝⎛⎭⎫0,12上变化.在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD 段平均堵车时间,调查了100名走甲路线的司机,得到表2数据.CD 段 EF 段 GH 段(1)求CD 段平均堵车时间a 的值;(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率. 解 (1)a =12×8100+32×6100+52×38100+72×24100+92×24100=3.(2)设走甲线路所花汽油费为ξ元,则E (ξ)=500(1-x )+(500+60)x =500+60x . 设走乙线路多花的汽油费为η元, ∵EF 段与GH 段堵车与否相互独立,∴P (η=0)=(1-y )×⎝⎛⎭⎫1-14, P (η=20)=(1-y )×14,P (η=40)=y ×⎝⎛⎭⎫1-14, P (η=60)=14y ,∴E (η)=0×(1-y )×⎝⎛⎭⎫1-14+20×(1-y )×14+40×y ×⎝⎛⎭⎫1-14+60×14y =40y +5. ∴走乙线路所花的汽油费的数学期望为E (545+η)=545+E (η)=550+40y . 依题意,选择走甲线路应满足(550+40y )-(500+60x )≥0, 即6x -4y -5≤0,又23<x <1,0<y <12,∴P (选择走甲线路)=⎝⎛⎭⎫1-23×12-12×⎝⎛⎭⎫1-56×14⎝⎛⎭⎫1-23×12=78.。

高考数学第二轮专题复习----概论统计专题

高考数学第二轮专题复习----概论统计专题

《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2003年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2003年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2003年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2004重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

高考数学二轮复习 第1部分 重点强化专题 专题3 概率与统计 专题限时集训7 回归分析、独立性检验

专题限时集训(七) 回归分析、独立性检验(对应学生用书第91页)(限时:40分钟)1.(2017·某某一模)下列说法错误的是( )【导学号:07804050】A .回归直线过样本点的中心(x ,y )B .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .对分类变量X 与Y ,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小D .在回归直线方程y ^=0.2x +0.8中,当解释变量x 每增加1个单位时,预报变量y ^就增加0.2个单位C [根据相关定义知选项A ,B ,D 均正确;选项C 中,对分类变量X 与Y ,随机变量K 2的观测值k 越大,对判断“X 与Y 有关系”的把握程度越大,故C 错误.选C.]2.(2017·某某名校联考)利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 和Y 有关系”的可信度.如果k >3.841,那么有把握认为“X 和Y 有关系”的百分比为C .99.5%D .95%D [由图表中数据可得,当k >3.841时,有0.05的几率说明这两个变量之间的关系是不可信的,即有1-0.05=0.95的几率,也就是有95%的把握认为变量之间有关系,故选D.]3.(2017·某某七市联考)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费x 和销售额y 进行统计,得到统计数据如下表(单位:万元):广告费x 2 3 4 5 6 销售额y2941505971由上表可得回归方程为y ^=10.2x +a ^,据此模型,预测广告费为10万元时销售额约为( )【导学号:07804051】A .101.2万元B .108.8万元C .111.2万元D .118.2万元C [根据统计数据表,可得x =15×(2+3+4+5+6)=4,y =15×(29+41+50+59+71)=50,而回归直线y ^=10.2x +a ^经过样本点的中心(4,50),∴50=10.2×4+a ^,解得a ^=9.2,∴回归方程为y ^=10.2x +9.2,∴当x =10时,y ^=10.2×10+9.2=111.2,故选C.]4.(2017·某某二模)现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如图7­7所示的两个等高堆积条形图.图7­7根据这两幅图中的信息,下列哪个统计结论是不正确的( ) A .样本中的女生数量多于男生数量B .样本中有理科意愿的学生数量多于有文科意愿的学生数量C .样本中的男生偏爱理科D .样本中的女生偏爱文科D [由图2知,样本中的女生数量多于男生数量,样本中的男生、女生均偏爱理科;由图1知,样本中有理科意愿的学生数量多于有文科意愿的学生数量,故选D.] 5.(2016·某某模拟)对四组不同数据进行统计,分别获得以下散点图,如果对它们的相关系数进行比较,下列结论中正确的是( )图7­8(1)图7­8(2)图7­8(3)图7­8(4)A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3A [由给出的四组数据的散点图可以看出,图(1)和图(3)是正相关,相关系数大于0,图(2)和图(4)是负相关,相关系数小于0,图(1)和图(2)的点相对更加集中,所以相关性要强,所有r 1接近于1,r 2接近于-1,由此可得r 2<r 4<r 3<r 1.故选A.] 6.(2017·某某一模)设某中学的高中女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为y ^=0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该中学某高中女生身高增加1 cm ,则其体重约增加0.85 kgD .若该中学某高中女生身高为160 cm ,则可断定其体重必为50.29 kgD [因为回归直线方程y ^=0.85x -85.71中x 的系数为0.85>0,因此y 与x 具有正线性相关关系,所以选项A 正确;由最小二乘法及回归直线方程的求解可知回归直线过样本点的中心(x ,y ),所以选项B 正确;由于用最小二乘法得到的回归直线方程是估计值,而不是具体值,若该中学某高中女生身高增加 1 cm ,则其体重约增加0.85 kg ,所以选项C 正确,选项D 不正确.]7.在用线性回归方程研究四组数据的拟合效果中,分别作出下列四个关于四组数据的残差图,则用线性回归模式拟合效果最佳的是( )ABCDC[当残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明拟合精度越好,拟合效果越好,对比4个残差图,易知选项C的图对应的带状区域的宽度越窄.故选C.]8.(2017·某某南城一中、高安中学第九校3月联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线合计愿生452065不愿生132235合计5842100由K2=n ad-bc2a+b c+d a+c b+d,得K2=100×45×22-20×13265×35×58×42≈9.616.参照下表,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”C[K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,故选C.]二、填空题9.(2017·某某二模)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.【导学号:07804052】6 [x =5=5,y =5=5,代入回归直线方程,得14+c5=0.85×5-0.25,解得c =6.]10.(2017·某某百校联盟二模)已知x 、y 的取值为:从散点图可知y 与x 呈线性相关关系,且回归直线方程为y =1.2x +a ,则当x =20时,y 的取值为________.27.6 [由表格可知x =3,y =7.2,所以这组数据的样本点的中心是(3,7.2),根据样本点的中心在回归直线上,得7.2=a ^+1.2×3,得a ^=3.6,所以这组数据对应的回归直线方程是y ^=1.2x +3.6,将x =20代入,得y =1.2×20+3.6=27.6.]11.(2017·某某某某五中一模)某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:已知x ,y 的关系符合回归方程y =b x +a ,其中b =-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为________元. 3.75 [x =3.5,y =40,∴a ^=40-(-20)×3.5=110, ∴回归直线方程为:y ^=-20x +110,利润L =(x -2)(-20x +110)=-20x 2+150x -220, ∴x =15040=3.75元时,利润最大,故答案为3.75.]12.(2017·某某三中二模)以模型y =c e kx(e 为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z =ln y ,其变换后得到线性回归方程为z =0.4x +2,则c =________. e 2[∵y =c e kx,∴两边取对数,可得ln y =ln(c e kx )=ln c +ln e kx=ln c +kx , 令z =ln y ,可得z =ln c +kx , ∵z =0.4x +2, ∴ln c =2, ∴c =e 2.] 三、解答题13.(2017·某某一模)为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各20人组成一个样本,对他们的这项血液指标进行了检测,得到了如图7­9所示的茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.图7­9(1)依据上述样本数据研究此项血液指标与性别的关系,列出2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系? (2)以样本估计总体,视样本频率为概率,现从本地区随机抽取成年男性、女性各2人,求此项血液指标为正常的人数X 的分布列及数学期望. 附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.025 0.010 0.005 k 05.0246.6357.879正常 偏高 合计 男性 16 4 20 女性 12 8 20 合计281240K 2=n ad -bc 2a +bc +d a +cb +d =40×16×8-4×12220×20×28×12≈1.905<6.635,所以不能在犯错误的概率不超过0.01的前提下认为此项血液指标与性别有关系. (2)由样本数据可知,男性正常的概率为45,女性正常的概率为35.此项血液指标为正常的人数X 的可能取值为0,1,2,3,4,P (X =0)=⎝⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫1-352=4625, P (X =1)=C 1245⎝⎛⎭⎪⎫1-45⎝⎛⎭⎪⎫1-352+⎝ ⎛⎭⎪⎫1-452C 1235·⎝ ⎛⎭⎪⎫1-35=44625, P (X =2)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫1-352+C 1245⎝ ⎛⎭⎪⎫1-45·C 1235·⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-452⎝ ⎛⎭⎪⎫352=169625, P (X =3)=C 1245⎝ ⎛⎭⎪⎫1-45⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452C 1235·⎝⎛⎭⎪⎫1-35=264625, P (X =4)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫352=144625,所以X 的分布列为X 0 1 2 3 4 P462544625169625264625144625所以E (X )=0×625+1×625+2×625+3×625+4×625=2.8.14.(2017·某某三湘名校联盟三模)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:y =C 1x 2+C 2与模型②:y =e C 3x +C 4作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.温度x /℃ 20 22 24 26 28 30 32 产卵数y /个6 10 21 24 64 113 322 t =x 2 400 484 576 676 784 900 1024 z =ln y1.792.303.043.184.164.735.77xtyz26692803.57错误! 错误! 错误! 错误!1157.540.430.32 0.00012其中t i =x 2i ,t =∑ni =1t i ,z i =ln y i ,z =∑ni =1z i ,附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=β^u +α^的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .图7­10(1)在答题卡中分别画出y 关于t 的散点图、z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).图7­11(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并在两个模型下分别估计温度为30℃时的产卵数.(C 1,C 2,C 3,C 4与估计值均精确到小数点后两位)(参考数据:e 4.65≈104.58,e4.85≈127.74,e5.05≈156.02)(3)若模型①、②的相关指数计算得分分别为R 21=0.82,R 22=0.96,请根据相关指数判断哪个模型的拟合效果更好.【导学号:07804053】[解] (1)画出y 关于t 的散点图,如图1;z 关于x 的散点图,如图2.图1 图2根据散点图可判断模型②更适宜作为回归方程类型. (2)对于模型①:设t =x 2,则y =C 1x 2+C 2=C 1t +C 2,其中C ^1=∑7i =1t i -ty i -y∑7i =1t i -t2=0.43,C ^2=y -C ^1t =80-0.43×692=-217.56,所以y =0.43x 2-217.56,当x =30时,估计温度为y 1=0.43×302-217.56=169.44. 对于模型②:y =e C 3x +C 4⇒z =ln y =C 3x +C 4,word 其中C ^3=∑7i =1 z i -z x i -x∑7i =1x i -x2=0.32,C ^4=z -C ^3x =3.57-0.32×26=-4.75.所以y =e 0.32x -4.75,当x =30时,估计温度为y 2=e0.32×30-4.75=e 4.85≈127.74. (3)因为R 21<R 22,所以模型②的拟合效果更好.。

2019年高考数学第二轮专项专题排列、组合、二项式定理与概率统计复习及解析湖南师大附中共11页

2019年高考数学第二轮专项专题排列、组合、二项式定理与概率统计复习及解析湖南师大附中共11页

高考数学二轮复习专项排列、组合、二项式定理与概率统计(含详解)1. 袋里装有30个球,每个球上都记有1到30的一个号码, 设号码为n 的球的重量为344342+-n n (克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出.(Ⅰ)如果任意取出1球, 求其号码是3的倍数的概率. (Ⅱ)如果任意取出1球, 求重量不大于号其码的概率; (Ⅲ)如果同时任意取出2球, 试求它们重量相同的概率.2. 从10个元件中(其中4个相同的甲品牌元件和6个相同的乙品牌元件)随机选出3个参加某种性能测试. 每个甲品牌元件能通过测试的概率均为54,每个乙品牌元件能通过测试的概率均为53.试求:(I )选出的3个元件中,至少有一个甲品牌元件的概率;(II )若选出的三个元件均为乙品牌元件,现对它们进行性能测试,求至少有两个乙品牌元件同时通过测试的概率.3. 设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不在放回,若以ξ和η分别表示取出次品和正品的个数。

(1)求ξ的分布列,期望及方差; (2)求η的分布列,期望及方差;4.(1)每天不超过20人排队结算的概率是多少?(2)一周7天中,若有三天以上(含三天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问,该商场是否需要增加结算窗口?5. 某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内: (1)只有丙柜面需要售货员照顾的概率;(2)三个柜面最多有一个需要售货员照顾的概率; (3)三个柜面至少有一个需要售货员照顾的概率.6. 某同学上楼梯的习惯每步走1阶或2阶,现有一个11阶的楼梯 ,该同学从第1阶到第11阶用7步走完。

(1)求该同学恰好有连着三步都走2阶的概率;(2)记该同学连走2阶的最多步数为ζ,求随机事件ζ的分布列及其期望。

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题 含答案

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题  含答案

专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。

2019-2020年高考数学二轮复习专题1.8概率与统计教学案理

2019-2020年高考数学二轮复习专题1.8概率与统计教学案理

2019-2020年高考数学二轮复习专题1.8概率与统计教学案理一.考场传真1. 【xx课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B. C.D.【答案】B2.【xx课标3,理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了xx年1月至xx 年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A3.【xx 课标II ,理13】一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 . 【答案】【解析】由题意可得,抽到二等品的件数符合二项分布,即,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.4.【xx 课标1,理19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中为抽取的第个零件的尺寸,. 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则(33)0.997 4P Z μσμσ-<<+=, ,.5.【xx课标II,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bcKa b c d a c b d-=++++(2)根据箱产量的频率分布直方图得列联表箱产量箱产量旧养殖法62 38新养殖法34 66()222006266343815.70510010096104K⨯⨯-⨯=≈⨯⨯⨯,由于,故有的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于的直方图面积为()0.0040.0200.0440.06850.680.5+++⨯=>,故新养殖法箱产量的中位数的估计值为()0.50.345052.350.068kg-+≈.6.【xx课标3,理18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?520元.二.高考研究【考纲解读】1.考纲要求概率与统计(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.了解互斥事件、对立事件的意义及其运算公式.(2)理解古典概型及其概率计算公式.会计算一些随机事件所含的基本事件数及事件发生的概率.(3)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(4)理解样本数据标准差的意义和作用,会计算数据标准差.(5)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(6)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(7)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(8)理解取有限个值的离散型随机变量均值、方差的概念.(9)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.独立性检验:了解独立性检验(只要求2*2列联表)的基本思想、方法及其简单应用.回归解析:了解回归解析的基本思想、方法及其简单应用.2.命题规律:(1)随机事件的概率在高考中多以选择题、填空题的形式考查,也时常在解答题中出现,应用题也是常考题型,并且常与统计知识放在一块考查;(2)借助古典概型考查互斥事件、对立事件的概率求法.考查古典概型概率公式的应用,尤其是古典概型与互斥、对立事件的综合问题更是高考的热点.在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问题的能力,难度以中档题为主;(3)以选择题或填空题的形式考查与长度或面积有关的几何概型的求法是高考对本内容的热点考法,特别是与平面几何、函数等结合的几何概型是高考的重点内容.新课标高考对几何概型的要求较低,常与积分结合起来出题.(4)考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算.(5)考查以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数);(6)离散型随机变量的均值与方差是高考的热点题型,以解答题为主,也有选择、填空题,属中档题,常与排列组合概率等知识综合命题.(7)概率与统计问题是每年高考必考内容,且本部分题多为中低档题.一般是一个选择题、一道解答题.选择题或填空题以中低档题为主,解答题中等难度,重点考查基本概念及运算,往往与统计问题综合在一起,如以直方图或茎叶图提供问题的背景信息,在同一个问题中同时考查概率与统计的知识,成为近年命题的一个明显趋势,而统计案例这二年有所加强.3.学法导航1. 当试验结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.2. 事件的互斥和对立是既有联系又有区别的两个概念,要充分利用对立事件是必然有一个发生的互斥事件.在判断这些问题时,先要判断两个事件是不是互斥事件(即是否不可能同时发生),然后判断这两个事件是不是对立事件(即是否必然有一个发生).在解答与两个事件有关的问题时一定要仔细斟酌,全面考虑,防止出现错误.3.反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的平均数、众数、中位数和方差等.由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.4. 在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值;回归直线过样本点的中心(x,y),应引起关注.5.独立性检验问题,要确定2×2列联表中的对应数据,然后代入公式求解K2即可.6.几种常见的分布列的求法取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.射击问题:若是一人连续射击,且限制在次射击中发生次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解.7.解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件n次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n kn nmP AnP A B P A P BP A B P A P BP k C p p-⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件:独立事件:n次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.一.基础知识整合 基础知识: 1.随机事件的概率(1)随机事件的概率范围:;必然事件的概率为1;不可能事件的概率为0. (2)古典概型的概率:()m A P A n ==中所含的基本事件数基本事件总数; (3)几何概型的概率:()m A P A n ==构成事件的区域长度(面积或体积)试验全部结果所构成的区域长度(面积或体积); (4)互斥事件的概率加法公式:()()()P A B P A P B =+U ;对立事件的概率减法公式:; (5)相互独立事件的概率乘法公式:;(6)条件概率除法公式:. 2.独立重复试验概率公式:()()1,1,2,3,,.n kkkn n P k C p p k n -=-=L3.超几何分布的概率:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),1,2,3,,,,,,,,.k n kM N MnNC C P X k k m m M m n M N n M N N C -*-===≤≤≤∈L 此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 4.离散型随机变量的均值与方差(1)均值:1122n n EX x p x p x p =+++L ;(2)方差:()()()2221122n n DX x EX p x EX p x EX p =-+-++-L ; (3)性质:;.5.两点分布与二项分布的均值与方差:(1)若服从两点分布,则; (2)若,则(),1EX np DX np p ==-. 6.正态分布的三个常用数据(1)()0.6826P X μσμσ-<≤+=;(2)()220.9544P X μσμσ-<≤+=;(3)()330.9974P X μσμσ-<≤+=. 7.直方图的三个常用结论(1)小长方形的面积=组距=频率;(2)各长方形的面积和等于1;(3)小长方形的高=.8.统计中的四个数据特征:(1)众数、中位数;(2)样本平均数;(3)样本方差;(4)样本标准差. 9.线性回归方程线性回归方程为, ∑∑∑∑=-=--=--=-Λ--=---=ni ni i ni i i ni ixn xy x n yx x x y y x xb 12211121)())((,).其中x =1n ∑i =1n x i ,y =1n ∑i =1ny i ,一定经过样本中心点.10.独立性检验:设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1. 2×2列联表构造一个随机变量2()()()()()n ad bc K a b c d a c b d -=++++其中为样本容量.(2)独立性检验:利用随机变量来判断“两个变量有关联”的方法称为独立性检验. (3)当数据量较大时,在统计中,用以下结果对变量的独立性进行判断①当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的; ②当χ2>2.706时,有90%的把握判定变量A ,B 有关联; ③当χ2>3.841时,有95%的把握判定变量A ,B 有关联; ④当χ2>6.635时,有99%的把握判定变量A ,B 有关联. 二.高频考点突破考点1 古典概型与几何概型 【例1】已知函数()()322113f x x a x b x =--+,其中,,则函数在上是增函数的概率为( ) A . B . C . D .【分析】本题考函数的单调性2、古典概型,涉及函数与方程思想、数形结合思想、或然与必然思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用数形结合思想和转化与化归思想,将原命题等价转化为()()22'210f x x a x b =--+≥在恒成立2222)1(04)1(4b a b a ≤-⇒≤--=∆⇒,符合上述不等式的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),所求概率.【答案】D【规律方法】1.解决古典概型问题,关键是弄清楚基本事件的总数以及某个事件A所包含的基本事件的个数,然后由公式来求概率;2.几何概型解决的关键在于把所有基本事件转化为与之对应的区域;3.对于较复杂的互斥事件可先分解为基本事件,然后用互斥事件的概率加法公式求解.【举一反三】【xx黑龙江齐齐哈尔八中三模】如图,四边形为正方形,为线段的中点,四边形与四边形也为正方形,连接,,则向多边形中投掷一点,该点落在阴影部分内的概率为()A. B. C. D.【答案】A考点2 互斥事件与相互独立事件【例2】某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级.随机调阅了甲、乙两所学校各60名学生的成绩,得到如下的分布图:(Ⅰ)试确定图中与的值;(Ⅱ)规定等级D 为“不合格”,其他等级为“合格”,以事件发生的频率作为相应事件发生的概率.若从甲、乙两校“合格”的学生中各选1名学生,求甲校学生成绩高于乙校学生成绩的概率. 【分析】(Ⅰ)由频数分布条形图得63366015 a a +++=⇒=,由频率分布条形图得0.150.20.1510.5b b +++=⇒=(Ⅱ)甲、乙两校“合格”的学生分别有54人和51人,所以从甲、乙两校“合格”的学生中各选1名学生共有种选法,其中甲校学生成绩高于乙校学生成绩包含种选法,因此所求概率为【规律方法】1.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥事件的和事件,还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解;2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式计算. 【举一反三】甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下: 甲 7 8 7 9 5 4 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;(Ⅱ)若规定命中8环及以上环数为优秀,请依据上述数据估计,在第11次射击时,甲、乙人分别获得优秀的概率.【解析】(Ⅰ)∵,,∴()()()22221778747410s ⎡⎤=-+-++-=⎣⎦甲…,()()()22221975777 1.210s ⎡⎤=-+-++-=⎣⎦乙…,∵,∴乙比甲的射击成绩稳定.(Ⅱ)由题意得:甲运动员获得优秀的概率为,乙运动员为,则甲、乙在第11次射击中获得优秀次数的情况为取值0、1、2,∴;()2233131555525Pξ==⨯+⨯=;.∴甲、乙两人分别获得优秀的概率: 考点3 独立重复实验与二项分布【例3】某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以下茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(Ⅰ)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记表示抽到“极满意”的人数,求的分布列及数学期望.【分析】(Ⅰ)利用对立事件求可以简化情况,即得()()3120316171128C P A P A C =-=-=;(Ⅱ)由已知得,利用二项分布求分布列及期望即可.(Ⅱ)的可能取值为0,1,2,3,由已知得,∴()213132714464P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()22313924464P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, ∴的分布列为:【规律方法】1.注意辨别独立重复试验的基本特征第一,每次试验是在同样条件下进行的;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.牢记公式()()1,0,1,2,,,n kk kn n P k C p p k n -=-=L 并深刻理解其含义.【举一反三】【广西贵港市xx 届12月联考】xx 年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立. (1)求该学生进入省队的概率.(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.考点4 离散型随机变量的分布列、均值与方差【例4】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图. (1)已知、,三个年龄段的上网购物者人数成等差数列,求,的值;(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券.已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望.【分析】(1)根据频率分布直方图可有()0.0150.0150.010101a b ++++⨯=,所以,又根据等差中项有,所以解得,;(2)根据频率分布直方图可知高消费人群与潜在消费人群的频率之比为,所以根据分层抽样的性质可知,应从高消费人群中抽取人,潜在消费人群中抽取人,现从这人抽取人进行回访,分析可知三人获得代金券总和的所有可能取值为,,,,对应的概率分别为,,()1264310321010C C P X C ===,,于是可以求出分布列和数学期望.240,210,180,150.,,,,列表如下:240 210 180 150数学期望240210180150186301026EX =⨯+⨯+⨯+⨯=. 【规律方法】1. 求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解; (3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2. 求离散型随机变量均值的步骤(1)理解随机变量的意义,写出可能取得的全部值;(2)求的每个值的概率; (3)写出的分布列; (4)由均值定义求出. 3. 六条性质 (1) (为常数) (2) (为常数)(3) ()()()1212E X X E X E X +=+(4)如果相互独立,则()()()1212E X X E X E X ⋅=⋅ (5) ()()()()22D XE X E X =-(6)4. 均值与方差性质的应用若是随机变量,则一般仍是随机变量,在求的期望和方差时,熟练应用期望和方差的性质,可以避免再求的分布列带来的繁琐运算.【举一反三】【xx 届广东省七校第二次联考】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物. (1)求这4个人中恰有2人去淘宝网购物的概率;(2)求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率:(3)用X,Y 分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,记,求随机变量的分布列与数学期望.(3) 可取0,2,4,()()8P ξ0P X 227====,()()()40P ξ2P X 1P X 381===+==, ()()()17P ξ4P X 0P X 481===+==,随机变量的分布列为∴考点5 抽样方法【例5】贵阳市观山湖区松景阁小区45户住户5月的电费(单位:元)的茎叶图如图所示,若将该小区住户按电费数额由低到高编为1-45号,再用系统抽样的方法从中抽取9户,则这9户中电费在内的住户数是.【答案】【解析】由于系统抽样就是等距抽样,而,在中的数据共有个,所以.故应填答案.【规律方法】类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的机会均等从总体中逐个抽取学总体中的个体数较少:系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成照预先制定的规则,从每一部分抽取一个个体,得到需要的样本.(2)在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.【举一反三】【xx江西宜春二模】某中学高一年级560人,高二年级540人,高三年级520人,用分层抽样的方法抽取容量为81的样本,则在高一、高二、高三三个年级抽取的人数分别为()A. 28、27、26B. 28、26、24C. 26、27、28D. 27、26、25【答案】A考点6 用样本估计总体【例6】【xx贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在岁的有2500人,年龄在岁的有1200人,则的值为()A. 0.013B. 0.13C. 0.012D. 0.12【分析】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.【答案】C【规律方法】1.利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数是频率分布直方图的“重心”,等于图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)众数:在频率分布直方图中,众数是最高的矩形底边的中点的横坐标.2.平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.【举一反三】某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( ).A .5B .6C .7D .8 【答案】B【解析】甲组学生成绩的平均数是788684889590928837m m +++++++=⇒=,乙组学生成绩的中位数是89,所以,选B.考点7 线性回归分析与独立性检验【例7】中国柳州从xx 年起每年国庆期间都举办一届国际水上狂欢节,到xx 年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计如下表:年份xx 年 xx 年 xx 年 xx 年 xx 年 水上狂欢节届编号1 2 3 4 5 外地游客人数(单位:十万)0.60.80.91.21.5(1)求关于的线性回归方程;(2)旅游部门统计在每届水上狂欢节期间,每位外地游客可为本市增加100元左右的旅游收入,利用(1)中的线性回归方程,预测xx 年第7届柳州国际水上狂欢节期间外地游客可为本市增加的旅游收入达多少?参考公式:121()()()niii nii x x y y bx x ==--=-∑∑$,.【分析】(Ⅰ)先求平均数,再将数据依次代入相关公式,求出以及,(Ⅱ)本题实际为利用线性回归方程进行估值:当时,,即得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题限时集训(八) 概率与统计、算法、推理与证明、复数
(对应学生用书第98页)
(限时:120分钟)
1.(2017·江苏省泰州市高考数学一模)口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为________. 0.17[∵摸出红球的概率为0.48,摸出黄球的概率为0.35,∴摸出蓝球的概率为1-0.48-0.35=0.17.]
2.(2017·江苏省无锡市高考数学一模)某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为________.
300 [∵用分层抽样的方法从某校学生中抽取一个容量为45的样本,
其中高一年级抽20人,高三年级抽10人,
∴高二年级要抽取45-20-10=15人,
∵高级中学共有900名学生,
∴每个个体被抽到的概率是45900=120
, ∴该校高二年级学生人数为15120
=300.] 3.(江苏省扬州市2017届高三上学期期末)如图8-11是一个求函数值的算法流程图,若输入的x 的值为5,则输出的y 的值为________.
图8-11
-15 [执行算法流程图,可得该程序的作用是计算分段函数y =⎩⎪⎨⎪⎧
2x -3, x <05-4x , x≥0的值,
x =5,不满足条件x <0,有y =5-4×5=-15.
输出y 的值为-15.]
4.(2017·江苏省盐城市高考数学二模)若复数z 满足z (1-i)=2i(i 是虚数单位),z 是z 的共轭复数,则z =________.
-1-i [∵z (1-i)=2i ,
∴z =2i
1-i =+-+=-2+2i 2
=-1+i , ∴z =-1-i.]
5.(湖南省五市十校教研教改共同体2017届高三12月联考)在矩形ABCD 中,AB =2AD ,在CD 上任取一点P ,△ABP 的最大边是AB 的概率是________.
图8-12
3-1 [设AD =a ,当AB =AP 时,(2a )2=a 2+(2a -PC )2
⇒PC =(2-3)a 或PC =(2+3)a (舍),所以所求概率为1--3
2a =3-1.] 6.(2017·江苏省无锡市高考数学一模)如下是给出的一种算法,则该算法输出的结果是________.
24 [当i =2时,满足循环条件,执行循环,
t =1×2=2,i =3;
当i =3时,满足循环条件,执行循环,
t =2×3=6,i =4;
当i =4时,满足循环条件,执行循环,
t =6×4=24,i =5;
当i =5时,不满足循环条件,退出循环,输出t =24.]
7.(2017·江苏省无锡市高考数学一模)若复数z 满足z +i =2+i i ,其中i 为虚数单位,则。

相关文档
最新文档