2016年四川初二数学联赛(初赛)参考答案及评分细则
四川初中数学联赛(初二组)决赛试卷及其答案
2011年四川初中数学联赛(初二组)决赛试卷(4月10日 上午8:45—11:15)一、选择题(本题满分42分,每小题7分)1.我国邮政国内外埠邮寄印刷品邮资标准如下:100克以内0.7元,每增加100克(不足100克按100克计)0.4元.某人从成都邮寄一本书到上海,书的质量是470克,那么他应付邮资( ) A .2.3元 B .2.6元 C .3元 D .3.5元2.设关于x 的分式方程2222a a x x --=--有无穷多个解,则a 的值有( ) A .0个 B .1个 C .2个 D .无穷多个3.实数a 、b 、c 满足0a b c ++=,且0abc >,则111a b c++的值( )A .是正数B .是负数C .是零D .正负不能确定4.若a ,b ,c 分别是三角形三边长,且满足1111a b c a b c+-=+-,则一定有( )A .a =b =cB .a =bC .a =c 或b =cD .a 2+b 2=c 25.已知如图,长方形ABCD ,AB =8,BC =6,若将长方形顶点A 、C 重合折叠起来,则折痕PQ 长为( )A .152B .7C .8D .1726.用三个2,能写出最大的数一定是( )A .等于222 B .等于222 C .等于242 D .大于1000 二、填空题(本题满分28分,每小题7分)1.x 是实数,那么115x x x -++++的最小值是_________. 2.已知1a =,则20122011201022a a a +-的值为_____________.3.右图是一个由6个正方形构成的长方形,如果最小的正方形的面积是1,则这 个长方形的面积是_______.4.若△ABC 的三条中线长为3、4、5,则S △ABC 为____________. 三、(本大题满分20分)设有m 个正n 边形,这m 个正n 边形的内角总和度数能够被8整除,求m +n 的最小值.QP DCBA四、(本大题满分25分)现有红、黄、蓝、白4种颜色的袜子若干(足够多),若只要两只同色的袜子就可以配成1双,请问至少需要多少只袜子就一定能够配成10双袜子. 五、(本大题满分25分)已知如图:正方形ABCD ,BE =BD ,CE 平行于BD ,BE 交CD 于F ,求证:DE =DF .FE D C B A2011年四川初中数学联赛(初二组)决赛参考解答与评分标准一、选择题(本题满分42分,每小题7分)1、我国邮政国内外埠邮寄印刷品邮资标准如下:100克以内0.7元,每增加100克(不足100克按100克计)0.4元。
(2021年整理)2016年全国初中数学联赛(初三组)初赛试卷含答案
(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案的全部内容。
(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案> 这篇文档的全部内容。
F第2题图EDBAC第2题图2016年全国初中数学联赛(初三组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)1、已知实数a 、b 满足31|2||3|=+-+-+-a a b a ,则b a +等于( )A 、1-B 、2C 、3D 、52、如图,点D 、E 分别在ABC ∆的边AB 、AC 上,BE 、CD 相交于点F ,设四边形EADF 、BDF ∆、BCF ∆、CEF ∆的面积分别为1S 、2S 、3S 、4S ,则31S S 与42S S 的大小关系为( )A 、4231S S S SB 、4231S S S S =C 、4231S S S SD 、不能确定3、对于任意实数a ,b ,c ,d ,有序实数对(a ,b )与(c ,d )之间的运算“*"定义为: ()*b a ,()=d c ,()bc ad bd ac +-,。
2016年全国初中数学联赛试题及参考答案_第一试_
解 设 Rt△ABC 的 直 角 边 为a,b,斜 边 为c,
.
[答]167334.
设 两 个 三 位 数 分 别 为 和 y,由 题 设 知
1000x+y=3xy
①
由①式 得 y=3xy-1000x= (3y-1000)
x,故y 是x 的整数倍,不妨设y=tx(t为正整
数),代 入 ① 式 得 1000+t=3tx,所 以 x =
10030t+t.因 为 是 三 位 数,所 以 x=10030t+t≥
[答](D).
作 AH ⊥BD 于 点 H ,易 知 △AMH ∽
△CMD,所
以AH CD
=CAMM
,又
CD=1,所 以
AH =CAMM
①
设 AM=x,则 CM=槡5-x.
在 Rt△ABM 中,可得
AH =ABB·MAM
=
槡5x 槡5+x2
.
所以,由①式得 槡5x = x , 槡5+x2 槡5-x
奇数的立 方 差,则 称 这 个 正 整 数 为 “和 谐 数 ”。 如:2=13 - (-1)3,26=33 -13,2 和 26 均 为 “和谐数”.那 么,不 超 过 2016 的 正 整 数 中,所 有 的 “和 谐 数 ”之 和 为 ( ).
(A)6858 (B)6860 (C)9260 (D)9262. [答](B). 注意到 (2k+1)3 - (2k-1)3 =2(12k2 + 1),由 2(12k2 +1)≤2016 得|k|<10. 取k=0,1,2,3,4,5,6,7,8,9,即 得 所 有 的 不 超 过 2016 的 “和 谐 数 ”,它 们 的 和 为 [13-(-1)3]+(33-13)+ (53-63)+ … +(193-173)=193+1=6860. 4.已 知 ⊙O 的 半 径 OD 垂 直 于 弦 AB,交 AB 于点C,连接 AO 并延长交 ⊙O 于 点E,若 AB=8,CD=2,则△BCE 的面积为( ). (A)12 (B)15 (C)16 (D)18 [答](A). 设 OC=x,则 OA= OD=x+2,在 Rt△OAC 中,由勾 股 定 理 得 OC2 + AC2=OA2,即 x2 +42 = (x+2)2,解 得 x=3.又 OC 为 △ABE 的 中 位 线, 所以 BE=2OC=6. 所以直角 △BCE 的 面 积 为 12CB·BE= 12. 5.如 图,在 四 边 形 ABCD 中,∠BAC=
2016初中数学联赛(初二组)初赛及答案
2016年全国初中数学联合竞赛(四川初二初赛)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、A2、B3、D4、C5、A6、D二、填空题(本题满分28分,每小题7分)7、1275 8、1 9、6 10、13三、解答题(本题共三小题,第11题20分,第12、13题各25分,共70分)11、若关于x 的方程01)32()23(=-++++x n x m x 有无数多个解,求n m ,的值.解:原方程整理得:0132)123(=-++++n m x n m , ………………5分由题意有:⎩⎨⎧=-+=++01320123n m n m ,………………………………………15分 解得⎩⎨⎧=-=11n m . ………………………………………………………20分12、已知实数a 、b 、c ,满足0≠abc 且0))((4)(2=----b a c b c a ,求b c a +的值. 解:因为222)())((2)()]()[(b a b a b c b c b a b c -+--+-=-+- (1)……5分222)())((2)()]()[(b a b a b c b c b a b c -+----=---(2)…………10分(1)-(2)得))((4)]()[()]()[(22b a b c b a b c b a b c --=-----+- 即:))((4)()2(22b a c b a c b c a ---=---+故0)2())((4)(22=-+=----b c a b a c b a c , …………………20分即02=-+b c a ,故2=+bc a . …………………………………………25分 13、已知如图,在△ABC 中,C B ∠=∠2,且BD AB AC +=,求证:AD 是BAC ∠的平分线.证明1:延长AB 至G ,使BD BG =,则AC BD AB BG AB AG =+=+=, 所以ACG AGC ∠=∠; ………………………………5分又BDG BGD ∠=∠,所以ACB ABC AGD ∠=∠=∠21, 故DCG ACB ACG BGD AGC CGD ∠=∠-∠=∠-∠=∠;所以DC DG =; …………………15分又AD 是公共边,所以△AGD ≌△ACD , …………………20分 所以CAD GAD ∠=∠,即AD 是BAC ∠的平分线.…………………25分证明2:作ABC ∠的平分线交AC 于E ,过D 作BE 的平行线交AC 于F ,交AB 的延长线于G ,则: 因为C ABC ∠=∠2,DF 平行BE ,所以FDC C EBC ∠=∠=∠,所以FD FC =,且ABC FDC C AFD ∠=∠+∠=∠…………5分 又BDG FDC C ABC ABE AGD ∠=∠=∠=∠=∠=∠21, 所以BG BD =,所以AC BD AB BG AB AG =+=+=, …………10分又ABC AFG C G ∠=∠∠=∠,,所以△AFG ≌△ABC , …………………15分所以AB AF =,DB FC DF ==, …………………20分所以△ABD ≌△AFD ,故FAD BAD ∠=∠,即AD 是BAC ∠的平分线.……25分。
2016年全国初中数学联合竞赛(初二年级组)四川组试题参考答案
D. 3 .
【答】A. ∵t
1 2 3 ,而 3 2 3 4 ,∴ a t 3 3 1 . 2 3
又∵ t 2 3 ,而 4 2 3 3 ,∴ b t (4) 2 3 . ∴
1 1 1 1 2 3 3 1 1 . 2b a 2(2 3) 2 2 2 3 1
1 1 k 1 1 1 1 ,故 1 2 2 k (k 1) k k 1 k k 1 1 1 1 1 1 1 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 3 3 4 n (n 1)2
所以 1
Sn 1
1 1 ( ∠ BPC ∠ A ) = (120 70) 95 . 2 2 S 1 1 1 1 1 1 ,则 2016 = 2 1 2 2 1 2 2 2 1 2 2 3 n (n 1) 2016
B. ( )
2016 . 2017
2017 . 2016
2016 年全国初中数学联合竞赛(初二年级)试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
1 A E ( A B 2
A)D 1 3, . 5BE AB AE 1.5 ,所以
2 2 2
AE 13.5 9. BE 1.5
2.已知整数 a, b, c 满足不等式 a 2b c 211 ab 28b 20c ,则 a b c =_______. 【答】 2 . 因 为 整 数 a, b, c 满 足 不 等 式 a 2b c 211 ab 28b 20c , 所 以 a 2b c 212
2016年全国初中数学联赛(初二组)初赛试卷
2016年全国初中数学联赛(初二组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级:: 姓名: 成绩:一、选择题(本题满分42分,每小题7分)1、数轴上各点表示的数如图所示,那么a -的可能取值是( ) A 、2- B 、2- C 、2 D 、22、关于x 的方程42312=++-x x ,其所有解的和是( ) A 、1- B 、52-C 、53D 、1 3、若()b a a b bb a ≠-=43,则2222232b ab a b ab a +--+的值是( ) A 、3- B 、31- C 、51D 、54、如图所示,将一个长为a ,宽为b 的长方形()b a ,沿着虚线剪开,拼成缺一个小正方形角的大正方形,则小正方形的边长为( )A 、2bB 、2aC 、2ba -D 、b a - 5、一个等腰三角形一腰上的中线将三角形的周长分成15和9两个部分,则该三角形的底长所有可能值为( )A 、4B 、6C 、12D 、4或12 6、已知正数m ,满足01724=+-m m ,则mm 1+的值为( ) babbA 、2B 、5C 、7D 、3 二、填空题(本题满分28分,每小题7分)7、古希腊数学家毕达哥拉斯把“数”当作“形”来研究,他称下面一些数为“三角形数”(如下图),第1个“三角形数”是1,第2个是3,第3个是6,第4个是10,按照这个规律,第50个“三角形数”是 .8、若0132=+++x x x ,则20162015321x x x x x ++++++ 的值为 . 9、设|5||4||3||2||1|+++++++++=x x x x x m ,则m 的最小值为 .10、如图,在ABC ∆中,︒=∠90C ,D 点在BC 边上,满足:4=BD ,5=DC ,若28=+AD AB ,则AD 等于 .三、(本大题满分20分)11、若关于x 的方程()()013223=-++++x n x m x 有无数多个解,求实数m 、n 的值。
(整理)初二初赛参考解答与评分标准
2011年四川初中数学联赛(初二组)初赛解答与评分标准一、选择题(本题满分42分,每小题7分)1、分式)0(≠++xyz zy x xyz中z y x ,,的值都变为原来的2倍,则分式的值变为原来的( )。
(A )2倍 (B )4倍 (C ) 6倍 (D ) 8倍 答:选B 。
2、有甲、乙两班,甲班有m 个人,乙班有n 个人。
在一次考试中甲班平均分是a 分,乙班平均分是b 分。
则甲乙两班在这次考试中的总平均分是( ).(A )2b a + (B ) 2n m + (C ) b a bn am ++ (D )nm bnam ++ 答:选D 。
3、若实数a 满足a a -=||,则||2a a -一定等于( ). (A )2a (B )0 (C ) -2a (D )-a答:因为a a -=||,所以0≤a ,故a a a a a a 2|2|||||||2-==-=-,选C 。
4、ABC ∆中,AD 是BAC ∠的平分线,且CD AC AB +=。
若60=∠BAC ,则ABC ∠的大小为( )(A )40 (B )60 (C )80 (D )100答:作C 关于AD 的对称点C ’。
因为AD 是角平分线,则C ’一定落在AB 上。
由CD AC AB +=,得D C AC AB ''+=,故D C BC ''=,所以B D AC C ∠=∠=∠2',又120180=∠-=∠+∠A C B ,故40=∠B ,选A 。
5、在梯形ABCD 中,AD 平行BC ,2:1:=BC AD ,若A B O ∆的面积是2,则梯形ABCD 的面积是( )。
(A )7 (B )8 (C )9 (D )10答:设xS ADO=∆。
由2:1:::===∆∆C D O A D O S S OC AO BC AD ,故x S C D O2=∆,同理x S ABO 2=∆,x S CBO 4=∆,故1=x ,所以梯形面积是9,选C 。
2016年全国初中数学联赛参考答案及评分标准(八年级) (1)
∴ n 14 或 7 或 2 或 5。
第二试(C)
一、(本题满分 20 分) 三只蚂蚁同时从点 A 出发,沿三角形道路 A B C A 爬行,已知第一只蚂蚁在
AB, BC , CA 上爬行速度分别为 12 厘米/秒,10 厘米/秒,15 厘米/秒;第二只蚂蚁在此三
段道路上的速度分别为 15 厘米/秒,15 厘米/秒,10 厘米/秒;第三只蚂蚁在此三段上的 速度分别为 10 厘米/秒,20 厘米/秒,12 厘米/秒。若三只蚂蚁同时回到 A 点,求 ABC 的 值。 解:记 AB c, BC a, CA b , 则
由 2 x 2 y a ,可知 a 必为偶数, 又 1
22 为整数,所以 a 0, 4, 24, 20 。 a2
故选 C。 ( )
2.定义运算 a b A.720 C.240 【答案】B。 代入求值的结果。
a ( a 1)( a 2) ( a b 2)( a b 1) ,则 10*7 b(b 1)(b 2) 2 1
c 2a 2b a : b : c 3 : 5 : 4 ,……………………………………………………(15) c 3a b
∴ ABC 90 。………………………………………………………………………(20)
二、(本题满分 25 分)
如图,在 ABC 中, ABC 59 , ACB 30.5 ,延长 ABC 的内角平分线 BD 至 E , 使得 DE DA ,求 E 的值。 证明:在 BC 上取一点 G ,使得 AB BG 。………………………………(5)
20142 2015 2016 20162 2017 2018 2015! 2017!
2022年全国初中数学联赛(初二组四川赛区)初赛试题参考解答与
2022年全国初中数学联赛(初二组四川赛区)初赛试题参考解答与试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C2、B3、B4、D5、D6、C二、填空题(本题满分28分,每小题7分)1、4n12、43、14、3三、(本大题满分20分)解不等式|某2|3某1解:(1)当某2时,不等式化为2某3某1,解此不等式得某(10分)(2)当某2时,不等式化为某23某1,解此不等式得某33故此时某2;44,1此时某2.(15分)2,综上所述,不等式的解为:某3.(20分)4四、(本大题满分25分)如图,在等腰梯形ABCD中,AD//BC,DEBC于E.若DE3,BD5,求梯形ABCD的面积.解:在直角△BDE中,由勾股定理有:BEBD2DE24;(5分)AD过D作AC的平行线交BC的延长线于F,连接DF、CF,则ACFD是平行四边形,故CF=AD,DFACBD,所以DE是等腰△DBF底边上的高,故BF2BE8(15分)所以SABCD11(BCAD)DEBFDE12(25分).22233BECF五、(本大题满分25分)已知正整数a、b满足(ab)ab,试求a、b的值.解:由已知得aabbab,(5分)则(ab)(a1)(b1)2.(10分)因为a、b均为正整数,故a10,b10,(1)当a=b时,(a1)(b1)1,即a=b=2;(15分)(2)当ab时,(ab)1,从而(a1)1且(b1)0;或者(a1)0且(b1)1;所以,a2,b1,或者a1,b2.(20分)222222222222综上所述,所求a,b的值是:ab2;或者a1,b2;或者a2,b1.(25分)2。
四川省八年级数学联赛初赛试题
一 .选择题(每小题7分,共42分)1 .若x <1,则化简|x -1|得( ).A .x -1B .x +1C .-x -1D .-x +12 .已知(x +a)(x -b)=x 2+2x -1,则ab 等于( ).A .-2B .-1C .1D .23 .若a <0,p >q >0,则( ).A .|pa|>|qa|B .|pa|<|qa|C .a a p q >D .p q a a<4 .已知凸四边形ABCD 对角线交于O ,满足AO =OC ,BO =3OD ,若△ADO 的面积为1,则凸四边形ABCD 的面积为( ).A .4B .6C .8D .105 .若|a -1|+|a -2|<3,则a 的取值范围是( ).A .a <0B .0<a <3C .3<aD .1<a <26 .在凸四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =2CD =,则AB =( ).A .4B .C .6D .二 .填空题(每小题7分,共28分)7 .如果每人工作效率相同,a 个人b 天共做c 个零件,那么要做a 个零件,b 个人需要的天数是___.(用含a 、b 、c 的代数式表示)8 .若a =,则221a a+的值为_____.9 .两个单位正方形,其中一个正方形的顶点在另一个正方形的中心,则两个正方形重叠部分的面积为______.10 .P 为矩形ABCD 内的一点,且PA =2,PB =3,PC =4,则PD 的长等于____.三 .计算与应用(本题满分20分)11 .已知直线y =kx +b 经过点A(1,1)和点B(-1,3),且与x 轴、y 轴的交点分别为C 、D .设O 为坐标原点,求△COD 的面积.四.(本大题满分25分)12.在△ABC中,∠A=2∠B,CD是∠ACB的平分线.求证:BC=AC+AD.五.(本大题满分25分)把1到15的15个自然数分成A和B两组.若把10从A组转移到B组.则A、B两组数的平均数都分别比原来的减少了12.求两组数原来的平均数.2012年四川初中数学联赛(初二组)初赛试卷(参考答案与评分标准) (3月16日下午4:00-6:00)一.选择题(每小题7分,共42分)1.若x<1,则化简|x-1|得( D ).A.x-1 B.x+1 C.-x-1 D.-x+12.已知(x+a)(x-b)=x2+2x-1,则ab等于( C ).A.-2 B.-1 C.1 D.23.若a<0,p>q>0,则( A ).A .|pq|>|qa|B .|pq|<|qa|C .a a p q >D .p q a a<4 .已知凸四边形ABCD 对角线交于O ,满足AO =OC ,BO =3OD ,若△ADO 的面积为1,则凸四边形ABCD 的面积为( C ).A .4B .6C .8D .105 .若|a -1|+|a -2|<3,则a 的取值范围是( B ).A .a <0B .0<a <3C .3<aD .1<a <26 .在凸四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =2CD =则AB =( A ).A .4B .C .6D .二 .填空题(每小题7分,共28分)7 .如果每人工作效率相同,a 个人b 天共做c 个零件,那么要做a 个零件,b 个人需要的天数是__2a c_.(用含a 、b 、c 的代数式表示)8 .若a =,则221a a+的值为__10___.9 .两个单位正方形,其中一个正方形的顶点在另一个正方形的中心,则两个正方形重叠部分的面积为___14___.10 .P 为矩形ABCD 内的一点,且PA =2,PB =3,PC =4,则PD __.三 .计算与应用(本题满分20分)11 .已知直线y =kx +b 经过点A(1,1)和点B(-1,3),且与x 轴、y 轴的交点分别为C 、D .设O 为坐标原点,求△COD 的面积.解:由条件知13k b k b=+⎧⎨=-+⎩, ……5分解得1,2k b =-=, ……10分于是直线为2y x =-+.令0,y =得2x =,即(2,0)C ,令0,x =得2y =,即(0,2)D . ……15分所以,COD ∆的面积12222=⨯⨯=. ……20分四 .(本大题满分25分)12 .在△ABC 中,∠A =2∠B ,CD 是∠ACB 的平分线.求证:BC =AC +AD .证明:如图,将A 沿CD 反射到BC 上得'A , ……5分则DB A B B A D CA '2'∠+∠=∠=∠=∠,故DB A B '∠=∠, ……15分所以B A D A AD ''==, ……20分 故AD AC B A C A BC +=+=''. ……25分五 .(本大题满分25分)把1到15的15个自然数分成A 和B 两组.若把10从A 组转移到B 组.则A 、B 两组数的平均数都分别比原来的减少了12.求两组数原来的平均数. 解:设A 、B 两组数原来平均数分别为a 、b ,A 组数原来有m 个数.则B 组数原来有15m -个数.根据题意有:A'D C A B⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-+--=--=++=-+)3(2111510)15()2(21110)1(1201521)15( b m m b a m am m b am ……5分 由(2)得:)4(212 m a -=由(3)得:)5(362 m b -= ……10分(4)、(5)分别代入(1)解得:10=m ……15分将10=m 分别代入(4)、(5)得:5.5=a ……20分13=b ……25分2012年四川初中数学竞赛(初二组)初赛参考解答与评分标准一、选择题(每小题7分,共42分)1. D 2.C 3.A 4. C 5.B 6.A二、填空题(每小题7分,共28分)1. 2a c 2.10 3.144三、(本大题满分20分)已知直线y kx b =+经过点(1,1)A 和点(1,3)B -,且与x 轴、y 轴的交点分别为,C D ,设O 为坐标原点.求COD ∆的面积.解:由条件知13k b k b=+⎧⎨=-+⎩, ……5分解得1,2k b =-=, ……10分 于是直线为2y x =-+.令0,y =得2x =,即(2,0)C ,令0,x =得2y =,即(0,2)D . ……15分 所以,COD ∆的面积12222=⨯⨯=. ……20分四、(本大题满分25分)在ABC ∆中,B A ∠=∠2,CD 是ACB ∠的平分线,求证:AD AC BC +=.证明:如图,将A 沿CD 反射到BC 上得'A , (5)则DB A B B A D CA '2'∠+∠=∠=∠=∠, 故DB A B '∠=∠, 所以B A D A AD ''==, 故AD AC B A C A BC +=+=''.五、(本大题满分25分)把1到15的15个自然数分成A 和B 两组,若把10从A 组转移到B 组,则A 、B 两组数的平均数都分别比原来减少了21.求两组数原来的平均数. 解:设A 、B 两组数原来平均数分别为a 、b ,A 组数原来有m 个数.则B 组数原来有15m -个数.根据题意有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-+--=--=++=-+)3(2111510)15()2(21110)1(1201521)15( b m m b a m am m b am ……5分 由(2)得:)4(212 m a -=由(3)得:)5(362 m b -= ……10分(4)、(5)分别代入(1)解得:10=m ……15分将10=m 分别代入(4)、(5)得:5.5=a ……20分13=b ……25分。
2016年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则
2016年全国初中数学联赛初赛试题————第 1 页 共 3 页2016年全国初中数学联赛初赛试卷(考试时间:2016年3月13日下午3:00—5:00)一、选择题(本题满分42分,每小题7分) 1、C . 2、C . 3、D . 4、C . 5、B . 6、A . 二、填空题(本大题满分28分,每小题7分) 78、18.9、3.10三、(本大题满分20分)11、解:由14(a 2+b 2+c 2)=(a +2b +3c )2,得13a 2+10b 2+5c 2-4ab -6ac -12bc =0, ············································· (5分) 配方得(3a -c )2+(2a -b )2+(3b -2c )2=0, ············································· (10分) 所以3a -c =0,2a -b =0,3b -2c =0,即c =3a ,b =2a . ······································································· (15分)代入22223a b c ab ac bc++++得22223a b c ab ac bc ++++=222222827236a a a a a a ++++=3611. ··········································· (20分)解法二:由14(a 2+b 2+c 2)=(a +2b +3c )2,得13a 2+10b 2+5c 2-4ab -6ac -12bc =0, ············································· (5分)5[c 2-2(365a b +)c +(365a b +)2]+13a 2+10b 2-4ab -2(36)5a b +=0,5(c -365a b +)2+565a 2+145b 2-565ab =0,所以5(c -365a b +)2+145(2a -b )2=0, ··············································· (10分) 由此得,c -365a b+=0,2a -b =0, 解得b =2a ,c =3a . ···································································· (15分)代入22223a b c ab ac bc++++得22223a b c ab ac bc ++++=222222827236a a a a a a ++++=3611. ··········································· (20分)四、(本大题满分25分)12、解:(1)由已知得,-x 2+2(m +1)x +m +3=0有两个不相同的实数解, 所以∆=[2(m +1)]2+4(m +3)= 4m 2+12m +16=(2m +3) 2+3>0,可知m 是任意实数. ································································· (5分) 又因为点A 在x 轴的负半轴上,点B 在x 轴的正半轴上. 所以方程,-x 2+2(m +1)x +m +3=0的两根一正一负, 所以- (m +3)<0,解得m >-3.所以所求m 的取值范围是m >-3. ··············································· (10分) (2)解法一:设点A (a ,0),B (b ,0),a >0,b <0,2016年全国初中数学联赛初赛试题————第 2 页 共 3 页则a =-3b ,且a +b =2(m +1),ab =-(m +3), 解得m =0.函数解析式为y =-x 2+2x +3. ······················································· (15分) 所以A (3,0),B (-1,0),C (0,3)。
2016年全国初中数学联赛(四川初二初赛)试卷及其解答
2016年全国初中数学联赛(四川初二初赛)试卷及其解答2016年全国初中数学联赛(四川初二初赛)试卷(3月4日下午3:00——5:00)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且仅有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、数轴上各点表示的数如图所示,那么a -的可能取值是()A 、2-B 、CD 、22、关于x 的方程21324x x -++=,其所有解的和是()B 、25-C 、35D 、1 3、若34()a b a b b b a =≠-,则2222232a ab b a ab b+--+的值是() A 、3- B 、13- C 、15D 、54、如图所示,将一个长为a ,宽为b 的长方形(a b >),沿着虚线剪开,拼成缺一个小正方形角的大正方形(右图),则小正方形的边长为() A 、2b B 、2a C 、2a b- D 、a b -5、一个等腰三角形一腰上的中线将三角形的周长分成15和9两个部分,则该三角形的底长所有可能值为()A 、4B 、6C 、12D 、412或6、已知正数m ,满足42710m m -+=,则1+的值为()28分,每小题7分)本大题共有4小题,要求直接将答案写在横线上。
7、古希腊数学家毕达哥拉斯把“数”当作“形”来研究,他称下面一些数为“三角形数”(如下图),第1个“三角形数”是1,第2个是3,第3个是6,第4个是10,按照这个规律,第50个“三角形数”是.106318、若2310x x x+++=,则23201520161x x x x x++++++的值为.9、设12345m x x x x x=+++++++++,则m的最小值为。
10、如图,在△ABC中,∠C=90°,D点在BC边上,满足:BD=4,DC=5,若AB+AD=28,则AD等于 .三、解答题(本题共3小题,第11题20分,第12、13题各25分,满分70分)11、若关于x的方程322310()()x m x n x++++-=有无数多个解,求实数m n、的值.12、已知实数a b c、、,满足0abc≠且240()()()a cbc a b----=,求a cb+的值.B13、如图,在△ABC中,∠B=2∠C, 且AC=AB+BD. 求证:AD是∠BAC的平分线.CB2016年全国初中数学联赛(四川初二初赛)参考答案一、选择题:1、D 2、B 3、D 4、C 5、A 6、D 二、填空题:7、1275 8、 1 9、 6 10、 13 三、解答题:11题:解:由322310()()x m x n x ++++-=,整理为3212310()m n x m n ++++-=,∵ 方程有无数多个解∴32102310m n m n ++=??+-=? 解之,11m n =-??=? 12题:解:240()()()a c b c a b ----=222244440a c ac ab b ac bc +--++-= 22242440a c b ac ab bc +++--=220()a c b +-= ∴ 2a c b +=∵ 0abc≠ ∴2a cb+= 13题:(法一)延长AB 至E ,使AE=AC ,连结DE 、CE.∵ AE=AB+BE AC=AB+BD∴ BD=BE ∴ ∠BED=∠BDE 又∠ABD=∠BED+∠BDE即∠ABD=2∠BED∵ ∠ABD=2∠ACD ∴ ∠BED=∠ACD ①∵ AE=AC∴ ∠AEC=∠ACE ② 由①、②可得∠DEC=∠DCE ∴ DE=DC ∵AE AC AD AD DE DC =??=??=?∴ △AED ≌△ACD (SSS)∴ ∠DAE=∠DAC ∴ AD 是∠BAC 的平分线.(法二)延长DB 至E ,使BE=BA ,连结AE ∴ ∠E=∠EAB∵ ∠ABD=2∠E 又∵∠ABD=2∠C ∴ ∠E=∠C=∠EAB ∴ AE=AC EC∴ AC=BE+BD=DE∴AE=DE ∴∠EAD=∠EDA∵∠EAD=∠EAB+∠BAD ∠EDA=∠DAC+∠C∴∠EAB+∠BAD=∠DAC+∠C∵∠C=∠EAB∴∠BAD=∠DAC ∴ AD是∠BAC的平分线.。
2017全国初中数学联赛-四川初二初赛
2017全国初中数学联赛初赛试卷(四川初二初赛)1.若2a b-=,则222a bab+-的值为().A、1B、2C、3D、42.已知AD为ABC△的内角平分线,AE为ABC△的外角平分线(D、E均在直线BC上),若130ADB∠=︒,则AEB∠的大小为().A、40︒B、45︒C、50︒D、60︒3.古希腊毕达哥拉斯学派把“一个正整数的正约数(不包含自身)之和等于自身的数称为完全数”,比如6的正约数(不包含自身)有1、2、3,而1236++=,所以6是完全数,那么以下是完全数的是().A、10B、20C、24D、284.如图ABC△的边BC为6,且BC边上的高也为6,BC上有三点D、E、F,且满足4DF=,则图中所有三角形的面积和为().A、30B、48C、96D、1205.已知关于x的不等式(2)20b a x a b--+>的解集为4x>,则关于x的不等式ax b>的解集为().A、27x>B、27x<C、32x>D、32x<6.如图,D 为等腰ABC △的底边BC 上一点,若4AB =,7BD DC ⋅=,那么AD 等于( ).A 、3B 、4C 、7D 、127.甲、乙两个工程队完成某项工程,若假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1,甲队单独做了10天后乙队加入合作完成剩下的全部工程,工程进度如图所示,,则图中x 的值为__________.8.若一个凸n 边形的一个外角与所有内角的和为2017︒,则n =__________.9.若x 、y 都是实数,则代数式2254224x xy y x y +++-的最小值为__________.10.如图,在ABC △中,BD 是ABC ∠的角平分线,延长BD 至E ,使AD DE =,若60ADB ∠=︒,78BAC ∠=︒,则BEC ∠的度数为__________.11.如图,在ABC △中,D 使BC 边上的一点,E 是AD 上的一点,且AD DC =,DEC ABC ∠=∠,求证:AB CE =.12.若一次函数(1)1y k k x =++和3(1)1y k k x =+-(k 为正整数)的图象与y 轴围成的三角形面积为k S ,求1232017S S S S ++++的值.13.若k 是整数关于x 的方程(2017)2016()k x k x -=-的解也是整数,求k 的所有可能的取值的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年全国初中数学联合竞赛(四川初二初赛)
试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.
一、选择题(本题满分42分,每小题7分)
1、A
2、B
3、D
4、C
5、A
6、D
二、填空题(本题满分28分,每小题7分)
7、1275 8、1 9、6 10、13
三、解答题(本题共三小题,第11题20分,第12、13题各25分,共70分)
11、若关于x 的方程01)32()23(=-++++x n x m x 有无数多个解,求n m ,的值. 解:原方程整理得:0132)123(=-++++n m x n m , ………………5分
由题意有:⎩
⎨⎧=-+=++01320123n m n m ,………………………………………15分 解得⎩⎨⎧=-=1
1n m . ………………………………………………………20分 12、已知实数a 、b 、c ,满足0≠abc 且0))((4)(2=----b a c b c a ,求
b c a +的值. 解:因为222)())((2)()]()[(b a b a b c b c b a b c -+--+-=-+- (1)……5分
222)())((2)()]()[(b a b a b c b c b a b c -+----=--- (2)…………10分
(1)-(2)得))((4)]()[()]()[(22b a b c b a b c b a b c --=-----+-
即:))((4)()2(22b a c b a c b c a ---=---+
故0)2())((4)(22=-+=----b c a b a c b a c , …………………20分 即02=-+b c a ,故2=+b
c a . …………………………………………25分 13、已知如图,在△ABC 中,C B ∠=∠2,且BD AB AC +=, 求证:AD 是BAC ∠的平分线.
证明1:
延长AB 至G ,使BD BG =,则AC BD AB BG AB AG =+=+=, 所
以ACG AGC ∠=∠; ………………………………5分 又BDG BGD ∠=∠,所以ACB ABC AGD ∠=∠=∠21, 故DCG ACB ACG BGD AGC CGD ∠=∠-∠=∠-∠=∠; 所以DC DG =; …………………15分 又AD 是公共边,
所以△AGD ≌△ACD , …………………20分 所以CAD GAD ∠=∠,即AD 是BAC ∠的平分线.…………………25分
证明2:作ABC ∠的平分线交AC 于E ,过D 作BE 的平行线交AC 于F ,交AB 的延长线于G ,则:
因为C ABC ∠=∠2,DF 平行BE ,所以FDC C EBC ∠=∠=∠, 所以FD FC =,且ABC FDC C AFD ∠=∠+∠=∠…………5分 又BDG FDC C ABC ABE AGD ∠=∠=∠=∠=∠=∠21, 所以BG BD =,所以AC BD AB BG AB AG =+=+=, …………10分 又ABC AFG C G ∠=∠∠=∠,,所以△AFG ≌△ABC , …………………15分 所以AB AF =,DB FC DF ==, …………………20分 所以△ABD ≌△AFD ,故FAD BAD ∠=∠,即AD 是BAC ∠的平分线.……25分。