3.1平面直角坐标系
《平面直角坐标系》知识点大全
《平面直角坐标系》知识点大全3.1确定位置:在平面内,确定一个物体的位置一般需要两个数据。
3.2平面直角坐标系1、有序数对:我们把这种有顺序的两个数a 与b 组成的数对叫做有序数对,即:(a,b)2、平面直角坐标系:在平面内,两条互相垂直、且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向竖直的数轴称为y 轴或纵轴,习惯上取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0;第二象限:x<0,y>0第三象限:x<0,y<0;第四象限:x>0,y<0x 轴上的点:(x ,0)y 轴上的点:(0,y )4、距离问题:点(x ,y )距x 轴的距离为y点(x ,y )距y 轴的距离为x坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为21x x -点A (0,y 1)点B (0,y 2),则AB 距离为21y y -5、角平分线问题若点(x ,y )在第一、三象限角平分线上,则x=y若点(x ,y )在第二、四象限角平分线上,则x=-y6、对称问题:对称点坐标的特征:P(a,b)关于x 轴对称的点的坐标为(a,-b);P(a,b)关于y 轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)7、平行于坐标轴的直线上的点:平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同。
8、中点坐标:点A (1x ,0)点B (2x ,0),则AB 中点坐标为(221x x +,0)。
数学平面直角坐标系知识点
数学平面直角坐标系知识点嘿,咱今儿就来聊聊数学里的平面直角坐标系呀!这玩意儿可太有意思啦!你想想看,那平面直角坐标系就像是一个大棋盘,横坐标和纵坐标就是棋盘上的横竖线。
有了它,那些数字和图形就都有了自己的位置,变得规规矩矩的。
先说横坐标吧,它就像是在一条水平的道路上给每个点排个号。
从左到右,数字越来越大,就像你沿着路往前走,越走越远。
而纵坐标呢,就像是在垂直的方向上给点定个位,从上到下,数字也有自己的顺序。
在这个坐标系里,原点可是个很重要的地方呀!它就像是棋盘的中心,一切都从它开始。
原点左边是负数,右边是正数,上面是正数,下面是负数,多清晰呀!那坐标轴上的刻度呢,就像是给这些点划分的等级。
每个刻度都有自己的意义,就好像我们生活中的各种标准一样。
咱再说说点在坐标系里的表示。
一个点的坐标,那就是它在这个大棋盘上的独特身份标识呀!通过横坐标和纵坐标,我们就能准确地找到它的位置。
这就好比你要找一个人,知道了他的地址,就能轻而易举地找到啦!你说要是没有平面直角坐标系,那数学得变得多混乱呀!那些图形该怎么描述位置呢?简直不敢想!比如说画个函数图像,要是没有坐标系,那简直就是一团乱麻。
但有了它,函数就乖乖地在坐标系里展示出自己的模样,或直线,或曲线,多神奇呀!而且呀,平面直角坐标系在生活中也有大用处呢!你想想看,地图不就是一个大的平面直角坐标系吗?我们可以通过它来确定自己的位置,找到要去的地方。
还有那些建筑设计呀,不也得用到坐标系来确定每个部分的位置吗?不然怎么能建出那么漂亮、坚固的大楼呢。
哎呀呀,这平面直角坐标系的用处可真是说不完呀!它就像是数学世界里的一把钥匙,打开了无数的奥秘之门。
所以呀,同学们可一定要好好掌握平面直角坐标系的知识点哦!别小瞧了它,它可是能帮你解决好多难题,带你在数学的海洋里畅游呢!你要是不好好学,那可就亏大啦!难道不是吗?。
平面直角坐标系知识点总结归纳
平面直角坐标系知识点总结归纳平面直角坐标系是分析平面上点的位置和运动的基本工具之一、它由两条相互垂直的数轴(通常称为x轴和y轴)组成,在规定的单位长度上构成一个矩形坐标系。
该坐标系可以用来描述平面内的点的位置以及它们之间的关系。
以下是平面直角坐标系的一些重要知识点:1.坐标轴:平面直角坐标系包括两条垂直于彼此的直线,称为坐标轴。
其中一条被标记为x轴,另一条被标记为y轴。
2.原点:平面直角坐标系的交点称为原点,通常标记为O。
3.坐标:平面直角坐标系中的每个点都可以用一对有序实数(x,y)来表示,其中x表示在x轴上的位置,y表示在y轴上的位置。
这对实数称为坐标。
例如,点(3,4)表示位于x轴上3个单位和y轴上4个单位的点。
4.象限:平面直角坐标系将平面分为四个象限。
第一象限位于x轴和y轴的正方向上,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向上,第四象限位于x轴的正方向和y轴的负方向。
象限用于确定坐标点的相对位置和符号。
5.距离:在平面直角坐标系中,可以使用勾股定理计算两点之间的距离。
两点之间的距离公式为:d=√((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)是两点的坐标。
6.斜率:斜率用于描述直线的倾斜程度。
在平面直角坐标系中,可以使用两点间的坐标来计算斜率。
斜率公式为:m=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两点。
7. 截距:截距是指直线与y轴的交点。
在平面直角坐标系中,斜率截距公式为:y = mx + b,其中m是斜率,b是截距。
8.正交性:平面直角坐标系的x轴和y轴相互垂直,也就是说它们的夹角为90度。
这种相互垂直的性质被称为正交性。
9.平移:平面直角坐标系中的点可以通过平移来改变它们的位置。
平移是指沿着x轴和y轴移动一定的距离,而不改变它们之间的相对位置。
10.缩放:可以通过缩放来改变坐标系的单位长度。
3.1平面直角坐标系
5 4 3 2 1 -4 -2
D B P(4,2) A x
O
-2 -4
1 2 3 4 5
结论
综上所述,
在建立了平面直角坐标系后,平面上的 点与有序实数对一一对应.
在平面直角坐标系中,两条坐标轴(即横轴和纵 轴)把平面分成如图3-3所示的Ⅰ,Ⅱ ,Ⅲ,Ⅳ四个区 域,我们把这四个区域分别称为第一,二,三,四象 限,坐标轴上的点不属于任何一个象限.
例如,李亮在教室里的座位可以简单地记作( 4,2).
动脑筋
怎样用有序实数对来表示平面内点的位置呢?
从李亮在教室里的座位的例子可以看到,第4组是从 横的方向来数的,第2排是从纵的方向来数的. 为了用有序实数对表示平面内的一个点,需要用两 根互相垂直的数轴: 一根叫横轴(通常称x轴),另一根叫
纵轴(通常称y轴),它们的交点O是这两根数轴的原点,
图3-5
解
如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y 轴 的垂线,垂线的交点就是点A. 类似地,其他各点 的位置如图所示.点A 在第一象限,点B 在第二象 限,点C在第三象限,点D在第四象限.
图3-5
动脑筋
结合例1、例2的解答,试说出平面直角坐标系中 四个象限的点的坐标有什么特征,并填写下表:
图3-8
解 如图3-8,以学校所在位置为原点,分别以正东、 正北方向为x 轴, y 轴的正方向,建立平面直角 坐标系, 规定1 个单位长度代表100 m长. 根据题目条件,点A(5,4.5) 是书店的位置, 点B(-2.5,-3)是电影院的位置, 点C(4,-6) 是汽车站的位置.
在日常生活中, 除了用平面直角坐标系刻 画物体之间的位置关系外,有时还可借助方向
专题3.1平面直角坐标系【十大题型】-2024-2025学年八年级数学上册举一反三[含答案]
)
A. 2, 2 ® 2,5 ® 5, 6
B. 2, 2 ® 2,5 ® 6,5
C. 2, 2 ® 6, 2 ® 6,5
2) ® (2,
3) ® (6,
3) ® (6,
5)
是
试卷第 6 页,共 11 页
【变式 7-2】(23-24 八年级·浙江宁波·阶段练习)
27.如图, A -1, 0 , C 1, 4 ,点 B 在 x 轴上,且 AB = 3 .
(1)求点 B 的坐标,并画出 V ABC ;
(2)求 V ABC 的面积;
(3)在 y 轴上是否存在点 P ,使以 A 、 B 、 P 三点为顶点的三角形的面积为10?若存在,请直
.点 A 关于 x 轴的对
.
【变式 6-2】(23-24 八年级·湖北武汉·期中)
- 3) ,
23.已知点 A 和点 B 关于直线 m (直线 m 上各点的纵坐标都是 2)对称,若点 A 的坐标是 (2,
则点 B 的坐标是
.
【变式 6-3】(23-24 八年级·福建莆田·期中)
24.如图,在平面直角坐标系中,V ABC 关于直线 m (直线 m 上各点的横坐标都为 1)对称,
【例 2】(23-24 八年级·上海长宁·期末)
5.已知 a 为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是(
A. 4, - a
2
B. a + 1, -4
2
C. a + 1, - 4
)
2
D. a , - 4
【变式 2-1】(23-24 八年级·浙江绍兴·期末)
平面直角坐标系平面直角坐标系
感谢您的观看
THANKS
性质
平面直角坐标系是一个正交坐标系,它具有唯一性和可数性 。
平面直角坐标系的建系的中心点 。
确定x轴与y轴
根据定义,x轴是一条与y轴垂直的数轴,y轴是 一条与x轴垂直的数轴。
确定单位长度
选择一个单位长度,通常选择一个合适的长度单 位,如毫米或厘米。
坐标系中的点与坐标
方向向量的计算
方向向量的计算可以通过两个点的坐标进行计算,得到一个向量,该向量的模等于两点之间的距离,方向与连 接两点的线段一致。
三维空间中的坐标系
三维空间中的坐标系定义
三维空间中的坐标系使用三个参数,x、y 、z,来定义空间中的任意一点。
VS
三维空间中的坐标系扩展
三维空间中的坐标系可以扩展到更高维度 的空间中,例如四维空间、五维空间等。
计算机图形学中的应用
像素坐标
在计算机图形学中,每个像素点都有其在平面直角坐标系中的位 置,通过坐标可以方便地对像素点进行操作。
渲染算法
通过平面直角坐标系可以设计各种渲染算法,如阴影算法、反射 算法等。
三维建模
在三维建模中,平面直角坐标系是基础,可以通过它来建立三维模 型的空间关系。
05
平面直角坐标系的扩展
平移平面直角坐标系中的点,其坐标值会相应地发生变化。平移过程中,点 的坐标值沿横轴或纵轴方向移动,移动距离等于平移方向上的坐标增量。
点的旋转
旋转平面直角坐标系中的点,其坐标值不会发生变化,但会围绕旋转中心转 动。旋转过程中,点的坐标值相对于旋转中心转动,旋转角度等于旋转角度 的弧度值。
距离与角度的计算
平面直角坐标系
2023-11-04
目 录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的基本运算 • 平面直角坐标系中的图形变换 • 平面直角坐标系的应用 • 平面直角坐标系的扩展
2023中考数学一轮复习专题3
专题3.1 平面直角坐标系与一次函数、反比例函数(知识讲解)【基本考点要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想; ⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题. 【知识点梳理】考点一、平面直角坐标系 1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点 点P(x,y)在第一象限0,0>>⇔y x ; 点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.特别说明:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标.考点二、函数 1.函数的概念设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法.4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.特别说明:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.(2)正比例函数y=kx( k≠0)的图象:过(0,0),(1,K)两点的一条直线.(3)正比例函数y=kx(k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小 .2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb-点的一条直线.①当k>0时,y 随x 的增大而增大;②当k<0时,y 随x 的增大而减小.特别说明:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k. 确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法. 3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:k y x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象 ①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序);连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点).④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k . (4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0; ②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x 的取值范围是x ≠0,y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y 随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k ) (6)“反比例关系”与“反比例函数”: 成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系.特别说明:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1. 已知点P (3a ﹣15,2﹣a ).(1)若点P 到x 轴的距离是1,试求出a 的值;(2)在(1)题的条件下,点Q 如果是点P 向上平移3个单位长度得到的,试求出点Q 的坐标;(3)若点P 位于第三象限且横、纵坐标都是整数,试求点P 的坐标.【答案】(1)1a =或3a =;(2)(12,4)Q -或(6,2)Q -;(3)(6,1)P --或(3,2)P --. 【分析】(1)根据“点P 到x 轴的距离是1”可得21a -=,由此即可求出a 的值;(2)先根据(1)的结论求出点P 的坐标,再根据点坐标的平移变换规律即可得; (3)先根据“点P 位于第三象限”可求出a 的取值范围,再根据“点P 的横、纵坐标都是整数”可求出a 的值,由此即可得出答案.解:(1)点P 到x 轴的距离是1,且(315,2)P a a --,21a ∴-=,即21a -=或21a -=-,解得1a =或3a =;(2)当1a =时,点P 的坐标为(12,1)P -, 则点Q 的坐标为(12,13)Q -+,即(12,4)Q -, 当3a =时,点P 的坐标为(6,1)P --, 则点Q 的坐标为(6,13)Q --+,即(6,2)Q -, 综上,点Q 的坐标为(12,4)Q -或(6,2)Q -; (3)点(315,2)P a a --位于第三象限,315020a a -<⎧∴⎨-<⎩,解得25a <<, 点P 的横、纵坐标都是整数,3a ∴=或4a =,当3a =时,3156,21a a -=--=-,则点P 的坐标为(6,1)P --, 当4a =时,3153,22a a -=--=-,则点P 的坐标为(3,2)P --, 综上,点P 的坐标为(6,1)P --或(3,2)P --.【点拨】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.举一反三:【变式】已知点()22,5P a a -+,解答下列各题. (1)点P 在x 轴上,求出点P 的坐标;(2)点Q 的坐标为=()4,5,直线PQ y ∥轴;求出点P 的坐标;(3)若点P 在第二象限,且它到x 轴、y 轴的距离相等,求22012021a +的值. 【答案】(1)()12,0P -; (2)()4,8P ; (3)220120212020a += 【分析】(1)利用x 轴上P 点的纵坐标为0求解即可得;(2)利用平行于y 轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x 轴、y 轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得1a =-,将其代入代数式求解即可.(1)解:∵点P 在x 轴上,∵P 点的纵坐标为0, ∵50a +=, 解得:5a =-, ∵2212a -=-, ∵()12,0P -.(2)解:∵直线PQ y ∥轴,∵224a -=, 解得:3a =, ∵58a +=, ∵()4,8P . (3)解:∵点P 在第二象限,且它到x 轴、y 轴的距离相等, ∵2250a a -++=. 解得:1a =-. ∵22012021a + ()220112021=-+2020=,∵22012021a +的值为2020.【点拨】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.2.在平面直角坐标系中,将点(),1A a a -先向左平移3个单位得点1A ,再将1A 向上平移1个单位得点2A ,若点2A 落在第三象限,则a 的取值范围是( )A .23a <<B .3a <C .2a >D .2a <或3a >【答案】A【分析】根据点的平移规律可得()2311A a a --+,,再根据第三象限内点的坐标符号可得.解:点()1A a a -,先向左平移3个单位得点1A ,再将1A 向上平移1个单位得点()2311A a a --+,,点'A 位于第三象限,30110a a -<⎧∴⎨-+<⎩, 解得:23a <<, 故选:A .【点拨】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.举一反三:【变式1】平面直角坐标系中,将点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点,则下列结论:①B 点的坐标为(223+m ,1);①线段AB 的长为3个单位长度;①线段AB 所在的直线与x 轴平行;①点M (2m ,23m +)可能在线段AB 上;①点N (22m +,1)一定在线段AB 上.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【分析】根据平移的方式确定平移的坐标即可求得B 点的坐标,进而判断∵,根据平移的性质即可求得AB 的长,进而判断∵,根据平移的性质可得线段AB 所在的直线与x 轴平行,即可判断∵,根据纵坐标的特点即可判断∵∵解:∵点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点, ∵B 点的坐标为(223+m ,1); 故∵正确;则线段AB 的长为23m +; 故∵不正确;∵A (2m ,1),B (223+m ,1);纵坐标相等,即点A ,B 到x 轴的距离相等 ∵线段AB 所在的直线与x 轴平行; 故∵正确若点M (2m ,23m +)在线段AB 上; 则231m +=,即21m =-,不存在实数21m =- 故点M (2m ,23m +)不在线段AB 上; 故∵不正确同理点N (22m +,1)在线段AB 上; 故∵正确综上所述,正确的有∵∵∵,共3个 故选B【点拨】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.类型二、一次函数3.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)112y x =-;(2)112m ≤≤ 【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:1m =,然后结合函数图象可进行求解.解:(1)由一次函数()0y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到可得:一次函数的解析式为112y x =-; (2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:()12212m -=⨯--,解得:1m =,函数图象如图所示:∵当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于一次函数y kx b =+的值时,根据一次函数的k 表示直线的倾斜程度可得当12m =时,符合题意,当12m <时,则函数()0y mx m =≠与一次函数y kx b =+的交点在第一象限,此时就不符合题意,综上所述:112m ≤≤. 【点拨】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.举一反三:【变式】在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(0,1)-.(1)求这个一次函数的表达式;(2)当1x >时,对于x 的每一个值,函数y x m =-+的值小于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =-;(2)1m ≤ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(0,-1)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,0),即可得出当1x >时,y x m =-+都小于1y x =-,根据1x >,可得m 可取值1,可得出m 的取值范围.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到, ∵1k =.∵一次函数y x b =+的图象过点(01)-,, ∵1b =-.∵这个一次函数的表达式为1y x =-. (2)由(1)得y=x -1, 解不等式-x+m <x -1得12m x +>由题意得11,2m +≤ 故m 的取值范围1m ≤【点拨】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.4.为落实省体育中考的要求,增强学生的身体素质.某校计划今年购买一批篮球和实心球共100粒,已知去年篮球的单价为80元,实心球的单价为36元.由于物价上涨,预计今年篮球的价格比去年上涨20%,实心球的价格不变,若购买蓝球的总费用不低于购买实心球的总费用,为了完成这项采购计划,该校今年至少应投入多少元?【答案】为了完成这项采购计划,该校今年至少应投入5280元.【分析】设完成计划需购买x 个篮球,需要投入的费用为w 元,根据总价=单价×数量,即可得出w 关于x 的函数关系式,由购买篮球的总费用不低于购买实心球的总费用,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再利用一次函数的性质即可解决最值问题.解:设完成计划需购买x 粒篮球,需要投入的费用为w 元.依题意,得w=80(1+20%)x +36(100-x).化简得:w=60x+3600.因为购买篮球的总费用不低于购买实心球的总费用,所以:80(1+20%)x ≥36(100-x),解得x≥3 2711.又x是整数,所以x的最小值为28.因为k=60>0,所以,w随x的增大而增大,所以,当x=28时,w的最小值为60×28+3600=5280.答:为了完成这项采购计划,该校今年至少应投入5280元.【点拨】本题考查了一元一次不等式的应用以及一次函数的应用,根据各量之间的关系,找出题目中得函数关系式是解题的关键.【变式】2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y(元)与购买洗手液的数量x(瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为元/瓶,请直接写出y与x之间的函数关系式;(2)请求出a的值;(3)如果该高校共有m名教职工,请你帮王老师设计最省钱的购买方案.【答案】(1)4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)720a =元;(3)当100m <时选活动一:一律打9折合算;当100m =时选活动一:活动二均可,当100m >时选活动二合算.【分析】(1)利用购买100瓶费用400元,洗手液的单价为400÷100=4元/瓶,根据单价×件数=费用均可列出函数均可;(2)利用两函数值相等联立方程组 3.63.280a x a x =⎧⎨=+⎩,解方程组均可; (3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶分类三种情况两函数作差比较均可.解:(1)400元购买100瓶,洗手液的单价为400÷100=4元/瓶,19410y x =⨯⋅, 1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩, 故答案为4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩. (2)联立 3.63.280a x a x =⎧⎨=+⎩, 解得720{200a x ==, ∵720a =;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶, 当2200m 时,即100m <时选活动一:一律打9折合算;∵12 3.6242 1.6050y y m m m m -=⨯-⨯=-<≤,;()12 3.62 3.22800.880050100y y m m m m -=⨯-⨯-=-<<≤;当100m =时选活动一:活动二均可,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=-==;当100m >时选活动二合算,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=->>.【点拨】本题考查列一次函数关系,利用一次函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计,掌握列一次函数关系的方法,利用函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计.类型三、反比例函数5.如图,一次函数11y k x b =+的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,2,点B 的纵坐标为1-.(1)求这两个函数的表达式;(2)点C 为反比例函数图象上的一点,且点C 在点A 的上方,当CAB AOB S S =△△时,求点C 的坐标.【答案】(1)一次函数的解析式为y 1=x +1,反比例函数的解析式为y 2=2x;(2)C 点的坐标为(-.【分析】(1)把A 点坐标代入反比例函数解析式可求得k 2的值,把点B 的纵坐标代入求得横坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据题意点C 就是直线y =x +1向上平移1个单位后与反比例函数的交点,求得平移后的直线解析式,与反比例函数解析式联立,解方程组即可求得C 的坐标.解:(1)把点A (1,2)代入反比例函数y 2=2k x得,k 2=1×2=2, ∵反比例函数的解析式为y 2=2x , 将y =-1代入y 2=2x 得,-1=2x,交点x =-2, ∵B (-2,-1),将A 、B 的坐标代入y 1=k 1x +b 得221k b k b +=⎧⎨-+=-⎩, 解得11k b =⎧⎨=⎩, ∵一次函数的解析式为y 1=x +1;(2)∵y 1=x +1,∵直线与y 轴的交点为(0,1),∵点C 为反比例函数图象上的一点,且点C 在点A 的上方,S ∵CAB =S ∵AOB ,∵点C 就是直线y =x +1向上平移1个单位后与反比例函数的交点,将直线y =x +1向上平移1个单位后得到y =x +2,解22y x y x =+⎧⎪⎨=⎪⎩得11x y ⎧=-⎪⎨=+⎪⎩11x y ⎧=-⎪⎨=⎪⎩(舍) , ∵C 点的坐标为(-.【点拨】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.举一反三:【变式】如图,反比例函数(k 0,x 0)k y x=≠>的图象与矩形OABC 的边AB ,BC 分别交于点F ,点E ,点D 为x 轴负半轴上的点,4CDE S =△.(1)求反比例函数的表达式;(2)求证:BE BF CE AF=.【答案】(1)8y x=;(2)见解析 【分析】 (1)连接OE ,根据矩形的性质得到//BC AD ,得到4COE DCE S S ==△△,由点E 在反比例函数(k 0,x 0)k y x=≠>的图象上,于是得到结论; (2)设8,E m m ⎛⎫ ⎪⎝⎭,8,F n n ⎛⎫ ⎪⎝⎭,于是得到8,B n m ⎛⎫ ⎪⎝⎭,(),0A n ,求得CE m =,BE n m =-,()888n m BF m n mn-=-=,8AF n =,即可得到结论. 解:(1)如图,连接OE .∵四边形OABC 是矩形,∵//BC AD .∵4COE DCE S S ==△△.∵点E 在反比例函数(k 0,x 0)k y x =≠>的图象上, ∵8k .∵反比例函数的表达式为8y x=; (2)点F ,点E 在反比例函数(k 0,x 0)k y x =≠>的图象上, ∵设8,E m m ⎛⎫ ⎪⎝⎭,8,F n n ⎛⎫ ⎪⎝⎭. ∵8,B n m ⎛⎫ ⎪⎝⎭,(,0)A n . ∵CE m =,BE n m =-,888()n m BF m n mn -=-=,8AF n=. ∵BE n m CE m-=,8()8n m BF n m mn AF m n--==. ∵BE BF CE AF=.【点拨】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,反比例函数k 的几何意义,矩形的性质,正确理解题意是解题的关键.类型四、函数综合应用6、已知:如图,双曲线y=k x(k ≠0)与直线y =mx (m ≠0)交于A (2,4)、B 两点,点D 是x 轴上一点,C 在双曲线上且是AD 的中点.(1)求双曲线和直线AB 的函数表达式;(2)连结BC ,求△ABC 的面积.【答案】(1)8y x=;y =2x ;(2)12 【分析】 (1)把A 点坐标代入双曲线和直线AB 的解析式中求解即可;(2)分别求出B ,C 的坐标,然后求出三角形ABC 的三边长,利用勾股定理的逆定理判定三角形ABC 为直角三角形,然后求解面积即可.解:(1)∵双曲线y=k x(k ≠0)与直线y =mx (m ≠0)交于A (2,4), ∵4242k m⎧=⎪⎨⎪=⎩,解得28m k =⎧⎨=⎩, ∵双曲线的解析式为8y x=,直线AB 的解析式为2y x =; (2)设8,C m m ⎛⎫ ⎪⎝⎭,(),0D n , ∵C 是AD 的中点, ∵240,22n C ++⎛⎫ ⎪⎝⎭即2,22n C +⎛⎫ ⎪⎝⎭ ∵82m=, ∵4m =,∵C (4,2), 联立82y x y x⎧=⎪⎨⎪=⎩,解得24x y =-⎧⎨=-⎩或24x y =⎧⎨=⎩(舍去), ∵B (-2,-4),∵()()22242248AC =-+-=,()()222244272BC =--+--=,()()222224480AB =--+--=,∵222AC BC AB +=,∵∵ABC 是直角三角形,∵111222ABC S =AC BC=⨯△.【点拨】本题主要考查了一次函数与反比例函数的综合,待定系数法求函数解析式,勾股定理的逆定理,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解.举一反三:【变式】如图所示,在平面直角坐标系中,点A 的坐标为()0m ,,0m <,点B 与点A 关于原点对称,直线y =与双曲线k y x=交于C ,()1,D t 两点. (1)求双曲线的解析式;(2)当四边形ACBD 为矩形时,求m 的值.【答案】(1)y =(2)-2 【分析】 (1)由点D 的坐标结合反比例函数图象上点的坐标特征即可求出t 值,进而得出点D 的坐标,代入双曲线即可求出解析式;(2)根据勾股定理得出OD 长度,再根据矩形的性质可得出OB =OA=OC=OD =2,根据点 A 的坐标即可求出m 值.解:(1)将()1,D t 代入y =,得:t =∵(D ,∵1k =∵双曲线的解析式是y =.(2)由(D 得:2OD =. ∵四边形ACBD 为矩形,∵12AO BO AB ==,12CO DO CD ==,AB CD =, ∵2AO BO CO DO ====,又∵0m <,∵2m =-.【点拨】本题考查了正比例函数的性质与反比例函数的性质,矩形的性质,解题的关键是根据矩形性质找出OA=OD ,本题属于中档题,难度不大,熟知各函数和各图形的性质是解题关键.7.如图,在平面直角坐标系中,点B 坐标是(3,4),BA ①x 轴于点A ,点B 在反比例函数y =k x(k >0,x >0)的图象上,将①OAB 向右平移,得到①O 'A 'B ',O 'B '交双曲线于点C (3a ,a ).(1)求k ,a 的值;(2)求出①OAB 向右平移到O A B '''△的距离;(3)连接OB ,BC ,OC ,求①OBC 的面积.【答案】(1)12k =,2a =;(2)∵OAB 向右平移4.5个单位长度得到O A B '''△;(3)9OBC S =【分析】(1)根据题意可直接进行求解k 的值,然后再把点C 代入进行求解即可;(2)过点C 作CD ∵x 轴于点D ,由(1)可得CD =2,进而可得点D 为O A ''的中点,然后问题可求解;(3)由(1)及题意易得OBC ADCB S S =梯形,然后根据梯形的面积公式进行求解即可. 解:(1)∵点B 坐标是(3,4),BA ∵x 轴于点A ,点B 在反比例函数y =k x的图象上, ∵3412k =⨯=,∵O 'B '交双曲线于点C (3a ,a ),∵312a a ⋅=,解得:2a =±,∵x >0,∵2a =;(2)过点C 作CD ∵x 轴于点D ,如图所示:由(1)可得:点()6,2C ,∵OD =6,CD =2,由平移的性质可得:4,3AB A B OA O A ''''====,90OAB O A B '''∠=∠=︒, ∵CD//A B '',∵O DC O A B ''''∽, ∵12CD O D A B O A '=='''', ∵ 1.5O D '=,∵ 4.5OO OD O D ''=-=,∵∵OAB 向右平移4.5个单位长度得到O A B '''△;(3)如(2)图,∵,OBC ODC OAB ODCB ADCB ODCB SS S S S S =-=-四边形梯形四边形,由反比例函数k 的几何意义可得2OAB ODC k S S ==, ∵OBC ADCB S S =梯形,由(2)可得:3,4,2,6OA AB CD OD ====,∵3AD OD OA =-=,∵()()11243922OBC ADCB S S CD AB AD ==⨯+⨯=⨯+⨯=梯形.【点拨】本题主要考查反比例函数k 的几何意义及与几何的综合,熟练掌握反比例函数k 的几何意义及函数的性质是解题的关键.。
平面直角坐标系与函数及图像
第三模块函数3.1平面直角坐标系与函数及图像考点一、平面直角坐标系内点的坐标1.有序数对(1)平面内的点可以用一对有序实数来表示.例如点A在平面内可表示为A(a,b),其中a表示点A的横坐标,b表示点A的纵坐标.(2)平面内的点和有序实数对是一一对应的关系,即平面内的任何一个点可以用一对有序实数来表示;反过来每一对有序实数都表示平面内的一个点.(3)有序实数对表示这一对实数是有顺序的,即(1,2)和(2,1)表示两个不同的点.2.平面内点的坐标规律(1)各象限内点的坐标的特征点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上的点的坐标的特征点P(x,y)在x轴上⇔y=0,x为任意实数;点P(x,y)在y轴上⇔x=0,y为任意实数;点P(x,y)在坐标原点⇔x=0,y=0.【例1】在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.解析:由第一象限内点的坐标的特点可得:m>0,m-2>0,解得m>2.方法点拨:此类问题的一般方法是根据点在坐标系中的符号特征,建立不等式组或者方程(组),把点的问题转化为不等式组或方程(组)来解决.考点二、平面直角坐标系内特殊点的坐标特征1.平行于坐标轴的直线上的点的坐标特征(1)平行于x 轴(或垂直于y 轴)的直线上点的纵坐标相同,横坐标为不相等的实数.(2)平行于y 轴(或垂直于x 轴)的直线上点的横坐标相同,纵坐标为不相等的实数.2.平面直角坐标系各象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点,横、纵坐标相等.(2)第二、四象限角平分线上的点,横、纵坐标互为相反数.3.平面直角坐标系对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ). 以上特征可归纳为:(1)关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.(2)关于y 轴对称的两点,横坐标互为相反数,纵坐标相同.(3)关于原点对称的两点,横、纵坐标均互为相反数.【例2】已知点M(1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是 ( )解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m ,1-m ).∵M (1-2m ,m -1)关于x 轴的对称点在第一象限, ∴⎩⎨⎧1-2m >0,1-m >0,解得⎩⎨⎧m <12,m <1.考点三、确定物体位置的方位1.平面内点的位置用一对有序实数来确定.2.方法 (1)平面直角坐标法(2)方向角和距离定位法用方向角和距离确定物体位置,方向角是表示方向的角,距离是物体与观测点的距离.用方向角和距离定位法确定平面内点的位置时,要注意中心点的位置,中心点变化了,则方向角与距离也随之变化.考点四、点到坐标轴的距离考点五、平面直角坐标系中的平移与对称点的坐标-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A、B、C的对应点分别是A1、B1、C1,若点A1的坐标为(3,1),则点C1的坐标为________.解析:由A(-2,3)平移后点A1的坐标为(3,1),可知A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的坐标变化相同,故C1(2+5,0-2),即(7,-2).方法点拨:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质;二是利用图形的全等关系;三是确定变换前后点所在的象限.考点六、函数及其图象1.函数的概念(1)在一个变化过程中,我们称数值发生变化的量为变量,有些数值是始终不变的,称它们为常量.(2)函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x在其取值范围内的每一个确定的值,y都有唯一确定的值与其对应,那么就说,x是自变量,y是x的函数.函数值:对于一个函数,如果当自变量x =a 时,因变量y =b ,那么b 叫做自变量的值为a 时的函数值注:函数不是数,它是指某一变化过程中的两个变量之间的关系(3)用来表示函数关系的数学式子,叫做函数解析式或函数关系式.2.函数的表示法及自变量的取值范围(1)函数有三种表示方法:解析法,列表法,图象法,这三种方法有时可以互相转化.(表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法)(2)当函数解析式表示实际问题或几何问题时,其自变量的取值范围必须符合实际意义或几何意义.3.函数的图象:对于一个函数,把自变量x 和函数y 的每对对应值分别作为点的横坐标与纵坐标在平面内描出相应的点,组成这些点的图形叫这个函数的图象.(1)画函数图象,一般按下列步骤进行:列表、描点、连线.(2)图象上任一点的坐标是解析式方程的一个解;反之以解析式方程的任意一个解为坐标的点一定在函数图象上.温馨提示:画图象时要注意自变量的取值范围,当图象有端点时,要注意端点是否有等号,有等号时画实心点,无等号时画空心圆圈.【例4】函数y =1x +x 的图象在( ) A .第一象限 B .第一、三象限C .第二象限D .第二、四象限解析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.⎩⎨⎧2x<3(x -3)+1,①3x +24>x +a.② 由①得x >8,由②得x <2-4a ,其解集为8<x <2-4a.因不等式组有四个整数解,为9,10,11,12,则⎩⎨⎧2-4a>12,2-4a≤13,解得-114≤a<-52. 故选B.【例5】[2013·苏州] 在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直到铁块完全露出水面一定高度.下图能反映弹簧秤的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是 ( )解析:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选C.方法点拨:观察图象时,首先弄清横轴和纵轴所表示的意义,弄清哪个是自变量,哪个是因变量;然后分析图象的变化趋势,结合实际问题的意义进行判断.考点七、自变量取值范围的确定方法求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义.1.自变量以整式形式出现,它的取值范围是全体实数.2.自变量以分式形式出现,它的取值范围是使分母不为零的实数.3.当自变量以偶次方根形式出现,它的取值范围是使被开方数为非负数;以奇次方根出现时,它的取值范围为全体实数.4.当自变量出现在零次幂或负整数幂的底数中,它的取值范围是使底数不为零的数5.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.【例6】(1)(2010·遵义)函数y =1x -2的自变量x 的取值范围是________. (2)(2010·济宁)在函数y =x +4中,自变量x 的取值范围是________.(3)(2010·黄冈)函数y =x -3x +1的自变量x 的取值范围是________. (4)(2010·玉溪)函数y =x x +1中自变量x 的取值范围是________. 【解答】(1)由x -2≠0得x≠2.(2)由x +4≥0,得x≥-4.(3)由⎩⎨⎧ x -3≥0,x +1≠0,得x≥3. (4)由x +1>0,得x >-1.。
专题三函数 3.1平面直角坐标系、函数图象-2021年中考数学一轮复习课件
求真 至善
1. 平面直角坐标系、函数图象
知识梳理
一.平面直角坐标系及其相关概念: 1.定义:在平面内,两条互相垂直且有公共原点的数轴组成 平面直角坐标系.
平面直角坐标系内的点和有序实数对成一 一对应关系. 2.坐标轴、原点、象限: 水平的数轴称为x 轴或横轴; 竖直的数轴称为y 轴或纵轴; x 轴和y 轴统称为坐标轴; 两坐标轴的交点为坐标原点; 两条坐标轴把坐标平面分成四个部分, 分别称第 一 、二 、三 、四象限 , 坐标轴上的点不属于任何象限.
D. (-4,3)
(2)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长
度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( A).
A. (-1, 1) B. (-1,-2) C. (-1, 2) D. (1, 2)
知识梳理
七.函数: 1.常量和变量: 在某一变化过程中, 可以取不同数值的量叫 做变量;保持数值不变的量叫做常量. 2. 函数、自变量、函数值:一般地,设在某一变化过程中有 两个变量x和y,若对于x的每一个确定的值,y 都有唯一确定 的值与其对应,则y是x的函数,x 是自变量.这个唯一确定的 值叫做函数值
(5)点A(-3,4)到x轴的距离为 4 , 到y轴的距离为 3 .
(6)已知坐标平面内的点 A (2 ,6 ) ,B (2 ,- 2 ) , 则 AB的长
等于 8 ;
若点M在直线AB上 , 且BM=6,则点M的坐标为
.
(2,4)和(2,-8)
知识梳理
六.对称点的坐标特征: P1(a,b)关于x轴对称的点为P2(a,-b),
3.函数的表示法与图象: (1)解析法;(2)列表法;(3)图像法.
由函数的解析式作函数的图象, 一般步骤是 :
2014年新湘教版八下3.1平面直角坐标系
横坐标符 号
纵坐标符号
在第二象限
在第三象限 在第四象限 在x 轴上 在正半轴上 在负半轴上
+ _ _ + + _ 0 0 0
+ + _ _ 0 0 + _ 0
在y 轴上
在正半轴上
在负半轴上 原点
练一练
下列各点分别在坐标平面的什么位置上? • A(3 ,2 )
• • • • • B(0,-2) C(-3,-2) D(-3,0) E(-1.5,3.5) F(2,-3)
A(0, 2 )
2
C
3 4 5 6
x
-3
-4 -5 -6
F
D
y (2)请用彩色 笔和直尺将其 中七个点按照 A→B→C→D→ E→F→H→A的 顺序依次连接 起来; (3)请为你的 作品画出点睛 之笔,并写出 该点R的坐标.
6 5 4 B 3 2 A H
M
C
R(-3,0)
-1
1 0 1 2 -1 E -2 -3 -4 D -5 -6 F 3 4 5 6
四 象限;点(-1.5,-1)在第_______ 三 象 3.点(3,-2)在第_____
y 轴上;若点(a+1,-5)在y轴上,则 限;点(0,3)在____ -1 a=______.
4.已知点(5,1),(0,2),(-3,0),(0,0), (0,-1),其中在y轴上的点的个数是( D).
(A)0 (B)1 (C)2 (D)3 5 5.若点P(3,m-5)在x轴上,则m=_____ 6.(1)已知点A(-4 , 0),B(2 , 0), 则线段AB的长是____, 6 ( -1,0) 线段AB的中点的坐标是 _________. (2)已知点P(0 , 3),Q(0 , -1), 4 则线段PQ的长是____
平面直角坐标系对称变换
平面直角坐标系对称变换【摘要】平面直角坐标系对称变换是一种重要的数学概念,通过在平面直角坐标系下进行对称变换,可以改变图形的位置、形状和大小。
本文将介绍关于平面直角坐标系的基本概念,平面对称变换的定义以及其意义,同时讨论了各种对称变换方法和如何进行平面直角坐标系对称变换。
对称变换在几何学和工程学等领域有着广泛的应用,能够简化问题的求解过程并提高计算效率。
平面直角坐标系对称变换不仅在理论研究中具有重要意义,而且在实际应用中也起到了重要的作用。
展望未来,随着科学技术的不断发展,平面直角坐标系对称变换将继续在更多领域展现其重要性,成为数学研究和工程实践中不可或缺的一部分。
【关键词】平面直角坐标系对称变换、对称变换、基本概念、定义、意义、方法、应用领域、重要性、未来发展。
1. 引言1.1 什么是平面直角坐标系对称变换平面直角坐标系对称变换是指在平面直角坐标系中,通过某种规则将图形围绕某个中心点或轴进行对称操作,从而得到新的图形。
这种变换通常可以分为对称轴对称和点对称两种形式。
对称轴对称是指当图形绕着一条直线旋转180度时,图形和原图形完全一致;而点对称是指当图形围绕一个点旋转180度时,图形和原图形完全一致。
在平面几何学中,对称变换是一种非常重要的变换方式。
通过对称变换,我们可以更好地理解图形的性质、特点和关系。
对称变换可以帮助我们简化问题,找出规律,从而更加高效地解决一些复杂的数学问题。
对称变换还可以美化图形,增加图形的美感和艺术性,使得图形更加优雅和动人。
平面直角坐标系的对称变换是一种非常有趣且实用的数学概念,对于我们理解几何学、数学建模、图形设计等领域具有重要意义。
通过对称变换,我们可以更深入地探索数学世界的奥秘,同时也可以在实际应用中发挥其巨大的作用。
1.2 对称变换的重要性对称变换在平面直角坐标系中起着重要的作用,它能够帮助我们更好地理解和描述几何形体的特性和性质。
通过对称变换,我们可以将一个图形沿着某条直线、某个点或某个平面进行镜像、旋转或平移,从而得到新的图形。
(完整word版)平面直角坐标系知识点总结
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
《3.1平面直角坐标系》作业设计方案-初中数学湘教版12八年级下册
《平面直角坐标系》作业设计方案(第一课时)一、作业目标通过本课时的作业设计,使学生能够:1. 掌握平面直角坐标系的基本概念,包括坐标轴、原点等;2. 理解坐标系中点的表示方法,能准确运用平面直角坐标系中的基本知识点进行简单点的标示和求取;3. 培养学生利用坐标系分析图形的能力和初步的逻辑思维。
二、作业内容作业内容主要包括以下部分:1. 基础知识练习:要求学生回顾并熟记平面直角坐标系的基本概念,如坐标轴、象限、点的坐标等,并完成相关概念的填空题和选择题。
2. 点的坐标标示:提供一系列的图形(如线段、点等),要求学生根据图形在平面直角坐标系中的位置,正确标示出点的坐标。
3. 计算与判断:通过给出已知的点或线段的坐标,让学生计算其位置信息(如距离、角度等),并判断点所在的象限。
4. 拓展应用:设计一些实际情境中的问题,让学生利用平面直角坐标系进行问题的解决,如通过给定的地点信息,标示出其在地图上的位置等。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案;2. 作业中涉及的每个知识点都应理解透彻,并能灵活运用;3. 计算过程要清晰,答案要准确无误;4. 拓展应用部分需结合实际,进行独立思考和解答;5. 作业完成后需进行自我检查,确保无误后再提交。
四、作业评价1. 评价标准:根据学生完成作业的准确性、计算过程的清晰度、答案的完整性以及是否独立完成等方面进行评价;2. 评价方式:采取教师评价和同学互评相结合的方式,注重学生自评与反思;3. 评价反馈:及时将评价结果反馈给学生,指出其不足之处和需要改进的地方。
五、作业反馈1. 对于学生完成的作业,教师需认真审阅,并给予针对性的评价和建议;2. 对于普遍存在的问题,需在课堂中进行集中讲解和指导;3. 对于表现优秀的学生,应及时给予表扬和鼓励,激发其学习积极性;4. 将学生的优秀作业作为范例展示,供其他学生学习和借鉴。
通过以上是《平面直角坐标系》的作业设计方案,该方案以提升学生的基本概念掌握、运用能力及逻辑思维能力为目标,结合实际情境进行设计,旨在帮助学生更好地理解和掌握平面直角坐标系的相关知识。
【中考一轮复习】平面直角坐标系与函数课件
A.(1,3) C.(2,1)
B.(2,-1) D.(3,1)
N A
C
B M
拓展提升------坐标的几何意义
1.在平面直角坐标系中,A,B,C,D,M,N的位置 M A
B
如图所示,若点M的坐标为(-2,0),点N的坐标
为(2,0)则在第二象限内的点时__A___.
O
2.如图,在平面直角坐标系中,一动点从原点O C
解:由题意得,x+3≠0,4-x≥0,解得x≤4且x≠-3,故选:D
归纳拓展
(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.
当堂训练---函数的有关概念
1.函数 y =
x+3 x -1
中自变量的取值范围是(
地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度。
表示方法
典型例题---坐标的几何意义
【例2-1】在平面直角坐标系中,点P(4,-3)到x轴的距离是( B )
A.4
B.3
C.5
D.-3
解:在平面直角坐标系中,点P(4,-3)到x轴的距离为3.
故选:B.
典型例题---坐标的几何意义
【例2-2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点
A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O2 在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的
直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,
使A点与B点关于原点对称,则这时C点的坐标可能是( B )
专题3.1 平面直角坐标系与函数-2022年中考数学第一轮总复习课件(全国通用)
子沿墙面与地面滑下,以地面为x轴,墙面为y轴建立平面直角坐标系,设点M
的坐标为(x,y)(x>0),则y与x之间的函数关系用图象表示大致是(
L
L
y
y
y
y
C
)
M
M
N
N
O
xO
xO
xO
x
A
B
C
D
4.如图,AC经过圆心O,交⊙O于点的D,AB与⊙O相切于点B.若∠A=x(0º<x
<90º),∠C=y,则y与x之间的函数关系图象是( A )
0 0.5 1 A
0 0.5 1 B
0 0.5 1 C
0 0.5 1 D
名师点拨
象限点:第一象限_(_+_,_+_),第二象限(_-_,_+_)_,第三象限_(_-_,_-_),第四象限(_+_,_-_)_,
特殊位置点:x轴上(_x_,_0_)_, y轴上_(_0_,_y_)_.
平行x轴:纵__坐__标__相同,横__坐__标___为不相等的实数;
知识点三
M 4/3 b a x
强化训练
函数及其图象
知识点三
2.如图①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚.在
这个过程中,小球的运动速度v与运动时间t的函数图象如图②,则该小球的 运动路程y与运动时间t之间的函数图象大致是( C )
v
y
y
y
y
图①
O 图② t O A t O B t O C t O D t
起来,当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终
点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与 故事情节相吻合的是( C )
初二数学平面直角坐标系解题思路
初二数学平面直角坐标系解题思路摘要:1.初二数学平面直角坐标系的概念2.平面直角坐标系的基本要素3.解题思路和方法3.1 确定坐标轴3.2 确定单位长度3.3 画出坐标轴3.4 确定点的坐标3.5 解方程求解坐标4.举例说明5.总结正文:初二数学平面直角坐标系解题思路平面直角坐标系是数学中一个重要的概念,它在几何、代数、解析几何等领域都有广泛的应用。
对于初二学生来说,掌握平面直角坐标系的基本知识和解题方法是非常重要的。
本文将从平面直角坐标系的概念、基本要素出发,详细讲解解题思路和方法。
一、初二数学平面直角坐标系的概念平面直角坐标系是由两条互相垂直的数轴(x 轴、y 轴)组成的平面。
在这个平面上,每个点都可以用一个有序数对(x, y) 来表示,其中x 表示点在x 轴上的坐标,y 表示点在y 轴上的坐标。
二、平面直角坐标系的基本要素1.坐标轴:平面直角坐标系有两条坐标轴,分别为x 轴和y 轴。
它们互相垂直,分别表示水平方向和垂直方向。
2.单位长度:在平面直角坐标系中,通常取某个方向为单位长度,如1 个单位长度表示1 个长度单位。
3.坐标原点:坐标原点是x 轴和y 轴的交点,用(0, 0) 表示。
它是平面直角坐标系中点的坐标的基准点。
4.正方向:通常取向右为x 轴的正方向,向上为y 轴的正方向。
三、解题思路和方法1.确定坐标轴:根据题目给出的信息,确定x 轴和y 轴的方向。
2.确定单位长度:根据题目给出的信息,确定一个单位长度表示多少长度单位。
3.画出坐标轴:在纸上画出x 轴和y 轴,并标出它们的正方向。
4.确定点的坐标:根据题目给出的信息,确定点在x 轴和y 轴上的坐标。
5.解方程求解坐标:如果题目给出的是方程,可以通过解方程求解点的坐标。
四、举例说明例如,题目给出如下信息:点A 的坐标是(2, 3),点B 的坐标是(4, 5),求线段AB 的中点C 的坐标。
解题步骤如下:1.确定坐标轴:x 轴向右,y 轴向上。
平面直角坐标系中线段长度公式
平面直角坐标系中线段长度公式在咱们的生活中,距离这件事真的是无处不在。
想象一下,你要从家里跑到超市买零食,结果发现这段路得走多远,心里可就得打个小鼓了。
那怎么办呢?今天咱们就来聊聊平面直角坐标系中线段的长度公式,简单、明了,让你也能成为“距离计算小能手”!1. 什么是平面直角坐标系?首先,大家知道什么是平面直角坐标系吗?没错,就是咱们在数学课上见过的那个“十字架”。
想象一下,一个大大的“十”字,两条轴线分别是横的X轴和竖的Y轴。
任何一个点在这个坐标系里,都可以用两个数来表示,分别代表它在X轴和Y轴上的位置。
就好比你告诉我,你家在“东南西北”的哪个方位一样。
1.1. 坐标的表示法在这个坐标系中,每一个点都可以用“(x, y)”来表示,比如“(3, 4)”。
这就意味着这个点离Y轴有3个单位,离X轴有4个单位。
想象一下,咱们就像是把每个地方都标上了地址,方便找人。
嘿,数学不就是个“寻宝游戏”吗?1.2. 距离的概念说到距离,大家肯定会想起“千里之行,始于足下”这句古话。
没错,距离就是从一个点到另一个点的直线长度。
就像你和朋友约好了在公园见面,但偏偏你们的起点不在同一个地方,这时候你得算算两人之间的距离,才能准时到达。
这不就是我们今天要解决的难题吗?2. 线段长度公式的推导接下来,咱们就来聊聊线段长度公式。
公式听起来可能有点复杂,但其实它就像是一个简单的食谱。
只要掌握了配料,做起来就不难了。
线段的长度公式其实就是:L = sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 。
是不是看起来有点吓人?别着急,咱们一步步来。
2.1. 各个部分的含义这个公式里,“L”代表线段的长度,“(x_1, y_1)”和“(x_2, y_2)”就是咱们的两个点。
首先,你得把X轴的坐标相减,再把Y轴的坐标相减,然后把结果平方,最后把这两个平方的和开根号。
就像做一道数学题,慢慢来,绝对不会出错。
2.2. 举个例子想象一下,有两个点,一个在(1, 2),另一个在(4, 6)。
3.1 平面直角坐标系及函数
第三章函数3.1平面直角坐标系及函数学用P23∣【解析】露出水面前排开水的体积不变,受到的浮力不变,依据称重法可知y不变;铁块起先露出水面到完全露出水面时,排开水的体积渐渐变小,依据阿基米德原理可知受到的浮力变小,依据称重法可知y变大;铁块完全露出水面后肯定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.视察知C项正确.6∣(2OI9・湖北孝感)|如图,在AzWC中,N8=90°,Aβ=3cm,BC=6cm,动点P从点A起先沿AB向点8以ICmzS的速度移动,动点Q从点B起先沿BC向点C以2cm/s的速度移动,若RQ两点分别从A y B两点同时动身,P点到达B点时运动停止,则APBQ的面积S随动身时间t的函数关系图象大致是(C )【解析】由题意可得尸6=3TBQ=2f,则APBQ的面积5=;尸8/。
二33"/2,=7+3(视察知C项正确.7.某油箱容量为601.的汽车,加满汽油后行驶了100km时,油箱中的汽油大约消耗了最假如加满汽油后汽车行驶的路程为Xkm,油箱中剩油量为y1.,则y与X之间的函数解析式和自变量的取值范围分别是(D)Aj=O.⑵κ>0B.y=60-0.12x,x>0C.y=O.12x,0≤x≤500D.y=60-0.12x,0≤x≤500【解析】依据题意得汽车行驶每千米耗油0.l2UZy=60-0.12r,0≤Λ≤500.8.点Pι(-2,3)与点P 2关于X 轴对称,则点Pi 的坐标是(2-3). 【解析1.点P ∣(-2,3)与点8关于X 轴对称,故点Pi 的坐标是(2-3).9∙∣(2019•亳州风华中学期末)|油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Qkg)与流出时间Kmin)之间的函数关系式是0=30-0.5/:自变量/的取值范围是_0W/W60.【解析】总油量减去流出的油量,得Q=30-0.5∕;剩余油最为非负数,得30-0.5彦0,解得r≤60,时间为非负数,得/20,即自变号t 的取值范围是0≤∕≤60.10∙k2019∙四川资和如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在Λ∙轴上,点Ai 在第一象限,且OA=I ,以点Ai 为直角顶点04为一条宜角边作等腰直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习
1.由点找坐标:指出下图中各点的坐标。
2.由坐标找点:在平面直角坐标系中找到表示A(3,-2)的点。
3.请你根据下列各点的坐标判定它们分别在第几象限或在什么坐标轴上?
A(-5,2);B (3,-2);C(0,4);D(-6,0);E(1,2); F(0,0);G(5,0);H(-6,-4);M (0,-3)。
4.平面内点的坐标是()
A、一个点
B、一个图形
C、一个实数
D、一对有序实数5.在平面直角坐标系内,下列说法错误的是()
A.原点O不在任何象限内
B.原点O的坐标是0
C.原点O既在X轴上也在Y轴上
D.原点O在坐标平面内
6.过点B(-3,-1)作x轴的垂线,垂足对应的数是,过点B作y 轴的垂线,垂足对应的数是。
7.点A(3, a )在x 轴上,点B(b,4)在y轴上,则a= ,b= 。
8.如图1所示,点A的坐标是 ( )
A.(3,2);
B.(3,3);
C.(3,-3);
D.(-3,-3)
9.如图1所示,横坐标和纵坐标都是负数的点是 ( )
A.A点
B.B点
C.C点
D.D点
10.如图1所示,坐标是(-2,2)的点是 ( )
A.点A
B.点B
C.点C
D.点D
11. 在平面直角坐标系内,下列各点在第四象限的是( )
A.(2,1)
B.(-2,1)
C.(-3,-5)
D.(3,-5)
12.若点M的坐标是(a,b),且a>0,b<0,则点M在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
13.若点P(a,b) 在第一象限内,则a,b的取值范围是()
A.a>0,b<0
B.a>0,b>0
C.a<0,b>0
D.a<0,b<0。