第八章-统计学

合集下载

统计学答案第八章

统计学答案第八章

三、选择题1 某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。

某天测得25根纤维的纤度的均值=1。

39,检验与原来设计的标准均值相比是否有所变化,要求的显著性水平为α=0.05,则下列正确的假设形式是()。

A.H0:μ=1.40,H1:μ≠1.40 B。

H0:μ≤1。

40,H1:μ>1。

40C。

H0:μ〈1.40,H1:μ≥1。

40 D。

H0:μ≥1.40,H1:μ〈1。

402 某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为().A. H0:π≤0。

2,H1:π〉0。

2B. H0:π=0.2,H1:π≠0。

2C。

H0:π≥0.3,H1:π〈0.3 D。

H0:π≥0。

3,H1:π<0.33 一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。

随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为32磅,则其原假设和备择假设是().A. H0:μ≤8,H1:μ>8 B。

H0:μ≥8,H1:μ〈8C. H0:μ≤7,H1:μ〉7 D。

H0:μ≥7,H1:μ<74 在假设检验中,不拒绝原假设意味着()。

A。

原假设肯定是正确的B。

原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的5 在假设检验中,原假设和备择假设()。

A.都有可能成立B。

都有可能不成立C.只有一个成立而且必有一个成立D。

原假设一定成立,备择假设不一定成立6 在假设检验中,第一类错误是指().A。

当原假设正确时拒绝原假设B。

当原假设错误时拒绝原假设C。

当备择假设正确时拒绝备择假设 D.当备择假设不正确时未拒绝备择假设7 在假设检验中,第二类错误是指().A.当原假设正确时拒绝原假设B.当原假设错误时未拒绝原假设C。

当备择假设正确时未拒绝备择假设D。

当备择假设不正确时拒绝备择假设8 指出下列假设检验哪一个属于右侧检验()。

统计学第八章课后题及答案解析

统计学第八章课后题及答案解析

第八章一、单项选择题1.时间数列的构成要素是()A.变量和次数 B.时间和指标数值C.时间和次数 D.主词和时间2.编制时间数列的基本原则是保证数列中各个指标值具有()A.可加性 B.连续性C.一致性 D.可比性3.相邻两个累积增长量之差,等于相应时期的()A.累积增长量 B.平均增长量C.逐期增长量 D.年距增长量4.统计工作中,为了消除季节变动的影响可以计算()A.逐期增长量 B.累积增长量C.平均增长量 D.年距增长量5.基期均为前一期水平的发展速度是()A.定基发展速度 B.环比发展速度C.年距发展速度 D.平均发展速度6.某企业2003年产值比1996年增长了1倍,比2001年增长了50%,则2001年比1996年增长了()A.33% B.50%C.75% D.100%7.关于增长速度以下表述正确的有()A.增长速度是增长量与基期水平之比 B.增长速度是发展速度减1C.增长速度有环比和定基之分 D.增长速度只能取正值8.如果时间数列环比发展速度大体相同,可配合()A.直线趋势方程 B.抛物线趋势方程C.指数曲线方程 D.二次曲线方程二、多项选择题1.编制时间数列的原则有()A.时期长短应一致 B.总体范围应该统一C.计算方法应该统一 D.计算价格应该统一E.经济内容应该统一2.发展水平有()A.最初水平 B.最末水平C.中间水平 D.报告期水平E.基期水平3.时间数列水平分析指标有()A.发展速度 B.发展水平C.增长量 D.平均发展水平E.平均增长量4.测定长期趋势的方法有()A.时距扩大法 B.移动平均法C.序时平均法 D.分割平均法E.最小平方法三、填空题1.保证数列中各个指标值的_______是编制时间数列的最主要规则。

2.根据采用的基期不同,增长量可以分为逐期增长量和_______增长量两种。

3.累积增长量等于相应的_______之和。

两个相邻的_______之差,等于相应时期的逐期增长量。

统计学——第八章 统计调查组织与实施

统计学——第八章 统计调查组织与实施

二、调查团队的组成及职责 (一)实施主管的职责
• 实施主管的职责主要有以下几个方面 :
1. 深入了解调查研究项目的性质、目的、以 及具体的实施要求 2. 负责制定实施计划和培训计划 3. 负责挑选实施督导和调查员(如果需要的 话) 4. 负责培训实施督导和调查员 5. 负责实施过程中的管理和质量控制 6. 负责评价督导和调查员的工作
(6)敌意--引起被调查者不强烈不满而影响后续回答。 (7)主办--对主办或赞助方的态度影响回答的客观性。
由于访问员的实际操作不当而产生的偏差。进行监督、
提醒
二、调查实施中的质量控制
1.督导
督导内容 督导方法 工作管理、再培训、财务和后勤管理。 现场指导、质量控制和检查、处理舞弊行为。
四、调查员应掌握的技巧
3.电话调查的技巧。
检验样本的可用性。受电话普及率的影响,抽样时要确定 样本可用。 事先准备好联系表。注明联系人的姓名、性别、电话号码、 调查时间等,以便调查顺利进行。 根据被调查者的背景确定调查的适当时间。可预约时间, 提高回收率。 做好试验性调查以确保被调查者能够理解问题。 调查时尽 量使用口语 在对公司人员进行电话调查时,不要使用职位头衔。 不同 公司可能有不同的称谓。 对公司人员进行调查时应能使对方说出被调查者的名字。 调查中随时通报调查的进展情况。
行动。如询问问题、记录均应标准化。
调查员必须知道的信息
7.调查员偏误:使调查员了解自己行为所致的偏误。 8.应答者的偏误:使调查员了解有应答者为讨好调 查员,会发生伪造的答案。 9.访问程序:掌握问卷及资料记录的程序。 10 .向调查员宣布时间要求、工作纪律等。
对调查员态度的培训
1. 认识自己工作的重要性,强调本次调查的重要性,对社

第八章 假设检验 (《统计学》PPT课件)

第八章  假设检验  (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?

统计学第八章 时间序列分析

统计学第八章 时间序列分析

季节指数
乘法模型中的季节成分通过季节指数来反映。 季节指数(季节比率):反映季节变动的相
对数。 1、月(或季)的指数之和等于1200%(或
400%) 。 2、季节指数离100%越远,季节变动程度
越大,数据越远离其趋势值。
用移动平均趋势剔除法计算季节指数
1、计算移动平均值(TC),移动期数为4或 12,注意需要进行移正操作。
移动平均的结果 4000 3500 3000 2500 2000 1500 1000 500 0
Example 2
移动平均法可以作为测定长期趋势的一种 较为简单的方法,在股市技术分析中有广 泛的应用。比如对某只股票的日收盘价格 序列分别求一次5日、10日、一个月的移动 平均就可以得到其5日、10日、一个月的移 动平均股价序列,进而得到5日线、10日线、 月线,用以反映股价变动的长期趋势。
1987 1800 1992 1980 1997 2880
1988 1620 1993 2520 1998 3060
1989 1440 1994 2559 1999 2700
4000
3500
销售收入
3000
2500
2000
1500
1000
500
0
年份
2000 2001 2002 2003 2004
销售 收入 3240 3420 3240 3060 3600
部分数据
销售 收入
t
1985 1080
1
1986 1260
2
1987 1800
3
1988 1620
4
1989 1440
5
……

2003 3060
19

统计学第八章时间数列

统计学第八章时间数列

2020/1/19
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
2020/1/19
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
n 1
n 1
(5)间隔不相等不连续时点的时点数列
2020/1/19
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
2020/1/19
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型
2020/1/19
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
2020/1/19
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度

统计学第八章

统计学第八章
19
8.1.3 两类错误
项目
没有拒绝H0
拒绝H0
H0为真
1-α(正确)
α(弃真错误)
H0为假
β(取伪错误)
1-β(正确)
假设检验中各种可能结果的概率
20
8.1.3 两类错误
α和β的关系: 1、 α和β的关系就像跷跷板, α小β就大, α大β就小。因为, 要减少弃真错误α,就要扩大接受域。而扩大接受域,就必然导致取 伪错误的可能性增加。因此,不能同时做到犯两种错误的概率都很 小。要使α和β同时变小,唯一的办法就是增大样本量。 α和β两者的 关系就像是区间估计当中可靠性和精确性的关系一样。 2、在假设检验中,大家都在执行这样一个原则,即首先控制犯α错 误原则。
一般来说,在研究问题的过程中,我们想要予以反对的那个结论, 我们就把它作为原假设。
比如,一家研究机构估计,某城市当中家庭拥有汽车的比例超过 30%。为了验证这种估计是否正确,该研究机构随机的抽取了一个样本 进行检验。试陈述用于检验的原假设和备择假设。
解:研究者想要收集证据予以支持的假设是:“该城市中家庭拥有 汽车的比例超过30%”。因此,原假设是总体比例小于等于30%,备择 假设是总体比例大于30%。可见,通常我们应该先确定备择假设,再确 定原假设。
6
8.1.2 假设的表达式
在假设检验中,一般要先设立一个假设(比如从来没做过坏事),然 后从现实世界的数据中找出假设与现实的矛盾,从而否定该假设。所以, 在多数统计教材当中,假设检验都是以否定事先设定的那个假设为目标的。
如果搜集到的数据分析结构不能否定该假设,只能说明我们掌握的现 实不足以否定该假设,但不能说明该假设一定成立。这是假设检验做结论 的时候尤其要注意的一点。比如一个人在数次的观察中都没有干坏事,但 并不说明他从来都没干过坏事。

统计学第8章假设检验

统计学第8章假设检验

市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。

统计学第八章练习题

统计学第八章练习题

第八章相关与回归分析一、填空题8.1.1客观现象之间的数量联系可以归纳为两种不同的类型,一种是_____________ ,另一种是__________________ 。

8.1.2回归分析中对相互联系的两个或多个变量区分为__________________ 和___________ 。

8.1.3 _____________ 是指变量之间存在的严格确定的依存关系。

8.1.4 变量之间客观存在的非严格确定的依存关系,称为_____________________ 。

8.1.5按 ____________ 的多少不同,相关关系可分为单相关、复相关和偏相关。

8.1.6两个现象的相关,即一个变量对另一个变量的相关关系,称为。

8.1.7在某一现象与多个现象相关的场合,当假定其他变量不变时,其中两个变量的相关关系称为____________________________ 。

8.1.8按变量之间相关关系的 _______________ 不同,可分为完全相关、不完全相关和不相关。

8.1.9按相关关系的 ____________________ 不同可分为线性相关和非线性相关。

8.1.10 线性相关中按_________________ 可分为正相关和负相关。

8.1.11 研究一个变量与另一个变量或另一组变量之间相关方向和相关密切程度的统计分析方法,称为__________________ 。

8.1.12当一个现象的数量由小变大,另一个现象的数量也相应由小变大,这种相关称为。

8.1.13当一个现象的数量由小变大,而另一个现象的数量相反地由大变小,这种相关称为。

8.1.14 当两种现象之间的相关只是表面存在,实质上并没有内在的联系时,称之为__________________ 。

8.1.15根据相关关系的具体形态,选择一个合适的数学模型来近似地表达变量间平均变化关系的统计分析方法,称为_____________________ 。

统计学第八章课后作业答案

统计学第八章课后作业答案

第八章练习题
一、单项选择
(1)当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( )。

A.相关关系
B.函数关系
C.回归关系
D.随机关系
(2)相关系数的取值范围是( )。

A. 0≤r ≤1
B. -1<r <1
C. -1≤r ≤1
D. -1≤r ≤0
(3)一元线性回归方程y=12+3.6x,如x每增加1个单位,则y平均增加( )。

A. 12个单位
B. 15.6个单位
C. 3.6个单位
D. 8.4个单位
(4)一元线性回归方程中的两个变量( )。

A.都是随机变量
B.地位是对等的
C.都是给定的量
D.一个是自变量,另一个是因变量
二、多项选择题
(5)相关系数表明两变量之间的关系( )。

A.线性关系
B.因果关系
C.变异关系
D.相关方向
E.相关的密切程度
(6)如果两个变量之间的相关系数是1,则这两个变量是( )。

A.负相关关系
B.正相关关系
C.完全相关关系
D.不完全相关关系
E.零相关
(7)在一元线性回归分析中( )。

A.自变量是可控变量,因变量是随机变量
B.两个变量不是对等的关系
C.利用回归方程,两个变量可以相互推算
D.根据回归系数可判定相关的方向
E.自变量是随机变量,因变量是可控变量
(8)利用一元线性回归方程,可以( )。

A.进行两个变量的互相推算
B.用自变量推算因变量
C.用因变量推算自变量
D.确定两个变量的变动关系
E.研究两个变量之间的密切程度。

统计学_第八章__时间序列分析

统计学_第八章__时间序列分析
第八章 时间序列分析
1978—2003年GDP和最终消费(亿元) 140000 120000 100000 80000 60000 40000 20000 0
年 份 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
GDP 最终消费
4、二者关系 (1)各逐期增长量之和等于相应的累计增长量
an a0 (a1 a0 ) (a2 a1 ) (a3 a2 ) (an an1 )
(2)相邻两期的逐期增长量之和等于相应的 累计增长量;相邻两期的累计增长量之差等于 相应的逐期增长量
(二)平均增长量 1、概念 一段时期内平均每期增加或者减少的绝 对数量。或者说是逐期增长量的序时平均数。 2、计算公式
a0 a1 a 2 a n 或 a n 1
af a f

B、如果是间断时点数列,计算方法为: 『两个假设条件: 一是假设上期期末水平等于本期期初水平; 二是假设现象在间隔期内数量变化是均匀的。』 Ⅰ、间隔期相等的时点数列,采用“首尾(首末)折半 法”计算。 先计算各间隔期的平均数;然后再将这些平均数进行 简单算术平均。例如:
第一节
时间序列分析概述
一、时间序列的概念和作用
(一)、概念: 1、时间序列:将不同时间的某一统计指标数据按照 时间的先后顺序排列起来而形成的统计序列,也称时间 数列或动态数列。 2、基本构成要素(从形式上看): 一是时间顺序(现象所属的时间)。可以是年份、季 度、月份或其他任何时间,称时间要素(常用t表示); 二是不同时间的统计数据(现象在不同时间上的观察 值)。可以是绝对数、相对数、平均数,称数据要素 (常用小写的英文字母a、b、c表示)。

《统计学》第八章国民经济核算体系

《统计学》第八章国民经济核算体系

中国传统国民经济核算体系
❖ 中国传统国民经济核算体系是适应国家高度集中计划管 理的需要,在前苏联、东欧国家的MPS的基础上建立起 来的。
❖ 1951年,有关部门建立了农产品平衡表、工业生产资料 和消费品平衡表,后来,又扩大了这些平衡表的种类。
❖ 1952年国家统计局、各大行政区和各省市统计部门在全 国范围内进行了工农业总产值和劳动就业调查。后来, 在此基础上形成了工农业总产值核算,又逐步从工农业 总产值核算扩大到工业、农业、建筑业、交通运输业和 商业五大物质部门总产值核算。
价 值 运 动
流通 实现产品在 空间的转移
分配 包括初次分 配和再分配
社会总供给 销 售
使用
投资与 消费
购 买 社会总需求
社会再生产
如果总 供给与 总需求 实现平 衡,社 会再生 产就能 顺利实 现。
三、国民经济统计学
(一)、国民经济统计学的研究对象: 是以国民经济为整体,研究其数量
表现和数量关系的方法论的科学。
SNA:
第一时期:1665——1920年 初创阶段 第二时期:1920——1939年 发展较快,核算方法有了 较大的改进。
第三时期:1939——1953年 国民收入统计大有发展, 一是计算国民收入的国家大为增加,二是受到国际组织 的重视。
第四时期:1953——1968年 对原有的旧SNA加以补充 和拓展,建立五大核算和七大帐户的国民经济帐户体系。
MPS
采用限制性生产的概念,只 对五大物质生产部门的产品 进行核算,而把非物质生产 部门排除在外。
主要反映物质产品 的生产、交换和使 用的实物运动。
主要采用平衡 表法,侧重每 个平衡表内部 的平衡,但平 衡表之间的联 系不够严谨。

统计学第八章

统计学第八章

第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法 12.动态数列中,每个指标数值相加有意义的是( )。

A.时期数列 B.时点数列 C.相对数数列 D.平均数数列 13.按几何平均法计算的平均发展速度侧重于考察现象的( ) A.期末发展水平 B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和14.累计增长量与其相应的各逐期增长量的关系表现为( ) A.累计增长量等于相应各逐期增长量之和 B.累计增长量等于相应各逐期增长量之差 C.累计增长量等于相应各逐期增长量之积 D.累计增长量等于相应各逐期增长量之商15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了( )。

统计学第8章 时间序列分析

统计学第8章 时间序列分析

a n 1
a0
(二)增长速度(增减速度)
增长速度=
增减量 基期水平
报告期水平 基期水平 基期水平
报告期水平 基期水平 1
发展速度1
环比增长速度= an an1 an 1
an1
an1
=环比发展速度 - 100%
定基增长速度= an a0 an 1
a0
a0
=定基发展速度 - 100%
例题:
时间序列的构成要素与模型
(构成要素与测定方法)
时间序列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
按月(季)平均法
移动平均法
二次曲线 指数曲线
趋势剔出法
半数平均法
修正指数曲线
最小平方法
Gompertz曲线 Logistic曲线
剩余法
线性趋势
一、移动平均法
(Moving Average Method)
移动平均法(趋势图)
200
汽 150

产 100

(万辆)50
产量 五项移动平均趋势值 五项移动中位数
0
1981
1985
1989
1993
1997
(年份)
图11-1 汽车产量移动平均趋势图
移动平均法特点
1、对原数列有修匀作用,移动项数越大,修匀 作用越强。
2、移动平均时,项数为奇数时,只需一次移动 平均,其平均值作为移动平均项中间一期; 当为偶数时,需再进行一次相邻两平均值的 移动平均。
年份
销售额 逐 期 增 减 量 环比发展速度 定基增长速
(万元) (万元)
(%)
度(%)

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

统计学第八章时间数列

统计学第八章时间数列
环比增长速度=逐期增长量/前一期水平
=(报告期水平-前一期水平)/前一期水平 =环比发展速度-1(或100%)
发展速度与增长速度
2、定基增长速度。 定基增长速度是报告期的累计增长量与 某一固定基期水平之比,说明现象在较 长时间内总的增长速度。公式如下:
定基增长速度=累计增长量/某一固定期水平 =报告期水平-某一固定期水平)/某一固定期 水平 =定基发展速度-1(或100%)
1、移动平均法。 移动平均法是对原时间数列逐项求 序时平均数,平均项数固定,并逐 项移动得出由这些平均数构成的新 数列,它可以消除某些因素及随机 因素的影响,显示出现象的长期趋 势。
测定长期趋势的方法
设时间数列的水平顺次为: a1,a2,a3, an 若取三项平均移动平均形成的新数 列为:
a1 a 2 a 3 a 2 a3 a 4 a2 , a3 , 3 3
第八章 时间数列
第一节 第二节 第三节 第四节 时间数列概述 时间数列的水平指标 时间数列的速度指标 动态数列的因素分析
第八章 时间数列
第一节 时间数列概述 一、时间数列的概念及作用 二、时间数列的种类 三、编制时间数列的原则
时间数列的概念及作用
一)时间数列的概念
时间数列亦称动态数列,是将反映某现象的 统计指标在不同时间上的数值,按时间先后 顺序排列而形成的一种数列;如:
动态数列影响因素及其分解 模型
3、循环变动(以C表示) 循环变动是指现象以若干年为一周 期,近乎规律性的盛衰交替变动。 如经济危机就是循环变动,每一循 环周期都要经历危机、萧条、复苏 和高涨四个阶段。
动态数列影响因素及其分解 模型
4、随机变动(以I表示) 随机变动亦称不规则变动或剩余变 动,是动态数列除了上述三种变动 之外剩余的一种变动,是偶然因素 引起的一种随机波动。如自然灾害、 战争等无法预见的因素引起的波动。

统计学8章

统计学8章

三、平均发展水平
又称序时平均数或动态平均数,是时间数 列中各项指标值的平均数。它将现象在不同时 间上的数量差异抽象化,从动态上反映现象在 一段时间内的一般发展水平。 现象在不同时间上的发展变化总是不平衡 的,在动态分析中序时平均数可以用来修匀时 间数列,消除现象在短时间内的波动,使时间 数列能更明显更集中地反映出现象的发展变化 方向、程度和趋势。序时平均数还广泛用于对 比不同单位,不同地区,不同部门乃至不同国 家在某一时间内发展变化的一般水平。
(二)相对指标时间数列
是由不同时间上的同类相对数按先后顺 序排列而成的动态数列,用来说明现象之间 的数量对比关系或相互联系的发展变化过程, 能更清晰地表明某些现象数量对比关系的发 展变化及规律性。 各个指标都是相对数,其计算基础不同, 不能直接相加。
(三)平均指标时间数列
是由不同时间上的同类平均指标按先后 顺序排列而成的动态数列,可用以分析某一 现象的一般水平的变化过程和发展趋势。
(2)当已知分子数列和相对指标时间 数列时,应采用加权调和平均法。
a a 由于 c , 则: b c b
而 所以
a a c b b
a c a c
2. 分子数列、分母数列都是时点数列
如果分子数列和分母数列都是时点数列, 当两个时点数列的资料是逐日记录的,以日 为间隔依次排列时,就可视为连续的时点数 列,可用简单算术平均法分别计算分子数列 和分母数列的序时平均数,再求得相对指标 时间数列的序时平均数。
动态平均数所组成的时间数列。由于这两种
时间数列性质不同,计算序时平均数的方法 也不同。
1. 根据一般平均数所组成的时间数列 计算序时平均数
由于该种时间数列中每个指标都是平均 数,不能直接相加,必须求出分子数列的序 时平均数和分母数列的序时平均数,用两者 对比,才可求出一般平均数时间数列的序时 平均数。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。

统计学答案第八章

统计学答案第八章

三、选择题1 某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。

某天测得25根纤维的纤度的均值x=1.39,检验与原来设计的标准均值相比是否有所变化,要求的显著性水平为α=0.05,则下列正确的假设形式是()。

A.H0:μ=1.40,H1:μ≠1.40B. H0:μ≤1.40,H1:μ>1.40C. H0:μ<1.40,H1:μ≥1.40D. H0:μ≥1.40,H1:μ<1.402 某一贫困地区估计营养不良人数高达20%,然而有人认为这个比例实际上还要高,要检验该说法是否正确,则假设形式为()。

A. H0:π≤0.2,H1:π>0.2B. H0:π=0.2,H1:π≠0.2C. H0:π≥0.3,H1:π<0.3D. H0:π≥0.3,H1:π<0.33 一项新的减肥计划声称:在计划实施的第一周内,参加者的体重平均至少可以减轻8磅。

随机抽取40位参加该项计划的样本,结果显示:样本的体重平均减少7磅,标准差为32磅,则其原假设和备择假设是()。

A. H0:μ≤8,H1:μ>8B. H0:μ≥8,H1:μ<8C. H0:μ≤7,H1:μ>7D. H0:μ≥7,H1:μ<74 在假设检验中,不拒绝原假设意味着()。

A.原假设肯定是正确的B.原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的5 在假设检验中,原假设和备择假设()。

A.都有可能成立B.都有可能不成立C.只有一个成立而且必有一个成立D.原假设一定成立,备择假设不一定成立6 在假设检验中,第一类错误是指()。

A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时未拒绝备择假设7 在假设检验中,第二类错误是指()。

A.当原假设正确时拒绝原假设B.当原假设错误时未拒绝原假设C.当备择假设正确时未拒绝备择假设D.当备择假设不正确时拒绝备择假设8 指出下列假设检验哪一个属于右侧检验()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章
10级工管三班——王飞—2010302360124
8.4
解:H0:μ=100;H1:μ≠100 经计算得:x =99.9778 S =1.21221
检验统计量:
x t =
-0.055
当α=0.05,自由度n -1=9时,查表得()29t α=2.262。

因为t <2t α,样
本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常。

8.5
解:H0:π≤0.05;H1:π>0.05
已知: p =6/50=0.12
检验统计量:
Z =
=2.271
8.6
解:H0:μ≤2500;H1:μ>
2500
x t μ-==5000/ 15=1.549<t 0.05(14)
所以不能拒绝原假设。

8.8
解:H0:σ2≤100H1:σ2>100
x =63 s=14.69
x 2=(9−1)×14.69=1.1752>x 1−0.052(8)
所以拒绝原假设。

8.10
解:建立假设
H0:μ1-μ2=0 H1:μ1-μ2≠0
总体正态,小样本抽样,方差未知,方差相等,检验统计量
x x t -=
根据样本数据计算,得1n =12,2n =12,1x =31.75,1s =3.19446,2x =28.6667,2s =2.46183。

()()221112212112p n s n s s n n -+-=+-

()()22
1210.922161210.7106712122-⨯+-⨯+-=
8.1326 x x t -==2.648
α=0.05时,临界点为()2122t n n α+-=()0.02522t =2.074,此题中t >2t α,
故拒绝原假设,认为两种方法的装配时间有显著差异。

8.12 解:H0:μ≤60;H1:μ>60
已知:x =68.1 s=45
由于n=144>
30,大样本,因此检验统计量:
x z
= 2.16
由于x >μ,因此P 值=P (z ≥2.16)=1-()2.16φ,查表的()2.16φ=0.9846,
P 值=0.0154
由于P >α=0.01,故不能拒绝原假设,说明贷款的平均规模没有明显地超过60万元。

8.15解:首先进行方差是否相等的检验:
建立假设
H0:21σ=
22σ;H1:21σ≠22σ n1=25,
21s =56,n2=16,22s =49 21
2
2s F s ==5649=1.143
当α=0.02时,()224,15F α=3.294,()1224,15F α-=0.346。

由于()12
24,15F α-
<F <()224,15F α,检验统计量的值落在接受域中,所以接受原假设,说明总体方差无显著差异。

检验均值差:
建立假设
H0:μ1-μ2≤0 H1:μ1-μ2>0
总体正态,小样本抽样,方差未知,方差相等,检验统计量
x x t -=
根据样本数据计算,得1n =25,
2n =16,1x =82,21s =56,2x =78,22s =49 ()()2211122
12112p n s n s s n n -+-=+-=53.308
x x t -==1.711
α=0.02时,临界点为()122t n n α+-=()0.0239t =2.125,t <t α,故不能拒绝
原假设,不能认为大学中男生的学习成绩比女生的学习成绩好。

相关文档
最新文档