大学物理C1练习册--振动波动
大学物理习题解答8第八章振动与波动(1)
第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。
· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,ω 为角频率,(ωt+ϕ)称为谐振动的相位,t =0时的相位ϕ 称为初相位。
· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。
2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。
· 阻尼振动的动力学方程为222d d 20d d x x x t tβω++= 其中,γ是阻尼系数,2mγβ=。
(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。
(2) 当22ωβ=时,不再出现振荡,称临界阻尼。
(3) 当22ωβ<时,不出现振荡,称过阻尼。
4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。
· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。
大学物理A-振动波动练习题
8*、一平面简谐波,其振辐为A,频率为,沿X轴正向传播.设
t=t0时刻波形如所示.则X=0处质点振动方程为:
(A) y =Acos[2 (t +t0) + /2]; (B) y =Acos[2 (t -t0) + /2]; (C) y =Acos[2 (t -t0) - /2]; (D) y =Acos[2 (t -t0) + ]。
答案:[(C)]
4、图a为某质点振动图线,其初相记为1,图b为某列行波在
t=0时的波形曲线,0点处质点振动的初相记为2;图C为另一
行波在t=T/4时刻的波形曲线,0点处质点振动的初相为3,
则:
(A) 1 =2 =3 = / 2;
Y
(B) 1 =3 /2,2 =3 = / 2 ;
(C) 1 =2 =3 = 3 /2 ; (D) 1 =3 /2,2 = /2 ,3 =0 。
8m
6m
X
C
B
A
答案.:y =510 -2 cos( 4 t+0.2 x);
y =510 -2 cos( 4 t+0.2 x -1.2 ); y =510 -2 cos( 4 t-2.8 )。
11*、一平面简谐波在空中传播。己知波线上P点的振动规律为: y =Acos (t + );根据图中所示两种情况,分别列出以O点为 原点时的波动方程。对于图a是: 对于图b是:
3
Байду номын сангаас
(D)0 =- /2,2 = /2 ,3 = 。 0 1 2 4
u X(m)
答案:[(C)]
7*、一质点沿Y方向振动,振辐为A,周期为T,平衡位置在坐标原 点,己知t=0时刻质点向y轴负方向运动,由该点发出的波波长为, 则沿X轴正向传播的简谐波波动方程为:
大学物理振动与波练习题与答案
大学物理振动与波练习题与答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。
求以上各种情况的谐振动方程。
【解】:π=π=ω45.02 )m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π=(3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。
(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。
【解】:振幅相同,频率和初相不同。
虚线: )2t 21cos(03.0x 1π-π= 米实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米试用旋转矢量法求出合振动方程。
【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。
大学物理题库-振动与波动
振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。
当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
大学物理振动波动例题习题
振动波动一、例题(一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。
2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。
在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。
已知原点的振动曲线如图所示。
求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差。
3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。
S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。
大学物理习题详解—振动与波动部分
第十二章 机械振动简谐振动12.1 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T ;(B )1T ;(C )1T /2;(D )1T /2 ;(E )1T /4. [ ] 答:(C )分析:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
弹簧的弹力大小取决于弹簧的形变,在伸长相同的长度x 的情况下,弹簧越短,其变形越大,弹力f 也越大。
而胡克定律为:f kx =,即 fk x=,因此弹簧变短后弹性系数k 增大。
12T = 22k k =,下端挂一质量为12m 的物体,则系统振动周期2T 为: 2T 1112222T ⎛=== ⎝ 12.2 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线; (B )曲线2、1、3分别表示x 、v 、a 曲线; (C )曲线1、3、2分别表示x 、v 、a 曲线; (D )曲线2、3、1分别表示x 、v 、a 曲线; (E )曲线1、2、3分别表示x 、v 、a 曲线.第12. 3题图v (a)(b)t答:(E )分析:位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线;曲线2比1超前了2π,1是位移曲线12.3 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) . 答:(1)X =A cos (t T π2-2π) (2)X =A cos (t T π2+2π) (3)X =A cos (t Tπ2+π). 分析:关键是写出初位相,用旋转矢量法最方便:ωx xx(a )φ= -π/2ω ω(b )φ= π/2(c )φ= π12.4 设振动周期为T ,则a 和b 处两振动的时间差t ∆=____________。
《大学物理C1(上、下)》练习册及答案
大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。
[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。
大连理工大学大学物理振动与波动习题
振动与波动11. 一物体作简谐振动,振动方程为)4/cos(πω+=t A x ,在4/T t =(T 为周期)时,物体的加速度为[ ]。
A . 2/32A ω- B. 2/32A ω C. 2/22A ω- D.2/22A ω 2. 一简谐振动的曲线如图所示,则该振动的周期为[ ]。
A .10s B.11sC. 12sD.13s3. 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的2倍,重物的质量增加为原来的4倍,则它的总能量变为___________。
4. 将质量kg m 2.0=的物体挂在119-⋅=m N k 的轻弹簧下端构成一弹簧振子,假定在弹簧的固有长度处将物体由静止释放,让其作简谐振动,则振动频率为_____,振幅为______。
5. 一质点作简谐运动,振动方程为cm t x )7.0100cos(6ππ+=,某一时刻它在cm x 23=处,且向x 轴的负方向运动,它重新回到该位置所需最短的时间为________s 。
6. 两个简谐振动的曲线如图所示,两个振动的频率之比=21:νν________;加速度的最大值之比=M M a a 21:_______;初始速度之比=2010:v v ________。
7. 如图所示,在平板上放一质量为kg 1的物体,平板沿铅直方向作简谐振动,振幅为cm 2,周期为s 5.0,(1)平板位于最高点时,物体对平板的压力是多大?(2)平板应以多大的振幅振动时,才能使重物跳离平板?8. 弹簧下悬一质量为g 10的小球时,其伸长量为cm 9.4,将小球从平衡位置向下拉cm 1后,再给它向上的初速度15-⋅s cm ,求:小球的振动周期和任意时刻的振移和速度。
9. 如图所示,劲度系数为k的轻弹簧下挂一质量为M的盘子,一质量为m的物体从离盘子h高度处自由下落到盘中并与盘子一起振动,试求:(1)该系统的振动周期。
(2)该系统的振动振幅。
(3)取平衡位置为原点,位移向下为正,并以开始振动时作为计时起点,求振动方程。
振动、波动部分答案(新)
大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
大学物理习题及解答(振动与波、波动光学)
1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
大学物理热学振动和波动习题课.ppt.ppt
2 k 1 2 1 2k 2 1
A A 1A 2
A A A 1 2
简谐波的波函数
一.描述简谐波的物理量 1.波长—波线上相邻同相点的距离。
2.波速u—振动的相的传播速度。 决定于媒质的惯性和弹性。 3.周期T= /u
1 4.频率 v T 2
u
5.波数k = 2 /
二.平面简谐波的波动方程(波函数) Y 已知:波源O的振动方程
y A c o s t 0
则:ox上所有质点的
振动方程
相位比o 落后了 2x/ 振动时间 x/u 比o晚了
O
x
X
或
2 x y A cos t
x y 3 c o s2 ( t ) a 2 0
u
B2 a
b1
x
5 x y 3 cos 2 ( t ) b 1 20 20 5 x y 3 cos 2 ( t ) b 2 20 20
例4 如图所示,S1、S2为相同振动方向、相同频率v, 相同振幅A的相干波源,且S1的位相较S2超前/2,S1、 S2相距7/4。当两列波以相对速度相向而行时,在S1S2 连线上有哪些合成波为节点?
N n P RT RT VN N 0 0
PV
N RT N0
n1 P RT 1 N0
2 n 1 P RT 2 P 2 1 N 0
P P 3 3 1
P P P P 6 P 1 2 3 1
例2 试说明下列各式的物理意义
Nf vdv dN Nf v dv , v 1
合成后仍然是谐振动。式中A和为:
x A cos t
大学物理练习册习题及答案波动学基础
习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。
5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。
已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。
大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)
第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。
假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。
滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。
现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。
取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。
假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。
4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。
与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。
(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。
大学物理--振动波动试题
振动、波动部分1.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) .[ ]2.一劲度系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联,下面挂一质量为m 的物体,如图所示。
则振动系统的频率为(A) m k 32π1. (B) m k2π1. (C) m k 32π1. (D) m k62π1. [ ]3.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T/2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ] 4.一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) /6. (B) 5 /6. (C) -5 /6. (D) - /6.(E) -2 /3.[ ]5.一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为(A) E1/4. (B) E1/2.(C) 2E1. (D) 4 E1 . [ ]6.一质点作简谐振动,其振动方程为)cos(φω+=t A x .在求质点的振动动能时,得出下面5个表达式:(1))(sin 21222φωω+t A m . (2) )(cos 21222φωω+t A m .(3))sin(212φω+t kA . (4) )(cos 2122φω+t kA .(5))(sin 22222φω+πt m A Tmvv21其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.这些表达式中 (A) (1),(4)是对的. (B) (2),(4)是对的. (C) (1),(5)是对的. (D) (3),(5)是对的. (E) (2),(5)是对的 .[ ]7.机械波的表达式为y = 0.03cos6 (t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]8.一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) ]2)(cos[π+'-=t t b u a y . (B) ]2)(2cos[π-'-π=t t b u a y . (C)]2)(cos[π+'+π=t t b u a y . (D)]2)(cos[ππ-'-=t t b u a y . [ ]9.如图所示,两列波长为 的相干波在P 点相遇.波在S1点振动的初相是 1,S1到P 点的距离是r1;波在S2点的初相是 2,S2到P 点的距离是r2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk rr =-12. (B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ. (D ) π=-π+-k r r2/)(22112λφφ. [ ]10.两相干波源S1和S2相距 /4,( 为波长),S1的相位比S2的相位超前π21,在S1,S2的连线上,S1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B) π21. (C) . (D) π23. [ ]11.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A/2处,且向负方向运动,则初相为______.SS 1S 2Pλ/412.一物体作简谐振动,其振动方程为)2135cos(04.0π-π=t x (SI) .(1) 此简谐振动的周期T =__________________;当t = 0.6 s 时,物体的速度v =__________________.13.一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 Hz .t = 0时x = -0.37 cm 而速度等于零,则振幅是_____________________,振动的数值表达式为______________________________.14.一简谐振动的旋转矢量图如图所示,振幅矢量长2 cm ,则该简谐振动的初相为____________.振动方程为______________________________.15.一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图示.设摆动很小,则单摆的左右 两方振幅之比A1/A2的近似值为_______________.16.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x __________(SI)17.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x1 = 10.0 m 和x2 = 16.0 m 的两质点振动相位差为__________.18.一平面简谐波沿x 轴负方向传播.已知 x = -1 m 处质点的振动方程为)c o s (φω+=t A y ,若波速为u ,则此波的表达式为__________.19.在同一媒质中两列频率相同的平面简谐波的强度之比I1 / I2 = 16,则这两列波的振幅之比是A1 / A2 = ____________________.20.两相干波源S1和S2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S1距P 点3个波长,S2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.t0.45 m-21.一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m-1. (1) 求振动的周期T 和角频率 .(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v0及初相 . (3) 写出振动的数值表达式.22.一物体作简谐振动,其速度最大值vm = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ; (2) 加速度的最大值am ;(3) 振动方程的数值式.23. 质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相; (2) 振动的速度、加速度的数值表达式; (3) 振动的能量E ;(4) 平均动能和平均势能.24.一简谐振动的振动曲线如图所示.求振动方程.25.在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.-26.一质点同时参与两个同方向的简谐振动,其振动方程分别为x1 =5×10-2cos(4t + /3) (SI) , x2 =3×10-2sin(4t - /6)(SI)画出两振动的旋转矢量图,并求合振动的振动方程.27.一简谐波沿x轴负方向传播,波速为1 m/s,在x轴上某质点的振动频率为1 Hz、振幅为0.01 m.t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x轴的原点.求此一维简谐波的表达式.28.已知一平面简谐波的表达式为)37.0125cos(25.0xty-=(SI)(1) 分别求x1 = 10 m,x2 = 25 m两点处质点的振动方程;(2) 求x1,x2两点间的振动相位差;(3) 求x1点在t = 4 s时的振动位移.29.一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ,波速为u,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O点分别为 / 8和3 / 8 两处质点的振动方程.(3) 求距O点分别为 / 8和3 / 8 两处质点在t = 0时的振动速度.x uOy30.如图所示,S1,S2为两平面简谐波相干波源.S2的相位比S1的相位超前 /4 ,波长 = 8.00 m,r1 = 12.0 m,r2 = 14.0 m,S1在P点引起的振动振幅为0.30 m,S2在P点引起的振动振幅为0.20 m,求P点的合振幅.31.设入射波的表达式为)(2cos1TtxAy+π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式;(2) 合成的驻波的表达式;(3) 波腹和波节的位置.P SS2。
大学物理学振动与波动习题答案
大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x = -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v< 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x= -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f= 0,根据运动方程,可得cos(2)03tTππ-=图6.2所以232f t Tπππ-=±. 显然f 点的速度大于零,所以取负值,解得 t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=. 由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m).4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为图4.3图4.4A===初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1+ k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母(b)图4.5ω,不要将两者混淆.4.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
大学物理习题课3 振动波动
3
1 EP T
T
0
1 2 1 5 kx dt 3.95 10 J E 2 2
大学物理习题课(三)
习题4 在一竖直轻弹簧的下端悬挂一小球,弹簧被 拉长l0 = 1.2 cm而平衡.再经拉动后,该小球在竖直 方向作振幅为A = 2cm的振动,试证此振动为简谐振 动;选小球在正最大位移处开始计时,写出此振动
π 2πr2 2πr1 π 4 λ λ 4
S2
2π
S1
r1
P
r2
2 A ( A12 A2 2 A1 A2 cos ) 0.464 m
大学物理习题课(三)
习题12 图中A、B是两个相干的点波源,它们的振动 相位差为P(反相).A、B相距 30 cm,观察点P和 B点相距 40 cm,且.若发自A、B的两波在P点处最 大限度地互相削弱,求波长最长能是多少. P
习题2 一台摆钟每天快1分27秒,其摆长l = 0.995 m, 摆锤可上、下移动以调节其周期.假如将此摆当作质 量集中在摆锤中心的一个单摆来考虑,则应将摆锤向 下移动多少距离,才能使钟走得准确?
解: 周期 T 2
l g
两边对l求导
dl dT 2 l T
钟摆周期的相对误差 = 钟的相对误差
T t 87 s T t 24 60 60 s
习题8 一简谐波,振动周期T = 0.5 s,波长λ=10m, 振幅A = 0.1 m.当 t = 0时,波源振动的位移恰好为 正方向的最大值.若坐标原点和波源重合,且波沿 Ox轴正方向传播,求: (1)此波的表达式; (2)t1 = T/4时刻,x1= λ/4处质点的位移; (3)t2 = T/2时刻,x1= λ/4处质点振动速度. (1)此波的表达式 解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 2 2
解: 2 cm A
2 1 s T 4s T 2
X(cm)
C1
2 t 0, x0 0, v0 0 0 O 2 x 2cos t cm v sin t cm /s 2 2 2 2
A、B、C为正值常量,则:(
A 波速为C
)
2 C 波长为 C
1 B 周期为 B
C1
x 解:与波动方程比较系数 y A cos (t ) u 2 2
B T T B B u T C C
2 D 角频率为 B
u
2
2 C
C1
T 解:(1) t t1 2 2 4 (2) t t2 T 6 6 12
T (3)t3 t2 t1 6
A
A
振动波动练习题(一) 二、3
大 学 物 理 练 习 册 振 动 波 动
已知两个简谐振动的振动曲线如图所示.两简谐振动 的最大速率之比为_________________。
大 学 物 理 练 习 册 振 动 波 动
(二)
两个同方向、同频率、等振幅的简谐振动合成后振幅 仍为A,则这两个分振动的相位差为( ) A 60 0 B 90 0 C 1200 D 1800
C1
解:
答案:C
大 学 物 理 练 习 册 振 动 波 动
振动波动练习题(二) 一、2 平面简谐波的表达式为 y A cos(Bt Cx) ,式中
u
C1
解: 动力学表征式:F kx
x 运动学表征式:y A cos[ (t ) ] u x
:波沿传播方向传播距离落后的时间 u
x :波沿传播方向传播距离落后的相位。 u
振动波动练习题(二) 三、1
大 学 物 理 练 习 册 振 动 波 动
如图所示,以P点在平衡位置向正方向运动作为计时零 点,已知圆频率为ω,振幅为A,简谐波以速度u向轴 的正方向传播,试求:(1)P点的振动方程。(2) 波动方程 u
C1
解:(1)
F 60 k 200 N/m k 10s-1 x 0.3 m (2)t 0, x0 10cm, v0 0 0 2 v0 2 (3) A x0 10cm x 10cos 10t cm
振动波动练习题(二) 一、1
3 5cos 10t 5 2 cos(10t ) 5cos 10t 4 2 4
振动波动练习题(二) 二、3
大 学 物 理 练 习 册 振 动 波 动
请写出简谐振动的动力学特征表示式___________, 平面简谐右行波的运动学特征表示式___________。 x x 波动方程 y A cos (t ) 中, u 的物理意义是 x u ____________, 的物理意义是___________ 。
2 1 2k 1 , k 0,1,2时,A极小
振动波动练习题(二) 二、2
大 学 物 理 练 习 册 振 动 波 动
下表中x1、x2为两分振动,x为它们的合振动。根据振 动的合成与分解填写下表 x1 x2 x
C1
7 7 6cos 5t 3cos(5t ) 3cos 5t 6 6 6
解:
2 vm1 A 1 cm/s 2 2 1 2 vm 2 A 2 cm/s -1 -2 4
o
C1
x(cm)
x2 x1
t(s)
3 2 4
1
vm1 : vm2 1:1
振动波动练习题(一) 三、1
大 学 物 理 练 习 册 振 动 波 动
有一个水平的弹簧振子,振幅A=2.0×10-2米,周期 为0.5秒,当 t=0时,(1)物体过χ=1.0×10-2米处, 且向负方向运动,(2)物体过χ=-1.0×10-2米处, 且向正方向运动。请分别用旋转矢量图来表示它们各 自运动的初相位,同时分别写出以上两种运动情况下 的振动表达式
振动波动练习题(二) 三、2
大 学 物 理 练 习 册 振 动 波 动
一平面简谐波在介质中以 u = 20m s-1的传播速度沿轴 正向传播,如图(a)所示。如果波线上A点的振动曲 线如图(b)。试求:(1)A点的振动方程;(2)分 别以A、B、O为原点的波动方程。
5
10m O A (a) 5m B -5 (b) O 0.5 1.5
振动波动练习题(一) 一、1
大 学 物 理 练 习 册 振 动 波 动
一质点作简谐振动.其运动位移与时间的曲线如图所 示.若质点的振动规律用余弦函数描述,则其初相和 圆频率分别为( ) x (m) 5 A , A B , 6 3 3 6 A/2
2
t (s) O 1 C , D , 6 3 答案:B 3 6 解:t 0时,x A 、v 0 (一) 0 0 3 2 5 t 1时,x1 0、v1 0 1 2 6
C1
t/s
解: (1) A点的振动方程:yA 5cos t
x (2) A为原点的波动方程:y A 5cos t 20
大 学 物 理 练 习 册 振 动 波 动
振动波动练习题(二) 三、2 5 xB 5m, B点的振动方程:yB 5cos t 20 x B为原点的波动方程:y A 5cos t 20 4 5
C1
解:
· ·
O
A
x
O
A
x
x 2cos 4 t cm 3
4 x 2cos 4 t 3
cm
振动波动练习题(一) 三、2
大 学 物 理 练 习 册 振 动 波 动
一弹簧在60N拉力下伸长30cm,现把质量为2kg的物 体悬挂在该弹簧的下端并使之静止,再把物体向下拉 10cm,然后由静止释放并开始计时,求:(1)弹簧 的倔强系数;(2)写出初始条件;(3)物体的振动 方程。(以平衡位置为坐标原点,向下为X正方向)
C1
振动波动练习题(一) 一、2
大 学 物 理 练 习 册 振 动 波 动
一质点在轴上作简谐振动,已知t=0时,0 0.01m , x v0 0.03m s-1 , ω 3(s-1 )则质点的简谐振动方程为( )
2 2π 解: v0 2 A x 0.02 cos( 3t ) m A x0 3
C1
4π B x 0.02 cos( 3t ) m 3 2π C x 0.01cos( 3t ) m 3 4π D x 0.01cos( 3t ) m 3
0.02 m
0.02
答案:B
振动波动练习题(一) 一、3
大 学 物 理 练 习 册 振 动 波 动
质点作简谐振动,振幅为A。当它离开平衡位置的位 移分别为 x1 A / 3 和 x2 A/2时,动能分别为 Ek 1 和Ek 2, 则之比值 Ek 2 / Ek1 为( )
振动波动练习题(二) 三、1
大 学 物 理 练 习 册 振 动 波 动
波动方程为:
xd y A cos t u 2
C1
解: t 0, x p 0, v p 0 p
p点的振动方程为:
2
y p A cos t p A cos t 2 O、p点的相位差为: o p d o d u 2 u 原点的振动方程为: d y0 Acos t o A cos t u 2
C1
解: t 0, x p 0, v p 0 p
p点的振动方程为:
2
O
P · d
y p A cos t p A cos t 2 O、p点的相位差为: o p d o d u 2 u 原点的振动方程为: d y0 Acos t o A cos t u 2
C1
解: A A2 A2 2 A A cos 1 2 1 2 2 1
A1 sin 1 A2 sin 2 arctan A1 cos 1 A2 cos 2 2 1 2k , k 0,1,2时,A极大
10m O A (a) 5m B -5 (b) O 0.5 1.5 t/s
C1
解: (1) A点的振动方程:yA 5cos t
x (2) A为原点的波动方程:y A 5cos t 20
大 学 物 理 练 习 册 振 动 波 动
振动波动练习题(二) 三、2 5 xB 5m, B点的振动方程:yB 5cos t 20 x B为原点的波动方程:yB 5cos t 20 4 10 xO 10 m, O点的振动方程:yO 5cos t 20 x O为原点的波动方程:y 5cos t 20 2 解: (1) A点的振动方程:yA 5cos t
答案:C
振动波动练习题(二) 二、1
大 学 物 理 练 习 册 振 动 波 动
两个同方向、同频率简谐振动的运动学方程分别是x1= A1cos(t+1) 和x2=A2cos(t+2),则它们合成以后是 简谐振动,合成后A=______, =_______,合成后 Amax的条件是_________,Amin的条件是______。