用牛顿第二定律解决问题

合集下载

牛顿第二定律例子

牛顿第二定律例子

牛顿第二定律例子牛顿第二定律的例子包括:1.高空自由落体:一个物体在高空中自由落体,只受到重力作用。

根据牛顿第二定律,物体的加速度与它所受的合外力之间成正比。

在这个例子中,合外力就是物体所受的重力。

根据牛顿第二定律的公式F = ma,其中F表示合外力(即重力),m表示物体的质量,a表示物体的加速度。

2.斜劈A的例子:静止于粗糙的水平面上的斜劈A的斜面上,一物体B沿斜面向上做匀减速运动。

把A和B看作一个系统,在竖直方向受到向下的重力和竖直向上的支持力,在水平方向受到的摩擦力的方向未定。

劈A的加速度,物体B的加速度沿斜面向下,将分解成水平分量和竖直分量,,对A、B整体的水平方向运用牛顿第二定律有:与同方向。

而整体在水平方向的合外力只有受到的摩擦力,故的方向水平向左。

3.连接体问题:巧用牛顿第二定律解决连接体问题。

把研究对象看作一个整体,应用牛顿第二定律列式,然后对整体内的各个物体进行隔离分析,单独列出牛顿第二定律的方程。

4.跨过定滑轮的绳的一端挂一吊板:已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。

取重力加速度g =lOm/s2.当人以440 N的力拉绳时,人与吊板的加速度 a和人对吊板的压力F分别为() A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N5.气球的问题:科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990kg。

气球在空中停留一段时间后,发现气球漏气而下降,及时堵住。

堵住时气球下降速度为1m/s,且做匀加速运动,4s内下降了12m。

为使气球安全着陆,向舱外缓慢抛出一定的压舱物,此后发现气球做匀减速运动,下降速度在5分钟内减少了3m/s。

以上就是运用牛顿第二定律解决的一些实际例子,希望对您有帮助。

分析力学参考答案

分析力学参考答案

分析力学参考答案分析力学参考答案引言:分析力学是物理学的一个重要分支,研究物体在力的作用下的运动规律。

在学习分析力学的过程中,参考答案是一个非常重要的工具,可以帮助学生巩固知识,理解问题的解决方法。

本文将分析力学的一些典型问题,并给出参考答案,帮助读者更好地掌握分析力学的基本原理和解题技巧。

一、牛顿第二定律问题牛顿第二定律是分析力学的基础,描述了物体在力的作用下的加速度。

以下是一个典型的牛顿第二定律问题:问题:一个质量为m的物体在水平面上受到一个恒定的力F作用,求物体的加速度和受力大小的关系。

解答:根据牛顿第二定律的公式F=ma,我们可以得到物体的加速度a等于受力F除以物体的质量m,即a=F/m。

因此,物体的加速度与受力大小成反比。

二、动量守恒问题动量守恒是分析力学中的一个重要原理,描述了系统在没有外力作用下动量的守恒。

以下是一个典型的动量守恒问题:问题:两个质量分别为m1和m2的物体在水平面上碰撞,碰撞前物体1的速度为v1,物体2的速度为v2,碰撞后物体1的速度为v'1,物体2的速度为v'2,求碰撞前后两个物体的动量是否守恒。

解答:根据动量守恒定律,系统在没有外力作用下,动量守恒。

即m1v1 +m2v2 = m1v'1 + m2v'2。

因此,两个物体的动量在碰撞前后保持不变,动量守恒。

三、角动量问题角动量是分析力学中的一个重要概念,描述了物体绕某一点旋转的特性。

以下是一个典型的角动量问题:问题:一个质量为m的物体绕固定点O以角速度ω旋转,求物体的角动量L 与角速度ω的关系。

解答:根据角动量的定义L=Iω,其中I为物体对固定点O的转动惯量。

对于一个质量为m的物体,其转动惯量I等于mr^2,其中r为物体到固定点O的距离。

因此,物体的角动量L与角速度ω成正比,L=mr^2ω。

结论:通过以上的分析力学问题及其参考答案,我们可以看出分析力学的基本原理和解题技巧。

牛顿第二定律描述了物体在力的作用下的加速度,动量守恒原理描述了系统在没有外力作用下动量的守恒,角动量则描述了物体绕某一点旋转的特性。

牛顿定律的应用-两类动力学问题与超重、失重

牛顿定律的应用-两类动力学问题与超重、失重

运动情况
超重、失重
视重
a=0
不超重也不失重
F=mg
a的方向竖直向上
超重
F=m(g+a)
a的方向竖直向下
失重
F=m(g-a)
a=g ,a的方向竖直 向下
完全失重
F=0
名师支招:
判断物体超重或失重,仅分析加速度的方向即可,只要加速度的竖直分量向
上就是超重,加速度的竖直分量向下就是失重。
*体验应用*
2.(双项选择)游乐园中,游客乘坐能做加速或减速运动的升
(2)处理连接体问题时,整体法与隔离法往往交叉使用,一般 的思路是先用整体法求加速度,再用隔离法求物体间的作用力。
(3)利用牛顿第二定律可以处理匀变速直线运动问题,也可以 定性分析非匀变速直线运动的规律,它常和力学、电磁学等有关 知识结合起来考查一些综合问题。
*体验应用*
1.[2009年高考安徽理综卷]在2008年北京残奥会开幕式上, 运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残 疾运动员坚韧不拔的意志和自强不息的精神。为了探求上 升过程中运动员与绳索和吊椅间的作用,可将过程简化。 一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅, 另一端被坐在吊椅上的运动员拉住,如图3-2-1所示。设运 动员的质量为65 kg,吊椅的质量为15 kg,不计定滑轮与绳 子间的摩擦。重力加速度取g=10 m/s2。当运动员与吊椅一 起正以加速度a=1 m/s2上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。
慢慢加速,再匀速运转。一顾客乘扶梯上楼,恰
好经历了这两个过程,如图3-2-8所示。那么下列
C 说法中正确的是(
)
A.顾客始终受到三个力的作用

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。

【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。

2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。

3.利用牛顿第二定律处理传送带问题。

4.利用牛顿第二定律处理板块模型。

【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。

一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。

二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。

(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。

(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。

(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。

三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。

2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。

(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。

四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。

2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

15第3章 第2讲 应用牛顿第二定律处理“四类”问题

15第3章 第2讲  应用牛顿第二定律处理“四类”问题

第2讲应用牛顿第二定律处理“四类”问题一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受决定,加速度的方向与物体所受的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是()图1A.1.5g,1.5g,0B.g,2g,0C.g,g,gD.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.自测2关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化三、动力学图象1.类型(1)已知图象分析运动和情况;(2)已知运动和受力情况分析图象的形状.2.用到的相关知识通常要先对物体受力分析求合力,再根据求加速度,然后结合运动学公式分析.自测3(2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()图2A.F1<F2B.F2>F3C.F1>F3D.F1=F3命题点一超重与失重现象1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例1(2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知()图3A.人的重力为1 500 NB.c点位置人处于失重状态C.e点位置人处于超重状态D.d点的加速度小于f点的加速度变式1广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图4所示.则下列相关说法正确的是()图4A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零变式2(2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是()图5A.匀加速上升,a=5 m/s2 B.匀加速下降,a=5 m/s2C.匀速上升D.静止状态命题点二瞬时问题的两类模型1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?(2)由(1)的分析可以得出什么结论?(2)绳的弹力可以突变而弹簧的弹力不能突变.图6例2(2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()图7A.a A=a B=g B.a A=2g,a B=0C.a A=3g,a B=0 D.a A=23g,a B=0例3(多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是()图8A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零B.细线被剪断的瞬间,A、B之间杆的弹力大小为零C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为g sin θD.细线被剪断的瞬间,A、B之间杆的弹力大小为4mg sin θ变式3(2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()图9A.图甲中A球的加速度为g sin θB.图甲中B球的加速度为2g sin θC.图乙中A、B两球的加速度均为g sin θD.图乙中轻杆的作用力一定不为零命题点三动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.例4(2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F 与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()图10A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C.当F=14 N时,长木板的加速度大小为3 m/s2D.当F增大时,小滑块的加速度一定增大变式4(多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)()图11A.物块与地面的动摩擦因数为0.2B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 ND.5 s末物块的加速度大小为3 m/s2变式5(2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则()图12A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B.t=0时刻运动员的加速度大小为2 m/s2C.动摩擦因数μ为0.25D.比例系数k为15 kg/s命题点四动力学中的连接体问题1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)轻绳连接体(4)轻杆连接体2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.3.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”例5(多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c 为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是()图13A.该水平拉力大于轻绳的弹力B.物块c受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg变式6(多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m 和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()图14A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2变式7(多选)如图15所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()图15A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右1.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图1所示,以竖直向上为a的正方向,则人对地板的压力()图1A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小2.(2018·湖北省黄冈市质检)如图2所示,电视剧拍摄时,要制造雨中场景,剧组工作人员用消防水枪向天空喷出水龙,降落时就成了一场“雨”.若忽略空气阻力,以下分析正确的是()图2A.水枪喷出的水在上升时超重B.水枪喷出的水在下降时超重C.水枪喷出的水在最高点时,速度方向斜向下D.水滴在下落时,越接近地面,速度方向越接近竖直方向3.(2019·广东省东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )图3A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·安徽省淮北市质检)如图4甲所示,在光滑的水平面上,物体A 在水平方向的外力F 作用下做直线运动,其v -t 图象如图乙所示,规定向右为正方向.下列判断正确的是( )图4A .在3 s 末,物体处于出发点右方B .在1~2 s 内,物体正向左运动,且速度大小在减小C .在1~3 s 内,物体的加速度方向先向右后向左D .在0~1 s 内,外力F 不断增大5.如图5所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图5A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g6.(2018·福建省四地六校月考)如图6所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则( )图6A .悬绳剪断瞬间A 物块的加速度大小为gB .悬绳剪断瞬间B 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小7.(多选)(2018·河北省张家口市上学期期末)质量为2m 的物块A 和质量为m 的物块B 相互接触放在水平地面上,如图7所示,若对A 施加水平推力F ,两物块沿水平方向做匀加速运动,关于A 对B 的作用力,下列说法中正确的是( )图7A .若水平地面光滑,物块A 对B 的作用力大小为FB .若水平地面光滑,物块A 对B 的作用力大小为F 3C .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为μmgD .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为F +2μmg 38.(2018·河南省鹤壁市第二次段考)如图8所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A 、B 两物体用一轻质弹簧连接着,B 的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态时,则此瞬间A 、B 两物体的瞬时加速度大小分别为(重力加速度为g )( )图8A.12g 、g B .g 、12g C.32g 、0 D.32g 、g 9.(2018·江西省临川二中第五次训练)如图9甲所示,用一水平外力F 推物体,使其静止在倾角为θ的光滑斜面上.逐渐增大F ,物体开始做变加速运动,其加速度a 随F 变化的图象如图乙所示.取g =10 m/s 2.根据图中所提供的信息不能计算出的是( )图9A .物体的质量B .斜面的倾角C .使物体静止在斜面上时水平外力F 的大小D .加速度为6 m/s 2时物体的速度10.(多选)(2018·内蒙古赤峰二中月考)如图10甲所示,物块的质量m =1 kg ,初速度v 0=10 m /s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列选项中正确的是( )图10A .2秒末~3秒末内物块做匀减速运动B .在t =1 s 时刻,恒力F 反向C .物块与水平面间的动摩擦因数为0.3D .恒力F 大小为10 N11.(2018·广东省深圳市高级中学月考)如图11所示,A 、B 两滑环分别套在间距为1 m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1 m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20 N 的拉力F ,当两环都沿杆以相同的加速度a 1运动时,弹簧与杆夹角为53°,已知sin 53°=0.8,cos 53°=0.6,求:图11(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a2,则a1∶a2为多少?12.(2018·四川省攀枝花市第二次统考)如图12所示,质量m1=500 g的木板A静止放在水平平台上,木板的右端放一质量m2=200 g的小物块B.轻质细线一端与长木板连接,另一端通过定滑轮与物块C连接,长木板与滑轮间的细线水平.现将物块C的质量由0逐渐增加,当C的质量增加到70 g时,A、B恰好开始一起匀速运动;当C的质量增加到400 g时,A、B 开始发生相对滑动.已知平台足够长、足够高,接触面间的最大静摩擦力等于滑动摩擦力,滑轮质量及摩擦不计.求木板与平台间、木板与物块B间的动摩擦因数.图12。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用、超重与失重一、应用牛顿第二定律分析问题的基本思路:(1)已知力求物体的运动状态:先对物体进行受力分析,由分力确定合力;根据牛顿第二定律确定加速度,再由初始条件分析物体的运动状态,应用运动学规律求出物体的速度或位移。

(2)已知物体的运动状态求物体的受力情况:先由物体的运动状态(应用运动学规律)确定物体的加速度;根据牛顿第二定律确定合力,再根据合力与分力的关系求出某一个分力。

二、解题步骤:(1)根据题意,确定研究对象;(2)用隔离法或整体法分析研究对象的受力情况,画受力示意图;(3)分析物理过程是属于上述哪种类型的问题,应用牛顿第二定律分析问题的基本思路进行分析;(4)选择正交坐标系(或利用力的合成与分析)选定正方向,列动力学方程(或结合初始条件列运动学方程);(5)统一单位,代入数据,解方程,求出所需物理量;(6)思考结果的合理性,决定是否需要讨论。

三、例题分析:例1:如图所示,质量m=2kg的物体,受到拉力F=20N的作用,F与水平成37°角。

物体由静止开始沿水平面做直线运动,物体与水平面间的摩擦因数μ=0.1,2s末撤去力F,求:撤去力F 后物体还能运动多远?(sin37°=0.6,cos37°=0.8)例2:一个质量m=2kg的物体放在光滑的水平桌面上,受到三个与桌面平行的力作用,三个力大小相等F1=F2=F3=10N,方向互成120°,方向互成120°,则:(1)物体的加速度多大?(2)若突然撤去力F1,求物体的加速度?物体运动状况如何?(3)若将力F1的大小逐渐减小为零,然后再逐渐恢复至10N,物体的加速度如何变化?物体运动状况如何?例3:如图所示,停在水平地面的小车内,用轻绳AB、BC拴住一个小球。

绳BC呈水平状态,绳AB 的拉力为T1,绳BC的拉力为T2。

当小车从静止开始以加速度a水平向左做匀加速直线运动时,小球相对于小车的位置不发生变化;那么两绳的拉力的变化情况是:()A、T1变大,T2变大B、T1变大,T2变小C、T1不变,T2变小D、T1变大,T2不变例4:如图所示,物体A质量为2kg,物体B质量为3kg,A、B叠放在光滑的水平地面上,A、B间的最大静摩擦力为10N;一个水平力F作用在A物体上,为保证A、B间不发生滑动,力F的最大值为多少?如果力F作用在B上,仍保证A、B间不滑动,力F最大值为多少?四、超重和失重(1)重力:重力是地球对物体吸引而使物体受到的作用力,是引力,G=mg。

4.10《牛顿第二定律:滑块-滑板问题》

4.10《牛顿第二定律:滑块-滑板问题》

二、经典例题
【例1 】如图所示,平板A 长l = 10m, 质量M =4kg, 放在光滑的水平面上。在A 上最右端
放一物块B (大小可忽略),其质量m=2kg 。已知A 、B 间动摩擦因数μ = 0.4, 开始时A 、
B 都处于静止状态(取g=10m/s²) 。则
● (1) 要将A 从物块B 下抽出来,则加在平板A 上的水平恒力F 至少为多大?
B. F 拉动B, 则可能A 、B 、C 一起运动
C. F 拉动C, 则可能A 的加速度大于B 的加速度
D. F 拉动C, A 与B 的加速度大小总相等

8 .质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表
面水平冲上木板,如图甲所示。A 和B 经过1 s 达到同一速度,之后共同减速直至静止,
板,在两木板的左端分别放有完全相同的物块,开始都处于静止状态。现分别对两物块施
加水平恒力1 、 2 ,经过时间 1 、 2 物块与木板分离后,两木板的速度大小分别为 1 和
2 , 已知物块与木板之间的动摩擦因数相同,则(
A . 若1 = 2 , 且1 > 2 , 则 1 < 2
数μ=
3
2
. 对木板施加沿斜面向上的恒力F, 使木板沿斜面由静止开始向上做匀加速直线运动,
假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g= 10 m/s².
(1)为使物块不滑离木板,求力F 应满足的条件;
(2) 若F=37.5N, 物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的
大的水平力
F = kt(k 是常数),木板和木块加速度的大小分别为 1 和 2 ,下列反映 1 和 2 变化的图

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

牛顿第二定律题型

牛顿第二定律题型
通过计算达到共速时的位 移,与传送带长度进行比较, 判断物体的运动情况角θ=300,A 端到B端距离L=5m,传送带以v=6m/s顺时针转 动,物体从传送带顶部A 由静止释放,物体与
3 传送带间动摩擦因数 , g=10m/s2,试求 6
物体从A 运动到底部B 的时间 tAB 。 ①受力分析 ②会下滑吗?如何判定?
C
D
针对训练:如图所示,轻弹簧下端固定,
竖立在水平面上。其正上方A位置有一 只小球。小球从静止开始下落,在B位 置接触弹簧的上端,在C位置小球所受 弹力大小等于重力,在D位置小球速度 减小到零。试分析小球下降阶段的运 动情况。
题型二:连接体问题
(1)整体法:把整个系统作为一个研究 对象来分析 (2)隔离体法:把系统中某一部分隔离出 来作为一个单独的研究对象来分析
N
f
③会达到共速吗?
mg
【解答】 由 tan 可知物体始终做匀加速直线运动
由牛顿第二定律: mg sin mg cos ma 得:a 2.5m / s 2
1 2 由L at AB得: 2
t AB
2L 2( s ) a
【例题3】如图所示,传送带以v= 10m/s的速度 逆时针转动,与水平面夹角θ=300,传送带A 端到 B端距离L=16m。在传送带顶部A 端静止释放一 小物体,物体与传送带间动摩擦因数 g=10m/s2.试求物体从A运动到底部B的时间 t AB 。
整体法和隔离法
可以用整体法的条件:加速度相等
1、相对静止 2、一静止一匀速 3、都匀速 4、以相同加速度做匀加速运动
例2:两个质量相同的物体A和B紧 靠在一起,放在光滑的水平桌面上, 如果他们分别受到水平推力F1和F2 作用,而且F1>F2,则A施于B的作用 力是多少?

牛顿第二定律的应用(两类问题)

牛顿第二定律的应用(两类问题)
解题思路: 利用牛顿第二定律作为桥梁,求加速度
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 1)求物体在4.0秒末的速度; 解:1)前4秒 根据牛顿第二定律F合=ma列方程: 水平方向 F-f=ma a=1.5(m/s2) 由vt=v0+at: vt=6(m/s)
2:已知运动情况求解受力情况
例题2: 一辆质量为1.0×103kg的小汽车,正以 10m/s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来,求所需的阻力。 • 设小车运动的初速度方向为正方向,由运动学公 式
2aS v v
2 t
据牛顿第二定律F合=ma列方程: 竖直方面 N-mg=0 水平方面 f=ma=1.0×103×( - 4 ) N
2 0 v0 10 2 a m / s 2 4m / s 2 2 12.5 2S
2 o
可得
f = - 4.0×103N
• 例题3:
一辆质量为1.0×103kg的小汽车,正以 10mห้องสมุดไป่ตู้s的速度行驶,现在让它在12.5m的距离内匀 减速地停下来。
一木箱(m=2kg)沿一粗糙斜面匀加速下滑,初 速度为零,5s内下滑25m,斜面倾角300, 求(1)木箱与斜面间的动摩擦因数, (2)若以某初速沿斜面向上冲,要能冲上4m,则 初速至少多大?
例题1 一个静止在水平面上的物体,质量 是2kg,在水平方向受到5.0N的拉力,物体跟 水平面的滑动摩擦力是2.0N。 2)若在4秒末撤去拉力,求物体滑行时间。 解:2) 4秒后 竖直方向 FN-mg=0 水平方向f=ma′ a ′= 1.0(m/S2)
由△V=at t= △ v/a=6.0(s)

牛顿第二定律的应用(很全_自己上课用)

牛顿第二定律的应用(很全_自己上课用)
1 2
a
5.如图所示,质量为m的小 球用细绳挂在倾角为37°的 光滑斜面顶端,斜面静止时, 绳与斜面平行,现斜面向左 加速运动。 (1)当a1=g时,细绳对 小球的拉力多大? (2)当a2=2g呢?
Tcosθ-Nsinθ=ma Tsinθ+Ncosθ=mg解得 T=mgsinθ+macosθ 当a1=g时,T1=1.4mg;当a2=2g时, T2=2.2mg
F
m1 m2 FN1
[m1]
F1
m1g FN2
F
联立(1)、(2)可得
m2F F1 = m1 m 2
[m2]
F1
m2g
例题1:光滑的水平面上有质量分别为m1、m2的两物体 静 止靠在一起(如图) ,现对m1施加一个大小为 F 方向向 右的推力作用。求此时物体m2受到物体 m1的作用力F1 [ 解法二 ]: 对m1、m2视为整体作受力分析
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻绳 连接物体B.A,B的质量相 同均为m,待平衡后剪断 A,B间的细绳,则剪断细 绳的瞬间,物体A的加速 度和B的加速度?
A
B
如图,两个质量均 为m的重物静止,若 剪断绳OA,则剪断 瞬间A和B的加速度 分别是多少?
0
A
B
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的 瞬间A,B的加速度分别为多 少?.
m
θ
• 2.如图所示,在前进的车厢的竖直后壁上放一个 物体,物体与壁间的静摩擦因数μ=0.8,要使物 体不致下滑,车厢至少应以多大的加速度前进? (g=10m/s2)

牛顿第二定律的应用(经典、全面、实用)

牛顿第二定律的应用(经典、全面、实用)

t2
1
FN
F阻
t
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
解:滑雪的人滑雪时受力如图,
将G分解得: F1= mgsinθ F 1-F 阻=m a
① ②
θ mg
2 m ( x - v 0 t)
FN
F1
θ
F阻 F2
由①②③得F阻=F1-m a = mgsinθ-
代入数据可得: F阻=67.5N
37 °
例4:如图所示,传送带与地面倾角为37 ° ,从A到B长度为16m,传送带以v= 20m/s,变:(v= 10m/s)的速率逆时针 转动.在传送带上端A无初速地放一个质量 为m=0.5kg的物体,它与传送带之间的动 摩擦因数为μ=0.5.求物体从A运动到B 所需时间是多少.(sin37°=0.6)
B.tl>t2>t3
C.tl<t2<t3
D.t3>tl>t2
练习 如图,底板光滑的小车上用两 个量程为20N,完全相同的弹簧甲和乙 系住一个质量为1Kg的物体,当小车在 水平路面上匀速运动时,两堂皇秤的读 数均为10N,当小车做匀加速运动时, 甲的读数是8N,则小车的加速度 是 ,方向向 。(左、 右)
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传送 带上,经时间t=6s能传送到B处,欲用最短时间 把工件从A处传到B处,求传送带的运行速度至少 多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方向 匀速转动,传送带传送带右端有一与传 送带等高的光滑水平面,一物体以恒定的 速率V’=4m/s沿直线向左滑上传送带,求 物体的最终速度多大?

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。

加速度由物体所受 决定,。

加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。

2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。

(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。

二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。

【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。

2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。

重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。

使用牛顿第二定律解决斜抛运动问题

使用牛顿第二定律解决斜抛运动问题

使用牛顿第二定律解决斜抛运动问题斜抛运动是物理学中的一个重要概念,它描述了物体在斜向抛出时的运动轨迹和速度变化。

为了解决斜抛运动问题,我们可以运用牛顿第二定律,这是一个重要的物理定律,用于描述物体受力时的加速度变化。

本文将介绍如何使用牛顿第二定律解决斜抛运动问题,并深入探讨一些相关的概念和应用。

首先,让我们回顾一下牛顿第二定律的表达式:F=ma。

其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。

根据这个定律,我们可以得出一个重要的结论:物体所受的合力与其加速度成正比,质量越大,加速度越小;质量越小,加速度越大。

在斜抛运动中,物体受到的合力可以分解为两个分力:重力和空气阻力。

重力是一个向下的力,它始终垂直于地面,并与物体的质量成正比。

空气阻力是一个与物体运动方向相反的力,它与物体的速度成正比。

根据牛顿第二定律,我们可以得出斜抛运动的加速度与物体的质量、重力和空气阻力之间的关系。

在解决斜抛运动问题时,我们首先需要确定物体的受力情况。

以一个抛出的物体为例,它受到的合力可以分解为重力和空气阻力。

重力始终垂直于地面,与物体的质量成正比。

空气阻力与物体的速度成正比,且与物体的质量无关。

根据牛顿第二定律,我们可以得出物体在斜抛运动中的加速度与重力和空气阻力之间的关系。

在斜抛运动中,物体的加速度可以表示为:a=g*sinθ-k*v/m。

其中,a表示物体的加速度,g表示重力加速度,θ表示抛出角度,k表示空气阻力系数,v表示物体的速度,m表示物体的质量。

通过解这个方程,我们可以确定物体在斜抛运动中的加速度,并进一步推导出物体的运动轨迹和速度变化。

除了解决斜抛运动问题,牛顿第二定律还有其他应用。

例如,它可以用于计算物体的加速度、速度和位移变化,从而帮助我们理解物体的运动规律和性质。

此外,牛顿第二定律还可以用于解决其他力学问题,如摩擦力、弹力和引力等。

通过运用牛顿第二定律,我们可以更好地理解物体的运动和力学性质,为解决实际问题提供有力的工具和方法。

牛顿第二定律的连接体问题

牛顿第二定律的连接体问题

牛顿第二定律的连接体问题:连接体问题是一种常见的物理问题,通常涉及到两个或多个物体之间的相互作用和相互影响。

在牛顿第二定律的连接体问题中,我们通常考虑两个或多个物体之间的力和加速度之间的关系。

解决连接体问题的一般步骤如下:
确定研究对象:首先需要确定我们要研究的物体,通常可以选择一个或多个物体作为研究对象。

隔离物体:将选定的研究对象从系统中隔离出来,不考虑其他物体对它的作用力。

分析受力情况:对隔离出来的物体进行受力分析,找出所有的力和加速度之间的关系。

建立方程:根据牛顿第二定律,建立力和加速度之间的方程,求解出加速度。

考虑连接体之间的相互作用:连接体之间通常会有相互作用力,需要考虑这些力对各自物体的影响。

解方程求出答案:解方程求出物体的加速度和其他物理量,得到问题的答案。

高中物理必修一 第四章 第五节 牛顿运动定律的应用

高中物理必修一 第四章 第五节 牛顿运动定律的应用

针对训练1
一质量为m=2 kg的滑块在倾角为θ=30°的足够 长的固定斜面上在无外力F的情况下以加速度a= 2.5 m/s2匀加速下滑.若用一水平向右的恒力F作用 于滑块,如图所示,使滑块由静止开始沿斜面向上做匀加速直线运动, 在0~2 s时间内沿斜面运动的位移s=4 m.求:(g取10 m/s2) (1)滑块和斜面之间的动摩擦因数μ;
答案 0.5 30 N
设力F作用时物体的加速度 为a1,对物体进行受力分析, 由牛顿第二定律可知: F-mgsin 37°-μmgcos 37° =ma1, 撤去力F后,物体的加速度大小为a2,由牛顿第二定律有 mgsin 37°+μmgcos 37°=ma2, 根据v-t图像的斜率表示加速度可知a1=20 m/s2,a2=10 m/s2, 联立解得μ=0.5,F=30 N.
(1)滑雪者受到雪面的支持力大小; 答案 400 N
滑雪者在雪坡上受力如图所示,建立如图所示的直角 坐标系, FN=mgcos 37°=400 N.
(2)滑雪者受到的阻力大小. 答案 100 N
由v-t图像可得滑雪者的加速度大小, a=v2-t v1=4 m/s2,
根据牛顿第二定律,mgsin 37°-f=ma, 得f=mgsin 37°-ma=100 N.
(2)人在离C点多远处停下.
答案 12.8 m
人在水平面上滑行时,水平方向只受到水平面的摩擦力作用.设人在 水平面上运动的加速度大小为a′,由牛顿第二定律得μmg=ma′ 设人到达C时的速度为v,则由匀变速直线运动规律得 人在斜坡下滑的过程:v2=2aL 人在水平面上滑行时:0-v2=-2a′s 联立解得s=12.8 m.
(2)t=3 s时物体的速度大小;
答案 0 t=3 s时的速度v3=v1-a2t=20 m/s-10×2 m/s=0, 即t=3 s时物体的速度为0.

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用牛顿第二定律是牛顿力学中最基础的定律之一,也是应用最为广泛的一条定律。

它描述了物体在受到外力作用下的运动状态,是物理学家研究力学问题的重要基础。

本文将从实际生活中的应用角度,探讨牛顿第二定律的具体应用。

一、汽车行驶过程中的运用在汽车行驶中,牛顿第二定律经常被用来计算车辆的加速度和制动距离。

例如,当汽车受到向前的牵引力时,按照牛顿第二定律的公式,F=ma,可以得出汽车的加速度。

同样的,如果汽车受到向后的制动力时,可以通过牛顿第二定律计算汽车需要的制动距离,以确保安全停车。

二、物体自由落体的运用物体自由落体是牛顿力学中的一个基本问题。

在不考虑空气阻力的情况下,任何物体都会在同样的重力作用下以等加速度自由落体。

这个加速度被称为重力加速度,约等于9.8米/秒^2。

因此,利用牛顿第二定律公式F=ma可以计算出自由落体物体下落的加速度和速度。

三、物体在斜面上运动的运用斜面问题是力学中一个基础问题,也是牛顿第二定律的一个重要应用场景。

当一个物体沿着斜面下滑或爬升时,可以使用牛顿第二定律公式F=ma,分解受到的重力和摩擦力,计算物体的加速度和速度。

跟汽车制动计算一样,这个问题的特别之处在于需要对斜坡的倾斜角度和物体与斜坡之间的摩擦系数等因素进行精细的计算和分析。

四、物体在空气中的运动的运用在空气中运动的物体会受到空气阻力的影响,这时候牛顿第二定律的应用就要考虑到空气阻力的影响。

例如,现代飞机在设计上要考虑到空气阻力和空气动力学特性等问题,确保飞机可以在空气中平稳地运动。

总结:牛顿第二定律是应用最为广泛的牛顿力学定律之一。

在实际生活和工程中,牛顿第二定律被用来描述物体在受到外力作用下的运动状态,计算物体的加速度、速度和运动距离等参数。

在汽车行驶、物体自由落体、斜面运动和空气动力学等领域,牛顿第二定律都有重要的应用价值。

而准确地应用牛顿第二定律,不仅需要熟练掌握相关公式和计算方法,同时也需要细致的分析和判断能力。

(完整word版)牛顿第二定律难题例题及解答范文

(完整word版)牛顿第二定律难题例题及解答范文

1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大变式1、2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对变式2、3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速问题2:牛顿第二定律的基本应用问题:4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

5. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

(g取,,)(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

6. 如图所示,固定在小车上的折杆∠A=,B端固定一个质量为m的小球,若小车向右的加速度为a,则AB杆对小球的作用力F为()A. 当时,,方向沿AB杆B. 当时,,方向沿AB杆C. 无论a取何值,F都等于,方向都沿AB杆D. 无论a取何值,F都等于,方向不一定沿AB杆问题3:整体法和隔离法在牛顿第二定律问题中的应用:7. 一根质量为M的木杆,上端用细线系在天花板上,杆上有一质量为m的小猴,如图所示,若把细线突然剪断,小猴沿杆上爬,并保持与地面的高度不变,求此时木杆下落的加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 370
mg
例10.如图所示,倾角为37°,长为L=16m的传送带,转动速度 为v=10m/s,动摩擦因数μ=0.5,在顶端A处无初速度地释放 一个质量为m=0.5kg的物体.已知sin37°=0.6,cos37°=0.8, g=10m/s2.求:(2)传送带逆时针转动时,物体从顶端A滑到 底端B的时间. ★物体与传送带共速以后需判断物 体是否能够与传送带保持相对静止. y N y N f f x mg 370
2 vt2 v0 2ax
从受力确定运动情况 例1.一个静止在水平地面上的物体,质量是2kg,在6.4N的 水平拉力作用下沿水平地面向右运动,物体与地面间的 摩擦力是4.2N。求物体在4s末的速度和4s内的位移。 FN f mg F
从运动情况确定受力 例2.某质量为1100kg的汽车在平直路面试车,当达到 100km/h的速度时关闭发动机,经过70s停下来。汽车受 到的阻力是多大?重新起步加速时牵引力为2000N,产生 的加速度是多大?假定试车过程中汽车受到的阻力不变。
《导与练》P76 例1
y
N f1
x
mg
300
y N f2
x 300
mg
物体与传送带共速以后 f 会发生突变
例10.如图所示,倾角为37°,长为L=16m的传送带,转动速度 为v=10m/s,动摩擦因数μ=0.5,在顶端A处无初速度地释放 一个质量为m=0.5kg的物体.已知sin37°=0.6,cos37°=0.8, g=10m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到 底端B的时间; y N f
用牛顿第二定律解决问题
动力学需要用的规律
v v0 at
F=ma v0 vt 1 2 x t x v 0 t at 2 2 牛顿第二定律的两类基本问题 1、已知受力情况求运动情况。 2、已知运动情况求受力情况。 解题思路: 运动学 受力分析 运动 加速度a 力 情况 公式 牛顿第二定律 1.加速度是联系力和运动的桥梁 2.正确的受力分析和运动过程分析则是解决问题的关键
x
f
F
G G
f x
G
例3.一个滑雪者,质量为75kg,以v0=2m/s的初速度沿山 坡匀加速滑下,山坡的倾角为30°,在t=5 s的时间滑下 的路程为x=60m。求滑雪者受到的阻力? y FN f
x

G
《导与练》P75针对训练2 y FN
x
f

G
连接体问题(整体法与隔离法的应用) 课时训练P110 10. 质量分别为m1和m2的木块,并列放置于光滑水平地面 ,如图所示,当木块1受到水平力F的作用时,两木块同时向 右做匀加速运动,求:(1)匀加速运动的加速度多大?(2)木 块1对2的弹力.
v a FN f 解: v0=100km/h=27.8m/s 令汽车加速度大小为a,由运动 学规律得:
0 v0 v0 a , 得a mg t t v0 437 N 由牛顿第二定律得: f ma m t
方N
y
x
N


N
临界问题 思考:小车加速度至少多大木块m才不会掉下来? f N’ mg 题目中出现“最大”、“至少”、 “最小”、“刚好 ”、“恰好”等词语时,往往出现临界现象——临界 问题 N
例7.如下图所示,小车上有一竖直杆,总质量为M。 杆上套有一块质量为m的木块杆与木块间动磨擦因数 为u,小车静止时木块可沿杆自由滑下。问:必须对小 车施以多大的水平力让车在光滑水平面上运动时,木 块才能相对竖直杆匀速下滑? f N
对整体: N F (m1 + m2)g m2g 对2: N2 N12
若地面不光滑,设地面与木板间的动摩擦因数为μ ,结果如何?
例4:A、B两物体,质量分别为m1、m2,叠放在水平光滑 地面上,如图所示。现用水平拉力F拉A时,A、B间无相对 滑动,其间摩擦力为f1,若改用同样的力拉B时,A、B间仍 无相对滑动,其间摩擦力为f2,则f1:f2为 B A.m1:m2 B. m2 : m1 C.1:1 D.m12 :m22
临界问题 例6.如图所示,小车的质量为M,正在向右加速运动,一个 质量为m的木块紧靠在车的前端相对于车保持静止,则下 列说法正确的是 A.在竖直方向上,车壁对木块的摩擦力与物体的重力平衡 B.在水平方向上,车壁对木块的弹力与物体对车壁的压力 是一对平衡力 C.若车的加速度变小,车壁对木块的弹力也变小 D.若车的加速度变大,车壁对木块的摩擦力也变大 f N’ mg
本题若A、B之间的距离为2m,则木块从A沿传送带运 动到B所需的时间为多少?
例9.水平传送带的长度为L=8m。 A、B为传送带水平部 分的最左端和最右端. 现有一物体(视为质点)以v0=10m/s 的初速度从A 端水平地滑上水平传送带.已知物体与传送 带之间的动摩擦因数为μ=0.6, g=10m/s2, (1)若传送带保持静止,物体滑到B端时,速度为多大? (2)若传送带逆时针转动的速率恒为8m/s,则物体到达B端 时的速度是多大? (3) 若传送带顺时针转动的速率恒为8m/s, 则物体从A 端 到达B端所用的时间是多少? 传送带上留下多长的滑痕。
《导与练》P72【以例试法】 一只小猫跳起来抓住悬挂在天花板上的竖直木杆,如 图所示,在这一瞬间悬绳断了,设木杆足够长,由于小猫 继续上爬,所以小猫离地面高度不变,则木杆下降的加 速度大小为多少?方向如何? (设小猫质量为m,木杆的质量为M,重力加速度为g)
〚即学即用〛一个箱子放在水平地面上,箱内有一固定 的竖直杆,在杆上套着一个环,箱子与杆的总质量为m1, 环的质量为m2,如图所示.已知环沿杆以加速度a匀加速 下滑,则此时箱子对地面的压力大小为多少?
mg
应用牛顿第二定律求瞬时加速度 《导与练》P65 如图所示,小球M处于静止状态,弹簧与 竖直方向的夹角为θ,烧断BO绳的瞬间小球M的加速度指 向何方?
1.刚性绳(或接触面):其中弹力立即发生变化. 2.弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复 需要较长时间,在解决瞬时问题时,可将其弹力的大小看成 不变来处理.

x

mg
mg sin fmax mg cos
物体继续加速
滑块、滑板问题
《导与练》P76 例3
滑块、滑板问题 例11:如图所示,质量M=8 kg的小车放在水平光滑的平 面上,在小车左端加一水平推力F=8 N,当小车向右运动的 速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不 计,质量为m=2 kg的小物块,物块与小车间的动摩擦因数 μ =0.2,小车足够长.求 (1)小物块放后,小物块及小车的加速度各为多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过t=1.5 s 小物块通过的 位移大小为多少?(取g=l0 m/s2).
《导与练》达标测评P67. 例5.如图所示,木块A质量为1 kg,木块B的质量为2 kg,叠 放在水平地面上,A,B间的最大静摩擦力为1 N,B与地面 间的动摩擦因数为0.1,今用水平力F作用于B,则保持A,B 相对静止的条件是F不超过(g=10 m/s2)( D ) A.1 N B.3 N C.4 N D.6 N
《导与练》P65 【例3】 (1)如图(甲)所示,A,B间用细绳连接并将A球用细 绳悬挂在天花板上,剪断悬挂A球的细绳的瞬间,A,B的加 速度分别为多大?方向如何? (2)若悬挂A球的细绳改为轻弹簧,如图(乙)所示,如果把 A,B之间的细绳剪断,则A,B两球的瞬时加速度各是多少? 方向如何?(设A,B两球质量相等)
传送带问题 例8.水平传送带A、B以v=4m/s的速度匀速运动,如图所 示,A、B相距16m,一木块(可视为质点)轻放到A点,木 块与传送带间的动摩擦因数μ=0.2.则: (g取10m/s2) (1)木块从A沿传送带运动到B所需的时间为多少? (2)木块在传送带上留下了多长的滑行痕迹?
N
f B
A
mg
针对训练3: 如图所示,小球A,B,C的质量均为m,A,B间用 细线相连,B,C间用轻质弹簧k2相连,然后用轻质弹簧k1悬 挂而静止,则在剪断A,B间细线的瞬间,A,B,C的加速度分 别是( C ) A.aA=3g, aB=2g, aC=0 B.aA=0, aB=g, aC=g C.aA=2g, aB=2g, aC=0 D.aA=g, aB=2g, aC=g
相关文档
最新文档