第三章 FET-1-2009
Large-area synthesis of high-quality and uniform graphene films on copper foils 原
PUBLISHED ON-LINE BY SCIENCE ON MAY 7, 2009 (Science Express article). This is the official publication date for this work.Large-Area Synthesis of High-Quality and Uniform Graphene Films onCopper FoilsXuesong Li a, Weiwei Cai a, Jinho An a, Seyoung Kim b, Junghyo Nah b, Dongxing Yang a, Richard Piner a, Aruna Velamakanni a, Inhwa Jung a, Emanuel Tutuc b, Sanjay K. Banerjee b,Luigi Colombo c*, Rodney S. Ruoff a*a Department of Mechanical Engineering and the Texas Materials Institute, 1 UniversityStation C2200, The University of Texas at Austin, Austin, TX 78712-0292b Department of Electrical and Computer Engineering, Microelectronics Research Center, TheUniversity of Texas at Austin, Austin, Texas 78758, USAc Texas Instruments Incorporated, Dallas, TX 75243*To whom correspondence should be addressed: r.ruoff@, colombo@AbstractGraphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single layer graphene with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on Si/SiO2 substrates showed electron mobilities as high as 4050 cm2V-1s-1 at room temperature.Graphene, a monolayer of sp2-bonded carbon atoms, is a quasi-two-dimensional (2D) material. Graphene has been attracting great interest because of its distinctive band structure and physical properties (1). Today, the size of graphene films produced is limited to small sizes (usually < 1000 µm2) because the films are produced mostly by exfoliating graphite, which is not a scalable technique. Graphene has also been synthesized by the desorption of Si from SiC single crystal surfaces which yields a multilayered graphene structure that behaveslike graphene (2, 3), and by a surface precipitation process of carbon in some transition metals (4-8).Electronic application will require high-quality large area graphene that can be manipulated to make complex devices and integrated in silicon device flows. Field effect transistors (FETs) fabricated with exfoliated graphite have shown promising electrical properties (9, 10), but these devices will not meet the silicon device scaling requirements, especially those for power reduction and performance. One proposed device that could meet the silicon roadmap requirements beyond the 15 nm node by Banerjee et al. (11) The device is a ‘BisFET’ (bilayer pseudospin FET) device which is made up of two graphene layers separated by a thin dielectric. The ability to create this device can be facilitated by the availability of large-area graphene. Making a transparent electrode, another promising application of graphene, also requires large films (6, 12-14).At this time, there is no pathway for the formation of a graphene layer that can be exfoliated from or transferred from the graphene synthesized on SiC, but there is a way to grow and transfer graphene grown on metal substrates (5-7). Although graphene has been grown on a number of metals, we still have the challenge of growing large-area graphene. For example, graphene grown on Ni seems to be limited by its small grain size, presence of multilayers at the grain boundaries, and the high solubility of carbon (6, 7). We have developed a graphene chemical vapor deposition (CVD) growth process on copper foils (25 µm thick in our experiment). The films grow directly on the surface by a surface catalyzed process and the film is predominantly graphene with <5% of the area having two- and three-layer graphene flakes. Under our processing conditions, the two- and three-layer flakes do not grow larger with time. One of the major benefits of our process is that it can be used to grow graphene on 300 mm copper films on Si substrates (a standard process in Si technology). It is also well known that annealing of Cu can lead to very large grains.As described in (15), we grew graphene on copper foils at temperatures up to 1000 ºC by CVD of carbon using a mixture of methane and hydrogen. Figure 1A shows a scanning electron microscopy (SEM) image of graphene on a copper substrate where the Cu grains are clearly visible. A higher-resolution image of graphene on Cu (Fig. 1B) shows the presence of Cu surface steps, graphene “wrinkles”, and the presence of non-uniform dark flakes. Thewrinkles associated with the thermal expansion coefficient difference between Cu and graphene are also found to cross Cu grain boundaries, indicating that the graphene film is continuous. The inset in Fig.1b shows transmission electron microscopy (TEM) images of graphene and bilayer graphene. With the use of a process similar to that described in ref. (16), the as-grown graphene can be easily transferred to alternative substrates such as SiO2/Si or glass (Figs. 1, C and D), for further evaluation and for various applications; a detailed transfer process is described in the supplemental section. The process and method used to transfer graphene from Cu was the same for the SiO2/Si substrate and the glass substrate. Although it is difficult to see the graphene on the SiO2/Si substrate, a similar graphene film from another Cu substrate transferred on glass clearly shows that it is optically uniform.We used Raman spectroscopy to evaluate the quality and uniformity of graphene on SiO2/Si substrate. Figure 2 shows SEM and optical images with the corresponding Raman spectra and maps of the D, G and 2D bands providing information on the defect density and film thickness. The Raman spectra are from the spots marked with the corresponding colored circles shown in the other panels (in Figs. 2, A and B, green arrows are used instead of circles so as to show the trilayer region more clearly). The thickness and uniformity of the graphene films were evaluated via color contrast under optical microscope (17) and Raman spectra (7, 18, 19). The Raman spectrum from the lightest pink background in Fig. 2B shows typical features of monolayer graphene, e.g., ~0.5 G-to-2D intensity ratio, and a symmetric 2D band centered at ~2680 cm-1 with a full-width of half-maximum (FWHM) of ~33 cm-1. The second lightest pink “flakes” (blue circle) correspond to bilayer graphene and the darkest one (green arrow) represents trilayer graphene. This thickness variation is more clearly shown in the SEM image in Fig. 2A. The D map in Fig. 2D, which has been associated with defects in graphene, is rather uniform and near the background level, except for regions where wrinkles are present and close to few-layer regions. The G and the 2D maps clearly show the presence of more than one layer in the flakes. In the wrinkled regions, there are peak height variations in both the G and 2D bands, and there is a broadening of the 2D band. An analysis of the intensity of the optical image over the whole sample (1 cm by 1 cm) showed that the area with the lightest pink color is more than 95%, and all 40 Raman spectra randomly collected from this area show monolayer graphene. There is only a small fractionof trilayer or few-layer (<10) graphene (<1%) and the rest is bilayer graphene (~ 3-4%).We grew films on Cu as a function of time and Cu foil thickness under isothermal and isobaric conditions. Using the process flow described in (15) we found that graphene growth on Cu is self-limited; growth that proceeded for more than 60 min yielded a similar structure to growth runs performed for ~10 min. For times much less than 10 min, the Cu surface is usually not fully covered [SEM images of graphene on Cu with different growth time are shown in figure S3 (15)]. The growth of graphene on Cu foils of varying thickness (12.5, 25, and 50 µm) also yielded similar graphene structure with regions of double and triple flakes but neither discontinuous monolayer graphene for thinner Cu foils nor continuous multilayer graphene for thicker Cu foils, as we would have expected based on the precipitation mechanism. According to these observations, we concluded that graphene is growing by a surface-catalyzed process rather than a precipitation process as reported by others for Ni (5-7). Monolayer graphene formation caused by surface segregation or surface adsorption of carbon has also been observed on transition metals such as Ni and Co at elevated temperatures by Blakely and coauthors (20-22). However, when the metal substrates were cooled down to room temperature, thick graphite films were obtained because of precipitation of excess C from these metals, in which the solubility of C is relatively high.In recent work, thin Ni films and a fast-cooling process have been used to suppress the amount of precipitated C. However, this process still yields films with a wide range of graphene layer thicknesses, from one to a few tens of layers and with defects associated with fast cooling (5-7). Our results suggest that the graphene growth process is not one of C precipitation but rather a CVD process. The precise mechanism will require additional experiments to understand in full, but very low C solubility in Cu (23-25), and poor C saturation as a result of graphene surface coverage may be playing a role in limiting or preventing the precipitation process altogether at high temperature, similar to the case of impeding of carburization of Ni (26). This provides a pathway for growing self-limited graphene films.To evaluate the electrical quality of the synthesized graphene, we fabricated dual-gated FET with Al2O3 as the gate dielectric and measured them at room temperature. Along with a device model that incorporates a finite density at the Dirac point, the dielectric, and thequantum capacitances (9), the data are shown in Fig. 3. The extracted carrier mobility for this device is ~4050 cm2V-1s-1, with the residual carrier concentration at the Dirac point of n0=3.2×1011cm-2. These data suggest that the films are of reasonable quality, at least sufficient to continue improving the growth process to achieve a material quality equivalent to the exfoliated natural graphite.References1. A. K. Geim, K. S. Novoselov, Nat. Mater.6, 183 (2007).2. C. Berger et al., Science312, 1991 (2006).3. K. V. Emtsev et al., Nat. Mater.8, 203 (2009).4. P. W. Sutter, J.-I. Flege, E. A. Sutter, Nature Materials7, 406 (2008).5. Q. Yu et al., Appl. Phys. Lett.93, 113103 (2008).6. K. S. Kim et al., Nature457, 706 (2009).7. A. Reina et al., Nano Letters9, 30 (2009).8. J. Coraux, A. T. N'Diaye, C. Busse, T. Michely, Nano Letters8, 565 (2008).9. S. Kim et al., Appl. Phys. Lett.94, 062107 (2009).10. M. C. Lemme et al., Solid-State Electronics52, 514 (2008).11. S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, A. H. MacDonald, Electron Device Letters, IEEE30, 158 (2009).12. P. Blake et al., Nano Letters8, 1704 (2008).13. R. R. Nair et al., Science320, 1308 (2008).14. X. Wang, L. Zhi, K. Müllen, Nano Letters8, 323 (2008).15. See supporting material on Science on line.16. A. Reina et al., J. Phys. Chem. C112, 17741 (2008).17. Z. H. Ni et al., Nano Letters7, 2758 (2007).18. A. C. Ferrari et al., Phys. Rev. Lett.97, 187401 (2006).19. A. Das et al., Nature Nanotechnology3, 210 (2008).20. M. Eizenberg, J. M. Blakely, Surf. Sci.82, 228 (1979).21. M. Eizenberg, J. M. Blakely, Journal of Chemical Physics71, 3467 (1979).22. J. C. Hamilton, J. M. Blakely, Surf. Sci.91, 199 (1980).23. R. B. McLellan, Scripta Metall.3, 389 (1969).24. G. Mathieu, S. Guiot, J. Carbané, Scripta Metall.7, 421 (1973).25. G. A. López, E. J. Mittemeijer, Scripta Materialia51, 1 (2004).26. R. Kikowatz, K. Flad, G. Horz, J.Vac.Sci.Technol. A5, 1009 (1987).27. We would like to thank the Nanoelectronic Research Initiative (NRI-SWAN; #2006-NE-1464), theDARPA CERA Center, and The University of Texas at Austin for support.Supporting Information Available: Materials and Methods. Fig. S1, S2, and S3.Figure CaptionsFig.1. (A) SEM image of graphene on a copper foil with a growth time of 30 min. (B) High-resolution SEM image showing a Cu grain boundary and steps, two- and three- layer graphene flakes, and graphene wrinkles. Inset in (B) shows TEM images of folded graphene edges. (C and D) Graphene films transferred onto a SiO2/Si substrate and a glass plate, respectively.Fig.2. (A) SEM image of graphene transferred on SiO2/Si (285-nm thick oxide layer) showing wrinkles, and 2 and 3 layer regions. (B) Optical microscope image of the same regions as (A). (C) Raman spectra from the marked spots with corresponding colored circles or arrows showing the presence of graphene, 2 layers of graphene and 3 layers of graphene; (D, E, and F) Raman maps of the D (1300 to 1400 cm-1), G (1560 to 1620 cm-1), and 2D (2660 to 2700 cm-1) bands, respectively (WITec alpha300, λlaser = 532 nm, ~500 nm spot size, 100 objector). Scale bars are 5 µm.Fig.3. (A) Optical microscope image of a graphene FET.(B)Device resistance vs top-gate voltage (V TG) with different back-gate (V BG) biases and vs V TG-V_Dirac,TG (V TG at the Dirac point), with a model fit (solid line).Fig. 1Supporting Online Material for:Large Area Synthesis of High-Quality and Uniform Graphene Films onCopper FoilsXuesong Li a, Weiwei Cai a, Jinho An a, Seyoung Kim b, Junghyo Nah b, Dongxing Yang a, Richard Piner a, Aruna Velamakanni a, Inhwa Jung a, Emanuel Tutuc b, Sanjay K. Banerjee b, Luigi Colombo c*, Rodney S. Ruoff a*a Department of Mechanical Engineering and the Texas Materials Institute, 1 University Station C2200, The University of Texas at Austin, Austin, TX 78712-0292b Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USAc Texas Instruments Incorporated, Dallas, TX 75243*Correspondence to: r.ruoff@, colombo@Materials and MethodsGrowth and transfer of graphene filmsGraphene films were primarily grown on 25-µm thick Cu foils (Alfa Aesar, item No. 13382, cut into 1 cm strips) in a hot wall furnace consisting of a 22-mm ID fused silica tube heated in a split tube furnace; several runs were also done with 12.5- and 50-µm thick Cu foils (also from Aesar). A typical growth process flow is: (1) load the fused silica tube with the Cu foil, evacuate, back fill with hydrogen, heat to 1000 o C and maintain a H2(g) pressure of 40 mTorr under a 2 sccm flow; (2) stabilize the Cu film at the desired temperatures, up to 1000 o C, and introduce 35 sccm of CH4(g) for a desired period of time at a total pressure of 500 mTorr; (3) after exposure to CH4, the furnace was cooled to room temperature. The experimental parameters (temperature profile, gas composition/flow rates, and system pressure) are shown in Fig. S1. The cooling rate was varied from > 300o C/min to about 40o C/min which resulted in films with no discernable differences. Fig. S2 shows the Cu foil with the graphene film, compared to the as-received Cu foil.Graphene films were removed from the Cu foils by etching in an aqueous solution of iron nitrate. The etching time was found to be a function of the etchant concentration, the area, and thickness of the Cu foils. Typically, a 1 cm2 by 25-µm thick Cu foil can be dissolved by a 0.05 g/ml iron nitrate solution over night. Since graphene grows on both sides of the Cu foil, two films are exfoliated during the etching process. We used two methods to transfer the graphene from the Cu foils: (1) after the copper film is dissolved, a substrate is brought into contact with the graphene film and it is ‘pulled’ from the solution; (2) the surface of the graphene-on-Cu is coated with polydimethylsiloxane (PDMS) or poly-methyl methacrylate (PMMA) and after the Cu is dissolved the PDMS-graphene is lifted from the solution, similarto the method reported in the reference metioned in the main text. The first method is simple, but the graphene films break and tear more readily. The graphene films are easily transferred with the second method to other desired substrates such as SiO2/Si, with significantly fewer holes or cracks (< 5% of the film area).FiguresFigure S1. Time dependence of experimental parameters: temperature, pressure, and gas composition/flow rate.Figure S2. Photos of as-received Cu foil, and Cu foil covered with graphene. The Cu foil with graphene has a smooth surface and is “shinier” compared to the as-received Cu foil, which has a thin but rough oxide layer.A BC DFigure S3. SEM images of graphene on Cu with different growth times of (A) 1 min, (B) 2.5 min, (C) 10 min, and (D) 60 min, respectively.Supporting Online MaterialMaterials and MethodsFigs. S1, S2, S3。
《固态电子器件》课件(2009-2010)Review
Chapter 7 Bipolar Junction transistors
• 1.The principle of Amplification with BJT? The definitions of the emitter injection efficiencyγ, the current transfer ratio α, the base to collector current amplification factorβ • 2. Know about the calculation of the terminal currents • 3.Understand the coupled-diode model (E-M equations) • 4. Output characteristics of BJT • 5. Saturation and cutoff conditions of BJT?
Metal-Semiconductor Junctions and heterojunctions
1. How to form a rectifying contact ? How to form an Ohmic contact? 2. What is the difference between p-n diode and Schottky barrier diode? 3.Concept of heterojunction
Chapter 10 Negative Conductance Microwave Devices
1.The principle of Esaki or tunnel diodes? Understand the difference between Esaki diode and Zener diode. 2.Know about the operation principle of impact avalanche transit time (IMPATT) diodes. 3.What is the bulk negative differential conductivity effect? Explain the reason. What is the operation principle of the Gunn diode?
显示与成像技术-第一部显示第三章2_液晶驱动技术 (1).
二极管环寻址矩阵液晶显示器件
TFT AMLCD 的分类
TFT的工作原理
栅压
漏源电压
面板說明
S1 G1 G2 G3 TFT Source 線
CLC
S2
S3
Sn-1 Sn
ITO
Gate 線 液晶電容
儲存電容 Gm-1 Gm
com
31
S1 G1 G2 G3
S2
S3
Sn-2 Sn-1 Sn
Gm-2 Gm-1 Gm
(1)扫描到G1行,该行上的全部FET导通。各列信号电压施加到液晶像素上, 并对并联的电容充电。 (2)扫描完G1后,G1上全部FET断开,不管以后列上信号如何变化,对为扫 描行上的像素都无影响。(消除了交叉效应) (3) 未扫描的G1由于与外界电压切断,信号电压在液晶像素上保持一帧时间
3、冷阴极荧光灯(CCFL)照明系统 是一种依靠冷阴极气体放电,激发荧光粉而发光的光源。
特点:光致发光的荧光粉品种齐全,转化率高,是一种色 温高,亮度高的理想光源。可调制成标准的三基色,目前 是彩色液晶显示的最佳光源?(能源利用率低其功耗较高 )
⑴反射式:厚度较大、重量和功耗也较大,不符合目前 便携式设备轻薄、低功耗的要求,使用量越来越少。 (2) 侧导光式:超薄、重力轻、功耗小、大型液晶显示 器的首选配套产品。
32Байду номын сангаас
扫描电压控制(栅极)
TFT元件
液晶
保持電容
加入電壓
(1)因TFT元件的动作类似一個开关(Switch),液晶元件 的作用類似一個电容,通过Switch的ON/OFF對电容儲存 的电压值进行更新/保持。 (2)SW ON時信号写入(加入、記录)在液晶电容上,在 以外時間 SW OFF,可防止信号从液晶电容洩漏。 (3)在必要時可將保持电容与液晶电容并联,以改善其 保持特性。
半导体制造工艺
1、《集成电路工艺基础》,王阳元等编著,高等教育出版社。 2、《微电子制造科学原理与工程技术》,Stephen A. Campbell
著,国外电子与通信教材系列,电子工业出版社。 3、《集成电路制造技术—原理与实践》,庄同曾编,电子工业出
版社。
先修课程
半导体物理 微电子器件
—— 课程内容 ——
学时:32学时
第一章 概论 第二章 器件技术基础 第三章 硅和硅片制备简述 第四章 集成电路制造工艺概况 第五章 氧化
—— 课程内容 ——
第六章 淀积 第七章 金属化 第八章 光刻原理和技术 第九章 刻蚀 第十章 扩散和离子注入 第十一章 化学机械平坦化
1
第一章 概论
§ 1.1 半导体产业介绍
晶体管的发明(1947年) 集成电路的发明(1959年)
体积大 笨重 功耗高 可靠性差
The First Transistor from Bell Labs
体积小 重量轻 功耗低 可靠性好
Inventors: Willian Schockley, Tohn Bardeen, Walter brattain
因此发明获得诺贝尔奖
Jack Kilby’s First Integrated Circuit
nMOSFET
VDD
G
S
DDLeabharlann GSVSS
n+
p+
p+
n+
n+
p+
p-well
n-type silicon substrate
Field oxide
7
第三章 硅和硅片制备
3.1 半导体级硅
(1)半导体级硅
Marine Natural Products 2009
Marine natural productsJohn W.Blunt,*a Brent R.Copp,b Wan-Ping Hu,a Murray H.G.Munro,a Peter T.Northcote c and Mich e le R.Prinsep dReceived23rd October2008First published as an Advance Article on the web6th January2009DOI:10.1039/b805113pCovering:2007.Previous review:Nat.Prod.Rep.,2008,25,35This review covers the literature published in2007for marine natural products,with948citations(627for the period January to December2007)referring to compounds isolated from marinemicroorganisms and phytoplankton,green algae,brown algae,red algae,sponges,cnidarians,bryozoans,molluscs,tunicates,echinoderms and true mangrove plants.The emphasis is on newcompounds(961for2007),together with the relevant biological activities,source organisms andcountry of origin.Biosynthetic studies,first syntheses,and syntheses that lead to the revision ofstructures or stereochemistries,have been included.1Introduction2Reviews3Marine microorganisms and phytoplankton4Green algae5Brown algae6Red algae7Sponges8Cnidarians9Bryozoans10Molluscs11Tunicates(ascidians)12Echinoderms13Miscellaneous14Conclusion15References1IntroductionThis review is of the literature for2007and describes961new compounds from350articles,an increase of24%from the number of compounds reported for2006.As in previous reviews, the structures are shown only for new compounds,or for previously reported compounds where there has been a structural revision or a newly established stereochemistry.Previously reported compounds for whichfirst syntheses or new bioactiv-ities are described are referenced,but separate structures are generally not shown.Where the absolute stereochemistry has been determined for a compound the identifying diagram number is distinguished by addition of a†symbol.Stereochemistries shown for compounds not labelled with†should be assumed to be relative.2ReviewsTwo general annual reviews of marine natural products were published,one covering selected papers from2006,1the other a comprehensive coverage of the2005literature.2The preclinical pharmacology of compounds reported in2003–4was reviewed,3 issues relating to drug discovery from marine environments were discussed,4–6the role of marine natural products as biomedical research tools was reviewed,7and a general commentary on the value of natural products to pharmaceutical discovery was given.8A Dictionary of Marine Natural Products was released in a book and CD-ROM format as a subset of the Chapman& Hall/CRC Dictionary of Natural Products.9The role of natural products(including marine)for the treatment of cancer,10 tuberculosis,11and peroxy compounds as anticancer agents12was described.Marine-derived drugs in neurology,13marine compounds in antitumour clinical trials,14microtubule-stabilis-ing compounds,15enzyme inhibitors from marine invertebrates,16 and antitumour compounds from marine microorganisms17were reviewed.A discussion on the ecological role of selected marine natural products was presented.18Compounds from specific types of organisms were reviewed,including fungi,19,20cyano-bacteria,21–24actinobacteria,25Gram-negative bacteria,26 echinoderms,27algae,28,29bryozoans,30sponge microorganisms,31 Pseudoalteromonas spp.,32Amphidinium spp.,33ascidian nitrog-enous metabolites,34nudibranchs,35and sea anemone neuro-toxins.36Reviews were published on various classes of compounds,including long-chain polyols and polyethers from symbiotic marine algae,37b-carboline alkaloids,38steroid dimers,39manzamines,40simple indole alkaloids,41peptides,42the macrolide haterumalides and biselides,43diterpenoids,44sesqui-terpenoids,45sesterterpenoids,46spongiane diterpenoids,47 furanosesterterpenoids48and polycyclic diamine alkaloids49 from sponges,mycosporines,50allenic and cumulenic lipids,51 triterpene glycosides from sea cucumbers,52neuritogenica Department of Chemistry,University of Canterbury,Christchurch,NewZealand.E-mail:john.blunt@b Department of Chemistry,University of Auckland,Auckland,NewZealandc School of Chemical and Physical Sciences,Victoria University ofWellington,Wellington,New Zealandd Department of Chemistry,University of Waikato,Hamilton,NewZealandREVIEW /npr|Natural Product ReportsJohn Blunt John Blunt obtained his BSc (Hons)and PhD degrees from the University of Canterbury, followed by postdoctoral appointments in Biochemistry at the University of Wisconsin–Madison,and with Sir Ewart Jones at Oxford University.He took up a lectureship at the University of Canterbury in1970, where he is now a Professor.His research interests are with natural products,and the appli-cation of NMR techniques to structuralproblems.Brent CoppBrent Copp received his BSc(Hons)and PhD degrees fromthe University of Canterbury,where he studied the isolation,structure elucidation and struc-ture–activity relationships ofbiologically active marinenatural products under theguidance of Professors Bluntand Munro.He undertookpostdoctoral research with JonClardy at Cornell and ChrisIreland at the University ofUtah.1992–93was spentworking in industry as an isola-tion chemist with Xenova Plc,before returning to New Zealand totake a lectureship at the University of Auckland,where he iscurrently an AssociateProfessor.Wan-Ping HuWan-Ping Hu received her BSc(Hons)and PhD degrees fromthe University of Canterbury,where she studied molecularbeams with Professor PeterHarland.She carried out post-doctoral research with ProfessorStephen Price at UniversityCollege London before returningto New Zealand where she iscurrently the Principal Scientist(Medical Applications)at SyftTechnologies Ltd,in addition toworking on the maintenance ofthe MarinLitdatabase.Murray MunroMurray Munro(University ofCanterbury,Christchurch,NewZealand)has worked on naturalproducts,mainly of New Zea-land origin,right through hiscareer.This started with diter-penoids(PhD),followed byalkaloids during a postdoctoralspell with Alan Battersby atLiverpool.Following a sabbat-ical with Ken Rinehart at theUniversity of Illinois in1973,aninterest in marine natural prod-ucts developed with a particularfocus on bioactive compounds.In recent years his research interests have widened to includeterrestrial and marine fungi and actinomycetes as well as marineinvertebrates.Peter NorthcotePeter Northcote received hisBSc and PhD degrees from theUniversity of British Columbia,Canada,where he was a memberof R.J.Andersen’s marinenatural products research group.He carried out postdoctoralresearch with Professors Bluntand Munro at the University ofCanterbury before takinga position as a senior researchscientist at Lederle Laborato-ries,American Cyanamid Co.He joined the faculty of theVictoria University ofWellington in1994where he is currently an Associate Professor inorganicchemistry.Mich e le PrinsepMich e le Prinsep received herBSc(Hons)and PhD degreesfrom the University of Canter-bury,where she studied theisolation and structural elucida-tion of biologically activesecondary metabolites fromsponges and bryozoans under thesupervision of Professors Bluntand Munro.She undertookpostdoctoral research on cyano-bacteria with Richard Moore atthe University of Hawaii beforereturning to New Zealand totake up a lectureship at theUniversity of Waikato,where she is currently a Senior Lecturer.gangliosides from echinoderms,53,54polysulfur dopamine-derived alkaloids from ascidians,55the chemistry of oxylipin pathways in marine diatoms,56and conotoxins.57–59The metal-binding prop-erties of azole-based cyclic peptides from ascidians were reviewed.60A book featuring phycotoxins was published.61Specific compounds that were selectively reviewed were palau’amine,62trabectedin Ô(ecteinascidin 743),63,64aplidine,65and ziconotide Ô,the first conotoxin commercialised for the treatment of neuropathic pain.66,67Two papers have appeared describing some generally useful techniques,one on FTICR-MS applications 68and the other for the determination of relative configuration.69The third in a companion series providing a broad review of synthetic aspects of marine natural products,covering publications in 2005,has appeared.70More specific reviews that appeared in 2007relating to the synthesis of marine natural products will be referenced in the fifth of this broad review series.The MarinLit database 71has been updated and was used as the literature source for the preparation of this present review.3Marine microorganisms and phytoplanktonMicroorganisms are an increasingly productive and successful focus for marine natural products research.In 2007there was a significant increase (38%)in the number of new compounds reported from 2006.A culture of Pseudoalteromonas maricaloris ,isolated as an epibiont of the sponge Fascaplysinopsis reticulata (Great Barrier Reef,Australia),was the source of two bromi-nated chromopeptides,bromoalterochromide A 1and bro-moalterochromide A 02which were obtained as an inseparable 3:1mixture that was moderately cytotoxic to eggs of the sea urchin Strongylocentrotus intermedius .72Lipoxazolidinones A–C 3–5,isolated from culture of a Marinispora species (sediment,Cocos Lagoon,Guam),had broad-spectrum activity against Gram-positive bacteria,while compound 3was also moderately active against Haemophilus influenza .73Seven salinosporamides,D 6,F–J 7–11and bromosalinosporamide 12were isolated from a large-scale fermentation of Salinispora tropica (sediment,Cross Harbor,Bahamas).74Salinosporamide H 9and bromosalinosporamide 12were produced as a result of replacing synthetic sea salt with sodium bromide in the fermentation media,while salinosporamide E,previously reported as a semi-synthetic derivative,75was isolated from a natural source for the first time.74Saliniketals A 13and B 14are bicyclic polyketides isolated from culture of strains of Salinispora arenicola (sediment,Guam)and inhibited ornithine decarboxylase induction,an important target in cancer chemo-prevention.Surprisingly,derivatisation of saliniketal A 13with Mosher’s acid chloride converted the unsaturated primary amideto the corresponding nitrile.76The 26-membered-ring macro-lides,arenicolides A–C 15–17,originated from S.arenicola (sediment,Guam).a tetrose-derived chlorinated molecule,suggestive of a conver-gent biosynthesis to these two metabolites.80LucentamycinsA–D18–21are peptides isolated from Nocardiopsis lucentensis(saline pond sediment,Little San Salvador,Bahamas).Cyto-toxicity against HCT-116cells was reported for lucentamycins A18and B19.81Tauramamide22,a lipopeptide isolated froma culture of Brevibacillus laterosporus(from an unidentified tubeworm,Loloata Island,Papua New Guinea)wasfirst obtained asa methyl ester but this was shown to be an artifact.Marmycin A28was potently cytotoxic against a panel of humantumour cell lines.Treatment of marmycin A28with dilutehydrochloric acid produced trace quantities of marmycin B29,suggesting the possibility that marmycin B29arose by acid-catalysed chloride substitution of marmycin A28.90PiericidinsC730and C831were isolated from a culture of a marineStreptomyces sp.(unidentified ascidians,Iwayama Bay,Palau)and were selectively cytotoxic to transformed rat glia cells and toNeuro-2a mouse neuroblastoma cells.91,92The cyclic hexadep-sipeptides piperazimycins A–C32–34,isolated from thefermentation broth of a Streptomyces sp.(sediment,Guam),contained rare amino acids and were all significantly cytotoxic(HCT-116).Piperazimycin A32was also potent in the60-cell-line panel of the National Cancer Institute,especially againstsolid tumour cell lines.93Cultivation of a rare Verrucosisporastrain(sediment,Sea of Japan)gave three polyketides,atrop-abyssomicin C35,abyssomicin G36and abyssomicin H37.94Atrop -abyssomicin C 35has previously been reported as a synthetic compound,95but ready conversion to abyssomicin D 96suggests that it was probably naturally produced.97Atrop -abyssomicin C was an inhibitor of S.aureus N315(MRSA)94and 4-amino-4-deoxychorismate synthase.98The tenacibactins A–D 38–41,hydroxamate siderophores isolated from culture of the filamentous bacterium Tenacibaculum sp.(Chondrus ocellatus ,Awajishima Island,Japan),all possessed iron-chelating activity,with tenacibactins C 40and D 41being considerably more effective than tenacibactins A 38and B 39.99A culture of a new marine a -proteobacterium of the Thalassospira genus (source not given)produced two cyclic octapeptides,thalassospiramides A 42and B 43that contained some unusual amino acids andexhibited immunosuppressive activity in an interleukin-5production inhibition assay.100Two acylated homoserine lactones 44and 45were isolated from a culture of Mesorhizobium sp.as quorum-sensing ctone 44was active against Bacillus brevis and cytotoxic to Jurkat and HeLa S3cell lines.101A series of aromatic nitro compounds was isolated from a culture of Salegentibacter sp.(sea ice,Arctic Ocean).102Of these,46–49were new,while another six [4-hydroxy-3-nitro-benzoic acid,103(4-hydroxy-3,5-dinitrophenyl)acetic acid methyl ester,104(4-hydroxy-3,5-dinitrophenyl)acetic acid,105(4-hydroxy-3,5-dinitrophenyl)propionic acid,1062-(4-hydroxy-3,5-dini-trophenyl)ethanol 107and 3-nitro-1H -indole 108],known as synthetic compounds,were isolated as natural products for the first time.A further four compounds,[(4-hydroxy-3-nitro-phenyl)acetic acid methyl ester,109(4-hydroxy-3-nitrophenyl)-acetic acid,110(4-hydroxy-3-nitrophenyl)propionic acid 111and 2-(4-hydroxy-3-nitrophenyl)ethanol 109]were known natural products but isolated from a marine source for the first time.All compounds were tested for antimicrobial and nematocidal activity,phytotoxicity and cytotoxicity,but only 2-nitro-4-(20-nitroethenyl)phenol,111previously isolated from a mangrove,showed good activity against a range of bacteria,fungi and several tumour cell lines.A mixture of 4,6-dinitroguiacol 112and 4,5-dinitro-3-methoxyphenol 112was nematocidal,and most of the isolated compounds were phytotoxic to some extent.102Cultured mycelia of Mechercharimyces asporrophorigenens (marine lake sediment,Urukthapel Island,Palau)was the source of urukthapelstatin A 50,113a cyclic thiopeptide that displayed potent activity against a panel of human tumour cell lines,notably lung and ovarian cancer cell lines.114Fermentation of two strains of Cytophaga bacteria (glass plate biofilms,North Sea)led to the isolation of a number of cyclic polysulfides 51–57.Also detected in trace amounts,and from a natural source for the first time,was 2-methylpropane-1,2-dithiol.115The structures of 51–57were confirmed by synthesis.116Marinobactin F 58,a further member of the amphiphilic marinobactin family,117was isolated from a culture of Marinobacter sp.(eastern equatorial Atlantic)117and is considerably more hydrophobic than other marinobactins.118Fermentation of Rubritalea squalenifaciens (Halichondria okadai ,location not given)yielded an acyl glyco-carotenoic acid 59with potent antioxidative activity in a lipid model.119Two cyclopentenones,bromomyrothenone B 60and botrytinone 61,were isolated from a cultured Botrytis sp.(Enteromorpha compressa ,Baegunpo,Korea).120Trisorbicilli-none A 62,a sorbicillin trimer isolated from a culture of the fungus Phialocephala sp.(deep sea sample,source not given),hadmoderate cytotoxicity(P388and HL-60).121Ascospiroketals A 63and B64were isolated from a culture of Ascochyta salicorniae (Ulva sp.,North Sea,To¨nning,Germany).122Biosynthetic feeding experiments established that the unusual carbon skeleton arose from an ester linkage between a methylated diketide and a modified octaketide.123Two of the quinazoline alkaloids aur-antiomides A–C65–67isolated from a culture of Penicillium aurantiogriseum(Mycale plumosa,Jiaozhou Bay,Qingdao, China)were moderately cytotoxic to tumour cell lines.124Seven polyketides,the prugosenes A1–A368–70,B171,B272,C173 and C274,came from cultivation of Penicillium rugulosum (Chondrosia reniformis,Scoglio della Triglia,Elba,Italy). Biosynthetic feeding experiments confirmed that prugosene A1 68was of polyketide origin and the precursor of prugosenes B1 71and C173.125A Penicillium sp.(Kandelia candel leaves)was the source of cephalosporolides H75and I76,inhibitors of both xanthin oxidase and3a-hydroxysteroid dehydrogenase.126 Shearinines D–K77–84are indole triterpenes isolatedfroma Penicillium sp.(Aegiceras corniculatum ,Xiamen City,Fujian Province,China).127Shearinines D 77,E 78and to a lesser extent G 80,displayed significant blocking activity on large-conduc-tance calcium-activated potassium channels.127Somewhat confusingly three compounds that were also named shearinines D–F had been obtained from Penicillium janthinellum culture (sediment,Amursky Bay,near Vladivostok);128however,a correction to this report 129stated that subsequent to acceptance of the article,the structures of shearinines D and F were found to be identical to those of shearinines D and K 127respectively,so only shearinine E 85is new.Shearinines D 77and E 85,along with the known terrestrial fungal metabolite shearinine A,130induced apoptosis in HL-60cells,while shearinine E 85also inhibited EGF-induced malignant transformation of murine epidermal JB6P +Cl 41cells.128Another Penicillium sp.fromKandelia candel (Hainan Is.,China)gave the penisporolides A 86and B 87that possess a rare spirolactone skeleton,131while a culture of P.bilaii (Huon estuary,Tasmania)produced (À)-2,3-dihydrocitromycetin 88,an aromatic polyketide,and three dike-topiperazines,bilains A–C 89–91.132The isocoumarin derivative,stoloniferol A 92came from a culture of Penicillium stoloniferum (unidentified ascidian,Jiaozhou Bay,Qingdao,China).A rela-tedcompound,stoloniferol B,known previously as a degradation product of citrinin 133and also from P.citrinum ,134when it was named decarboxydihydrocitrinone,has been isolated from a marine source for the first time.A known sterol,(3b ,5a ,8a ,22E )-5,8-epidioxy-23-methyl-ergosta-6,22-dien-3-ol,135,136was also isolated and was cytotoxic (P388).137Aspergiolide A 93is a novelanthraquinone derivative isolated from a culture of Aspergillus glaucus(mangrove root sediment,Fujian,China)and was cyto-toxic to several mammalian cell lines.138A Korean Aspergillus sp.(Sargassum horneri,Gadeok Is., Busan,)gave a polyoxygenated decalin derivative,dehydroxy-chlorofusarielin B94,and the previously described fusarielins AStaphylococcus aureus,methicillin-resistant S.aureus andmultidrug-resistant S.aureus.140Fusarielin E95,which inhibitedthe growth of the fungus Pyricularia oryzae,141came from themarine-derived fungus Fusarium sp.(source not given).Threepentaketides,aspinotriols A96and B97and aspinonediol98,were isolated from a culture of Aspergillus ostianus (unidentified marine sponge,Pohnpei).The known compound dihydroaspyr-one 99was also isolated and the absolute configuration unam-biguously determined as identical with that previously presumed.142,143The nigerasperones A–C 100–102are naphtho-g -pyrones iso-lated from a culture of Aspergillus niger (Colpomenia sinuosa ,Qingdao,China).Nigerasperone C 102was weakly active against Candida albicans and had moderate DPPH radical scavenging activity.144The same strain of A.niger was also the source of two sphingolipids,asperamides A 103and B 104,ergosterimide 105,a natural Diels–Alder adduct of ergosteroid and maleimide,145and a new naphthoquinoneimine 106.Asperamide A 103and thenaphthoquinoneimine 106displayed moderate activity against Candida albicans .146,147A culture of Aspergillus fumigatus (deep water sediment,Vanuatu)yielded 11-O -methylpseurotin A 107,a compound of mixed polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS)origin that selectively inhibited a Hof1deletion strain of the yeast Saccharomyces cerevisiae .148Notoa-mides A–D 108–111are doubly prenylated indole alkaloids iso-lated from a culture of Aspergillus sp.(Mytilus edulis ,Noto Peninsula,Sea of Japan)and were moderately cytotoxic (HeLa and L1210).149Physical data for a compound isolated from a fermentation of A.niger (mangrove wood,Hong Kong)matched that of pyranonigrin A,150but on analysis ledtoa structure correction to112.151Prenylterphenyllin113,400-deoxyprenylterphenyllin114and400-deoxyisoterprenin115were isolated from a culture of Aspergillus candidus(sediment, Gokasyo Gulf,Japan).The known400-deoxyterprenin152was also isolated and all four compounds were cytotoxic to human epidermoid carcinoma KB(KB3-1)cells.153Cephalimysin A 116was isolated from a culture of A.fumigatus(Mugil ceph-alus,source not given)and exhibited significant cytotoxicity (P388and HL-60),154while the carbonarones A117and B118, obtained from a culture of A.carbonarius(sediment,Weizhou Is.,China)were moderately cytotoxic(K562).155The fungus Emericella sp.(Halimeda sp.Madang Bay,Papua New Guinea)was co-cultured with the actinomycete Salinispora arenicola(sediment,Bahamas).This co-culture induced production of two cyclic depsipeptides(emericellamides A119and B120)by the fungus,which were modestly active against methicillin-resistant S.aureus and had weak cytotoxicity (HCT-116).156Fermentation of Spicellum roseum(Ectyplasia perox,Dominica),gave two cyclohexadepsipeptides,spice-llamides A121and B122,that were both cytotoxic to neuroblastoma cells.157Two linear pentadecapeptides,efra-peptins E a123and H124,and two N-methylated octapep-tides,RHM3125and RHM4126,were isolated from an atypical Acremonium sp.(Teichaxinella sp.,Milne Bay,Papua New Guinea),158along with the known efrapeptins F159and G.160The efrapeptins E a,F and G were cytotoxic(H125).A culture of Metarrhizium sp.(Pseudoceratina purpurea,Fiji) gave known destruxins(cyclic depsipeptides),and it was noted that destruxin E2chlorohydrin161was active against HCT-116 cells.162Monodictyquinone A127,isolated from a culture of Monodictys sp.(Anthocidaris crassispina,Toyama Bay,Sea of Japan)was active against B.subtilis,E.coli and C.albicans.163 A culture of a mangrove fungus(S.China Sea coast)led to a new nonadride derivative,(À)-1-hydroxybyssochlamic acid 128,that had weak activity against Hep-2and HepG2cells. Also isolated was a known metabolite,(À)-byssochlamic acid,164which was moderately cytotoxic to these cell lines.165 The isoprenyl phenyl ether129,isolated from fermentation of a mangrove fungus(S.China Sea coast),was inhibitory to S.aureus, E.coli,the fungus Fusarium oxysporum and the HepG2cell line.166Pericosines A–E130–134have been isolated from a culture of a strain of Periconia byssoides(Aplysia kur-odai,Osaka,Sea of Japan)with C132and E134isolated as enantiomeric mixtures.Pericosines A130,B131and D133 were significant growth inhibitors of P388cells and pericosines A130and E134were moderately inhibitory to a panel of humantumour cell lines.Pericosine A130displayed significant in vivo inhibitory activity against P388in mice and inhibited protein kinase EGFR and topoisomerase II.167The structure and stereochemistry of pericosine B131was confirmed from a total synthesis168following the preliminary structural report,169but the originally published structure of pericosine A was shown to be incorrect.170After several investigations and thwarted stereoselective syntheses171,172thefirst total synthesis of(À)-pericosine from(À)-shikimic acid was accomplished,and led to revision of the relative configuration and the determina-tion of the absolute configuration of the natural product as shown here for130.173The same strain of Periconia byssoides also produced peribysin J135and macrosphelide M136,aninhibitor of the adhesion of HL-60cells to human-umbilical-vein endothelial cells (HUVECs).174When Gymnacella dankaliensis (Halichondria japonica ,Osaka Bay,Japan)was fermented using a modified medium the steroid dankasterone B 137was formed,while gymnasterones C 138and D 139were isolated using the original medium.All the gymnasterones were significant growth inhibitors of P388.175Two vermistatin derivatives,methoxy-vermistatin 140and hydroxyvermistatin 141,were isolated from a culture of the fungus Guignardia sp.(Kandelia candel bark,Mai Po marshes,Hong Kong).Methoxyvermistatin 140was modestly cytotoxic (KB and KBv200).176Three diketopiper-azines,gliocladride 142,143and the 6E isomer of 143,were obtained from a culture of Gliocladium sp.(sea mud,Rushan,China).Gliocladride 142was cytotoxic to the human A375-S2melanoma cell line.177,178From a culture of an Arthrinium sp.(deep water sediment,St.Thomas Is.,Virgin Islands)tyrosol carbamate 144was isolated.179Trichodermanones A–D 145–148are sorbicillinoid polyketides with an unprecedented tricyclic ring system isolated from a culture of Trichoderma sp.(Agelas dispar ,Dominica).180A marine strain of Trichoderma long-ibrachiatum (Mytilus edulis ,Loire River Estuary,France)produced twenty-one new 11-residue trichobrachin peptaibols as microheterogeneous mixtures based on the model Ac-Aib-xxx-xxx-xxx-Aib-Pro-xxx-xxx-Aib-Pro-xxol.181Cultivation of Cryp-tosphaeria eunomia (unidentified sponge,Pohnpei)afforded the new diterpene 11-deoxydiaporthein A 149together with the known diaporthein A 150,182diaporthein B 151,182and scopar-arane A,183which were isolated from a marine source for the first time.184The absolute configurations of diaporthein A and dia-porthein B were determined.Four monomeric xanthones,monodictysin A–C 152–154,monodictyxanthone 155and a benzophenone monodictyphenone 156,were isolated from a culture of Monodictys putredinis (green alga,Tenerife,Spain).Monodictysin B 153inhibited cytochrome P4501A activity and with monodictysin C 154were moderately active as inducers of NAD(P)H quinone reductase (QR)in cultured mouse Hepa 1c1c7cells.Monodictysin C 154was also a weak aromatase inhibitor.185Three new polyketides,chaetocyclinones A–C 157–159,were produced by cultures of Chaetomium sp.(marine alga,source not given)with chaetocyclinones A 157and B 158iso-lated as racemates.Chaetocyclinone A 157was activeagainstthe fungus Phytophthora infestans.Biosynthetic studies of chaetocyclinones A157and C159corroborated the polyketide pathway and suggested an unusual condensation of two highly reactive heptaketide intermediates for chaetocyclinone C159.186 A culture of Botrytis sp.(Hyalosiphonia caespitosa,Dadaepo, Busan,Korea)gave a new a-pyrone derivative160along with the known6-((E)-pent-1-enyl)-a-pyrone187Both pyrones were weak tyrosinase inhibitors.188Microsporins A161and B162, cyclic tetrapeptides isolated from cultures of Microsporum cf. gypseum(Bugula sp.,Virgin Islands),are potent inhibitors of histone deacetylase(HDAC),cytotoxic to HCT-116cells and active in the NCI60cancer cell line panel.The total solid-phase peptide synthesis of microsporin A161was completed.189A culture of the endophytic fungus Halorosellinia sp.(Kandelia wood,Mai Po,Hong Kong)gave two anthraquinones,163and 164.190A ramulosin derivative,(3R,4a R,5S,6R)-6-hydroxy-5-methylramulosin165,moderately cytotoxic to HeLa cells,was isolated from a culture of an unidentified fungus(Codium fragile, Toyama Bay,Japan Sea).191Spiromassaritone166and massar-iphenone167were isolated from culture broth extracts of Massarina sp.(sediment,Palau).192Two depsipeptides,desig-nated1962A168and1962B169,were isolated from a culture of a mangrove endophytic fungus(Kandelia candel leaf).193An isocoumarin170,obtained from a culture of an unidentified mangrove fungus(S.China Sea coast),displayed weak cyto-toxicity against Hep-2and HepG2cells.194Lyngbya confervoides (Fort Lauderdale and Pompano Beach,Florida)was the source of lyngbyastatin4171,a depsipeptide that selectively inhibited elastase and chymotrypsin in vitro.195From collections of Lyngbya majuscula(Isla Bastimentos and Bocas del Toro, Panama),two new linear alkynoic lipopeptides,dragomabin172 and dragonamide B173,and two known lipopeptides,carmabin A196and dragonamide A,were isolated.197,198Carmabin A, dragomabin172and dragonamide A showed good antimalarial activity against the W2chloroquine-resistant malaria strain. Jamaicamide B199was also tested in the assay and displayed weak activity.200Three analogues of dolastatin13,lyngbyasta-tins5–7174–176,were isolated from two different collections of Lyngbya spp.(Fort Lauderdale,Florida).The related cyclo-depsipeptide somamide B,previously reported from a Fijian cyanobacterium,201was also isolated and the absolute configu-ration unambiguously assigned as177.All four compounds selectively inhibited elastase over several other serine prote-ases.202A mixed assemblage of cyanobacteria dominated by Lyngbya majuscula yielded the cyclic peptides laxaphycins B2 178and B3179,in addition to the known laxaphycins A and B, previously isolated from the freshwater cyanobacterium Ana-baena laxa203,204and from L.majuscula.205The laxaphycin-producing species in the assemblage was identified as Anabaena xaphycin B inhibited the proliferation of sensitive and resistant human cancer cell lines,and this activity was strongly increased in the presence of laxaphycin A in an apparently synergistic manner.206The linear peptide mitsoamide 180,isolated from the cyanobacterium Geitlerinema sp.(Mitso-Ankaraha Is.,Madagascar),had strong activity against NCI-H460human lung tumour cells.207Venturamides A181 and B182are modified cyclic hexapeptides isolated from Oscillatoria sp.(Buenaventura Bay,Panama)with selective antimalarial activity against Plasmodium falciparum but modest activity only against Trypanosoma cruzi,Leishmania donovani and MCF-7cancer cells.208A culture of a benthic Amphidinium sp.(sea sand,Iriomote Is.,Japan)produced the cytotoxic 20-membered macrolides,iriomoteolides-1a183,-1b184and-1c 185.209Iriomoteolides-1a183and-1c185displayed potent cytotoxicity to human B lymphocyte DG-75cells and Epstein–Barr virus infected human B lymphocyte Raji cells.209,210Two 26-membered macrolides,amphidinolides B6186and B7187, were isolated from a culture of a symbiotic dinoflagellate Amphidinium sp.of theflatworm Amphiscolops sp.(Sunabe, Okinawa)and were cytotoxic to human B lymphocyte DG-75 cells.211A13-membered macrolide,amphidinolactone A188,212 and a26-membered macrolide,amphidinolactone B189,have been isolated from cultures of Amphidinium sp.Amphidino-lactone B189was modestly cytotoxic to L1210murineleukemia。
TS169492009-MSA测量系统分析培训教材(第三版)-最新版
(4)数据处理-极差计算
(1)分别计算每个操作者对各个零件进行r次测量的极差 Raj , Rbj , Rcj ; j =1,2,......, N ; (2)计算每个操作者的平均极差 Ra , Rb , Rc ,......, Rm ; (3)总平均极差 R =(Ra + Rb + ... + Rm ) / M ; (4)计算控制限 UCLR =RD4 LCLR =RD3 D3,D4 可根据试验次数r查表, 当r <7时,D3 =0。
9
术语
• 测量:赋值给具体事物以表示他们之间的关系。而 赋予的值定义为测量值。
• 量具:任何用来获得测量结果的装置,经常用来特 指用在车间的装置,包括用来测量合格/不合格的 装置。
• 测量系统:用来对被测量特性赋值的操作、程序、 量具、设备、软件以及操作人员的集合。
10
测量 系统
测量系统的组成
人
34
(6)结果分析
零件间变差示例:
零件试验 1 2 3
平均值 极差
平均值 极差RP
• 检测设备的检定或校准不能满足实际测量的需要。
• 满足QS9000、ISO/TS16949标准的要求:
ISO/TS16949:2009标准7.6.1规定:为分析出现在各种测量和试验设 备系统测量结果的变差,必须进行适当的统计研究。此要求必须适用 于在控制计划中提及的测量系统。这些分析方法以及接收准则的使用 必须符合顾客的测量系统分析参考手册。采用其他的分析方法和接受 准则必须获得顾客的批准。
4.0
评价人 1
3
4
217 214
216 212
216 212 216.3 212.7
1.0
A Fiber Optic Sensor for Displacement and
A Fiber Optic Sensor for Displacement and Acceleration Measurements in Vibration Tests Maria Luisa Casalicchio,Guido Perrone and Alberto VallanDipartimento di ElettronicaPolitecnico di TorinoTorino,ItalyAbstract—The paper describes a plastic opticalfiber sensor for the evaluation of accelerations from non-contact displacement measurements and highlights the issues concerning its calibration in practical applications,like vibration tests of printed circuit board assemblies.A procedure to contemporaneously calibrate several optical sensors to allow mapping the vibration amplitude and acceleration distributions in a simple and low cost way is also disclosed.The proposed calibration procedure requires just one reference accelerometer,which is actually already available in typical vibration test facilities.Experimental results obtained in real conditions during a sinusoidal vibration test are also provided.Index Terms—Optical Fibers,Plastic Optical Fibers(POF), Optical Sensors,Acceleration measurements,Vibration tests.I.I NTRODUCTIONVibration tests play a major role in studying the dynamic behavior of components and equipments and in verifying their capability to withstand mechanical stresses.These tests are typically carried out using a shaker controlled by a suitable system able to force known accelerations according to specific Standards,like the IEC60068-2-6for sinusoidal tests. Piezoelectric accelerometers are frequently employed to sense the acceleration during these tests:typically at least one of these sensors isfirmly attached to the shaker vibration table using screws or stickers to measure the acceleration, but often many other sensors have to be placed also on the device under test to verify the presence of resonances.In many situations the effects due to dimension and weight of these sensors can be neglected,since very small devices with weight even below1g are available.However,applications exist where even the smallest and lightest devices introduce unacceptable perturbations or cannot be placed because of lack of space;typical example is the vibration test of printed circuit boards already populated by electronic components. Furthermore,these are the typical applications where it is necessary to measure the vibration amplitude in several points and this would require many sensors working simultaneously, in order to maximize the measurement speed or acquire the shape of the vibration modes.Therefore it would be desirable to provide a non-contact acceleration sensor-the only one that really do not introduce perturbations-with low fabrication costs to enable their simple replication.In vibration tests the acceleration can be computed from a measure of distance,evaluating the variations of position of the vibrating surface with respect to afixed sensing head,although this technique has some bandwidth limitations.In the specific case of printed circuit boards,it is necessary to measure distances in the millimeter range,with a sub-micrometric resolution,at frequencies up to few hundred of hertz,in order to have acceleration resolutions below1m/s2. Optics is known to represent an effective approach for non contact distance measurements and thus several optical techniques have been proposed in the literature,such as interferometry[1],laser Doppler vibrometry[2],[3]and self-mixing interferometry[4].All these approaches are character-ized by excellent performances but either require complex and expensive setups or are somehow cumbersome to apply and therefore are not well suited to map the vibration amplitude in several test points.On the other hand intensity-basedfiber optic sensors are known to allow the measurement without contact of short distances in a cost effective way,especially if plastic opticalfibers(POF)are used instead of more common glassfiber bundles[5],[6],[7],since POF are characterized by very high light collecting capability together with a larger diameter that simplifies the handling.In particular a low-costfiber vibrometer can be realized using only two optical fibers:onefiber lights the target and the other collects the reflected beam,exploiting the dependence of the collected light intensity with distance.Unfortunately,this type of sensor is also sensitive to the target optical characteristics,so it requires a calibration before each usage.Several compensation techniques have been therefore developed to overcome this drawback,but all the proposed approaches still fail in the presence of a non uniform target reflectivity,as in the case of printed circuit board that will be described in the following section.The paper presents a measurement technique based on a low-costfiber optical sensor and devised for overcoming the non-uniform target reflectivity limitation;furthermore the problem of the sensor calibration is simplified because just a single traditional accelerometer,almost always available in any vibration facilities,is employed as a reference sensor.II.S ENSOR WORKING PRINCIPLE AND CALIBRATIONISSUESThe schematic block diagram of the proposed non-contact optical sensors based on the measurement of light intensity reflected by the vibrating target is shown in Fig.1,where a couple of them is employed to measure the vibration on aI2MTC 2009 - International Instrumentation and Measurement Technology ConferenceSingapore, 5-7 May 2009978-1-4244-3353-7/09/$25.00 ©2009 IEEEprinted circuit board(PCB)in two different points representa-tive of typical situations.Test point TP1is in a region where the surface can be consideredflat,although may presents not uniform reflectivity,while in the case of test point TP2 the surface is not even uniformlyflat due to the presence of electronic components.In both cases the distance d is measured from thefiber tips to the target surface and is zero when the tips are in contact with the most prominent part of the target.The sensing heads are composed of a transmittingfiber, which routes the light to the target,and a receivingfiber,which collects the light reflected by the target.The transmittingfiber is fed by a LED(like in this experimental implementation) or by a low-cost laser diode,while the receivingfiber is connected to a photodetector(PD)followed by a suitable amplifier that is employed to convert the detected current into the voltage v R(t).Although the sensing head could be arranged in principle using a bundle of glassfibers,the usage of POF provides several advantages because of their high light collecting capability and the less stringent requirements for alignments and connections.The received voltage v R(t)can be written as:v R(t)=A·P R(d)P Tv L(t)(1)where P R(d)/P T is the ratio between the optical powers at the transmitting and receivingfiber tips,including the effect of the target reflectivity,and the term A takes into account the amplifier gains,thefiber losses,and the LED and PD efficiencies.When the target displacement due to the vibration is small with respect to the working distance d0,the optical power ratio can be expressed using a linear approximation as:P R(d) P T ∼=Req·[R0+R1·(d−d0)]=R eq·[R0+R1·s(t)](2)where R eq is the equivalent reflectivity of the area lighted by the transmittingfiber and the coefficients R0and R1are the optical power ratio computed for unit reflectivity and its first derivative,both evaluated at the working distance d0.The received signal can thus be written as a function of thetargetFig.1.The optical sensorstructure.Fig.2.The device under test(a printed circuit board)during the vibration test and the opticalfibers.The test points TP1and TP2,where the acceleration has to be measured,arehighlighted.Fig.3.The received signals measured at the test points TP1and TP2as a function of the distance between thefiber tips and the target and in absence of vibrations.vibration amplitude s(t),measured around the steady state d0, and of the LED stimulus v L(t)as:v R(t)=A·v L(t)·R eq·[R0+R1·s(t)](3) The choice of the most suitable LED modulation frequency depends on the application and it has been addressed in another work[5].The simplest solution is based on a constant stimulus v L(t)=V L,yielding to the following received signal:v R(t)=A·R eq·V L·R0+A·R eq·V L·R1·s(t)(4)Fig. 4.The ratio between the optical power and itsfirst derivative experimentally evaluated at the two test points TP1and TP2and the ratio obtained using an analytical optical model(curve labeled OM).The received signal is composed of a DC term V DC= A·R eq·V L·R0and of an AC term v AC(t)=A·R eq·V L·R1·s(t). The AC term is proportional to the vibration signal s(t) through a scale factor that depends on amplifier gains and fiber losses,on the equivalent surface reflectivity,the LED driving voltage and thefirst derivative of the optical power ratio.Several approaches have been proposed to measure the displacement s(t)trying to overcome the problem of the unknown scale factor A and of the surface reflectivity[5], [8],[9].As an example,the vibration s(t)can be measured from(4)as the ratio of the two measured components as:s(t)=v AC(t)V DCR0R1(5)The acceleration can then be computed from s(t):in case ofsinusoidal vibration tests,it is straightforward,while in a more general case the presence of noise requires accuratefiltering and suitable numerical techniques such as that presented in[10].The DC and AC terms in(5)can be easily extracted from themeasurement of the signal v R(t),but the coefficients R0and R1,or their ratio,in most practical cases cannot be determined with the required uncertainty from the analytical model of theoptical curve P R/P T,such as the one described in[5][11]. Actually,the model dependents on parameters that are difficult to control such as those of the sensing head and the target surface characteristics.An example can be obtained considering the setup in Fig.2used to measure the acceleration simultaneously in two points on a printed circuit board(PCB).The evaluation of the scale factor in(5)requires that each sensor is previously characterized in order to determine R0 and R1at the considered test point and at the working distance d0.The sensors in Fig.2have been characterized in the0mm (fiber tips in contact with the target,see also Fig.1)to about 8mm range,obtaining the curves reported in Fig.3where the received voltage V R,which is directly proportional to P R/P T,is reported for the two sensors.Extreme care has been taken to reproduce two identical sensors,with the same sensing head-to-target alignments,and identical transmitting and receivingelectronic circuits.As shown in Fig.3,both the received power level andits relation with the distance are strongly dependent on the test point.In the case of a uniformlyflat target(TP1),whenthefiber tips are in contact with the target(d 0),thereceived light is almost negligible because the light from the transmittingfiber cannot reach the receivingfiber.On thecontrary,for a notflat target,the received power may be significant even at d 0(as for TP2)because in that casethe receivingfiber tip is partially lit from the beam reflectedby the“valleys”of the surface.Then the two curves in Fig.3 have also a different shape because of the presence of surfacemounted devices at the test point TP2,and this effect can behardly modeled since in a general case the devices thickness is not uniform and depends on the region lit by the transmittingfiber.Finally,the remarkably different peak amplitudes are due to the different reflectivity at the two test points(in particularthe presence of some weld points in TP2causes a sparklingsurface behavior and this accounts for a higher peak of the received power in that case.Fig.4shows the R0/R1ratio obtained experimentally over the measurement range.It is possible to see that the relationship depends on the target distance d,as expected,andits shape also depends on the test point location.Moreover,the ratios obtained experimentally are significantly different fromthe one obtained through the theoretical optical model[11],[5]also shown in Fig.4(curve OM).Therefore it is not possible to extent the characterization results from one test point to others,and each test point has to be fully characterized separately.However,this is expensive and time consuming and,therefore, the approach can be hardly employed in real applications. The alternative calibration procedure presented in the fol-lowing section has been devised to simplify the sensor cali-bration and can be employed,without additional efforts,evenwhen several optical sensors are used contemporaneously to map the vibration distribution of non-uniform targets.III.C ALIBRATION TECHNIQUE BASED ON A REFERENCESENSORThe proposed technique is still based on a preliminary,simplified,calibration of the optical sensors,but it takes advantage of the accelerometer used to control the shaker andthat acts here as a reference sensor.According to(5)the target displacement is obtained mul-tiplying the AC voltage v AC(t)by some terms,which are unknown,but that can be considered constant,provided that the average distance d0and the LED stimulus V L do notchange significantly during the test.The overall contributionK o of all the constant terms is independent of the vibration frequency since the optical sensor has a much larger bandwidththan that the one concerning the vibration tests.Thus,K o can be easily obtained measuring the actual displacement at an arbitrary calibration frequency,f c in each test point.InFig.5.The location of the piezoelectric accelerometer and the test points during the sinusoidal vibration test.the proposed approach the displacement is obtained from the acceleration measured with the reference accelerometer and, therefore,this requires that the acceleration has to be measured in each test point.However,if the vibration frequency is low enough,well below the resonance of the mechanical system under test,the acceleration can be considered constant in any test point and it can be measured using a single reference accelerometer placed in any position,not necessarily coincident with a test point.In these conditions,the scale factor K o can be obtained as:K o=A P(2·π·f c)2·V P(6)being A P the peak value of the acceleration measured at f c and V P the peak value of the AC output signal of the optical sensor.After the scale factor has been obtained,the actual displace-ment can be measured from the sensor output as:s(t)=v AC(t)·K o(7) and the acceleration can be eventually obtained at any fre-quency processing the displacement in a numerical way.IV.E XPERIMENTAL RESULTSThe proposed technique has been employed to monitor the acceleration during a sinusoidal vibration test carried out on a PCB in order to highlight resonances and mounting defects. Two optical sensors arranged as in Fig.1have been used to simultaneously measure the displacement at the test points TP1and TP2.The optical part of each sensor(sensing head) is composed of two Polymethyl-Methacrylate(PMMA)POF having an external diameter of1mm and a length of a couple of meters.The LEDs have been driven at a constant current, while the signals received by the PDs have been amplified with transimpedance amplifiers having bandwidths much wider than the expected vibration signal.The PD amplifiers are AC coupled,so their output voltages are proportional tothe Fig.6.Measurement results obtained during the vibration tests.Measurement obtained at the test points TP1,TP2and TP3have been obtained using the optical sensor calibrated at33Hz.Test point TP3is located on the accelerometer surface.vibration signal,as shown in(1).For comparison purposes, a third optical sensor has been pointed on the accelerometer (TP3in Fig.5)in order to measure the acceleration of the same point both with a traceable accelerometer and with the optical sensor.The accelerometer is a piezoelectric sensor with a sensitivity of10.3mV/g and a5%error bandwidth of5 kHz.Both the optical sensor and the accelerometer outputs have been acquired with a digital acquisition board.Working with sinusoidal signals,the voltage peak amplitudes have been measured using an algorithm based on the synchronous detection to reduce the noise effects.For each test point the sensor has been calibrated,as described in the previous section,driving the shaker with a sinusoidal signal having a frequency of33Hz,value that has been empirically chosen in order to have the same acceleration both for the vibrating table and for the PCB.The peak values of the acceleration and of the optical sensor outputs have been computed and the scale factors have been derived using(6).Then the vibration test has been carried out in the33Hz to500Hz range and the vibration peak amplitude S P for each frequency has been measured following (7).Finally,the corresponding peak acceleration at the test frequency f t has been obtained as A P=(2πf t)2·S P.The results for the three points are summarized in Fig.6. The results concerning TP1and TP2show afirst resonance at about290Hz and a second resonance at about460Hz.It is also possible to notice that the PCB is much more stressed at TP2,that is approximatively in the middle of the board,as expected.The test point TP3coincides with the location of the com-mercial accelerometer and thefigure shows a good agreement at any test frequency,thus confirming the effectiveness of the proposed approach.V.C ONCLUSIONSOptical sensors based on plastic opticalfibers are an inter-esting solution to be employed when the acceleration of com-ponents subjected to vibration tests has to be measured without contact.These sensors have a low cost,in comparison with piezoelectric accelerometers,but they need being calibrated before each use in order to overcome the effects caused by non-uniform targets.The proposed solution takes advantage of a reference accelerometer,which is typically employed to control the shaker,to easily calibrate the whole set of optical sensors.This approach is thus suitable especially when several sensors are employed to map vibration distributions. Experimental results have been carried out in real conditions with sinusoidal tests and have demonstrated the feasibility of the proposed solution.An optical head composed of several optical sensors is being currently fabricated in order to map the acceleration over a wide surface.Moreover,further tests are being carried out in order to characterize the optical sensors calibrated with the proposed procedure.VI.A CKNOWLEDGMENTThis work has been supported by the Regione Piemonte, Italy,within the research project Bando Ricerca Scientifica Piemonte2006:”MAESS:Development of a standardized modular platform for low-cost nano and micro satellites and applications to low-cost space missions and to Galileo”.R EFERENCES[1]S.Donati,“Electro-optical instrumentation:sensing and measuring withlasers”,Upper Saddle River:Prentice Hall,2004.[2]P.Castellini,M.Martarelli,E.P.Tomasini,“Laser Doppler Vibrometry:Development of advanced solutions answering to technology’s needs”, Mechanical System and Signal Processing,vol.20,pp.1265-1285,2006.[3] A.Chijioke,wall,“Laser Doppler vibrometer employing activefrequency feedback”,Appl.Opt.,vol.47,pp.4952-4958,2008.[4]G.Giuliani,M.Norgia,S.Donati,T.Bosch,“Laser diode self-mixingtechnique for sensing applications”,J.Opt.A:Pure Appl.Opt.,vol.4, pp.S283-S294,2002.[5] A.Buffa,G.Perrone,A.Vallan,“A Plastic Optical Fiber Sensor for Vibra-tion Measurements”,IEEE International Instrumentation and Measure-ment Technology Conference Proceeding,2008,I2MTC08,Vancouver, Canada,12-15May,2008.[6]Suganuma F.,Shimamoto A.,Tanaka K.“Development of a differentialoptical-fiber displacement sensor”Applied Optics,Vol.38,No.7,March 1999.[7]Cao H.,Chen Y.,Zhou Z.,Zhang G.“General models of opticalfiber-bundle displacement sensors”Microwave and optical technology letters, V ol.47,No.5,December2005.[8]R.Dib,Y.Alayli,P.Wagstaff,“A broadband amplitude-modulatedfibre optic vibrometer with nanometric accuracy”,Measurement,Elsevier Science,vol.35,no.2,pp.211–219,2004.[9]X.Li,K.Nakamura,S.Ueha,“Reflectivity and illuminating powercompensation for opticalfibre vibrometer”,Meas.Sci.Technol.,vol.15, pp.1773-1778,2004.[10] A.Savitzky,M.J.E.Golay,“Smoothing and differentiation of data bysimplified least squares procedures”,Anal.Chem.,vol.36,pp.1627-1639, 1964.[11]J.B.Faria,“A Theoretical Analysis of the Bifurcated Fibre BundleDisplacement Sensor”,IEEE Transactions on Instrumentation and Mea-surement,vol.47,no.3,pp.742–747,1998.。
RT教材
第一章 射线探伤的物理基础§1-1 X 射线的产生一、原子和原子结构:原子由原子核与核外飞速旋转的电子组成。
原子核是由带正电的质子和不带电的中子组成。
每个质子和中子质量非常接近均具有一个质量单位。
(以碳质量的121为一个原子质量单位用1“u ”表示)照此规定氢元素的原子量为1,氧元素为16。
原子质量数A=中子数+质子数 质子数=核电荷数=Z=原子序数 质子数=核电荷数=核外电子数=原子 中子数=原子数-质子数(或原子序数) 例:60C06027C27个质子 60-27=33个中子原子序数27,核外电子27个电子质量很小可忽略不记,它等于18371氢原子质量。
二、X 射线的产生1、 X 射线产生的条件:X 射线是由X 射线发生器产生的,X 射线发生器由三部分组成:(即产生X 射线的必要条件) ① 发射电子——灯丝(阴极) ② 加速电子的装置——高压发生器 ③ 受电子轰击的阳极靶——阳极过程:灯丝加热后放出电子,在灯丝与靶之间加几十~几百千伏电压后,电子以很高速度撞击靶面,失去所具有的动能,电子的能量绝大多部分转化为热能,极少部分以X 射线形式辐射出来。
因为带电粒子在加速减速时,必然伴随着电磁辐射的发生。
⑴连续X 射线连续X 射线是高速运动的电子和原子核核外库仑场的作用过程中发射出来的。
① X 射线的性质:X 射线是一种电磁波,具有电磁波的波粒二相性 即:{在极端情况下,电子的能量全部转变为X 射线光电子能量h ν,而大部分电子是经过多次制动,逐步丧失动能的。
这就是使转换过程中发出的电磁辐射具有各种波长。
因此X 射线的波谱是连续分布的,称为连续谱。
② 最短波长λmin 计算:10-6-10-7mmHg玻璃(陶瓷)波的性质:波长与频率的关系:λ=——粒子的性质:粒子的能量 hν Cν λ:波长ν:频率h :布郎克常数e —电子电量:1.6×10-19λc h eV mV hv E .212====即:λch eV .=λ=Ve ch ..KV4.12min =λÅ ※ 结论:最短波长只与管电压有关,与阳极靶材料无关,与管电流、灯丝电流均无关。
《流变学》 第三章 第一、二节
欧拉描述法
在该方法中一般以流体元在参考 在该方法中,往往以固定坐标 构型中的物质坐标 XR(R=1,2,3)为 系Xi (i=1,2,3)的空间坐标为自 自变量,以便区别不同的材料元。 变量。
例如:设一流体元初始时刻在 参考构型中的位置矢量为X,到 t时刻它运动到即时构型中的位 置x. 根据拉格朗日描述,流体 元在某一时刻t到达空间的位置 x即与X有关,所以x可以写成X 和时间t的函数,记成:
也称μ对时间求全导数,这是物 质导数(物质微商)在空间 描述法中的表示形式。式还可记成以下矢量形式: D
Dt t
式中等号右边 第一项为μ对时间t的一般偏导数,第二项表示 为两个矢量的点积, 其中的矢量算符称作哈密尔顿算子,定 3 义为:
ej
第二节、空间描述法和物质描述法
物质描述法
观察者的视点集中于一个具体的 流体元及其邻域所发生的事件, 研究它在不同时刻所处的位置, 以及它的速度,加速度等,与通 常力学中集中于一个质点的方法 相同。 拉格朗日描述法
空间描述法
观察者的视点集中于坐标空间 某一特殊点及其邻域所发生的 事件,不针对一个具体的流体 元。
胡克弹性体的本构方程为
E
a
0
1 k r
m
对于粘性流体,现在时刻的应力只依赖于现在时 刻的形变速率张量,与形变的历史无关。 Φ1=φ2=0,η为常数,称为牛顿流体。 η=η(γ),称为非牛顿流体。 对于粘弹性流体, Φ1和φ2不等于0,此时流体具 有记忆特性,现在时刻的应力不仅与当前的形变 速率张量有关,还与形变历史有关。 对高分子材料流变学来讲,寻求能够正确描述高分 子液体非线性粘弹响应规律的本构方程无疑为其最 重要的中心任务,这也是建立高分子材料流变学理 论的基础。
CC2520-CC2591EMK 快速入门指南说明书
CC2520-CC2591EMK Quick Start Guide1.KitContents2x CC2520-CC2591EM and antennas Documentation2.Plug EM intoSmartRF05EBThe CC2520-CC2591EM can be plugged into the SmartRF05EB or the CCMSP-EM430F2618.Please refer to the CC2520DK User Guide for more information about these boards.3.Download Software fromwebIn order to run a packet error rate (PER)test with the CC2520-CC2591,it is necessary to download updated software from the /cc2520dk web page.TheCC2520software examples include a hex file that can be programmed on the CCMSP-EM430F2618board (no compilation required)with the MSP430FET e our Flash Programmer (/lit/zip/swrc044)for this purpose.4.Packet Error Rate (PER)Test When the board has been programmed with the PER test,the board should start up and the LCD will display the screen as shown in the picture above.The number in theparentheses is the revision of the CC2520.Press Button 1to continue.5.SelectChannel Select one of the 16IEEE 802.15.4channels,with channel number from 11to 26(2405-2480MHz,5MHz channel spacing).The channel is selected by navigating the joystick to the right or left.Confirm the selection by pressing Button 1.6.Set up theReceiverSet one of the boards to operate as e the joystick to select mode.Confirm the selection by pressing Button 1.7.Select High/LowGain Select high gain mode or low gain mode of the LNA (low noise amplifier)on the CC2591(see CC2591datasheet for details).For best sensitivity,use high gain mode.Low gain mode may be used for close-in reception in order to avoid saturation of the receiver.8.Ready toReceive The receiver will now wait for packets from the transmitter.9.Set up theTransmitterSet the other board to operate as e the joystick to select mode.Confirm the selection by pressing Button 1.10.Select OutputPowerOn the transmitter node,select the TX output power (signal strength).This adjusts the strength of the signal coming from theCC2520to the CC2591.The displayed value is the amplified signal from the e the joystick to select between -1,11,14,16or 17dBm.Confirm the selection with Button 1.11.Select Number of Packets and PacketRateSelect burst size (number of packets to send)by using the joystick,either 1000,10K,100K or 1M packets.Confirm the selection with Button 1.On the next menu step,select Packet Rate in the same way.12.Start PERtestThe PER test can now be started on the transmitter by pressing the joystick.Thetransmitter will display the number of packets sent,while the receiver will display the RSSI and PER values.13.Observe PER andRSSI The PER test receiver will display the PER value (number of lost and erroneous packets divided by the total number of packets sent,displayed as a fraction of 1000).It will also display a moving average RSSI value(received signal strength).The test can be reset by pressing Button 1.14.SmartRF StudioSmartRF®Studio supports the CC2520-CC2591.When the board is connecteddirectly to the SmartRF05EB,it is possible to tick the CC2591box in the “Range Extender”pane.Studio will then configure some GPIO pins on the CC2520to control the command signals of the CC2591.15.More InformationFor more information about the CC2591,please visit the product web page on /cc2591.Kit and SoftwareThe source code for the PER tester and EM reference design can be downloaded from the CC2520-CC2591EMK web page.The latest version of SmartRF®Studio can be downloaded from /smartrfstudio You can also download the latest IEEE 802.15.4MAC or the TI ZigBee stack (Z-Stack)from the web.We hope you will enjoy working with the CC2591and associated Low-Power RF products from Texas Instruments.PCB Antenna Inverted F-Antenna (Default not connected)CC2591CC2520SMA Antenna connector 32MHz CrystalAntenna selectorIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDLP®Products BroadbandDSP Digital ControlClocks and Timers MedicalInterface MilitaryLogic Optical NetworkingPower Mgmt SecurityMicrocontrollers TelephonyRFID Video&ImagingRF/IF and ZigBee®Solutions WirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2009,Texas Instruments Incorporated。
材料明细2009-1_(3)
D400
G100 G101 G102 G103 G104 G105 G106
t0.8
HRC20~30 HRC20~30
优选 优选
GB/T3280-92
G110
φ5
GB/T13237-91 DIN17162
Q/BQB420-2003 GB/T13793-92 GB/T13793-1992
优选
表面处理 Ep·Zn8~12·c1B
第 2 页,共 8 页
钢管
材料名称
碳素弹簧钢丝
钢丝 不锈钢丝
钢丝绳
材料明细表
材料牌号
08D2 10号冷扎钢管
Q195
材料标准
GB/T13793-1992 GB8162-87
GB/T13237-91
GB/T 3524-2005 GB/T13237-91
h11-d-GB/T342-97 70-C-GB/T4357-89
G500 G501 G502 G503 G504 G505
G600 G601 G602
φ2.5 φ3.5
φ4 φ5 φ4.6 φ6
φ1.5 φ1.8 φ1.5
第 3 页,共 8 页
材料名称
锡青铜带
黄铜板 黄铜管
材料牌号
QSn6.5-0.1Y QSn6.5-0.1Y QSn6.5-0.1Y
QSn65-1 QSn6.5-0.1Y
DIN EN 10270-1
h11-axb-GB/T342-97 70-D-GB/T4357-89
10
ML25 SCM435
ML35
GB/T3206-82
GB/T5953-99 J11-030
FEM_4.004_D_Periodic-Insp_2009-10
Copyright by FEM Product Group IT Available in German (D), English (E)Seite 2FEM 4.004 (5/2009)0 Vorwort: Wichtige Information für den Prüfera) Die Vorschläge und Ratschläge in dieser Richtlinie basieren auf Spezifikationen, Abläufen und ande-ren Informationen, die von der FEM durch seine Mitglieder gesammelt wurden. So weit der FEM bekannt ist, stellen sie die besten erhältlichen Informationen zur Zeit der Veröffentlichung über den Bau und den Gebrauch von Flurförderzeugen unter allgemein gültigen Bedingungen dar und sind vorgesehen, An-haltspunkte für einen solchen Gebrauch zu geben.b) Es gibt jedoch eine breite Streuung von Anwendungen in welchen Flurförderzeuge benutzt werden, deswegen muß in allen Fallen konsequent die Anwendbarkeit dieser Richtlinie durch die Beurteilung der Person festgestellt werden, die die Richtlinie verwendet in Übereinstimmung mit den Bedingungen, in denen der Gebrauch vorgesehen ist in Abhängigkeit von allen relevanten gesetzmäßigen Anforderungen.c) FEM übernimmt keine Verantwortung für die ausgesprochenen oder implizierten Vorschläge, Ratsch-läge, Feststellungen und Schlußfolgerungen und gibt keine Garantie oder Versicherung in Bezug auf die Richtigkeit oder Gültigkeit derselben.1 EinleitungEine Prüfung von Arbeitsmitteln in regelmäßigen Abständen ist in der Zusatzrichtlinie 95/63/EG zur Ar-beitsmittelbenutzungs-Richtlinie 89/655/EG beschrieben.Nationale Regeln, die auf Grund dieser Richtlinie herausgegeben wurden, müssen beachtet werden, da sie von einem Staat zum anderen abweichen können. Die Europäische Richtlinie 89/655/EG und dieergänzende Richtlinie 95/63/EG definieren MindestanforderungenDiese Richtlinie wird angewendet als Ergänzung zur Betriebs-und Wartungsanleitung des Flurförder-zeugs-Hersteller. Nichtsdestoweniger haben die Betriebs- und Wartungsanleitungen des Herstellers Vor-rang vor diesen Vorschlägen.2 AnwendungsbereichDiese Richtlinie ist anwendbar auf angetriebene Flurförderzeuge nach ISO 5053 und Flurförderzeuge angetrieben durch Mitgänger, beide mit oder ohne Hubfunktion.Verweisungen3 NormativeISO 3691: Powered industrial trucks – Safety code¹ISO 5053:1987: Powered industrial trucks; TerminologyISO 5057:1993: Industrial trucks – inspection and repair of fork arms in service on fork-lift trucksISO 2330:2002: Fork-lift trucks – Fork arms – Technical characteristics and testingEN ISO/IEC: 17020:2004: General criteria for the operation of various types of bodies performing inspec-tionEN 1175-1:1998: Sicherheit von Flurförderzeugen – Elektrische Anforderungen – Teil 1: Allgemeine Anforderungen für Flurförderzeuge mit batterieelektrischem Antrieb²¹Überarbeitung von ISO 3691 ist zurzeit als DIS verfügbar²Bemerkung: Neue Ausgabe wird in 2009 erwartetSeite 3FEM 4.004 (5/2009) 4 BegriffeExperteExperte ist eine Person, welche regelmäßige Inspektionen von Flurförderzeugen ausführt und ausführli-che Kenntnisse und Erfahrung vorweist, um den Zustand eines Flurförderzeuges zu beurteilen und fest-zustellen, daß das Flurförderzeug weiterhin in sicherem Zustand operieren kann. Diese Personen sind speziell ausgebildet z.B. durch den Hersteller und ermächtigte Vorgesetzte oder Kundendiensttechniker der Herstellerfirma. Welche Person als Experte für die Inspektion von Flurförderzeugen benannt wird, liegt im Ermessen des Herstellers so weit die gewählte Person die spezifischen Anforderungen erfüllt. Experten müssen objektiv sein in ihrer Beurteilung von Sicherheitsaspekten (siehe EN ISO/IEC 17020).Gabelbelastung und Standard LastschwerpunktabstandEntsprechend den Spezifikationen auf der Gabel (siehe ISO 2330) oder entsprechend den Spezifikatio-nen des Herstellers.5 Ausführung der InspektionDie Inspektionen müssen durch einen Experten durchgeführt werden. Eine Niederschrift des Inspektions- ergebnisses muss erstellt werden. (Siehe Checkliste auf Seite 8 und 9 dieser Richtlinie).Die Inspektionen müssen in Abstanden von nicht mehr als einem Jahr durchgeführt werden, oder spezifi-ziert durch den Anwender gemäß seiner Gefahrenanalyse. Nationale Regeln müssen beachtet werden. Die einzelnen Punkte der Inspektion sind in den Checklisten dieses Dokumentes wie folgt erklärt:5.1 HubeinrichtungenGabelzinken, Befestigungen und Anschläge müssen gemäß ISO 5057 unter besonderer Beachtung von 5.1.1 Gabelzinken, Dicke am GabelknickDie zulässige Mindestdicke am Gabelknick vom Verschleiß herrührend muß vom Hersteller festgesetzt werden oder wenn nicht spezifiziert, nach ISO 5057.Verformung5.1.2 BleibendeJeder Gabelzinken muß auf bleibende Verformung und Verbiegen nach ISO 5057 geprüft werden.5.1.3 Risse am Knick und an den AufhängungenSichtprüfung der Gabeln auf Risse5.1.4 KettenLänge über mindestens 6 Kettenteilungen an jeder Kette, max. Verschleiß wie vom Hersteller spezifiziert, oder wenn nicht spezifiziert, 3%.Im Gebiet des größten Verschleißes, der in der Regel in dem Kettenabschnitt auftritt, der über die Um-lenkrollen läuft, wenn der Gabelträger zum Fahren angehoben ist.Seite 4FEM 4.004 (5/2009)Ketten und damit verbundene Komponenten sind zu prüfen auf:(a) Gebrochene oder fehlende Kettengliedplatten.(b) Lose oder verschlissene Bolzen mit beschädigten Köpfen.(c) Nachweis von Grübchen wegen Rost oder Korrosion.(d) Sich drehende Bolzen in der äußeren Platte.(e) Verlust der Gelenkigkeit (Steife Kette).(f) Verschleiß der Kettengliederecken. z. B. durch Lauf über die Umlenkrollen.(g) Beschädigung der Befestigung des Kettenankerbolzens.(h) Verschleiß und Korrosion der Kettenendbefestigung und des Kettenankers(einschl. integriertenAnkern)(i) Verschleiß zwischen dem Bolzen und der Platte und/oder damit verbundenen Komponentenoder Langlochbildung.(j) Festsitzen der Ankerbolzenbefestigung.Wird ein Defekt wie oben genannt gefunden muß die Kette ausgetauscht werden.5.2 Fahrantrieb und Bremsen5.2.1 Auspuffprüfung bei DieselmotorenMessen des Ruß-Index nach den Spezifikationen des Herstellers oder nationalen Bestimmungen.Bremsleistung5.2.2 Betriebsbremse,Die Bremsleistung muss gemessen werden nach den Vorgaben des Herstellers.5.2.3 Parkbremse,BremsleistungDie Bremsleistung muss gemessen werden nach den Vorgaben des Herstellers, z.B. Messen der Park-bremsleistung durch Fahren gegen die Parkbremse.5.2.4 Bremssystem durch die Deichsel des FlurförderzeugesNachdem die Deichsel freigegeben ist zur senkrechten Stellung oder nach unten in die horizontale Stel-lung gedrückt wird, muß das Flurförderzeug bremsen.5.2.5 BremssystemPrüfen der Bremssystemkomponenten auf Beschädigung, übermäßigen Verschleiß, Rostbildung, Befes-tigung und ordnungsgemäße Einstellung, soweit ohne Ausbau möglich.5.2.6 Räder und ReifenSichtprüfung der Reifen auf Verschleiß, Beschädigung und Klebefehler. Sichtprüfung der Räder und de-ren Zusammenbau auf Zustand, Befestigung, Sicherheit und wenn anwendbar, Reifendruck.Seite 5FEM 4.004 (5/2009) 5.3 Fahrersitz und Bedienelemente5.3.1 FahrerrückhaltesystemSichtprüfung und Prüfung der Sicherheitsfunktion des Rückhaltesystems z.B. Beckengurt; wenn ein duo-sensitiver Gurt eingebaut ist, prüfen ob dieser einrastet wenn der Sitz sich auf einem spezifizierten Win-kel befindet.Prüfen anderer Rückhaltesysteme auf Funktion und Beschädigung.5.3.2 SitzbefestigungPrüfen der Sitzbefestigung und Einstellfunktion.5.3.3 LenksystemPrüfen auf erlaubtes Spiel und auf Beschädigung.5.3.4 Bedienteile und BeschilderungPrüfen aller Bedienteile und deren Beschilderung.Ausrüstung5.4 Elektrische5.4.1 BatteriezustandSichtprüfung des Batteriezustands und der Zellenverbinder, außerdem prüfen dass Verbindungskabel und Verbindungen befestigt sind und gute Isolation vorweisen.5.4.2 BatteriebefestigungSichtprüfung der Batteriebefestigung nach den Vorgaben des Herstellers.5.4.3 BatteriedatenPrüfen der Batteriespannung und des Gewichtes(auf dem Batteriedatenschild) gegen das Typenschild des Herstellers des Flurförderzeuges.5.4.4 Sitzschalter oder andere Abschaltvorrichtung (nur bei elektrischen Fahrzeugen)Wenn der Fahrer das Fahrzeug verläßt, prüfen dass die Stromversorgung des Fahrmotors abgeschaltet ist.5.4.5 NotausschalterPrüfen der Funktion des Notausschalters(Extraschalter oder Batteriestecker).5.4.6 SicherheitstrennschalterWenn der Hersteller vorschreibt, dass der Sicherheitstrennschalter in regelmäßigen Abständen geprüft werden muß, sollte diese Prüfung nach Abschnitt 5.9.4 von EN 1175-1 erfolgen.5.4.7 Elektrische Verdrahtung und SicherungenSichtprüfung der elektrischen Verdrahtung auf Beschädigung(Isolationsschäden, Anschlüsse) und Siche-rungen.Seite 6FEM 4.004 (5/2009)5.4.8 Sicherheitsschalter an der DeichselWenn bei mitgängergeführten Flurförderzeugen die Deichsel freigegeben wird, muss die Stomzufuhr zum Fahrmotor abgeschaltet werden.Prüfen der Not-Fahrtsrichtungsumkehr auf richtige Funktion.5.5 Hydrauliksystem5.5.1 HubsystemabsenktestPrüfen der Schleichfunktion bei Nennlast(max. 100 mm innerhalb 10 min bei Flurförderzeugen mit Nenn-last bis 10 t oder max. 200 mm in 10 min bei Nennlast größer als 10 t), gemäß ISO 3691 oder den Vor-gaben des Herstellers. Diese Prüfung muß vorgenommen werden bei Hydrauliköl auf Betriebstemperatur und alle Hubzylinder druckbeaufschlagt.5.5.2 NeigesystemschleichtestPrüfen der Schleichfunktion vorwärts bei Nennlast auf Höhe von 2,5 m (max.5 innerhalb 10 min.), siehe ISO 3691 oder die Vorgaben des Herstellers. Diese Prüfung muß mit Hydrauliköl auf Betriebstemperatur vorgenommen werden.5.5.3 Leckagen und BeschädigungenSichtprüfung der Schläuche, Rohre und Anschlüsse auf Beschädigungen, Leckage, Verschleiß, Ausbeu-lungen und Verdrehungen.5.6 Fahrzeugrahmen und Sicherheitsausrüstung5.6.1 BefestigungspunkteSichtprüfung der Befestigungspunkte für das Hubwerk, das Gegengewicht, Lenkachse, Fahrerschutz-dach, Neigezylinder, usw.5.6.2 Rahmen und SicherheitsausrüstungSichtprüfung des Rahmens und der Sicherheitsausstattung für z.B. Fahrerschutzdach, auf Risse, Be-schädigungen, Verformungen die die Sicherheit beeinflussen.5.6.3 AnhängerkupplungSichtprüfung der Anhängerkupplung auf sichere Funktion.5.6.4 Bodenöffnungen bei TreibgasstaplernSichtprüfung der Bodenöffnungen am tiefsten Punkt bei Treibgasstaplern gemäß ISO 3691.5.6.5 HaubenverriegelungPrüfen der Funktion und der Sicherheit.5.7 Verschiedenes und Spezialausrüstungen5.7.1 BeschilderungPrüfen, daß alle Sicherheitsschilder angebracht und lesbar sind.Seite 7FEM 4.004 (5/2009) Prüfen, daß die Tragfähigkeitsschilder sicher befestigt sind, lesbar und die Tragfähigkeitseinstufung für das Flurförderzeug und alle Anbaugeräte, die mit dem Flurförderzeug benutzt werden, aufweisen.5.7.2 BedienungsanleitungPrüfen, dass die Bedienungsanleitung zusammen mit zugehörigen Dokumenten dem Fahrer zugänglich sind.(z.B. Bedienungsanleitung für Anbaugerät)5.7.3 AnbaugerätePrüfen der Anbaugeräte auf Beschädigung, übermäßigen Verschleiß, Leckagen, sichere Befestigung in Übereinstimmung mit den Spezifikationen.5.7.4 ZusatzausrüstungenPrüfen von Zusatzausrüstungen wie Beleuchtung, Spiegel, Scheibenwischer usw. auf korrekte Funktion.5.8 Flurförderzeuge mit hebbarem FahrerplatzPrüfen der Sicherheitsfunktionen spezifisch an Flurförderzeugen mit hebbarem Fahrerplatz, die nicht bereits durch die Vorgaben des Herstellers abgedeckt sind.Prüfungen5.9 WeitereDer Experte muss Prüfungen für weitere besondere Teile, die nicht in diesem Dokument behandelt sind aber am Fahrzeug angebracht sind, dokumentieren. Diese Teile müssen durch den Prüfer gesondert auf der Checkliste aufgeführt werden.Seite 8FEM 4.004 (5/2009)6. Checkliste, 2 SeitenSeite 9 FEM 4.004 (5/2009)。
扩孔、调齿、FET的方法与注意事项
扩孔、调齿、FET的方法与注意事项在我看来,AEG的基本改装无非就是扩孔、调齿和加装FET电路,也许这些改造并不会使威力、射速有明显改变,但却是提高整个机械、电路工作效率以及耐用度的关键。
08年末改了一条自己的自攒版m4(90%81配件),此次把改装心得与方法发布上来,算是为论坛做点贡献,也为今后打算以类似方法改装的同好们做个示范。
扩孔:个人认为在m140威力前提下8mm轴承是最理想的杯士,润滑性比钢杯士好,还不会磨轴。
虽然8mm轴承杯士比普通的钢杯士贵不了多少,但由于需要额外购买扩孔刀和需要较高的扩孔水平,使得大部分玩家都对8mm轴承杯士望而却步,其实扩孔也不是什么难事,经验最重要,下面把本人的扩孔经验发上来供大家分享。
DSC02168.j pg (116.63 KB)2009-1-2513:52几乎全新的81 2号整波,先洗净波壳为扩孔做准备。
DSC02170.jpg (107.3 KB)2009-1-2513:528mm轴承杯士,比钢杯士贵不了几块钱,记住最好要买2.5m m厚度的薄杯士。
以VS扩孔刀举例,此扩孔工具扩孔速度比较快,熟练后基本上30秒就能扩好一个杯士孔。
D SC02173.jp g (112.21KB)2009-1-25 13:52首次扩孔时注意要轻、慢,千万不可急功近利,扩孔过程是不可逆的,如果扩坏了就麻烦了。
左手握住波壳,右手慢慢转动铰刀,轻轻的一点点施加压力,边扩边注意铰刀与波壳是否垂直,如果杯士孔不垂直的话影响杯士的安装。
扩法兰边也是重点,太深太浅都不好,而且法兰边深度直接影响以后的调齿,好的法兰边深度对调齿有很大帮助。
a-Si TFT Device简介
a-Si TFT Device簡介中小事業部設計總處面板設計處AR設計部isplaying your vision!TFT LCD Structure isplaying your vision!SwitchElectrode ITO isplaying your vision!Addressing directly Scan Addressing isplaying your vision!isplaying your vision!Why Active Matrix?Scan SignalCrosstalk EffectData SignalWriting PointWriting PointScan SignalData SignalPassive Matrix Ex. TN, STNActive Matrix Ex. TFT, LTPSisplaying your vision!The Section of PanelITO on CFColor FilterTFT ArrayElectrode ITOLCPolarizerPolarizerPIStorage Capacitanceisplaying your vision!薄膜電晶體之樹Projection 用TFTLCD 實用化R & D HTPS 無a-Si TFTDisplay 小型~超大型TV Display TFT-EPID(電子書籍)Sensor X-ray image sensor 實用化R & DDisplay TFT-OLEDSensor 光電效果(Touch Panel )LTPS TFTDisplay LCD 中小型(攜帶用機器)Display OLED 小型(攜帶用機器) 實用化R & DDisplay OLED 大型TVSensor 迴路一體Image Scanner Memory DRAM, SRAM, Flash 人工網膜微結晶Si-TFT 無實用化R & DDisplay TFT-LCDDisplay 大型TFT-OLED TV氧化物半導體TFT 無實用化R & DDisplay TFT-LCD Display OLED, EPID 有機半導體TFT 無實用化R & DDisplay OTFT-LCDDisplay OTFT-OLED, EPID Sensor 無線元件, Scanner Memory材料無機半導體有機半導體導體、絕緣物高分子、低分子有機奈米材料製程真空黃光印刷噴墨評價電氣的物理的化學的光學的生產裝置真空成膜黃光關係直接描畫分析解析機器分析SIMS, ESCA, AFM 等Simulation 信賴性環境、安全薄膜TFT開發經緯✓II-VI族化合物半導體薄膜TFT (1962~)✓Amorphous薄膜TFT (a-Si TFT, 1979~)✓低溫Poly-silicon薄膜TFT (LTPS-TFT, 1986~)✓微結晶Silicon薄膜TFT (μc-Si TFT)✓高溫Poly-silicon薄膜TFT (HTPS, 1966~)✓氧化物半導體薄膜TFT (TOS-TFT, 1964~)✓有機半導體薄膜TFT (OTFT, 1983~) isplaying your vision!Si系Device比較a-Si TFT LTPS TFT HTPS TFT C-Si TFT移動度[cm2/Vs]0.3~1.010~60010~150300~600 Device構造n-ch n-ch, p-ch, CMOS n-ch, p-ch, CMOS n-ch, p-ch, CMOS 基板種類無鹼玻璃無鹼玻璃石英Si Wafer 透明性透明透明透明不透明基板Size [m]一邊0.5~2一邊0.4~10.15~0.3m直徑0.15~0.3m直徑Process溫度[℃]100~350100~600800~1000800~1000 Process Cost低中高高Mask枚數3~66~1315~2030~40優點低價格大面積多尺寸對應直視型Display部份代替LSI多尺寸對應Intelligent Display直視型Display高精細Display投射型Display高驅動能力高速處理大面積Memory投射型Display缺點畫素元件使用製程成本略高製程成本高大面積困難透過型Display 大面積困難isplaying your vision!Single Crystal and Amorphous面心立方(face-centered cubic, FCC)Not only small range is amorphous, but long range order.existis hadBetween Bend Gap has “deep level”, and called it“localized state”.isplaying your vision!TFT與FET的差異Si Wafer是不透明的,適用於反射型;玻璃和石英基板是透明的,適用於透過型、反射型、透過反射型。
高等土壤化学-土壤氧化物
3.氧化硅
土壤氧化硅分为结晶与非结晶两种形态:
结晶形态氧化硅:α—石英,β—石英,β—鳞石英,а—
方石英,β—方石英等,结晶形态不同!
非晶态氧化硅也称无定形氧化硅,主要是蛋白石。
• 土壤中无定形硅Si含量 在 0.2—2.6g/kg 之 间 , 总体上随深度的增加而 缓慢增加。
pH>3, pH>10, pH<10,
Fe3+→Fe(OH)3 Fe(OH)3→α-FeOOH Fe(OH)3→α- Fe2O3
影响铁氧化物转化的因素
影响铁氧化物转化的因素主要有:Eh、pH、温度、有机质和阳离子。
(1) Eh和pH:Eh和pH条件显著影响着铁氧化物的形态转化,土壤矿物中铁 的价态有Fe2+和Fe3+。Fe2+在土壤中充当重要的还原性物质,当土壤体系处于 还原条件下,铁氧化物就会发生明显的还原溶解,此时生成大量的Fe2+离子 ,而当土壤溶液的Eh值小于120mV时,Fe3+极易被还原成Fe2+,同时低pH 值的环境也有利于铁氧化物的还原溶解,不同铁氧化物的还原溶解性差异较 大。
(1)铁氧化物和重金属的相互作用
铁氧化物
与水接触
无定型的Fe2o3/Fe3+化合物
被水分子包围
surfOH(界面羟基官 能团)
质子化 去质子化
1、无定型的Fe2o3/Fe3+化合物,以胶体形式存在,有一个共同的特点,具有大 的比表面; 2、在Fe2o3/Fe3o4化合物界面质子化或去质子化后产生的官能团可与溶液中带 相反电荷的离子发生表面配合,即产生吸附。
当根表铁膜较厚时将阻碍cd的吸收借助于fe与fe的运输蛋白优先结合将及大地降低cd水生植物的通气组织特别发达能将空气中的氧气通过叶片运输到根系满足根系淹水环境下对氧气的需要同时能将淹水环境中还原性物质如fe一种两性胶体能够通过吸附和共沉淀等作用影响多种元素在土壤中的化学行为和生物有效性对促进营养元素吸收和减少重金属毒害有着非常重要的意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)当外加一小量正电压(V>0)时,半导体表面 能带向下弯曲,在氧化层和半导体的界面处多数载流 子(空穴)耗尽,留下受主原子,形成一个负的空间 电荷区。这种情况被称为耗尽(depletion)现象。 Qm=|qNAW|
(4)当外加一大的正电压(V>0)时,能带向下弯 曲严重,在氧化层和半导体的界面处np>ni,半导体 表面呈现反型,这种情况被称为反型(inversion) 现象。 |Qs|=|Qn|+qNAW=Qm
面积=
隔离区
图
MOSFET的面积随着栅长(最小特征尺寸)的减小而减小
绪论 MOS二极管
P型
(1)当V<0时,半导体表面能带向上弯曲,在 氧化层和半导体的界面处产生空穴堆积,这种 情况被称为积累(accumulation)现象。Q为 单位面积的电荷量。|Qm|=Qs
(2)当V=0时,称做平带状态.
世界上最小的積體電路:
2003年5月19日,日立公司在東京稱,歐洲中央銀行考慮採用該公司生產 的世界上最小的積體電路防止歐元盜版。這張照片中顯示的手指上的一個 黑點和一個白點就是這種微型積體電路
微处理器
制作工艺
主频/外频
50MHz 133MHz 333MHz 750MHz 2.6GHz 3.0GHz/800MHz 2.93GHz/1066MHz 3.66GHz/1333MHz
可以消去W,得到:
3.1
MOS场效应管
MOSFET
增强型 EMOS
耗尽型 DMOS
N沟道
P沟道
N沟道 P沟道
3.1.1 增强型MOSFET(Enhancement MOSFET)
一DS=0,这时,两个N+区被各自的空间电 荷区包围而彼此隔断。若VDS>0,漏到源的电流只 有反向漂移电流。 *增强的含义是:半导体衬底在零栅压下,不是反型 的。需加反偏栅压才能产生电子反型层。
W——沟道宽度; l ——沟道长度; xi ——反型层厚度。
VDS
l
+
VGS
G
+
+ ψs(y) ID D +
VOX
S V(y)
-
+
y
VDS
VGS VOX s ( y ) V ( y ) 0 QS ( y ) [VG s ( y ) V ( y )]C OX Qn ( y ) QS ( y ) QB max ( y ) C OX [VGS QB max V ( y ) 2 B ] C OX
2kT N A S 2 B ln n q i
其中,ψB=(Ei-EF)(半导体体内)/q,称为费米势。
xd max 2
0 S B
qN A
VGS
VDS
二 、 伏 安 特 性
Z Y
X
l
我们以N沟道MOS为例,推导其伏安特性。 为便于分析,做如下假设: 1、沟道电流为漂移电流; 2、反型层中电子迁移率µ n为常数; 3、反向截止电流为零; 4、沟道中任一点y处的横向电场Ey远小于该处的纵向电场Ex。 即满足缓变沟道近似。 5、栅氧化层中无电流。 6、VGS≥VGS(th);0≤VDS≤VDS(sat)
1、起初,因表面处电子浓度较小,处于弱反型状态; 2、当SiO2-Si界面处电子浓度大于、等于衬底掺杂浓度 时,开始产生强反型。 3、反型层的宽度典型值为1nm~10nm,通常远小于 表面耗尽区的宽度。
MOS二极管的总电容:
C O CT 2 C ( F / cm ) C O CT 其 中 ,C O ox / d , 是 氧 化 层 电 容 ; CT s / W , 是 半 导 体 中 的 势 垒 电 容 。
C OX [VGS V ( y ) VGS ( th ) ]
沟道在y处的电导率可近似为:
(x) qn( x )
W 沟道电导: g ( y ) l
xi 0
n
xi
0
W n ( x )dx l
xi
0
qn( x )dx
由于: Qn ( y ) qn( x )dx W n g( y) Qn ( y ) l dy dy dy片段的沟道电阻为: dR( y ) g ( y ) l W n Q n ( y ) I D dy 此片段上的压降为: dV ( y ) I D dR( y ) W n Q n ( y ) I D dy W nC OX [VGS V ( y ) VGS ( th ) ]dV ( y )
I D dy W nC OX [VGS V ( y ) VGS ( th ) ]dV ( y ) 其中,I D与y无关。将上式由源极积 分到漏极:
l
0
I D dy W nC OX
V DS
0
[VGS V ( y ) VGS ( th ) ]dV ( y )
得到I D VDS 的表达式:
理想MOSFET的阈值电压
Qm — 金属栅上的电荷面密度 ; Qn — 反型层中电子电荷面密 度; QB — 半导体表面耗尽层中空 间电荷面密度。 Q s Qn Q B (半导体表面总电荷面 密度) QB qN A xd Qm Qn Q B 0
VGS VOX S
(3)饱和区:特性曲线近似平坦的区域
第三章
场效应管
FET( Field Effect Transistor )
沟道宽度W 氧化层厚度d
结深度rj
沟道长度L 衬底的掺杂浓度NA
MOSFET(metal-oxide-semiconductor field-effect transistor,金属-氧化物-半导体场效应晶体管)的其他缩写: IGFET(insulated-gate field-effect transistor,绝缘-栅极 场效应晶体管) MISFET( metal-insulating-semiconductor field-effect transistor,金属-绝缘体-半导体 场效应晶体管) MOST( metal-oxide-semiconductor transistor,金属-氧 化物-半导体 晶体管)
Althaea rosea
M1 Vgs Vds
0
MOSFET的阈值电压VGS(th)
指的是增强型MOSFET金属栅下面的半导体表面呈现强反 型,从而出现导电沟道时所需的栅源电压。由于阈值电压是决 定MOSFET能否导通的临界栅源电压,因此它是MOSFET非常 重要的参数。 从使用的角度上来说,希望VGS(th)小一些好。
2 DS
(1)线性区: (VDS VGS VGS ( th ) , VGS VGS ( th ) )
I D dy W nC OX [VGS V ( y ) VGS ( th ) ]dV ( y ) 上式中沟道压降 (y)可以忽略。 V 从源到漏积分可得:
W nC OX ID (VGS VGS ( th ) )VDS l W nC OX 令 , 显然该因子取决于器件 材料和结构参数。 l 定义: VDS 1 Ron I D (VGS VGS ( th ) )
22纳米工艺已实现突破 由于IBM阵营集中了全球主要半导体公司,通过合作, 在22纳米工艺开发上进展迅速。2008年8月,他们首先发 布了在美国Albany纳米技术研究室试制成功的22纳米 SRAM芯片。其工艺技术有以下7个特点:高介电率栅极绝 缘层/金属栅极,栅极长度小于25纳米的晶体管,薄隔离层, 新的离子注入方式,尖端退火技术,超薄硅化物,镶嵌Cu 触头。该芯片光刻采用了高数值孔径(high-NA)的液浸光刻 技术。 特别值得指出的是,与32纳米工艺一样,IBM阵营的 22纳米工艺对传统芯片工艺并不做大的变动。这不仅降低 了技术难度,而且可大幅度减少生产成本。基于此,IBM 阵营最近宣布,其在22纳米工艺上已领先于英特尔公司。
呈现强反型的条件:
VOX表示在栅氧化层上的压降; ψS为表面势,作用在半导体表面, 使表面能带弯曲。
VOX
Qm QB max qN A xd max C OX C OX ( 0 OX / OX )
其中,COX为栅氧化层单位面积电容量; εOX为SiO2的介电 常数, τOX是栅氧化层厚度。
ID
nC OX W
(0 VDS
V [(VGS VGS ( th ) )VDS ] l 2 VDS ( sat ) , VGS VGS ( th ) )
2 DS
ID
nC OX W
(0 VDS
V [(VGS VGS ( th ) )VDS ] l 2 VDS ( sat ) , VGS VGS ( th ) )
2、当VGS足够大时,这时, 在两个N+区之间形成表面反 型层(或称沟道),漏和源 通过一导电的表面n型沟道相 连,并可允许大电流通过。 沟道电导可通过栅极电压调 节。
* VGS(th)为开始形成反型层 所需的VGS,称开启电压或 阈值电压。 threshold voltage
3、VDS与ID的关系(VGS为定值)
线性区 线性区
(2)非饱和区:
ID
nC OX W
l
[(VGS VGS ( th ) )VDS
2 VDS ] 2
(VDS VDS ( sat ) , VGS VGS ( th ) )
当VDS较大时,漏电流ID依然随VDS的增大而上升, 但上升的速率随VDS的增大而逐渐变缓。 原因: 栅绝缘层上的压降从源到漏随V(y)的上升而逐渐下 降,致使反型层逐渐变薄。 *线性区和非饱和区相当于晶体三极管的饱和区。
(c)当VDS>VD sat时,P点的电压VD sat保持固定, ID为一常数,MOSFET工作在饱和区,主要的变化是 L缩减为L’,载流子由P点注入到漏极耗尽区。