数学试卷参考答案与评分标准
高考数学全国统一模拟考试江苏卷、参考答案与评分标准

高考数学全国统一模拟考试数 学(江苏卷)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
1. 已知集合}11log |{2+-==x xy x M ,]}1,0[,|{3∈+==x x x y y N 且,M ∩N = A.]2,1(B.)1,1(-C.)1,0[D.)1,0(2. 数列}{n a (*N n ∈)中,1231,3,5a a a ===,且1237n n n n a a a a +++⋅⋅⋅=,则99a =A.1B.3C.5D.无法确定3. nxx )1(+的展开式中常数项等于20,则n 等于A.4B.6C.8D.104. 空间直线b a ,是成060的异面直线,分别过b a ,作平面βα,,使βα,也成060.这样的平面βα,A.有无穷对B.只有5对C.只有3对D. 只有1对5. 如图AOB ∆,MN 是边AB 的垂直平分线,交OB 于点N ,设b OB a OA ==,,且OB ON λ=,则=λA .b b a 2+B .)(222b a b b a -⋅-C .bb a 2-D .)(222a b b b a -⋅-注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1、本试卷共4页,包含选择题(第1题~第10题,共10题)、填空题(第11题~第16题,共6题)、解答题(第17题~第21题,共5题)三部分。
本次考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。
3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。
4、作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
厦门数学中考试题参考答案及评分标准

考生须知: 厦门市2007年初中毕业及高中阶段各类学校招生考试数学试题(试卷满分: 150 分; 考试时间:120分钟) 1. 解答的内容一律写在答题卡上, 考生不得擅自带走• 2. 作图或画辅助线要用 0.5毫米的黑色签字笔画好. 一、选择题(本大题共 7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有 一个选项是正确的) 下列计算正确的是 A . — 3X 2 = — 6 B. — 1— 1 = 0 已知点 A (— 2, 3),则点A 在 A .第一象限 B .第二象限 下列语句正确的是 A.画直线AB = 10厘米 C.画射线OB = 3厘米 下列事件,是必然事件的是 A. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是B. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是偶数C. 打开电视,正在播广告 D •抛掷一枚硬币,掷得的结果不是正面就是反面 1.2. 3. 4.6. 7. 否则以0分计算.交卷时只交答题卡,本卷由考场处理, C. ( — 3)2= 6 C.第三象限D. 2 -1 = 2 D.第四象限B.画直线 D.延长线段AB 到点C,使得BC = AB I 的垂直平分线 方程组丿x + y = 5, 的解是,2x — y = 4.X= 3, x = 3, x =— 3, x =— 3, A .彳 B . C .丿D. \ly = 2. w=— 2.j= 2. 丁=— 2.5. 如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形下列两个命题:①有一个内角是60° ,那么这个等腰三角形一定是等边三角形 .则以下结论正确的是A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为 69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地 .后来 小宝借来一副质量为 6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地 .小宝的体重可能是 A. 23.2 千克B. 23千克C. 21.1 千克D. 19.9 千克二、填空题(本大题共 10小题,每小题4分,共40分) 9.已知/ A = 50°,则/ A 的补角是 计算15 车序号1 2 3 4 5 6 车速(千米/时) 85 100 90 82 70 82 不等式2x — 4> 0的解集是 ________ . _______ 一名警察在高速公路上随机观察了 6辆车的车速,如下表所示: 则这6辆车车速的众数是 _______________ 千米/时. 已知图1所示的图形是由6个大小一样的正方形拼接而成的,此图形能否折成正方体 _________ (在横线上填“能”或“否”). 已知摄氏温度(C )与华氏温度「F )之间的转换关系是: 5摄氏温度=9 % (华氏温度—32).若华氏温度是68 F, 则摄氏温度是 C . 已知在 Rt △ ABC 中,/ C = 90°,直角边 AC 是直角边 BC 的2倍,贝U sin / A 的值 是 如图2,在平行四边形 ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若/ DAE = 20° , / AED = 90°,则/ B = __________ 度;若E C = 1,AD = 4厘米,则CF = _____________ 厘米. AB 3 在平面直角坐标系中, O 是坐标原点•点P (m , n )在反 图2 、 k 厂 比例函数y = X 的图象上.若m = k , n = k — 2,则k = ____________ ;若m + n = ,2k, OP = 2, k 且此反比例函数 y = -满足:当x > 0时,y 随x 的增大而减小,则 k =—— X 解答题(本大题共 9小题,共89分) 2 “ 2 ——1 V + X (本题满分8分)计算X 一 十J 厂+ 1. x x (本题满分8分)一次抽奖活动设置了如下的翻奖牌,如果你只能有一次机会在 字中选中一个翻牌,(1)求得到一架显微镜的概率;9个数(2)请你根据题意写出一个事件,使这个事件发生的概率是2 9.10. 11. 12. 13. 14.15. 16. 17. 三、 18. 19.1 2 3 4 5 6 789翻奖牌正面一架 两张 谢谢显微镜球票 参与 一张 一副 一张 唱片 球拍 唱片 两张 一张 一副 球票唱片球拍翻奖牌反面(本题满分8分)已知:如图3, AB 是O O 的弦,点(1) 若/ OAB = 35°,求/ AOB 的度数; (2) 过点C 作CD // AB ,若CD 是O O 的切线,求证:点C 是AB 的中点.21. (本题满分9分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式1h = v o t — 2g t 2 ( O v t W 2),其中重力加速度 g 以10米/秒2计算.这种爆竹点燃后以 V o = 20 米/秒的初速度上升, (1) 这种爆竹在地面上点燃后,经过多少时间离地15米?(2) 在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明 理由. 22. (本题满分10分)已知四边形ABCD ,对角线AC 、BD 交于点O.现给出四个条件:①AC 丄BD :②AC 平分对角线 BD :③ AD // BC :④ / OAD = Z ODA.请你以其中的三个 条件作为命题的题设,以“四边形 ABCD 是菱形”作为命题的结论,(1 )写出一个真命题,并证明;(2 )写出一个假命题,并举出一个反例说明.23. (本题满分10分)已知:如图4,在厶ABC 中,D 是AB 边上的一点,BD > AD ,/ A =Z ACD ,(1)若/ A =Z B = 30 °,BD =3,求 CB 的长;(2 )过D 作/ CDB 的平分线 DF 交CB 于F ,C若线段AC 沿着AB 方向平移,当点 A 移到点D 时,F判断线段AC 的中点E 能否移到线段 DF 上,并说明理由. ______________________________ADB20. 图3图424. (本题满分12分)已知抛物线的函数关系式:y= x2 3+ 2( a —1) x+ a2-2a (其中x是自变量),(1)若点P(2,3)在此抛物线上,①求a的值;②若a> 0,且一次函数y= kx+ b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程) ;(2)设此抛物线与x轴交于点A (x1, 0)、B (x2, 0).若xi^^3< x2,且抛物线的顶点3在直线x= 4的右侧,求a的取值范围.25. (本题满分12分)已知:如图5, PA、PB是O O的切线,A、B是切点,连结OA、OB、OP,(1)若/ AOP = 60°,求/ OPB 的度数;A(2 )过O作OC、OD分别交AP、BP于C、D两点,判断直线CD与O O的位置关系,并说明理由①若/ COP = Z DOP,求证:AC = BD;②连结CD,设△ PCD的周长为I,若I = 2AP,图526. (本题满分12分)已知点P (m, n) ( m>0)在直线y= x+ b (0< b< 3)上,点A、B4 2 2在x轴上(点A在点B的左边),线段AB的长度为3匕,设厶FAB的面积为S,且S=?b 2+ 3b,3(1 )若b = 2,求S的值;(2 )若S= 4,求n的值;(3)若直线y= x + b ( 0< b< 3)与y轴交于点C,A PAB是等腰三角形,当CA // PB时,求b的值.厦门市2007年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准题号 1 2 3 4 5 6 7 选项A BDD AC C、选择题(本大题共 7小题,每小题3分,共21分)二、填空题(本大题共 8. 3. 9. 130 度. 10小题,每小题4分,共40 分)10.5.11. x >2.12.82千米/时.13. 台匕 冃匕.14. 20 C .15.5 16. 70 度2厘米.17.3; 2.三、解答题(本大题共 (本题满分8分) 2 , 2 解:匸1X + X x 9小题,共89分) 18. 2 2x — 1 x • ~~2~7~■x x + x 19. (本题满分 (1)解:8分) ]9.20. (x — 1)( x + 1) x — 1 + 1=x.x(x + 1) + 1解:••• 0A = OB ,” 1 分 •• / OAB = Z OBA . ” 2 分 • • / OAB = 35° , ” 3 分 •• / AOB = 110°. ”4 分(2)证明:连结0C ,交AB 于E .(1) 如得到“一副球拍”或得到“两张球票”或 “一架显微镜或谢谢参与” . (2)解:得到 (本题满分8分)CD 是O 0的切线, ••• 0C 丄 CD .CD // AB , • / OEB = Z OCD . • 0E 丄AB . •/ 0A = OB ,• △ AOB 是等腰三角形,OE 是等腰三角形 AOB 顶角的平分线.•••点C 是AB 的中点.21.(本题满分9分)(1)解:由已知得,15 = 20t — |x 10X t 2,整理得,t 2 — 4t + 3= 0.解得,h= 3, t 2= 1当t =3时,不合题意,舍去• •当爆竹点燃后1秒离地15米.2(2)解:由题意得, h =- 5t + 20t.20•顶点的横坐标t =-莎)=2.2或:h =— 5( t — 2) + 20•顶点的横坐标t = 2.又••• 一 5V 0,二抛物线开口向下.•在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升•22.(本题满分10 分)(1)真命题:如图,已知四边形ABCD ,对角线AC 、BD 交于点O.若平分对角线BD , AD // BC ,则四边形ABCD 是菱形.证明:•/ AD // BC ,• / CBO =Z ADO .•/ AC 垂直平分 BD , • Rt △ AOD 也 Rt △ COB . • AD = BC .•四边形ABCD 是平行四边形.(2)假命题1:已知四边形ABCD ,对角线AC 、BD 交于点O.若AC 丄BD , AC 平分对 角线BD ,/ OAD = Z ODA ,则四边形 ABCD 是菱形. 反作等腰直角三角形 ABD ,/ A = 90°,以BD 为一边,作等边三角形 BCD ,连结AC 、BD 交于点O. 贝U AC 丄BD , AC 平分对角线 BD ,/ OAD = Z ODA”9分•/ AC 丄 BD , 四边形ABCD 是菱形.AC 丄 BD , ACD3分但四边形ABCD不是菱形. ,,10分假命题2 :已知四边形ABCD,对角线AC、BD交于点O.若AC丄BD, AD // BC, / OAD = Z ODA,则四边形ABCD是菱形. ”6分反例:作等腰直角三角形AOD,/ AOD = 90° .延长DO至B, AO至C,取OB = OC (OB M OD ).连结AB、BC、CD ,贝U AC 丄BD , AD // BC,/ OAD = Z ODA. ,, 9 分则四边形ABCD是等腰梯形,不是菱形•,,10分假命题3:已知四边形ABCD,对角线AC、BD交于点O.若AC平分对角线BD , AD // BC,/ OAD = / ODA,则四边形ABCD是菱形. ”6分反例:作等腰三角形AOD ( OA = OD,/ AOD丰90°).延长DO至B,AO至C,取OB= OC= OA = OD.连结AB、BC、CD,贝U AD 丰 AB,AC 平分对角线BD,AD // BC,/ OAD = / ODA. ,,9分则四边形ABCD是矩形,不是菱形.5510分23.(本题满分10分)(1)解:•/ /A =/ ACD = 30°,CF ••• / CDB = 60° . ,, 1 分E又T/ B = 30°,A D B• / DCB = 90° . ,, 2 分亠亠BC在Rt△ BDC 中,cosB = BD,553分厂血3BC —BD •cosB — 3 •—.v2 2554分(2)解: •/ / CDB — / A +/ ACD,且DF 是/ CDB 的平分线,• 2 / FDB —2/ A,• / FDB —/ A. •AC // DF.5分方法 1 T / FDB =/ A,/ B =/ B,△ BDF s\ BAC.DF = BDAC = BA.BD > AD, DF 1> —AC 2BD、1 -- 〉_BA 2•/ E是AC的中点,•AE >1.即DF > AE.点E可以移到线段DF上.10分方法2:记点M为线段AB的中点,T BD >AD,点M在线段BD上.过M作MN // AC交BC于N./ BMN = / A,Z B =Z B,△ BMN BAC.BN = BM = 1BC = BA = 2N是BC的中点.MN // AC, AC// DF MN // DF.点N在线段BF上.点M在线段BD上,••• MN v DF.••• M为AB的中点,N是BC的中点,AE v DF.•••点E可以移到线段DF上.方法3:记点M为线段AB的中点,T BD > AD,”8分MN = AE.”9分”10分点M在线段BD上.过M作MN // AC交BC于N. / BMN = / A,Z B =Z B,△BMN BAC.MN = BM = 1AC = BA = 2.1E 为 AC 的中点,••• MN = 2AC = AE.MN // AC , AC // DF , 点M 在线段BD 上, MN BM 彳DF BD MN v DF. AE v DF.点E 可以移到线段DF 上.方法4:如图,延长 DF 至G ,使得DG = AC.•四边形ADGC 是平行四边形. • CG // AB.•••/ CGF =Z FDB ,/ GCF = Z FBD .△ CFG BFD. GF = CG FD = DB . CG = AD , AD v DB.即 計• GF + FD v 2F D. • DG > 2.1 FD > 2AC.又••• E 是AC 的中点,24.(本题满分12分)(1 [① 解:由题意得,3=4 + 2( a — 1) X 2 + a — 2a,”1 分 整理得,a 2+ 2a — 3= 0. ”2 分 解得,a 1=— 3, a 2= 1.”4 分9 / 12MN // DF.9分 10分CG DB v 1.• FD > AE.点E 可以移到线段DF 上. 9分 10分②解:y = x — 2.、.22(2)由题意得,x + 2( a — 1) x + a — 2a = 0解得,X 1 = — a , X 2 = — a + 2.解得一-,/3 v a v 2 — /3.3 1• 3 — a >4,解得 a v 4.3 I I1 8• S^- • AB • n , • -x- • n = 4.X 1< 3 v X 2,—a v” :3 v — a + 2.可以解得顶点坐标为(1 — a , — 1).11分10分△ OCP ^A ODP.CP = DP.•/ FA 、PB 是O O 的切线, • FA = PB. .AC = BD.② 证明 1:连结 CD.•/ l = 2AP , PA = PB ,CD = AC + BD.•/ OA = OB ,且/ OAC = Z OBD = 90° .•/ OC 1 = OC , DC 1= DC , OD = OD , ••• △ OCDOCD.10 / 1225. 12分(本题满分12分)(2)① 证明:•••/ COP =Z DOP ,/ CPO = Z DPO , PO = PO ,(1).将厶OAC 绕点O 逆时针旋转,使点 A 与B 重合. 记点C 的对称点为 C 1,. AC = BC 1,OC = OC 1.vZ OAC =Z OBD = 90°,•••点 C 1在PB 的延长线上.过O 作OE 丄CD , E 是垂足.即0E 是点0到直线CD 的距离, 112 X CD® 2 X CD &0B = OE.直线CD 与O O 相切.证明 2:过 O 作 OE 丄CD.设 OE = d , CE = x, DE = y.2 A —2 , A —22_122 , . -.22d = AC + AO — x , d = BD + AO — y ,••• AC 1 4— BD 2+ y 2— x 2= 0”8 分••• ( AC + x)( AC — x) = (BD + y)( BD — y)l = 2AP , FA = PB , • x + y = AC + BD.”9 分AC — x = y — BD.• ( AC + x)( y — BD) = (BD + y)( BD — y). (y — BD) (AC + x + BD + y )= 0.• ( AC + x + BD + y )M 0, - -y — BD = 0.BD = y.• d = AO. •直线CD 与O O 相切.26.(本题满分12分)32 9 23 (1)解:• b = -,• S = x + x-23 4 3 2=5 =2.” 2 2 2 (2)解:• S = 4,• 4 = 3b + 3b.• b 2 + b — 6 = 0. 解得 b =— 3 (舍去),b = 2.• AB 的长度为3.4 1 1 ,2 3n = 3.2 2 1⑶解:• S = 3b 2 + 3b , S = 2 •丨 AB| • n ,11分 12分10分11分 12分1分2分 3分4分5分 6分31 42 2 2 2 • §b • n = 3b + 3b. ■/ b z 0,n = b + 1. /• m + b = b + 1./• m = 1.P (1, b +1)过P 作PD 垂直x 轴于点D ,则点D (1 , 0). 4 1PD — AB = b + 1 — 3b = 1 — 3b. ” 8 分 1■/ 0 v b v 3,二 1 — §b > 0.”9 分••• PD > AB. •/ PA > PD , PD >AB ,「. PA > PD > AB ,即 PA >AB. •••PA 工 AB.同理 PB z AB”10 分2 2••• △ PAB 是等腰三角形,• PA = PB. • A (1— 3b , 0), B (1+ -b , 0)方法 1:v CA // PB ,••• / OAC =Z DPB ,• Rt △ AOC s Rt △ BDP.23• 4b — b — 3 = 0. •- b = 1 或 b = — 4 (不合题意,舍去)b = 1.方法2:延长PA 交y 轴于点C 1,v PA = PB ,/ CAO = Z PBA =Z PAB =Z OAC 1• OC 1= OC ,• C 1 (0, — b ).设直线 PA 的解析式为:y = kx +1. "k + t = b + 1, "k = 2b + 1, 则有* 解得,’L. t =— b. L_t =— b.•直线PA 的解析式为:y = (2 b + 1)x — b.” 11分/ 2 2--0 = (2 b +1) (1 — 3b )— b.•- 4 b — b — 3 = 0.3CO = OA PD = DB1 — 3b11分3b12分Rt △ AOC 也 Rt △ AOC .•- b= 1或b=—4 (不合题意,舍去).•b= 1. ”12分。
江苏省泰州市泰兴市2023-2024学年七年级上学期期中学情调查数学试卷(含答案)

=
······················5 分
18、(每题 5 分,共 10 分)解方程: (1) 解:4x+2=1-5x+10 4x+5x=11-2 9x=9 ····················3 分 x=1 ····················5 分
(2)解;2(2y-1)=2y-1-6 4y-2=2y-5 4y-2y=-5+2 2y=-3 ····················3 分 y=-1.5 ····················5 分
当 a=7 时 n=110 5=110-(119-2a) a=7 15-a=15-7=8
该商品完整的条形码 6903746190285 方法三: 可以设第二个被污染是数字是 a,则第一个被污染的数字是 (15-a)
同方法一、二探索
26、(1) ②③④
··············3 分
(2) m-2=5、6、7 ··············5 分
20、(10 分)解:(1)原式=2×(-3)-3×2=-6-6=-12··················4 分 (2)(4-6x) (-3x)=2 ··················6 分
2(4-6x)-3(-3x)=2
··············8 分
即 m=7、8、9··············6 分 (答对 1 个得 1 分,答对 2 个 得 2 分,答全得 3 分)
········2 分
(2)
········8 分
150+2=152(册) ····················9 分
答:上星期平均每天借出图书 152 册.····················10 分 23、(1)① +1 ·····1 分 ② ( )2 ·····2 分 ③ ×2 ·····3 分
2024北京东城区高三(上)期末数学试卷及答案

东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。
中考数学试卷及评分标准

13
第16题)
18.
计算:
化简:
1
1
a2
2sin
19.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.
1)观察图形,写出图中两个不同.形.状..的特殊四边形;
2)选择( 1)中的一个结论加以证明.
B.冠军属于外国选手
D.冠军属于中国选手乙
12.对于反比例函数y
,下列说法不.正.确
的是( )
A.
C.
13.
点(2,1)在它的图象上
B.它的图象在第一、三象限
当x 0时,y随x的增大而增大
D.当x 0时,
y随x的增大而减小
列图案中是轴对称图形的是(
)
2008年北京
2004年雅典
1988年汉城
1980年莫斯科
方案4所有评委所给分的众数.
为了探究上述方案的合理性, 先对某个同学的演讲成绩进行了统计实验. 下面是这个同学的
得分统计图:
A.
B.
C.
D.
14.已知:20n是整数,
则满足条件的最小正整数
n为(
C.4
A.2
B.3
D.5
16.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C处,BC交AD于E,若DBC22.5°,则在不添加任何辅助线的情况下,图中45A.
17.
的角(虚线也视为角的边)有( )
6个B.5个C.4个D.3个
中等学校招生考试
10.如图,已知AOB,OA OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出AOB的平分线(请保留画图痕迹) .
小学数学试卷评分标准

小学数学试卷评分标准一、选择题(每题2分,共20分)1. 以下哪个数是最小的自然数?A. 0B. 1C. -1D. 22. 一个数加上10,再减去10,结果等于原数,这个说法是:A. 正确B. 错误3. 如果一个数的平方是36,那么这个数是:A. 6B. ±6C. 36D. ±364. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 2/35. 一个长方形的长是10厘米,宽是5厘米,它的周长是:A. 15厘米B. 20厘米C. 25厘米D. 30厘米6. 以下哪个选项是正确的乘法口诀?A. 四六二十四B. 三三得九C. 五五二十五D. 六六三十六7. 一个数的1/4加上它的1/2等于:A. 1/2B. 3/4C. 1D. 7/48. 如果一个数除以3,商是5,余数是2,那么这个数是:A. 17B. 15C. 13D. 119. 以下哪个选项是正确的分数加法?A. 1/2 + 1/3 = 5/6B. 2/3 + 1/4 = 13/12C. 3/4 + 1/2 = 5/8D. 4/5 + 3/5 = 7/510. 一个数的3倍是45,这个数是:A. 15B. 20C. 30D. 45二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数可能是________或________。
12. 一个数的一半比它的1/4多________。
13. 两个连续自然数的和是21,这两个数是________和________。
14. 一个长方形的长是8厘米,宽是4厘米,它的面积是________平方厘米。
15. 一个数的3/5等于18,这个数是________。
16. 一个数加上它的相反数等于________。
17. 一个数除以4的商是8,余数是3,这个数是________。
18. 一个数的1/3加上2/3等于________。
19. 一个数的平方是81,这个数的立方是________。
湖北省武汉市2024届高中毕业生四月调研考试数学答案

武汉市2024届高中毕业生四月调研考试数学试卷参考答案及评分标准填空题:12. 1213.14.解答题:15.(13分)解: (1)由题意,cos cos sin 3sin sin C A C B A=−,得:3sin cos sin cos cos sin B C A C A C −=.所以3sin cos sin cos cos sin sin()B C A C A C A C =+=+.又sin()sin()sin A C B B π+=−=,且sin 0B ≠,所以1cos 3C =.由sin 0C >,故sin C ==. …………6分(2)1sin 2S ab C ==15ab =.由余弦定理,222222cos 10c a b ab C a b =+−=+−. 又22226()6()180c a b a b =−=+−.联立得:2234a b +=,c =8a b +==.所以ABC ∆的周长为8a b c ++=+.…………13分16.(15分)解:(1)1a =−时,2()ln f x x x x =++,1'()12f x x x=++.'(1)4f =,(1)2f =.所求切线方程为4(1)2y x =−+,整理得:42y x =−.…………5分(2)2121'()2x ax f x a x x x−+=−+=. 因为0x >,故0a ≤时,'()0f x >,()f x 在(0,)+∞上递增.当0a >时,对于221y x ax =−+,28a ∆=−.若0a <≤0∆≤,此时'()0f x ≥,()f x 在(0,)+∞上递增.若a >2210x ax −+=,得0x =>.0x <<时,'()0f x >,()f x 递增;x >'()0f x >,()f x 递增;x <<'()0f x <,()f x 递减;综上所述:a ≤()f x 在(0,)+∞上递增;a >()f x 在上递增,在上递减,在)+∞上递增, …………15分17.(15分)解:(1)连接,DA EA ,11DA =,12AA =,160DA A ∠=︒,2212212cos 603DE =+−⋅⋅⋅︒=.满足22211DA DA AA +=,所以1DA DA ⊥,即DA AB ⊥.平面11ABB A ⊥平面ABC ,且交线为AB ,由DA AB ⊥,得DA ⊥平面ABC . 由BC ⊂平面ABC ,得DA BC ⊥,又DE BC ⊥,且DA DE D =,所以BC ⊥平面DAE .由AE ⊂平面DAE ,得BC AE ⊥.设,3BE t CE t ==,有2222(3)BA t AC t −=−,解得:1t =.所以4BC =,满足222BA AC BC +=,即AC AB ⊥,所以AC ⊥平面11ABB A . 由1BB ⊂平面11ABB A ,得1AC BB ⊥.…………8分(2)以A 为坐标原点,,,AB AC AD 为,,x y z 轴的正方向建立空间直角坐标系. (0,0,3)D ,33(,,0)22E ,1(1,0,3)A −,1(1,0,0)DA =−,135(,,3)22EA =−−.设平面1DEA 的法向量(,,)n x y z =,由1100n DA n EA ⎧⋅=⎪⎨⋅=⎪⎩,即0353022x x y z −=⎧⎪⎨−−+=⎪⎩,取1z =,得到平面PBD 的一个法向量(0,2,1)n =.又11(1,0,3)BB AA ==−,设直线1与平面1所成角的大小为, 则11||315sin |cos ,|||||54n BB n BB n BB θ⋅=<>===⋅⋅所以直线1BB 与平面1DEA 所成角的正弦值为1510.…………15分18.(17分)解:(1)设1122(,),(,),(,)P P A x y B x y P x y . 由2y x =,得'2y x =,所以1l 方程为:1112()y x x x y =−+,整理得:2112y x x x =−. 同理,2l 方程为:2222y x x x =−.联立得:122P x x x +=,12P y x x =. 设直线AB 的方程为(1)2y k x =−+,与抛物线方程联立得:220x kx k −+−=故12x x k +=,122x x k =−,所以2P k x =,2P y k =−,有22P P y x =−.所以点P 在定直线22y x =−上. …………6分(2)在12,l l 的方程中,令0y =,得12(,0),(,0)22x xM N , 所以PMN ∆面积121211|||||()|24P S MN y x x x x =⋅=−= 故221212()()32x x x x −=,带入可得:22(48)(44)32k k k k −+−+=.22[(2)8][(2)4]0k k −+−−=,解得:0k =或4k =.所以点P 的坐标为(0,2)−或(2,2).…………11分(3)抛物线焦点1(0,)4F ,由1(,0)2xM 得直线MF 斜率1112MF MPk x k =−=−,所以MF MP ⊥,同理NF NP ⊥,所以PF 是PMN ∆外接圆的直径. 若点T 也在该圆上,则TF TP ⊥. 由74TF k =,得直线TP 的方程为:4(1)27y x =−−+.又点P 在定直线22y x =−上,联立两直线方程,解得点P 的坐标为1614(,)99.…………17分19.(17分)解:(1)1()(1)k P X k p p −==−, 1211(1)[12(1)3(1)...(1)]nk n k k p p p p p n p −−=−=+−+−++−∑,记2112(1)3(1) (1)n n S p p n p −=+−+−++−,则21(1)(1)2(1)...(1)(1)(1)n n n p S p p n p n p −−=−+−++−−+−,相减得:211(1)(1)...(1)(1)n n n pS p p p n p −=+−+−++−−−1(1)1(1)(1)(1)1(1)n n n n p p n p n p p p−−−−=−−=−−−−由题意:1(1)1()lim()lim[(1)]nn n n n p E X pS n p p p→∞→∞−−==−−=.…………5分(2)(i )2222(1)(1)2(1)(2)E p E p p p E =−⋅++⋅+−⋅+.解得:221pE p+=. …………8分 (ii )期待在1n E −次试验后,首次出现连续(1)n −次成功,若下一次试验成功,则试验停止,此时试验次数为1(1)n E −+;若下一次试验失败,相当于重新试验,后续期望仍是n E ,此时总的试验次数为1(1)n n E E −++.即11(1)(1)(1)n n n n E p E p E E −−=⋅++−⋅++.整理得:11(1)n n E E p−=+,即1111()11n n E E p p p −+=+−−.所以11111()11n n E E p pp −+=+−−. 由(1)知11E p=,代入得:1(1)nn np E p p−=−.…………17分。
高考数学试题2024新高考新题型考前必刷卷01(参考答案)

2024年高考考前信息必刷卷(新题型地区专用)01数学·答案及评分标准(考试时间:120分钟试卷满分:150分)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
12345678DDBDADAA二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
91011ADABCAC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
12.513.①④14.①③四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
15.(13分)【解析】(1)当1a =时,函数31()ln 222f x x x x x =--+的定义域为(0,)+∞,求导得21()ln 212f x x x '=+-,(2分)令21()ln ,0212g x x x x =+->,求导得233111()x g x x x x-'=-=,(4分)当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在(0,1)上递减,在(1,)+∞上递增,()(1)0g x g ≥=,即(0,)∀∈+∞x ,()0f x '≥,当且仅当1x =时取等号,所以函数()f x 在(0,)+∞上单调递增,即函数()f x 的递增区间为(0,)+∞.(6分)(2)依题意,5(2)2ln 204f a =->,则0a >,(7分)由(1)知,当1x ≥时,31ln 2022x x x x--+≥恒成立,当1a ≥时,[1,)x ∀∈+∞,ln 0x x ≥,则3131()ln 2ln 202222f x ax x x x x x x x=--+≥--+≥,因此1a ≥;(9分)当01a <<时,求导得231()(1ln )22f x a x x '=+-+,令231()(1ln )22h x a x x =+-+,(11分)求导得()23311a ax h x x x x -=-=',当1x <<时,()0h x '<,则函数()h x ,即()f x '在上单调递减,当x ∈时,()(1)10f x f a ''<=-<,因此函数()f x 在上单调递减,当x ∈时,()(1)0f x f <=,不符合题意,所以a 的取值范围是[1,)+∞.(13分)16.(15分)【解析】(1)由题意得584018x =-=,422220y =-=;(4分)(2)由22()()()()()n ad bc a b c d a c b d χ-=++++,得22100(40221820) 4.625 3.84158426040χ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%以上的把握认为“生育意愿与城市级别有关”.(8分)(3)抽取6名育龄妇女,来自一线城市的人数为20624020⨯=+,记为1,2,来自非一线城市的人数为40644020⨯=+,(10分)记为a ,b ,c ,d ,选设事件A 为“取两名参加育儿知识讲座,求至少有一名来自一线城市”,基本事件为:(1,2),(1,),(1,),(1,),(1,),(2,),(2,),(2,),(2,),(,),(,)a b c d a b c d a b a c ,(,),(,),(,),(,)a d b c b d c d ,事件(1,2),(1,),(1,),(1,),(1,),(2,),(2,)(2,),(2,)A a b c d a b c d 共有9个,(13分)93()155P A ==或63()1155P A ⎛⎫=-= ⎪⎝⎭(15分)17.(15分)【解析】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,(2分)又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,(4分)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;(6分)(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,(7分)如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,(9分)所以()0,2,0CD =- ,()1,0,1AD =--.设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =-,(11分)假设存在点N ,使得AN 与平面ACD 所成角为60 ,(12分)设BN BC λ=uuu r uu u r,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 60n ANn AN⋅︒==(13分)整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN与平面ACD 所成角为60︒,此时14=BN BC .(15分)18.(17分)【解析】(1)由已知得()11,0F -,22220000313434x y x y +=⇒=-(2分)则10122PF x ==+.所以当012x =时,194PF =;(5分)(2)设(),0M m ,在12F PF △中,PM 是12F PF ∠的角平分线,所以1122PF MF PF MF =,(6分)由(1)知10122PF x =+,同理20122PF x =-,(8分)即0012121122x m m x ++=--,解得014m x =,所以01,04M x ⎛⎫ ⎪⎝⎭,过P 作PH x ⊥轴于H .所以34PM MH PNOH ==.(10分)(3)记1F N P 面积的面积为S ,由(1)可得,(100001114423612S F M y y x x =⋅+=+=+()()02,00,2x ∈-⋃,则)20022S xx =+'-,(12分)当()()02,00,1x ∈-⋃时,0,S S '>单调递增;当)01,2x ∈时,0,S S '<单调递减.(16分)所以当01x =-时,S 最大.(17分)19.(17分)【解析】(1)由题意得124n a a a +++= ,则1124++=或134+=,故所有4的1减数列有数列1,2,1和数列3,1.(4分)(2)因为对于1i j n ≤<≤,使得i j a a >的正整数对(),i j 有k 个,且存在m 的6减数列,所以2C 6n ≥,得4n ≥.(6分)①当4n =时,因为存在m 的6减数列,所以数列中各项均不相同,所以1234106m ≥+++=>.(7分)②当5n =时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m ≥.(8分)若6m =,满足要求的数列中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.(9分)③当6n ≥时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m >.综上所述,若存在m 的6减数列,则6m >.(10分)(3)若数列中的每一项都相等,则0k =,若0k ≠,所以数列A 存在大于1的项,若末项1n a ≠,将n a 拆分成n a 个1后k 变大,所以此时k 不是最大值,所以1n a =.(12分)当1,2,,1i n =- 时,若1i i a a +<,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≥.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将i a 改为1i a -,并在数列末尾添加一项1,所以k 变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.(14分)若数列A 中存在相邻的两项13,2i i a a +≥=,设此时A 中有x 项为2,将i a 改为2,并在数列末尾添加2i a -项1后,k 的值至少变为11k x x k ++-=+,所以此时k 不是最大值,所以数列A 的各项只能为2或1,所以数列A 为2,2,,2,1,1,,1 的形式.设其中有x 项为2,有y 项为1,因为存在2024的k 减数列,所以22024x y +=,所以()2220242220242(506)512072k xy x x x x x ==-=-+=--+,(16分)所以,当且仅当506,1012x y ==时,k 取最大值为512072.所以,若存在2024的k 减数列,k 的最大值为512072.(17分)。
昌平区2022- 2023学年初三年级回天高未第一学期期中质量监控数学-参考答案及评分标准

2022 - 2023学年第一学期昌平区回天高未融合学区初三年级数学学科期中质量抽测数学试卷参考答案及评分标准2022. 10一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 答案不唯一,例:12+=x y (a >0,b 是任意的实数,c =1); 10. 2.5;11. 212-+)(x ; 12.23;13. >; 14. 26x =-或; 15. 8; 16. ①②④. 三、解答题17. 解:(1)0021x =-=⨯ ∴该二次函数对称轴为y 轴或直线0x =. ………………… 1分 当0x =时,2044y =-=-,∴顶点坐标为()0,4-. ………………… 2分 (2)令0y =,得204x =-, ∴2x =±,∴函数图象与x 轴交点坐标为()2,0-和()2,0. ………………… 4分 令0x =,得2044y =-=-,∴函数图象与y 轴交点坐标为()0,4-. ………………… 5分18.证明: ∵DE ⊥AB∴∠AED =90° ………………… 1分 ∵∠C=90°∴∠C =∠AED ………………… 2分 又∵∠A =∠A ………………… 3分 ∴△ABC ∽△ADE ………………… 5分AEDBC19.解:由图象可得()1,0A -,()0,3B ,()1,4C , ………………… 2分 方法不唯一,例: 将()1,0A -,()0,3B 代入解析式,可得013b cc =--+⎧⎨=⎩, ∴2b =,3c =, ………………… 4分 ∴函数表达式为223y x x =-++. ………………… 5分 20.(1)方法不唯一,缩小或者放大均可,例:………………… 2分(2)依网格图可得: 0245B ∠=,22A B =223B C =,0145B ∠=,11A B =116B C =,∴2222111112A B B C A B B C ==,21B B ∠=∠. ………………… 4分 ∴222A B C ∆∽111A B C ∆. ………………… 5分 备注:(2)问方法不唯一,22222211111112A B B C A C A B B C AC === ………………… 4分 21 . (1)设该二次函数表达式为()20y ax bx c a =++≠ 方法不唯一,例:在表格中选三组值代入表达式中,如 当3x =-时,0y =;当0x =时,32y =;当1x =时,0y =. ∴093320a b c c a b c=-+⎧⎪⎪=⎨⎪=++⎪⎩∴21322y x x =--+. ………………… 1分(2)将()2,m 代入函数表达式, ∴13542222m =-⨯-+=-, ∴m 的值为52-. ………………… 2分 (3)………………… 3分(4)3x <-或1x >. ………………… 5分22.解:(1)证明:∵ ∠ACB = 90°,CD 是AB 边上的高,∴ ∠ACB =∠CDB = 90°. ………………… 1分 又∵ ∠B =∠B , ………………… 2分 ∴ △ABC ∽△CBD .(2)解:∵AD = 4,BD = 3,∴ AB =7. ………………… 3分 ∵ △ABC ∽△CBD ,∴AB BCCB BD=. ………………… 4分 ∴ 27321BC AB BD ==⨯=.∴ BC = ………………… 5分23. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥FD , ………………… 1分∴∠B =∠BCF , ………………… 2分 ∵∠AEB =∠F ,∴△ABE ∽△ECF . ………………… 3分 (2)解:∵△ABE ∽△ECF ,∴AB BECE FC=, ………………… 4分 ∵AB=5,CE=6,BE=2, ∴125FC =, ………………… 5分 ∵四边形ABCD 是平行四边形, ∴AB=CD=5, ∴375FD DC CF =+=. ………………… 6分24. 解:(1)由题意得:c =4, ………………… 1分点(4,8)在二次函数48122++-=bx x y 图像上, ∴8444812=++⋅-b解得b =.23………………… 2分∴4238122++-=x x y………………… 3分(2)设运动员与小山坡的竖直距离为3y 米, ∴3312412123++-=-=x x y y y ………………… 4分 令13=y ,即13312412=++-x x………………… 5分 解得41-=x (舍去),122=x答:水平距离是12米。
小学四年级数学试卷参考答案和评分标准(仅供参考)

小学四年级数学试卷参考答案和评分标准(仅供参考)一、小小知识窗,显我本领强。
(每格1分,共20分)1)870070000 ,87007 ,9。
2)80 ,40 ,3200。
3)30 ,两。
4)两,一,0。
5)144º,36º、。
6)平行,垂直。
7)4或3、2、1、0, 5或6、7、8、9。
8)3 ,7,4。
二、仔细斟酌,做个小判官!(对的打“√”,错的打“×”)(共5分)1、√2、×3、×4、×5、×三、精挑细选,我最棒!(把正确答案的序号填在括号里)(共5分)1、B2、 C3、 A4、 D5、 C四、算一算,相信你一定能行。
(共32分)1、直接写出得数。
(8分,每题0.5分)略2、笔算。
(16分,每题4分)略3、列式计算。
(8分,每题4分)(1)列式正确给3分,计算正确给1分(2)列式正确给3分,计算正确给1分(1)70º(2)略(3)略六、走进我们的生活,解决问题。
(第1题6分,第5题8分,其余各5分,共29分)1、(1)825÷33=25(车)(2)40×825=33000(元)或825×40=33000(元)2、440÷5×15 给3分或440÷5=88(千米)给3分=88×15 给1分 88×15=1320(千米)给2分=1320(千米)给1分答:略3、(1300-20)÷16 给3分 1300-20=1280(千克)给3分=1280÷16 给1分 1280÷16=80(千克)给2分=80(千克)给1分答:略。
4、108×25=2700(元) 2700元>2500元给4分答:钱不够。
给1分5、(8分,每小题2分)(1)统计图画得规范、美观给2分(2)316(3)165÷50=3 (15)答:中国获得的金牌数是日本金牌数的3倍还多15枚。
数学评分标准(此答案只供参考)

数学评分标准(此答案只供参考)一年级:一、口算:每小题0.2分二、填空;三、判断题按要求每空给分。
四、计算题第3小题每空0.5分,第4小题列式和计算结果各占0.5分。
其余按要求每空给分。
五、看图列式:列式和计算结果各占2分。
三年级:一、填空:第8小题:涂一涂占0.5分,比一比占0.5分。
其余按要求给分。
二、判断题,三、选择题,按要求给分。
四、计算:第2题用竖式计算:①②③小题计算占2.5分,横式写结果0.5分,④⑤计算占2分,验算1.5分,横式写结果0.5分。
五、实践操作:1、填空各1.5分,写原因2分。
2、能画出正确的长方形4分,涂对颜色占4分。
六、解决问题:1、(18+17)×3……..2.5分=35×3……………..3.5分=105(人)………..4.5分(结果和单位各占0.5分)答:………………5分2、520×5……………2.5分=2600(千克)……….4分(结果1分,单位0.5分)3吨=3000千克………5分2600千克<3000千克……5.5分答:………………………….6分3、9×40-72…………..3分=360-72……………..4分=288(千克)……………5.5分(结果1分,单位0.5分)答:……………………..6分4、(1) 10-3×3…………..1分=10-9………………1.5分=1(元)……………….2.5分(结果0.5分,单位0.5分)答:…………………….3分(2)328+203……………2.5分=531(元)………………. 3.5分550-531…………….4.5分=19(元)…………………5.5分答:…………………..6分(注:2个单位共占0.5分)一、填空题:注意第7小题答案不唯一,其余按各题要求给分。
二、第二题选择、第三题判断按要求给分。
四、计算:3、笔算:没带★号的,每小题3分,其中竖式计算2.5分,横式写结果0.5分。
2023至2024学年第一学期期中学业质量检测七年级数学试题参考答案及评分标准

[]61671761192611=+−=−×−−=−×−−=)(2023至2024学年第一学期期中学业质量检测七年级数学参考答案及评分标准 一、选择题:(本大题共12个小题,每小题4分,共48分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C C C D D C A C B CB二、填空题:(本大题共6个小题,每小题4分,共24分.)13.> 14.线动成面 15.9 16.-25 17.4 18. 380三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)解:原式 ············································2分 ························································4分20.(本题4分)解:原式 ····················································2分 ····································································4分21.(本题4分)解:原式 ······························1分·······························2分······························3分·······················································4分22.(本题5分)解:如图所示:·····················4分用“>”连接为:312>3>−(−2.5)>0. ·········································5分23.(本题5分) 解:(1)如图所示:························································4分(2)图中共有9个小正方体. ······· ································5分21942343-=−=−×−×)()(6=5-11=5-4=7)()(+++24.(本题6分)解:(1)分数集合:{5.2,227,−234,…};····································2分(2)非负整数集合:{0,−(−3)…};····································4分(3)有理数集合:{5.2,0,227,+(−4),−234,−(−3)…}.···························6分25.(本题6分)解:(1)最重的一箱比最轻的一箱多重2.5﹣(﹣3)=2.5+3=5.5(千克),答:20箱石榴中,最重的一箱比最轻的一箱多重5.5千克;···························2分(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8(千克),答:20箱石榴总计超过8千克; ·············································4分(3)(25×20+8)×8=508×8=4064(元),答:售出这20箱石榴可赚4064元.·····················································6分26.(本题6分)解:(1)草坪面积为xxxx−2×1=(xxxx−2)平方米;·············································3分(2)(8×5−2)×20=(40−2)×20=38×20=760(元).答:绿化整个庭院的费用为760元。
职业中专数学学业水平测试—参考答案及评分标准

江苏省中等职业学校学业水平考试 《数学》试卷 参考答案及评分标准本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)二、填空题(本大题共2小题,每小题4分,共8分) 13. 1.2115-;6π三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:因为5,12x y ==-,所以13r ==, ---------2分 所以 1212sin 1313y r α-===- ----------4分 5cos 13x r α==, ----------6分 1212tan 55y x α-===-. ---------8分16.解:(1)因为 224242422)(54)(44)(54)(x x x x x x x ----=-+--- ………1分 42424454x x x x =-+-++ …………2分 280x =+> ………4分 所以 22422)(54)(x x x ->-- ……………5分 (2)解法一:22210log 10log 5log 5-= ……………2分 2log 210=>= ……………4分 所以 22log 10log 5> ……………5分解法二:考察函数2log y x = ……………1分 21a =>,2log y x =在(0,)+∞上是增函数 ……………3分 105>,22log 10log 5> ……………5分 17. 解:(1)2=2+=a b +---r r(1,2)(3,1)(5,5) …………2分2(3)=2 6a b ----r r (1,2)(3,1)=218,6=2----(,4)()(16,) …………4分 (2)a b ⋅r r=(1)(3)215-⨯-+⨯= …………2分(3)||=ra ; …………1分||==rb …………2分由cos ||||θ⋅===r r a b a b , …………3分 得45θ=︒. …………4分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)二、填空题(本大题共1小题,共4分.) 4—1.210 4—2.27。
通州区 2020-2021学年第二学期八年级期末质量检测数学参考答案

………………… 5 分
∴ AC = 4 2 (舍负).
Байду номын сангаас
………………… 6 分
24. 解:(1)∵将点 A( m ,2)向右平移 3 个单位长度,得到点 B,
∴B( m+3,2)
………………… 1 分
∵点 B 在直线 y = x +1上
∴ m+3+1= 2 ∴ m = −2 ∴点 B 的坐标为(1,2) 或把 y = 2 代入 y = x +1中,
15. ① ②③⑤
16. x2 + ( x + 6)2 = 100 或 x2 + 6x − 32 = 0
三、解答题(本题共 68 分,第 17~22 题,每小题 5 分,第 23~26 题,每小题 6 分,第 27~28 题,每小题 7 分)
17. 解: ( x + 5) ( x −1) = 0 ,
………………… 2 分 ………………… 3 分
∴ x =1 ∴点 B 的坐标为(1,2), ∵点 B 是由点 A( m ,2)向右平移 3 个单位长度得到的,
∴点 A 的坐标为( − 2 ,2),
∴ m = −2 (2) 把点 A( − 2 ,2)代入 y = 2x + b 中,
∴b =6, 把点 B(,2)代入 y = 2x + b 中,
通州区 2020-2021 学年第二学期八年级期末质量检测
数学试卷参考答案及评分标准
一、选择题(本题共 8 个小题,每小题 2 分,共 16 分)
题号 1 2 3
4
5
6
答案 B A A
B
C
D
二、填空题(本题共 8 个小题,每小题 2 分,共 16 分)
初中数学八年级试卷参考答案与评分标准

八年级数学试卷参考答案与评分标准说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅. 当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细;但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一.选择题(共30分,每小题3分)1.C.2.C.3.D.4.D.5.B.6.C.7.C.8.D.9.B.10.A.二.填空题(共18分,每小题3分)11.9,9.5×10﹣7,1.12.22 .13.13.14.90或60. 15.m<7且m≠﹣2.16.①②④.三.解答题(共10小题,共72分)17.(10分)解:(1)原式=m9+m9﹣m9=m9.(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣518.(10分)解:(1)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2;(2)原式=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4).19.(6分)证明:∵D是BC边上的中点,∴BD=CD,.........1分∵CF∥BE,∴∠DBE=∠DCF,.........2分在△BDE和△CDF中,∴△BDE≌△CDF,.........5分∴BE=CF..........6分20.(6分)解:原式=[﹣}×.......1分=()×..............3分=×=﹣,..........5分当x=3时,原式=﹣1..........6分21.(6分)解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)由图知,B2坐标为(3,﹣4).22(6分)解:由题意得:∠ADC=∠ACB=∠BEC=90°,AC=BC,........1分∵∠ACB=90° ,∴∠ACD+∠BCE=90°,......2分∵∠BEC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,..........3分在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),..........4分∴AD=CE,DC=BE,∵AD=80cm,∴CE=80cm,..........5分∵DE=140cm,∴DC=60cm,∴BE=60cm..........6分23.(8分)解:设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,...........1分解得:x=60,...........2分经检验:x=60是原分式方程的解,则x+40=100,.........3分答:篮球和足球的单价各是100元,60元;.........4分(2)设恰好用完800元,可购买篮球m个和购买足球n个,由题意得:100m+60n=800,..........5分整理得:m=8﹣n,∵m、n都是正整数∴①n=5时,m=5,②n=10时,m=2;........7分∴有两种方案:①购买篮球5个,购买足球5个;②购买篮球2个,购买足球10个........8分24.(9分)解:(1)∵a+=﹣5,∴=3a+5+..........2分=3(a+)+5 ...........3分=﹣15+5=﹣10;........4分(2)∵x+=9,∴x+1≠0,即x≠﹣1,∴x+1+=10,............5分∵=. ........8分=x+1++3=10+3=13,∴=.........9分25(11分)解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,.............1分∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°.............2分∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;.............3分(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠F AE=90°,∴∠BAF=∠DAE,.............4分在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,.............6分∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;.............7分(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,............8分在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,.............9分∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,.............10分又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7..............11分。
职业中专数学学业水平测试—参考答案及评分标准

江苏省中等职业学校学业水平考试 《数学》试卷 参考答案及评分标准本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)二、填空题(本大题共2小题,每小题4分,共8分) 13. 1.2115-;6π三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:因为5,12x y ==-,所以13r ==, ---------2分 所以 1212sin 1313y r α-===- ----------4分 5cos 13x r α==, ----------6分 1212tan 55y x α-===-. ---------8分16.解:(1)因为 224242422)(54)(44)(54)(x x x x x x x ----=-+--- ………1分 42424454x x x x =-+-++ …………2分 280x =+> ………4分 所以 22422)(54)(x x x ->-- ……………5分 (2)解法一:22210log 10log 5log 5-= ……………2分 2log 210=>= ……………4分 所以 22log 10log 5> ……………5分解法二:考察函数2log y x = ……………1分 21a =>,2log y x =在(0,)+∞上是增函数 ……………3分105>,22log 10log 5> ……………5分 17. 解:(1)2=2+=a b +---r r(1,2)(3,1)(5,5) …………2分2(3)=2 6a b ----r r(1,2)(3,1)=218,6=2----(,4)()(16,) …………4分 (2)a b ⋅r r=(1)(3)215-⨯-+⨯= …………2分(3)||=ra ; …………1分||==rb …………2分由cos 2||||θ⋅===r r a b a b , …………3分得45θ=︒. …………4分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)二、填空题(本大题共1小题,共4分.) 4—1.210 4—2.27。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷参考答案与评分标准
部门: xxx
时间: xxx
制作人:xxx
整理范文,仅供参考,可下载自行修改
二○一一年牡丹江农垦管理局初中毕业学业水平测试
数学试卷参考答案与评分标准
一、填空题,每题3分,满分30分
1. 2.
3.AB=AC或BD=EC或∠C=∠B或∠ADC=∠AEB或
∠BDC=∠CEB<只填一个即可)
4.40°
5.2或4
6. 4.5
7.8
8.或或
9. 且 10.5
二、选择题,每题3分,满分30分
11.D 12.B 13.C 14.C 15.B 16.C 17.B
18.A 19.B 20.CocBlnt0qem
三、解答题,满分60分
21.解:
原式= --------------------------------1分
= --------------------------1分
= ------------------------------------1分
当时
原式= --------------------------------------2分
22. 解:
(1>根据题意得
------------1分
解得--------------2分
二次函数的解读式为: ------------1分
(2>
二次函数对称轴 --------------------------1分
顶点坐标为<-1,-4) --------------------------1分ocBlnt0qem
23.(1> ∵ CD是⊙O的直径,AF=BF ∴ ∠AFD=90° ------------1分ocBlnt0qem
∵EC是⊙O的切线∴∠ECD=90° ------------1分
∴AB∥EC -----------------------------1分ocBlnt0qem
(2> 在Rt△AFD中, ,.-------2分
----------------------------------------------------1分ocBlnt0qem
24. 解: (1> (户>
答:这次共调查了50户家庭2010年月均用水量. -------------- 2分
补全条形统计图 10 . ----------------1分
<2)
答:2010年月均用水量为6的家庭所占的圆心角为72°.-
----------2分
<3)<户)
答:若牡丹江农垦管理局约有60000户家庭,估计2010
年月均用水量不超过7的家庭约有42000户. --------------------------------------------2分ocBlnt0qem
25.解:<1)当0<≤2.4时,甲车的函数关系式为: ----------1分
当时, 得
答:甲车出发小时乙车追上甲车. -----------1分
(2>设返回前乙车的函数关系式为: 过
<1,0)和
则返回前乙车的函数关系式为: ------------1分
当时, 得 --------------1分
设乙车到达B地后再用小时与甲车相遇.
<小时) ------------------------------
--------1分
<千M)
答:当乙车返回与甲车相遇时距A地的路程为40.8千M ------1分
(3>
答:甲车的速度应大于 48千M/时 ------------------2分
A
C F
E 图<2)
D
26.图2成立. -----------------1分
证明:连接CD,证出△CDE≌△BDF
则CE=BF, -----------------2分
由AE+CE=AC
AE+BF=AC ----------------2分
图3不成立 -----------------1分 图3的结论应为: -----------2分
27
.解:
<1)设农场农资公司购进A 种肥料袋.根据题意得
-------------- 2
分
解得
-----------------2
分
是正整数
可取67、68 (76)
农资公司有10
种购买方案. ---------------1分
(2>设肥料全部售出后可获利元.
----------------1分
随的增大而增大.
当时,农资公司获利最多,
(元> -- 1分
应按购进A种肥料76袋,B种肥料124袋全部售出时,农资公司获利最多为12760元. 1分
(3>购买A型计算器5个. ------------------2分
28.解:
(1>解方程得 ------------1分
OA<OB, , -----------1分
(2> 经计算得 ------------------------ 2分
设直线CD的解读式为,过,有
解得, -----------------2分
直线CD的解读式为 --------------------
1分
(3>存在,, , ------------3分
说明:本试卷所有题目,若由其它方法得出正确结论,可参考本评分标准酌情给分。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。