九年级数学上册1.1菱形的定义和性质教案(新版)北师大版

合集下载

九年级数学上册 1.1 菱形的性质与判定(第一课时)教学设计 (新版)北师大版(1)

九年级数学上册 1.1 菱形的性质与判定(第一课时)教学设计 (新版)北师大版(1)

1.菱形的性质与判定(一)一、学生知识状况分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容。

九年级的学生在学习菱形之前,已经掌握了简单图形平移旋转和平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质。

其次,经历了七年级下册“第二章相交线与平行线”、“第三章三角形”和八年级下册“第六章平行四边形”的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。

再次,在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生在平行四边形相关知识的基础上,提出了本课的具体学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度。

在教学过程中,要利用学生对图形的直观感知、已掌握的平行四边形的相关知识和已有的逻辑推理能力为基础,探索菱形的定义和性质,又要尝试利用它们解题。

所以在本节课的教学中,要帮助学生学会运用观察,分析,比较,归纳,概括等方法,得出解决问题的方法,使传授知识与培养能力融为一体,使学生不仅学到科学的探究方法,而且体验到探究的乐趣,体会到成功的喜悦。

综上所述,本节的教学目标为:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。

第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。

九年级数学上册第一章特殊平行四边形1.1菱形的性质与判定教案(新版)北师大版

九年级数学上册第一章特殊平行四边形1.1菱形的性质与判定教案(新版)北师大版

1.1.1菱形的性质学习目标了解菱形的基本性质,掌握其特征.学习难点掌握菱形的性质.教学过程一、复习平行四边形有何特征?如何识别一个四边形是平行四边形?在学生思考、交流的过程中,老师适时进行指导.二、创设问题情境,导入新知出示可伸缩的衣帽架实物.老师在演示的过程中提问:图中的基本图形你熟悉吗?学生大多回答是平行四边形,让一个同学用尺量出这个平行四边形的邻边的长度(发现邻边相等这个特性)接着老师告诉学生,这种邻边相等的平行四边形,与一个角是直角的平行四边形一样也是一种特殊的平行四边形,这是今天我们要研究的课题.教师板书:菱形.那究竟什么是菱形呢?学生在思考、交流中,老师适时地进行指导,把正确的定义板书在黑板上:一组邻边相等的平行四边形叫做菱形.这里的“平行四边形”不能写成“四边形”.“一组邻边相等的四边形,不一定是菱形”.这点务必加以强调.如果要用四边形下菱形的定义就应该是“四边都相等的四边形是菱形”.三、学生动手操作1.画一个△ABC,取BC的中点M,把△ABC绕着M,旋转180°后得一个△A′B′C′,△A′B′C′与△ABC拼成一个怎样的图形?(平行四边形)那么菱形也可以看作什么样的三角形通过绕着那一边的中点旋转180°后与原三角形拼成的?2.画一个等腰△ABC,取底边BC中点M,把△ABC绕着M旋转180•°后的三角形与原三角形拼成一个怎样的图形?(菱形)要说明它菱形,就应讲出根据来.•请一个同学说出根据:“它是邻边相等的平行四边形”.如图所示.3.观察图,思考:(1)图中有哪些三角形是等腰三角形?(2)图中有哪些直角三角形?在学生交流的基础教师板书:(1)△ABC,△A′BC,△ACA′,△ABA′都是等腰三角形.(2)△ACM,△CMA′,△ABM,△BMA′都是直角三角形.让学生想一想后继续操作.菱形是中心对称图形,这点大家是不会怀疑的,刚才的操作已经说明了这一点,•那么菱形是不是轴对称图形呢?•大家都知道菱形可以把等腰三角形绕着底边中点旋转180°后所得的三角形与原三角形拼成的.由于等腰三角形是轴对称图形,•所以我们也可以判断出菱形也是轴对称图形.请大家想一想:(1)直角△ACM,直角△CMA′,直角△ABM,直角△BMA′的形状、大小是否相同?(2)如何用剪刀的办法,得到一个菱形的纸片呢?如图所示.请大家按如下步骤操作:(1)将一张矩形纸对折再对折;(2)用尺在折后的矩形的一角上画一条直线;(3)用剪刀沿着这条线剪下,打开.你发现这是一个什么样的图形.(•如果在另一角画直线剪下的是两个等腰三角形要拼起来才可完成上面的四边形,究竟在哪一角画线,请思考后再动手.)根据以上的操作与思考,你发现菱形它有哪些性质吗?教师让学生用语言进行表达出来,用边、角、对角线的顺序来阐明.教师板书:菱形性质:(边):对边平行、四边都相等.(角):对角相等.(对角线):对角线互相垂直平分,且平分各内角.由于菱形是平行四边形,所以它具有平行四边形的一切性质,上述的对边平行、对边相等、对角相等、对角线互相平分,就是平行四边形的性质,而邻边相等、对角线互相垂直,是它与平行四边形不同的特殊性质.上述的菱形性质是两种性质的总和.同时菱形还是轴对称图形,它的对称轴有两条,是两条对角线所在的直线,它是中心对称图形,其对称中心,就是它两条对角线的交点.四、范例分析,加深理解例2 在菱形ABCD中,BAD=2∠B.如图所示.试说明△ABC是等边三角形.学生观察图形并对照条件,进行思考、交流.师生共同分析:要说明△ABC是等边三角形,可以从以下几条入手:(1)说明AB=BC=AC;(2)说明∠BAC=∠ACB=∠ABC;(3)说明△ABC中,有两个角都等于60°.从第一条途径出发:我们知道四边形ABCD是菱形,即可获得AB=BC,•现在只差AB=AC或BC=AC.要知道CB=AC,就要说明∠ABC=∠CAB;要知道BA=AC,就要说明∠ABC=∠ACB.由于AD∥BC,即可得到∠DAB+∠ABC=180°,故3∠ABC=180°,∠ABC=60°.那么∠BAD=120°.由于菱形对角线平分内角.故∠BAC=60°,即∠BAC=∠ABC=60°.那么AB=AC.这样就可以得到△ABC是等边三角形.从第二条途径出发:就要从三个角入手,上面分析已得到:∠BAC=∠ABC,由于BA=BC,故∠BAC=∠BCA.那么∠BAC=∠ABC=∠BCA.这样△ABC是等边三角形就可获得说明,从第三条途径出发,•第一条途径分析中已获得了.解:由于四边形ABCD是菱形,所以AB=BC,AD∥BC.即∠B+∠BAD=180°,∠BAC=∠BAC.又∠BAD=2∠ABC.所以3∠ABC=180°,即∠ABC=60°.因为∠BAC+∠BCA+∠ABC=180°,故∠BAC+∠BCA=120°.那么2∠BAC=120°.即∠BAC=60°,∠BCA=60°.因此三角形ABC为等边三角形.也可以说△ABC是一个角等于60°的等腰三角形,所以△ABC为等边三角形.五、随堂练习,巩固新知教材随堂练习六、全课小结,提高认识1.菱形有哪些特征?它与矩形的特征有何异同点?2.如何识别一个四边形是菱形?1.1.2菱形的判定学习目标1.经历菱形的判定定理的发现过程。

(名师整理)最新北师大版数学九年级上册第1章第1节《菱形的性质与判定》精品教案

(名师整理)最新北师大版数学九年级上册第1章第1节《菱形的性质与判定》精品教案

§1.1《菱形的性质与判定》教案第一课时一、教学内容分析:教材分析:《菱形的性质与判定》是北师版九年级数学上册第一章第一节的内容,《菱形的性质与判定》共2 个课时,本节课学习的是第一课时的内容——菱形的概念及菱形的性质。

学生分析:“菱形的性质与判定”是继学习了平行四边形以后,在此基础上进行研究的第一种特殊的平行四边形。

它既是对平行四边形认识的延续和深入,同时也为后面学习矩形和正方形奠定了基础,提供了有效的探索方法。

起到承上启下的作用。

二、教学目标分析:知识与能力目标:1、掌握菱形的的定义,理解菱形与平行四边形的“特殊与一般”的关系。

2、理解并掌握菱形的性质定理; 在证明性质和运用性质解决问题的过程中过程与方法目标:1、通过菱形的轴对称性发现菱形的特殊性质;2、通过灵活运用菱形的性质解决有关问题,掌握几何的思维方法。

情感态度价值观目标:在猜想与证明菱形性质的过程中,感受证明的必要性,培养严谨的推理能力。

三、教学重点难点分析:教学重点:了解并掌握菱形的概念及其性质定理。

教学难点:菱形性质定理的应用。

四、教学准备:预备知识:平行四边形的性质;轴对称图形;等腰三角形性质;等边三角形性质及判定。

教学方法:启发式。

五、教学过程: 预计时间 教学内容 教师活动 学生活动 教学评价 5 分一、引入问题:1.复习回顾:什么样的四边形叫平行四边形?它有哪些性质?1、请从对称性, 边,角,对角线的角度回答问题。

2、板书课题。

菱形是特殊的平行1、平行四边形是中心对称图形;两组对边平行且相等; 对角相等;对通过情景引 入,让学生体会到“一般”与“特殊”的关证明方法可证),所以,菱形的面积=三角形ABO 面积的4倍。

1注意:4×=1×2OB×2OA 2=1BD •AC2预计时间教学内容教师活动学生活动教学评价3分钟四、学以致用,随堂练习。

2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD 的长. 独立完成,算出结果:BD=6cm检测教学效果,查看学生当堂掌握情况。

北师大版九年级数学全册教案

北师大版九年级数学全册教案

结论 : 菱形判定定理 1: 四边都相等的四边形是菱 形 . (板书) 三、探究新知
例 1: 已知:如图,在 ABCD 中, BD ⊥ AC,O 为垂 足 . 求证:四边形 ABCD 是菱形 .
4. 通过运用菱形知识解决具体问题,提高分析能力
和观察能力 , 并根据平行四边形、矩形、菱形的从属关
系,向学生渗透几何思想 .
法,是本节的教学难点 . 【教学过程】 一、复习引入
观察以下由火柴棒摆成的图形,议一议:
(2) 与图一相比,图二与图三有什么共同的特点?
目的是让学生经历菱形的概念,性质的发现过程,
并让学生注意以下几点:
( 1)要使学生明确图二、图三都为平行四边形;
( 2)引导学生找出图二、图三与图一在边方面的差
异.
【活动方略】
问题 2:既然它具有平行四边形的所有性质 ,那么
矩形是否具有它独特的性质呢?(教师提问) 学生活动 :由平行四边形对边平行以及刚才 α 变为
90°, 可以得到 α的补角也是 90°从而得到 : 矩形的四个
教师活动 : 板书例 1,分析例 1 的思路,教会学生解
题分析法,然后板书解题过程 ( 课本 P13). 学生活动 : 参与教师讲例,总结几何分析思路 .
( 菱形的性质定理 ) ,二个结论 ( 菱形是轴对称图形,又是 中心对称图形 ).
六、布置作业 教材 P4~5 习题 1. 1
第 2 课时
【教学目标】 1. 经历菱形的判定定理的发现过程 . 2. 掌握菱形的判定定理“四边相等的四边形是菱
形” . 3. 掌握菱形的判定定理“对角线互相垂直的平行
四边形是菱形” .
分析 : 本题是菱形的性质定理 2 的应用,由 ∠ BAC= 30° , 得出 Δ ABD 为等边三角形 ,就抓住了问题解决的关 键.

北师大版九年级数学上册1.1:菱形的性质与判定(教案)

北师大版九年级数学上册1.1:菱形的性质与判定(教案)
在实践活动中,学生们分组讨论与菱形相关的实际问题,并进行了实验操作。我发现,这种小组合作的形式有助于提高学生们的团队协作能力和解决问题的能力。但同时,我也注意到,部分小组在讨论过程中,存在个别同学参与度不高的问题,这需要我在今后的教学中进一步关注和引导。
此外,在学生小组讨论环节,我鼓励学生们提出自己的观点和想法,并与其他同学进行交流。这种开放式的讨论氛围有助于培养学生们的创新思维和批判性思维。但在实际操作中,我也发现,部分同学在表达自己的观点时不够自信,这可能是因为他们在平时的学习中缺乏足够的锻炼。
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲解菱形的基本概念时,我尽量用生动的语言和生活中的例子来说明,使学生们能够更容易理解。同时,通过让学生们亲自操作、测量菱形的对角线等,使他们在实践中加深对菱形性质的认识。这种方法取得了较好的效果,大多数同学都能够理解并记住菱形的性质。
然而,在讲解菱形的判定方法时,我发现部分同学在运用这些方法解决问题时仍然存在困难。为此,我设计了几个典型的例题进行讲解,并引导学生们通过讨论、合作来解决问题。在这个过程中,我注意到,有些同学在讨论中能够逐渐掌握判定方法,而有的同学则需要更多的个别辅导。
在教学过程中,教师要关注学生的掌握情况,针对难点内容进行反复讲解、举例和巩固练习,确保学生理解透彻。同时,鼓励学生主动提问,及时解答学生的疑惑,提高教学效果。

北师大版数学九年级上册1.1菱形的性质与判定(第一课时)教学设计

北师大版数学九年级上册1.1菱形的性质与判定(第一课时)教学设计
3.创新思维拓展:
-鼓励学生自主设计一道与菱形相关的几何题目,并给出解答,激发学生的创新意识和探究精神。
-完成一道拓展题,涉及菱形在实际生活中的应用,如建筑、艺术等领域,让学生体会数学与生活的紧密联系。
4.小组合作任务:
-分组讨论课本习题1.1节中的第6题,要求各小组共同完成解题过程,并在下节课上进行汇报。
1.基础练习:设计一些简单题目,让学生运用菱形的性质和判定方法进行解答,巩固基础知识。
2.提高练习:设置一些综合性和拓展性的题目,培养学生分析问题和解决问题的能力。
3.个别辅导:针对学生在练习中遇到的问题,给予个别辅导,帮助他们克服困难,提高学习效果。
(五)总结归纳
在这一环节中,我将引导学生对所学知识进行总结归纳,帮助他们建立知识体系,提高认知水平。
-学生在实际应用中,体会到数学知识在解决实际问题中的重要性。
3.引导学生树立正确的价值观,认识到数学知识在实际生活中的广泛应用。
-学生通过学习菱形,认识到数学知识在建筑、设计等领域的应用。
-学生在学习过程中,树立正确的价值观,明确学习数学的意义和价值。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何图形认识和逻辑推理能力。在此基础上,他们对菱形的性质与判定的学习具备以下特点:
3.引入新课:在学生观察和思考的基础上,引入菱形的概念,指出菱形是一种特殊的平行四边形,它具有独特的性质和应用。
(二)讲授新知
在这一环节中,我将系统地讲解菱形的性质和判定方法,让学生掌握基础知识,为后续的学习奠定基础。
1.性质讲解:
-通过动态演示和实际操作,让学生理解菱形的定义:四条边相等的平行四边形。
四、教学内容与过程
(一)导入新课

数学北师大版九年级上册第一章1.1《菱形的性质与判定》教案

数学北师大版九年级上册第一章1.1《菱形的性质与判定》教案

菱形的性质学习目标了解菱形的基本性质,掌握其特征.学习难点掌握菱形的性质.教学过程一、复习平行四边形有何特征?如何识别一个四边形是平行四边形?在学生思考、交流的过程中,老师适时进行指导.二、创设问题情境,导入新知出示可伸缩的衣帽架实物.老师在演示的过程中提问:图中的基本图形你熟悉吗?学生大多回答是平行四边形,让一个同学用尺量出这个平行四边形的邻边的长度(发现邻边相等这个特性)接着老师告诉学生,这种邻边相等的平行四边形,与一个角是直角的平行四边形一样也是一种特殊的平行四边形,这是今天我们要研究的课题.教师板书:菱形.那究竟什么是菱形呢?学生在思考、交流中,老师适时地进行指导,把正确的定义板书在黑板上:一组邻边相等的平行四边形叫做菱形.这里的“平行四边形”不能写成“四边形”.“一组邻边相等的四边形,不一定是菱形”.这点务必加以强调.如果要用四边形下菱形的定义就应该是“四边都相等的四边形是菱形”.三、学生动手操作1.画一个△ABC,取BC的中点M,把△ABC绕着M,旋转180°后得一个△A′B′C′,△A′B′C′与△ABC拼成一个怎样的图形?(平行四边形)那么菱形也可以看作什么样的三角形通过绕着那一边的中点旋转180°后与原三角形拼成的?2.画一个等腰△ABC,取底边BC中点M,把△ABC绕着M旋转180•°后的三角形与原三角形拼成一个怎样的图形?(菱形)要说明它菱形,就应讲出根据来.•请一个同学说出根据:“它是邻边相等的平行四边形”.如图所示.3.观察图,思考:(1)图中有哪些三角形是等腰三角形?(2)图中有哪些直角三角形?在学生交流的基础教师板书:(1)△ABC,△A′BC,△ACA′,△ABA′都是等腰三角形.(2)△ACM,△CMA′,△ABM,△BMA′都是直角三角形.让学生想一想后继续操作.菱形是中心对称图形,这点大家是不会怀疑的,刚才的操作已经说明了这一点,•那么菱形是不是轴对称图形呢?•大家都知道菱形可以把等腰三角形绕着底边中点旋转180°后所得的三角形与原三角形拼成的.由于等腰三角形是轴对称图形,•所以我们也可以判断出菱形也是轴对称图形.请大家想一想:(1)直角△ACM,直角△CMA′,直角△ABM,直角△BMA′的形状、大小是否相同?(2)如何用剪刀的办法,得到一个菱形的纸片呢?如图所示.请大家按如下步骤操作:(1)将一张矩形纸对折再对折;(2)用尺在折后的矩形的一角上画一条直线;(3)用剪刀沿着这条线剪下,打开.你发现这是一个什么样的图形.(•如果在另一角画直线剪下的是两个等腰三角形要拼起来才可完成上面的四边形,究竟在哪一角画线,请思考后再动手.)根据以上的操作与思考,你发现菱形它有哪些性质吗?教师让学生用语言进行表达出来,用边、角、对角线的顺序来阐明.教师板书:菱形性质:(边):对边平行、四边都相等.(角):对角相等.(对角线):对角线互相垂直平分,且平分各内角.由于菱形是平行四边形,所以它具有平行四边形的一切性质,上述的对边平行、对边相等、对角相等、对角线互相平分,就是平行四边形的性质,而邻边相等、对角线互相垂直,是它与平行四边形不同的特殊性质.上述的菱形性质是两种性质的总和.同时菱形还是轴对称图形,它的对称轴有两条,是两条对角线所在的直线,它是中心对称图形,其对称中心,就是它两条对角线的交点.四、范例分析,加深理解例2 在菱形ABCD中,BAD=2∠B.如图所示.试说明△ABC是等边三角形.学生观察图形并对照条件,进行思考、交流.师生共同分析:要说明△ABC是等边三角形,可以从以下几条入手:(1)说明AB=BC=AC;(2)说明∠BAC=∠ACB=∠ABC;(3)说明△ABC中,有两个角都等于60°.从第一条途径出发:我们知道四边形ABCD是菱形,即可获得AB=BC,•现在只差AB=AC或BC=AC.要知道CB=AC,就要说明∠ABC=∠CAB;要知道BA=AC,就要说明∠ABC=∠ACB.由于AD∥BC,即可得到∠DAB+∠ABC=180°,故3∠ABC=180°,∠ABC=60°.那么∠BAD=120°.由于菱形对角线平分内角.故∠BAC=60°,即∠BAC=∠ABC=60°.那么AB=AC.这样就可以得到△ABC是等边三角形.从第二条途径出发:就要从三个角入手,上面分析已得到:∠BAC=∠ABC,由于BA=BC,故∠BAC=∠BCA.那么∠BAC=∠ABC=∠BCA.这样△ABC是等边三角形就可获得说明,从第三条途径出发,•第一条途径分析中已获得了.解:由于四边形ABCD是菱形,所以AB=BC,AD∥BC.即∠B+∠BAD=180°,∠BAC=∠BAC.又∠BAD=2∠ABC.所以3∠ABC=180°,即∠ABC=60°.因为∠BAC+∠BCA+∠ABC=180°,故∠BAC+∠BCA=120°.那么2∠BAC=120°.即∠BAC=60°,∠BCA=60°.因此三角形ABC为等边三角形.也可以说△ABC是一个角等于60°的等腰三角形,所以△ABC为等边三角形.五、随堂练习,巩固新知六、全课小结,提高认识1.菱形有哪些特征?它与矩形的特征有何异同点?2.如何识别一个四边形是菱形?七、作业布置【课后作业】班级姓名学号一、判断题1.一组邻边相等,且对角线互相垂直的四边形是菱形.()2.一条对角线平分一组对角的四边形是菱形.()3.对角线交点到各边中点的距离都相等的四边形是菱形.()4.菱形是轴对称图形,它的对称轴只有一条.()5.菱形的对角线互相垂直平分,且平分各内角.()二、填空题6.菱形的邻角比为1:5,它的高为1.5cm,则它的周长为_______.7.两条对角线_________的四边形是菱形.8.已知菱形的两对角线的比为2:3,两对角线和为20,•则这对角线长分别为_____,_______.9.菱形ABCD的AC交BD于O,AB=13,BO=12,AO=5,求菱形的周长=_____,面积=•____.10.O为菱形ABCD的对角线交点,E、F、G、H分别是菱形各边的中点,若OE=3cm,•则OF=_____,OG=_______,OH=______.三、选择题11.从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,•则该菱形的钝角为().A.110° B.120° C.135° D.150°12.菱形的两邻角之比为1:2,如果它的较短对角线为3cm,则它的周长为(). A.8cm B.9cm C.12cm D.15cm13.菱形具有而矩形不一定具有的性质是().A.对边相等 B.对角相等C.对角线互相相等 D.对有线相等14.能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在15.下列说法不正确的是().A.菱形的对角线互相垂直 B.菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 四、解答题16.如图所示,已知E 为菱形ABCD 的边AD 的中点,EF ⊥AC 于F 交AB 于M .试说明M 为AB 的中点.21M FE DCBA17.如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=12∠EAD ,AE 交BD 于M ,试说明BE=AM .3421ME DC BA18.如图所示,已知在菱形ABCD 中,AE ⊥CD 于E ,∠ABC=60°,求∠CAE 的度数.19.如图所示,菱形的周长为20cm ,两邻角的比为1:2. 求:(1)较短对角线长是多少?(2)一组对边的距离是多少?20.如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF=•60°,∠BAE=15°,求∠CEF 的度数.21.已知:菱形一边及这边上的高.求作:满足条件的这个菱形.22.已知在菱形ABCD中,AE⊥BC于E,且BE=EC,若AC=6,求菱形ABCD的各边长.23.菱形一边与两条对角线所构成的两个角的差为10°,求菱形的各内角.24.如图所示,已知菱形ABCD中,E、F是BC、CD上的点,且AE=EF=AF=AB,•求∠C的度数.25.如图所示,O为矩形ABCD的对角线交点,DE∥AC,CE⊥BD,OE与CD•互相垂直平分吗?请说明理由.26.如图所示,已知在菱形ABCD中,E在BC上,若∠B=∠EAD=70°,ED•平分∠AEC吗?请说明理由.27.试说明:菱形的对角线的交点到各边的中点距离相等.。

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例

北师大版九年级数学上册第1章1.1菱形的性质与判定优秀教学案例
最后,我结合学生的实际水平和课程要求,设计了丰富多样的教学活动,如观察实物、分组讨论、动手操作、解答问题等,使学生在实践中学习,提高他们的学习兴趣和参与度。同时,我注重发挥教师的主导作用,引导学生掌握学习方法,培养他们的自主学习能力。
二、教学目标
(一)知识与技能
1.学生能够理解菱形的定义,掌握菱形的性质,并能够运用菱形的性质解决实际问题。
2.引导学生通过观察、操作、思考、交流等途径,合作解决实际问题,培养他们的合作意识和问题解决能力。
3.教师巡回指导,给予学生必要的帮助和指导,促进他们的学习进程。
(四)总结归纳
1.教师引导学生进行小组讨论,总结菱形的性质和判定方法,归纳出关键点。
2.学生分享并汇报本小组的讨论成果,教பைடு நூலகம்进行点评和补充。
2.学生能够掌握菱形的判定方法,并能够运用判定方法判断一个四边形是否为菱形。
3.学生能够了解菱形与矩形、正方形的联系和区别,提高他们对平行四边形性质的理解和应用能力。
(二)过程与方法
1.学生通过观察实物和几何图形,培养他们的空间想象能力和观察能力。
2.学生通过分组讨论和动手操作,培养他们的合作意识和问题解决能力。
五、案例亮点
1.生活情境的创设:通过展示实际生活中的菱形物体,如菱形宝石、菱形海报等,引发学生对菱形的兴趣和好奇心。这种生活情境的创设使学生能够更好地理解和应用菱形的性质和判定方法,提高他们的学习兴趣和实际问题解决能力。
2.问题导向的教学策略:设计富有挑战性和实际意义的问题,引导学生思考和探索菱形的性质和判定方法。这种问题导向的教学策略能够激发学生的思维活跃度,培养他们的critical thinking能力和problem-solving能力。
3.设计有趣的教学游戏,如菱形拼图游戏,让学生在游戏中体验菱形的性质和判定方法,提高他们的学习兴趣。

最新北师版九年级初三数学上册《菱形的性质》名师精品教案

最新北师版九年级初三数学上册《菱形的性质》名师精品教案

1.1菱形的性质与判定第1课时菱形的性质教学目标【知识与能力】理解菱形的概念,掌握菱形的性质.【过程与方法】经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【情感态度价值观】培养学生主动探究的习惯、严密的思维意识和审美意识.教学重难点【教学重点】理解并掌握菱形的性质.【教学难点】形成推理的能力.课前准备课件、菱形教具等.教学过程一、情境导入,初步认识请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.让学生举一些日常生活中所见到过的菱形的例子.总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.【教学说明】认识菱形,感受菱形的生活价值.二、思考探究,获取新知教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是平行四边形的特例,因此,菱形也具有平行四边形的所有性质.【教学说明】通过教师的教具操作感受菱形的定义.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:1.这是一个什么样的图形呢?2.有几条对称轴?3.对称轴之间有什么位置关系?4.菱形中有哪些相等的线段?【教学说明】充分地利用学具的制作,发现菱形所具有的性质,激发课堂学习的热情.【归纳结论】菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.三、运用新知,深化理解探究点一:菱形的性质【类型一】菱形的四条边相等如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD的周长.∵四边形ABCD是菱形,∴AB=AD.又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.故选C.方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.【类型二】菱形的对角线互相垂直如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.解:因为四边形ABCD 是菱形,所以AC ⊥BD ,AO =12AC ,BO =12BD . 因为AC =6cm ,BD =12cm ,所以AO =3cm ,BO =6cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=35(cm).所以菱形的周长=4AB =4×35=125(cm).方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.【类型三】 菱形是轴对称图形如图,在菱形ABCD 中,CE ⊥AB 于点E ,CF ⊥AD 于点F ,求证:AE =AF .解析:要证明AE =AF ,需要先证明△ACE ≌△ACF .证明:连接AC .∵四边形ABCD 是菱形,∴AC 平分∠BAD ,即∠BAC =∠DAC .∵CE ⊥AB ,CF ⊥AD ,∴∠AEC =∠AFC =90°.在△ACE 和△ACF 中,⎩⎪⎨⎪⎧∠AEC =∠AFC ,∠BAC =∠DAC ,AC =AC ,∴△ACE ≌△ACF .∴AE =AF .方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.探究点二:菱形的面积的计算方法如图所示,在菱形ABCD 中,点O 为对角线AC 与BD 的交点,且在△AOB 中,AB =13,OA =5,OB =12.求菱形ABCD 两对边的距离h .解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.解:在Rt △AOB 中,AB =13,OA =5,OB =12,于是S △AOB =12OA ·OB =12×5×12=30, 所以S 菱形ABCD =4S △AOB =4×30=120.又因为菱形两组对边的距离相等,所以S 菱形ABCD =AB ·h =13h ,所以13h =120,得h =12013. 方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作补充.课后作业布置作业:教材“习题1.1”中第1、2 题.教学反思本节课中,重在探索菱形性质的过程,在操作活动和观察分析过程中发展学生的审美意识,进一步体会和理解说理的基本步骤,了解菱形的现实应用.励志名言:1、学习从来无捷径,循序渐进登高峰。

北师大版九年级数学上册1.1菱形的性质与判定(3)教学设计

北师大版九年级数学上册1.1菱形的性质与判定(3)教学设计
2.教学目的:
-培养学生的团队合作意识和沟通能力。
-通过小组讨论,使学生深入理解菱形的性质和判定方法,提高解决问题的能力。
(四)课堂练习
1.教学内容:
-设计具有梯度、针对性强、形式多样的练习题,帮助学生巩固所学知识。
-练习题包括基本概念的判断题、性质应用的计算题、综合应用的解答题等。
2.教学方法:
-学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
1.培养学生对几何学习的兴趣和热情。通过探究菱形的性质和判定方法,让学生感受到几何学习的乐趣,激发他们的学习积极性。
2.培养学生的团队合作意识。在小组合作交流过程中,学生将学会倾听、表达、讨论和辩论,提高沟通能力,培养团队协作精神。
3.培养学生严谨的科学态度。在探索菱形性质的过程中,学生将学会用事实和逻辑推理来支持自己的观点,形成严谨的科学态度。
2.菱形判定的灵活运用。
-学生在判定菱形时容易混淆,对判定方法的适用条件不够明确。
-教学中应通过典型例题的剖析,引导学生掌握不同判定方法的使用场景,提高解题技巧。
(三)教学设想
1.采用情境导入法,激发学生的学习兴趣。
-通过展示生活中的菱形图案,让学生感受到数学与现实生活的紧密联系,引发学生对本节课内容的好奇心。
-培养学生的归纳总结能力,为后续几何学习奠定基础。
。一、教学目标
(一)知识与技能
1.理解并掌握菱形的定义及性质。学生能够通过观察和分析,描述菱形的特征,如对角线互相垂直平分、对角线长度相等、对角线平分线相等。同时,学生能够运用这些性质解决实际问题,如计算菱形的面积、周长和内角度。
2.学会使用不同的方法判定菱形。学生将学习并掌握基于对角线性质、边长关系和角度关系等多种判定菱形的方法,并能灵活运用这些方法解决几何问题。

北师大版九年级上册1菱形的性质与判定教学设计

北师大版九年级上册1菱形的性质与判定教学设计

北师大版九年级上册1菱形的性质与判定教学设计教学目标:1.了解菱形的性质和判定方法。

2.掌握菱形的周长和面积公式。

3.能够在实际问题中运用菱形的性质和公式解决问题。

教学内容:1. 菱形的性质和判定方法(1)菱形的定义引导学生通过观察和研究,理解什么是菱形,并掌握菱形的基本特征和定义。

(2)菱形的性质通过实例引导学生发现菱形的性质,如:•对角线相互垂直;•对角线相等;•边相等;•异角等。

(3)菱形的判定方法根据菱形的性质,教授如何判定一个四边形是否为菱形。

2. 菱形的周长和面积公式(1)周长公式引导学生探究菱形周长的公式,即C=4a,其中a为菱形的边长。

(2)面积公式通过将菱形分成两个直角三角形,引导学生推导出菱形面积的公式,即$S=\\frac{d_1d_2}{2}$,其中d1和d2分别为菱形的两条对角线。

3. 实际问题的应用引导学生通过实际问题的解决,掌握应用菱形的公式和性质解决问题的方法和技巧。

教学重点和难点重点1.菱形的性质和判定方法。

2.菱形的周长和面积公式。

难点1.菱形的周长和面积公式的推导过程。

2.如何应用菱形的公式和性质解决实际问题。

教学方法1.情境教学法:通过生动的情境描述或实际问题引导学生思考和解决问题。

2.案例教学法:通过精选的例题和解题思路,引导学生掌握菱形的性质和公式。

3.教师讲授法:通过系统的讲授,使学生全面了解菱形的性质和公式,并掌握用于解决实际问题的方法和技巧。

教具和学具1.教学PPT2.已准备好的实物菱形3.直尺,量角器等学具教学过程1. 热身(5分钟)教师通过生动、有趣的问答形式,复习前置知识点,如四边形的类型和特征等。

2. 导入(10分钟)教师通过引入一个实际问题,引发学生思考,并引导学生提出有关菱形的问题,如:菱形的定义是什么?菱形的性质有哪些?3. 理论解释(20分钟)教师利用教具和PPT讲解菱形的两个主要内容:菱形的性质和判定方法和周长与面积公式。

4. 实例演示(20分钟)教师通过制作PPT或板书实例演示,教授如何使用菱形公式和性质解决实际问题,如:•如何用菱形公式计算面积;•如何用菱形公式计算周长;•如何在实际问题中判断一个四边形是否为菱形。

九年级数学上册1.1菱形的定义和性质教案(新版)北师大版

九年级数学上册1.1菱形的定义和性质教案(新版)北师大版

九年级数学上册1.1菱形的定义和性质教案(新版)北师大版【教学目标】知识于技能经历菱形的性质的探究过程。

掌握菱形的两条性质。

过程与方法1.经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力2.根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力。

情感与态度1.在探究菱形的性质的活动中获得成功的体验。

2.过运用菱形的性质,锻炼克服困难的意志,建立自信心.【教学重难点】重点:菱形性质的探求.难点:菱形性质的探求和应用.【导学过程】【创设情景,引入新课】一、知识链接:1.(复习)什么叫做平行四边形?平行四边形有哪些性质呢?2.(引入)我们已经学习了平行四边形,其实还有特殊的平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形二、教材预习学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。

课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。

注意双色笔的使用,书写工整。

X k B 1 . c o m1、预习内容:自学课本2页—3页,完成随堂练习。

1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢?2.、叫做菱形.3、观察右图:回答菱形是轴对称图形吗?()有条对称轴?对称轴之间有什么位置关系?你能看出图中哪些线段或角相等吗?2、预习测试:1、菱形的定义:叫做菱形。

菱形是的平行四边形。

2、从菱形的意义可以探究菱形具有的性质:(1)菱形具有平行四边形具有的一切性质:。

(2)菱形与平行四边形比较又有其特殊的性质(探究、归纳、)特殊的性质1:。

几何语言为:特殊的性质2:几何语言为:【自主探究】学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大展示。

展示时要讲清所用知识点、易错点。

展示到小黑板的题要标清所用知识点、易错点;注意双色笔的使用,字体工整。

北师大版九年级上册1菱形的性质与判定第一章:菱形的性质与判定教学设计

北师大版九年级上册1菱形的性质与判定第一章:菱形的性质与判定教学设计

北师大版九年级上册1菱形的性质与判定第一章:菱形的性质与判定教学设计一、教学目标1.理解菱形的定义,掌握菱形的性质。

2.能够准确辨认菱形,判断一个图形是否为菱形。

3.能够应用菱形的性质解决实际问题。

二、教学重难点1.菱形的定义与性质。

2.菱形的判定。

三、教学内容与方法1、菱形的定义与性质•教学内容:–菱形的定义与性质。

•教学方法:–PPT讲解–教师示范•学生操作:–学生听课、记录笔记。

2、菱形的判定•教学内容:–菱形的判定。

•教学方法:–案例演示–小组合作•学生操作:–学生观看演示,对照题目进行判定。

四、教学过程1、导入以现实中的实际例子来让学生了解菱形并且掌握菱形的形态。

2、授课简单介绍菱形及其定义,接着通过菱形的定义来介绍相关性质,让学生了解菱形的性质与判定。

3、案例演示通过模拟题目,让学生在案例演示中学习如何判断一个图形是否为菱形。

在演示过程中,教师将模拟出几道题目,讲解判定方法,并鼓励学生自主思考、探究,积极参与讨论。

4、小组合作让学生分组,自主合作完成判定菱形的练习,通过小组合作,增强了学生的参与感和活跃性。

5、总结在课堂结束前,教师根据学生表现进行点评,并为学生做总结,强调菱形的定义与性质。

五、教学评价•观察学生听课的注意力、课堂纪律和作业认真程度。

•考查学生的综合思维能力,能否运用菱形的性质解决实际问题。

•收集学生的反馈意见,了解教学效果。

六、教学资源•课件:PPT演示、案例演示;•教学用具:黑板、粉笔、直尺、圆规。

九年级数学北师大版上册1.1菱形的性质与判定教学设计

九年级数学北师大版上册1.1菱形的性质与判定教学设计
(2)讲解菱形的性质,如对角线垂直平分线、对角线互相平分、对边平行且相等等。
(3)介绍菱形的判定方法,如对角线互相垂直平分的四边形是菱形、四条边相等的四边形是菱形等。
2.教学目标:
(1)使学生掌握菱形的性质和判定方法,理解菱形与平行四边形的关系。
(2)培养学生的几何直观和逻辑思维能力,提高学生解决问题的能力。
(2)教师进行点评,强调重点,突破难点。
(3)鼓励学生提出疑问,解答学生的疑问,巩固所学知识。
2.教学目标:
(1)使学生形成系统的知识结构,加深对菱形的认识。
(2)培养学生的总结归纳能力,提高学生的学习效率。
(3)激发学生的学习兴趣,为后续知识的学习打下基础。
五、作业布置
为了巩固学生对菱形性质与判定的理解,提高学生的应用能力,特布置以下作业:
(2)拓展题目:运用菱形的性质,解决一个与面积相关的实际问题,如平面镶嵌、菱形区域的草坪设计等。
3.创新与实践:
(1)鼓励学生运用所学知识,创作一个含有菱形元素的几何图案,并说明其寓意。
(2)小组合作,设计一个关于菱形性质与判定的数学游戏或竞赛题目,与同学分享、交流。
4.作业要求:
(1)作业需独立完成,确保解题过程的规范性和答案的正确性。
1.必做题:
(1)课本习题1.1:完成习题1、2、3,巩固菱形的性质与判定方法。
(2)根据课堂所学,设计一道应用菱形性质的几何题目,并给出解题过程和答案。
(3)结合生活中的实例,说明菱形在实际问题中的应用,以文字或图片形式呈现。
2.选做题:
(1)探究题目:研究菱形与矩形的性质差异,总结二者之间的联系和区别。
2.教学目标:
(1)培养学生的团队协作能力和交流表达能力。

北师大版数学九年级上册1.1菱形的性质与判定(第二课时)教学设计

北师大版数学九年级上册1.1菱形的性质与判定(第二课时)教学设计
4.设计不同难度的习题,使学生在巩固基础知识的同时,提高解题能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们勇于探索、积极进取的精神。
2.使学生认识到数学知识在实际生活中的应用,提高他们学习数学的积极性。
3.培养学生的团队合作意识,让他们在合作交流中学会尊重他人、倾听他人意见。
4.培养学生面对困难时,保持冷静、坚持不懈的品质,增强他们克服困难的信心。
二、学情分析
九年级的学生已经在之前的数学学习中,掌握了四边形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,他们对菱形的认识处于初步阶段,对菱形的性质和判定方法的理解尚需加强。此外,学生在解决实际问题时,可能存在将理论知识与实际应用脱节的现象。
针对学生的实际情况,本章节教学应注重以下几点:
-对角线互相垂直平分;
-对角线相等;
-对边平行且相等;
-邻角互补;
-对角线所分割的角为直角。
3.菱形的判定方法:
-四边形四边相等;
-对角线互相垂直平分的四边形;
-有一组邻边相等且夹角为直角的平行四边形;
-有一组对边相等且对角线垂直的平行四边形。
(三)学生小组讨论
1.教学活动设计:
-将学生分成小组,每组讨论一个菱形的性质或判定方法。
北师大版数学九年级上册1.1菱形的性质与判定(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握菱形的定义,理解菱形的基本性质,如对角线互相垂直平分、对角线相等、对边平行且相等。
2.培养学生运用菱形的性质解决实际问题的能力,如求菱形的面积、周长等。
3.使学生掌握菱形的判定方法,如四边形四边相等、对角线互相垂直平分的四边形是菱形。

北师大版数学九年级上册1.1菱形的性质与判定(第三课时)教学设计

北师大版数学九年级上册1.1菱形的性质与判定(第三课时)教学设计
3.教学评价:
-采用多元化评价方式,关注学生的过程性表现,如课堂参与度、合作交流、问题解决能力等。
-定期进行测试,了解学生对菱形性质和判定方法的掌握程度,及时发现问题,调整教学策略。
4.教学策略:
-针对不同层次的学生,制定个性化的教学计划,使每个学生都能在原有基础上得到提高。
-关注学生的情感态度,营造轻松、和谐的学习氛围,使学生乐于学习。
2.各小组汇报自己的讨论成果,分享解题思路和技巧。
3.教师点评各小组的讨论情况,引导学生总结出判定方法的适用场景和关键点。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生运用所学知识解决问题。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的作业进行展示和点评,分析解题过程中的优点和不足。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学的菱形性质、判定方法以及解题技巧。
2.学生分享自己在学习过程中的收获和感悟,总结学习菱形的心得。
3.教师总结:“通过本节课的学习,我们掌握了菱形的性质和判定方法,希望同学们在今后的学习中,能够将这些知识运用到实际问题中,不断提高自己的几何解题能力。”
4.培养学生运用数学知识解决实际问题的能力,提高学生的几何直观和空间想象能力。
(二)过程与方法
1.通过自主探究、小组合作、师生互动等方式,引导学生发现菱形的性质,培养学生的探究能力和团队合作精神。
2.通过典型例题的讲解和练习,使学生掌握菱形判定的四种方法,提高学生分析问题和解决问题的能力。
3.引导学生运用比较、分类、归纳等方法,总结菱形的性质和判定方法,培养学生的逻辑思维能力和数学素养。
4.布置课后作业,巩固所学知识。

北师大版九年级数学上册1.1.1菱形的性质教学案

北师大版九年级数学上册1.1.1菱形的性质教学案

第一章特殊平行四边形1菱形的性质与判定第1课时菱形的性质、教学设计课题第1课时菱形的性质授课人教学目标知识技能1.掌握菱形的概念和性质,理解菱形与平行四边形的区别与联系.2.了解菱形在生活中的应用实例,能根据菱形的性质解决简单的实际问题.数学思考1.通过观察、试验、猜想、验证、推理、交流等数学活动发展学生的合情推理能力和动手操作能力及应用数学的意识和能力.2.运用菱形知识解决具体问题,培养逻辑推理能力和演绎能力.问题解决由菱形的定义能从数学的角度去探究菱形的特殊性质,并能运用菱形的性质进行有关的证明和计算,发展应用意识.情感态度在应用菱形的性质的过程中培养学生独立思考的习惯以及在数学活动中获得成功的体验.教学重点菱形的性质及其应用.教学难点菱形性质“对角线互相垂直平分”的探究.授课类型新授课课时教具可活动操作的平行四边形模型(多媒体)(续表)教学活动教学步骤师生活动设计意图回顾我们学习了平行四边形,还记得什么样的四边形是平行四边形吗?它都具有哪些性质(从边、角、对角线及对称性方面展开)?学生回忆并回答,为本课的学习提供迁移或类比方法.活动一:创设情境导入新课1.观察以下平行四边形图片,你能发现什么?图1-1-82.教师播放课件,将平行四边形的一边慢慢地平移,直到相邻两边长度相等.让学生拿出平行四边形木框(可活动的),操作:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形.归纳:菱形定义:__有一组邻边相等__的平行四边形叫做菱形.3.举出几个生活中有关菱形的例子.图1-1-9可伸缩的衣架、中国结、伸缩门等.1.观察平行四边形中的特殊平行四边形,获得菱形的初步感性认识.2.理清平行四边形与菱形的关系,引出本节课活动的主题.3.让学生收集并在课堂上交流生活中的菱形图片,调动学生的求知欲,激发学生的探究意识,再通过教师的教具操作感受菱形的定义.活动二:实践探究交流新知【探究1】菱形是特殊的平行四边形,因此具有平行四边形的所有性质:对边__平行且相等__,对角__相等__,对角线__互相平分__.【探究2】请同学们拿出长方形纸片,对折两次,然后沿图中虚线剪下,再打开,看一看得到了什么图形.观察这个图形(菱形),它是轴对称图形吗?有几条对称轴?对称轴在什么位置上?你能找出图中相等的线段和角吗?图1-1-10学生活动:动手操作后发现:菱形是轴对称图形,对称轴就是它的对角线所在的直线(两条).从而利用轴对称图形的性质可得:菱形性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.教师提出问题:你能证明上述结论吗?学生独立思考后自主交流,通过交流明确目前证明线段、1.通过折纸游戏,培养学生的动手操作能力.同时,进一步体会菱形的对称美,并为探索菱形的性质作准备.2.在学生独立思考后再通过交流和引导,明确目前证明线段、角相等的常用方法,让学生感受数学的严谨性,培养学生合情推理的能力.3.对菱形性质的归纳,是学生对菱角相等的方法是利用平行四边形的性质、三角形全等以及等腰三角形的性质.根据情况选择简便有效的证明方法.学生口述证明过程.学生完成证明过程,培养推理能力,通过证明,验证猜想的正确性,让学生感受到数学结论证明的必要性.教师深入到学生中对需要帮助的学生进行指导.证明完成后,归纳菱形的两个性质.归纳:(1)菱形的四条边__相等__;(2)菱形的对角线互相__垂直平分__,并且每一条对角线平分一组对角. 形特征的认识,是知识的一次升华,培养学生的概括能力,突出教学重点.活动三:开放训练体现应用【应用举例】例如图1-1-11,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.图1-1-11[变式题1] (交换条件与结论)如图1-1-12,菱形花坛ABCD的边长为20米,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长.图1-1-12学生交流,教师讲解,提出不同思路:(1)利用直角三角形有关知识;(2)利用等边三角形有关知识.由于菱形ABCD中,AB=BC,又因为∠ABC=60°,所以△ABC是等边三角形,即AC=AB=20米,AO=10米,再应用勾股定理求BO,从而求出BD.讲评策略:先由学生提出方法,然后老师总结,最后板演.[变式题2] (模仿)如图1-1-13,菱形ABCD中,∠ADC=120°,AC=12 3 cm.(1)求BD的长;(2)写出点A,B,C,D的坐标.审题是解题的关键,通过运用菱形的性质,学会解决简单的实际问题,让学生认识到数学在现实世界中有着广泛的应用,培养了学生的应用意识.采取了启发式教学发挥学生的潜能,培养学生一题多解的思维习惯.图1-1-13【拓展提升】1.用定义判定菱形例1如图1-1-14,AD是△ABC的角平分线,DE∥AC,DF∥AB,求证:四边形AEDF是菱形.图1-1-142.运用菱形的性质计算或证明例2已知:如图1-1-15,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.求证:∠AEF=∠AFE.图1-1-15例3如图1-1-16,菱形ABCD中,∠BAD=60°,E为AB边上一点,且AE=3,BE=5,在对角线AC上找一点P,使PE+PB的值最小,则最小值为________.图1-1-161.引导学生根据定义证四边形是菱形,要满足两个条件:(1)有一组邻边相等;(2)是平行四边形.让学生悟出证明的方法.2.知识的综合与拓展,提高应考能力.(续表)活动四:课堂总结反思【当堂训练】1.课本P4中的随堂练习2.课本P4习题1.1中的T1、T2、T4当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.平行四边形――→一组邻边相等菱形⎩⎪⎨⎪⎧定义性质⎩⎪⎨⎪⎧定理1定理2对称性⎩⎪⎨⎪⎧轴对称图形中心对称图形【教学反思】①[授课流程反思]设置大量的菱形图片,体现数学来源于生活,通过平移平行四边形的一条边得到菱形,让学生感知菱形与平行四边形之间的特例关系,让学生在轻松愉快中自然、水到渠成地得到菱形的定义.②[讲授效果反思]通过折纸操作、观察、猜想,探索出菱形的性质,让学生切身感受到自己是学习的主人,为学生今后获取知识、探索发现和创造打下了良好的基础.这种方法符合学生认识图形的过程,培养了学生主动探索、敢于实践、善于发现的科学精神以及合作交流的学习习惯,最后升华到理论层次,利用平行四边形的性质、三角形全等以及等腰三角形的性质对菱形的性质加以证明.③[师生互动反思]______________________________________________________________________________________________ ④[习题反思]好题题号______________________________ __ 错题题号_______________________________________ 反思,更进一步提升. 、导学设计1.1 菱形的性质与判定(一)学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。

九年级数学上册1.1.1菱形的性质与判定教案北师大版

九年级数学上册1.1.1菱形的性质与判定教案北师大版

课题:1。

1.1菱形的性质与判定教学目标:1。

理解菱形的概念,了解它与平行四边形之间的关系.2。

经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.3.体会探索与证明过程中所蕴含的抽象、推理等数学思想. 教学重、难点:重点:菱形的性质定理的证明. 难点:菱形的性质定理的应用. 课前准备:教师准备:多媒体课件. 学生准备:制作菱形纸片.设计意图:学生准备菱形纸片的过程,就是学生对平行四边形的回顾过程,以及对特殊的平行四边形—-菱形的初步认识. 教学过程:一、创设情境,导入新课 活动内容1:知识回顾1。

什么叫做平行四边形? 2。

平行四边形有哪些性质?处理方式:让学生结合图形复述平行四边形的定义与性质.在学生复述平行四边形的定义时,容易与平行四边形的判定定理混淆;对于平行四边形的性质,教师应及时引导学生从边、角、对角线、对称性四个方面复述,并能结合图形将文字语言转化成符号语言.设计意图:AB DC D AOC通过对平行四边形定义及性质的回顾,一方面利于学生尽快进入学习新课的状态,另一方面利于学生积累探究图形定义及性质的方法和经验.活动内容2:导入新课导语:在我们现实生活中,平行四边形的形象无处不在,请同学们观察下列图片中的平行四边形。

你能发现它们有怎样的共同特征?你知道这样特殊的平行四边形叫做什么吗?它有哪些特殊的性质?本节课我们一起走进“菱形",去探究菱形的性质与判定.【教师板书课题:1。

1 菱形的性质与判定(1)】处理方式:学生观察生活中常见的特殊平行四边形图片,并与一般平行四边形进行对比,找出与一般平行四边形的不同之处,对菱形的定义与性质先有感性认识。

设计意图:从生活中的菱形入手,让学生感受生活中的数学。

使用疑问的语言导入新课,有利于激起学生的探究欲望,培养学生对新知识的兴趣.二、探究学习,获取新知活动内容1:提出问题(多媒体出示)1。

最新北师版九年级初三数学上册《菱形的性质》名师精品教案

最新北师版九年级初三数学上册《菱形的性质》名师精品教案

第一章特殊平行四边形
1.1菱形的性质与判定
第1课时菱形的性质
6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
五、学习体会:
励志名言:
1、学习从来无捷径,循序渐进登高峰。

——高永祚
2、立志宜思真品格,读书须尽苦功夫。

——阮元
3、读书是易事,思索是难事,但两者缺一,便全无用处。

——富兰克林
4、学习要有三心,一信心,二决心,三恒心。

——陈景润
5、不读书的人,思想就会停止。

——狄德罗
6、“先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。

”。

——陶行知
7、天赋如同自然花木,要用学习来修剪。

——培根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菱形的定义和性质
【教学目标】
知识于技能
经历菱形的性质的探究过程。

掌握菱形的两条性质。

过程与方法
1.经历菱形的性质的探究过程,培养学生的动手实验、观察推理的意识,发展学生的形象思维和逻辑推理能力
2.根据菱形的性质进行简单的证明,培养学生的逻辑推理能力和演绎能力。

情感与态度
1.在探究菱形的性质的活动中获得成功的体验。

2.过运用菱形的性质,锻炼克服困难的意志,建立自信心.
【教学重难点】
重点:菱形性质的探求.
难点:菱形性质的探求和应用.
【导学过程】
【创设情景,引入新课】
一、知识链接:
1.(复习)什么叫做平行四边形?平行四边形有哪些性质呢?
2.(引入)我们已经学习了平行四边形,其实还有特殊的平行四边形,如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形
二、教材预习
学法指导:课前独学教材预习内容,总结本节课的重点、难点、注意点。

课堂再以小组为单位交流,找出还存在的问题,并在小黑板上扼要展示本节重点内容和存在的问题。

注意双色笔的使用,书写工整。

X k B 1 . c o m
1、预习内容:自学课本2页—3页,完成随堂练习。

1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢?
2.、叫做菱形.
3、观察右图:回答菱形是轴对称图形吗?()
有条对称轴?对称轴之间有什么位置关系?
你能看出图中哪些线段或角相等吗?
2、预习测试:
1、菱形的定义:叫做菱形。

菱形是的平行四边形。

2、从菱形的意义可以探究菱形具有的性质:
(1)菱形具有平行四边形具有的一切性质:。

(2)菱形与平行四边形比较又有其特殊的性质(探究、归纳、)
特殊的性质1:。

几何语言为:
特殊的性质2:
几何语言为:
【自主探究】
学法指导:课前独学,解决会的,有问题的上课对子或小组交流,形成共识,进行课堂大
展示。

展示时要讲清所用知识点、易错点。

展示到小黑板的题要标清
所用知识点、易错点;注意双色笔的使用,字体工整。

探究点一:菱
形性质1的应用.
1、已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求
证:∠AEF=∠AFE
探究点二:菱形性质2的应用
2、已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:∠AFD=∠CBE.
探究点三:性质的综合应用
3、在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF,过点C做CG∥EA交FA于H ,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数。

四.小结提升
学法指导: 1、对照学习目标找差补缺。

2、画出知识树。

通过本节课的学习,你有什么收获?你还有什么困惑?
画知识树
达标测试
作业:1.1 T1. 2.3
学法指导:1、分层达标,敢于突破,横向比较,找出差距。

2、完成较早的小组与同学把答案写到小黑板上奖励分5’
3、对子互改,组长验收,教师查阅。

相关文档
最新文档