历年文科高考椭圆题带解析(供参考)
专题25 椭圆(解答题)(新高考地区专用)(解析版)
专题25 椭 圆(解答题)1.已知椭圆Γ:()22211y x a a+=>与抛物线C :()220x py p =>有相同的焦点F ,抛物线C 的准线交椭圆于A ,B 两点,且1AB =. (1)求椭圆Γ与抛物线C 的方程;(2)O 为坐标原点,过焦点F 的直线l 交椭圆Γ于M ,N 两点,求OMN 面积的最大值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(文)【答案】(1)Γ的方程为2214y x +=,C的方程为2x =;(2)最大值为1. 【解析】(1)因为1AB =,所以不妨设A 的坐标为1(,)22p --,B 的坐标为1(,)22p-, 所以有:2222114414p a p a ⎧+=⎪⎪⎨⎪-=⎪⎩,所以24a =,p = 所以椭圆Γ的方程为2214y x +=,抛物线C的方程为2x =;(2)由(1)可知F的坐标为,设直线l的方程为y kx =O 到MN 的距离为d ,则d ==,联立2214y kx y x ⎧=⎪⎨+=⎪⎩, 可得()22410k x ++-=,则()22414k k MN +==+,1OMNS==≤=,当且仅当22k =时取等号,故OMN 面积的最大值为1.2.在平面直角坐标系xOy 中,已知椭圆C 1: 22221(0)x y a b a b+=>>的左焦点为F 1(-2,0),且点P (0,2)在椭圆C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=8x 相切,求直线l 的方程 【试题来源】宁夏固原市隆德县2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2)y =+y x =- 【解析】(1)因为椭圆1C 的左焦点为1(2,0)F -,所以2c =, 点(0,2)P 代入椭圆22221x y a b+=,得241b =,即2b =,所以2228a b c =+=,所以椭圆1C 的方程为22184x y +=;(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,由22184x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4280k x kmx m +++-=, 因为直线l 与椭圆1C 相切,所以△2222164(12)(28)0k m k m =-+-=整理得22840k m -+=①,由28y x y kx m⎧=⎨=+⎩,消去y 并整理得222(28)0k x km x m +-+=,因为直线l 与抛物线2C 相切,所以△222(28)40km k m =--=,整理得2km =②,综合①②,解得k m ⎧=⎪⎨⎪=⎩或k m ⎧=⎪⎨⎪=-⎩,所以直线l的方程为y =+y x =- 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.3.已知椭圆C :22221(0)x y a b a b +=>>左、右焦点分别为1F 、2F .设P是椭圆C 上一点,满足2PF ⊥x 轴,212PF =. (1)求椭圆C 的标准方程;(2)过1F 且倾斜角为45°的直线l 与椭圆C 相交于A ,B 两点,求AOB 的面积. 【试题来源】江西省贵溪市实验中学2021届高三上学期一模考试数学(三校生)试题【答案】(1)2214x y +=;(2【分析】(1)根据条件列出关于,,a b c 的方程求解;(2)设直线x y =,与椭圆方程联立,11212AOBSOF y y =⨯⨯-,代入根与系数的关系,求三角形的面积. 【解析】(1)由条件可知2222212c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =所以椭圆C 的标准方程是2214x y +=;(2)设直线:l x y =-()11,A x y ,()22,B x y ,直线l 与椭圆方程联立2214x y x y ⎧=-⎪⎨+=⎪⎩,得2510y --=,125y y +=,1215y y -=,11212AOBSOF y y =⨯⨯-==4.椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ≠)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【试题来源】四川省凉山州2020-2021学年高三第一次诊断性检测(理)【答案】(1)2213x y +=;(2)证明见解析,定值为1. 【解析】(1)由题意得1c b ==,则2223a b c =+=,∴椭圆方程为2213xy +=;(2)解法一(常规方法):设()()1122,,,A x y B x y ,联立222113y kx k x y =+-⎧⎪⎨+=⎪⎩ 化简可得()()()22316211210k x k k x k k ++-+-=,直线1)20(y kx k k =+-≠与椭圆C 交于A B 、两点,0,∴∆>即()()()221231214810k k k k ⎡⎤+-=-⎣⎦-->,解得01k <<, 由根与系数关系()121222621121,3()311k k k k x x x x k k --+=-=++, ()121221121211PA PB y y k k x y x y x x x x --∴+=+=+-+()()121212222kx x k x x x x +-+= ()()226621121211211212k k k k kk k k k-+--===--,∴直线PA PB 、得斜率和为定值1. 解法二(构造齐次式):由题直线1)20(y kx k k =+-≠恒过定点()2,1-- ①当直线AB 不过原点时,设直线AB 为()()11*mx n y +-=, 则221mx n --=,即12m n +=-有12m n =--,由2213x y +=有()()2231610y x y +-+-=,则()()()22316110x y y mx n y +-⎡⎤⎣-+-⎦+=,整理成关于,1x y -的齐次式: ()()()2236161 0n y mx y x +-+-+=,进而两边同时除以2x ,则()21366110y m x n y x -⎛⎫+-⎛⎫++= ⎪⎝⎭⎪⎝⎭,令1y k x -=, 则121216116213636PA PBn y y m k k x x n n⎛⎫-- ⎪--⎝⎭∴+=+=-==++,②当直线AB 过原点时,设直线AB 的方程为()()00001,,,,2y x A x y B x y =--, 0000001121212PA PB y y y k k x x x --∴+=+==⨯=, 综合①②直线PA 与直线PB 的斜率之和为定值1.【名师点睛】该题考查的是有关直线与椭圆的问题,解题方法如下:(1)根据题中所给的条件,确定出,b c 的值,进而求得2a 的值,得到椭圆方程; (2)将直线方程与椭圆方程联立,根与系数关系求得两根和与两根积,利用斜率公式证得结果.5.已知椭圆()2222:10x y C a b a b +=>>()2,1A .(1)求C 的方程;(2)点,M N 在C 上,且AM AN ⊥,证明:直线MN 过定点.【试题来源】河南省郑州市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22163x y +=;(2)证明见解析. 【解析】(1)由题意得222222411a b c c e a a b⎧=+⎪⎪⎪==⎨⎪⎪+=⎪⎩,解得2263a b ⎧=⎨=⎩,∴椭圆C 的方程为22163x y+=.(2)设点()11,M x y ,()22,N x y ,AM AN ⊥,()()()()121222110AM AN x x y y ∴⋅=--+--=,整理可得()()12121212124y y y y x x x x -++=-++-…①当直线MN 斜率k 不存在时,显然AM AN ⊥不成立,则可设:MN y kx m =+,联立2226y kx m x y =+⎧⎨+=⎩得()222124260k x kmx m +++-=, 由()()222216412260k m km∆=-+->得22630k m -+>,则122412km x x k +=-+,21222612m x x k -=+,()121222212m y y k x x m k ∴+=++=+, ()()22221212122612m k y y k x x km x x m k-=++++=+, 代入①式化简可得()()2481310k km m m ++-+=,即()()212310k m k m +-++=,12m k ∴=-或213k m +=- 则直线方程为()1221y kx k x k =+-=-+或2121333k y kx x k +⎛⎫=-=-- ⎪⎝⎭, ∴直线过定点()2,1或21,33⎛⎫- ⎪⎝⎭,又()2,1和A 点重合,故舍去,∴直线MN 过定点21,33⎛⎫- ⎪⎝⎭. 【名师点睛】本题考查直线与椭圆综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量之间的关系,同时得到根与系数关系的形式; ③利用根与系数关系表示出已知的等量关系,化简整理得到所求定点.6.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且过点(2,3)A ,右顶点为B .(1)求椭圆C 的标准方程;(2)过点A 作两条直线分别交椭圆于点M ,N 满足直线AM ,AN 的斜率之和为3-,求点B 到直线MN 距离的最大值.【试题来源】江苏省常州市四校联考2020-2021学年高三上学期期末【答案】(1)2211612x y +=;(2)最大值为2. 【解析】(1)由题2222212491b c a c e a a b ⎧⎪+=⎪⎪==⎨⎪⎪+=⎪⎩,解得42a b c =⎧⎪=⎨⎪=⎩C 的标准方程为2211612x y +=;(2)若直线MN 斜率不存在,设0000(,),(,)M x y N x y -,则220000001161233322x y y y x x ⎧+=⎪⎪⎨---⎪+=-⎪--⎩,解得0040x y =⎧⎨=⎩,此时,M N 重合,舍去.若直线MN 斜率存在,设直线1122(,),(,)MN y kx t M x y N x y =+:,,联立2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得222(43)84480k x ktx t +++-=,所以21212228448,4343kt t x x x x k k -+=-=++, 由题意121233322y y x x --+=---,即121233322kx t kx t x x +-+-+=--- 化简得1212(23)(29)()4240.k x x t k x x t ++--+-+=因此2224488(23)(29)()4240.4343t ktk t k t k k -++----+=++ 化简得2286860k kt t k t ++---=,即(23)(42)0k t k t +-++= 若230k t +-=,则23t k =-+,直线MN 过点(2,3)A ,舍去, 所以420k t ++=,即42t k =--,因此直线MN 过点(4,2)P -. 又点(4,0)B ,所以点B 到直线MN 距离最大值即2BP =,此时2MN y =-:,符合题意.所以点B 到直线MN 距离最大值为2【名师点睛】易错点为需讨论直线MN 斜率是否存在,解题的关键是联立直线与曲线方程,根据根与系数关系,求得1212,x x x x +⋅的表达式,再代入题干条件,化简整理,才能求得答案,考查分析理解,计算化简的能力,属中档题.7.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点为A ,右焦点F ,3AF =.过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12k k λ=恒成立?若存在,请求出λ的值,若不存在,请说明理由.【试题来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试(理)【答案】(1)22143x y +=,(2)3λ= 【解析】(1)因为离心率为12,所以12c e a ==,又3AF =,所以3a c +=,解得2a =,1c =,又222c a b =-,所以23b =,所以椭圆方程为22143x y +=;(2)由(1)知()1,0F ,()2,0A -,设直线PN 的方程为1x my =+,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,M x y --,所以1112y x k =-,2222y k x =+,若存在λ,使得12k k λ=恒成立,所以121222y y x x λ=-+, 所以()()122122y x y x λ+=-,两边同乘1y 得()()21221122y x y y x λ+=-,因为()11,P x y 在椭圆上,所以2211143x y +=,所以()()2112113223144x x x y -+⎛⎫=-=⎪⎝⎭, 所以()()()()112211322224x x x y y x λ-++=-,当12x ≠时,则()()12213224x x y y λ-++=,所以()21212136124x x x x y y λ--+-=①;当12x =时,M 与A 重合,联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消元得()2234690m y my ++-=,所以212212934634y y m my y m -⎧=⎪⎪+⎨-⎪+=⎪+⎩,所以()212128234x x m y y m +=++=+, ()222121212412134m x x m y y m y y m -=+++=+, 代入①得22221236489124343434m m m m λ-+--+-=+++,整理得10836λ-=-,解得3λ=8.已知椭圆()2222:10x y E a b a b +=>>1F 、2F分别为椭圆E 的左、右焦点,M 为E 上任意一点,12F MF S △的最大值为1,椭圆右顶点为A . (1)求椭圆E 的方程;(2)若过A 的直线l 交椭圆于另一点B ,过B 作x 轴的垂线交椭圆于C (C 异于B 点),连接AC 交y 轴于点P .如果12PA PB ⋅=时,求直线l 的方程. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考【答案】(1)2212x y +=;(2):22x l y =-或22x y =-+.【解析】(1)当M 为椭圆的短轴端点时,12F MF S △取得最大值即1212S c b =⨯⨯=,因为c a =,222a b c =+,解得a =1b =,1c =,所以椭圆方程为2212x y +=.(2))A,根据题意,直线l 斜率存在且不为0,设直线(:l y k x =,()00,B x y,联立(2212y k x x y ⎧=⎪⎨⎪+=⎩,得()222212420kxx k +-+-=,20212x k =+2204212k k -=+即)22221,1212k B k k ⎛⎫-- ⎪ ⎪++⎝⎭,由题意得)222112k C k ⎛- +⎝⎭,又直线(:AC y k x =-,故()P ,())22212,12k PA PB k ⎛⎫- ⎪⋅=⋅ ⎪+⎝⎭42241021122k k k +-==+, 即4281850k k +-=解得252k =-(舍)214k =,故12k =±,直线:2x l y =或2x y =-+. 9.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,且离心率为12.(1)求椭圆C 的方程;(2)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A B ,两点,线段AB 的垂直平分线交x 轴于点D ,判断AB DF是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.【试题来源】北京市昌平区2021届高三年级上学期期末质量抽测【答案】(1)22143x y +=;(2)是,4. 【解析】(1)依题意得22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =,故椭圆C 的方程为22143x y+=; (2)AB DF是定值.由已知得直线:(1)l y k x =-. 由22(1)34120y k x x y =-⎧⎨+-=⎩,消去y , 整理得()22224384120k x k x k +-+-=. 所以()()()2222284434121441440k k k k ∆=--+-=+>,设()()1122,,,A x y B x y ,则2122843k x x k +=+,212241243k x x k -=+, 所以()()()()222222121121214AB x x y y kx x x x ⎡⎤=-+-=++-⎣⎦()()()222222222441212181434343k k k k k k k ⎡⎤⎛⎫-+⎛⎫ ⎪⎢⎥=+-= ⎪ ⎪+++⎢⎥⎝⎭⎣⎦⎝⎭, 则()2212143k AB k +=+,因为()212122286224343k ky y k x x k k k ⎛⎫-+=+-=-= ⎪++⎝⎭,所以线段AB 的中点为22243,4343k k k k ⎛⎫- ⎪++⎝⎭. (1)当0k =时,AB 4=,1DF =.所以4AB DF=.(2)当0k ≠时,线段AB 的垂直平分线方程为2223144343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =,得2243k x k =+,即22,043k D k ⎛⎫ ⎪+⎝⎭,所以()22223114343k k DF k k +=-=++, 所以()()22221214343143k AB k DF k k ++==++,综上所述,AB DF 为定值4.【名师点睛】求解本题第二问的关键在于联立直线l 与椭圆方程,根据根与系数关系以及弦长公式表示出AB ,再由题中条件,求出DF ,即可得出AB DF的值.(求解时要注意讨论斜率k 的取值)10.已知椭圆C :22221x y a b+=(0a b >>)过点()2,0A -,()2,0B ,且离心率为12.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点G (E ,G 不重合),ET x ⊥轴,垂足为T ,求证:TA GA TBGB=.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)由题意可得,222212a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,解得24a =,23b =,所以椭圆C 的方程为22143x y +=;(2)由题设知直线l 的斜率存在且不为零,设直线l 的方程为y kx m =+(0k ≠).由22143y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()()2223484120k x kmx m +++-=.依题意,有()()222264163430k m k m∆=-+-=,解得2234m k =+.设()1,0G x ,()00,E x y ,则1m x k =-,024434km kx k m-==-+. 因为ET x ⊥轴,所以4,0k T m ⎛⎫- ⎪⎝⎭,所以4242224242kTA k m m k m TB m k m k k m -+-+-===++⎛⎫-- ⎪⎝⎭, 因为2222mGA m k km GB m k k-+-==++,所以TA GA TB GB =.【名师点睛】求解直线与圆锥曲线相关问题时,一般需要联立直线与圆锥曲线方程,消元后得到关于x (或y )的一元二次方程,结合根与系数关系与判别式,以及题中条件,利用圆锥曲线的相关性质,即可求解.11.如图,在平面直角坐标系xoy 中,已知椭圆C :22221x ya b+=(0)a b >>的离心率1,2e =左顶点为(2,0)A -,过点A 作斜率为(0)k k ≠的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的(0)k k ≠都有OP EQ ⊥,若存在,求出点Q 的坐标;若不存在说明理由;(3)若过O 点作直线l 的平行线交椭圆C 于点M ,求AD AEOM+的最小值.【试题来源】上海市高考压轴【答案】(1)22143x y +=;(2)存在,3(,0)2-;(3) 【解析】(1)因为椭圆C :22221x y a b+=0a b >>()的离心率1,2e =左顶点为(2,0)A -, 所以2a =,又12e =,所以1c =,可得2223b a c =-=, 所以椭圆C 的标准方程为22143x y +=;(2)直线l 的方程为(2)y k x =+,由22143(2)x y y k x ⎧+=⎪⎨⎪=+⎩,可得22(2)(43)860x k x k ⎡⎤+++-=⎣⎦,所以12x =-,2228643k x k -+=+,当 228643k x k -+=+时,2228612(2)4343k ky k k k -+=+=++, 所以2228612(,)4343k k D k k -+++,因为点P 为AD 的中点,所以P 点坐标为22286(,)4343k kk k -++, 则3(0)4OP k k k-=≠,直线l 的方程为(2)y k x =+,令0x =,得E 点坐标为(0,2)k , 假设存在定点(,)(0)Q m n m ≠使得OP EQ ⊥,则1OP EQ k k ⋅=-, 即3214n kk m -⎛⎫-⋅=- ⎪⎝⎭恒成立,所以(46)30m k n +-=, 所以46030m n +=⎧⎨-=⎩,即320m n ⎧=-⎪⎨⎪=⎩,所以定点Q 的坐标为3(,0)2-.(3)因为//OM l ,所以OM 的方程可设为y kx =,和22143x y +=联立可得M点的横坐标为x =, 由//OM l可得22D A E A D A M M x x x x x x AD AE OM x x -+--+===≥=,即2k=±时取等号,所以当2k=±时,AD AEOM+的最小值为.【名师点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11A x y,,()22B x y,;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出根与系数关系;(4)将所求问题或题中关系转化为1212,x x x x+形式;(5)代入根与系数关系求解.12.已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且椭圆C过点3,22⎛⎝⎭.(1)求椭圆C的标准方程;(2)过椭圆C右焦点的直线l与椭圆C交于,A B两点,且与圆22:2O x y+=交于E F、两点,求2||||AB EF⋅的取值范围.【试题来源】云南省曲靖市第二中学、大理新世纪中学2021届高三第一次模拟考试(理)【答案】(1)22132x y+=;(2)3⎡⎢⎣.【分析】(1)先利用离心率得到,a b的关系,再利用点在椭圆上得到,a b另一个关系,解方程即得椭圆方程;(2)先讨论斜率不存在时2||||AB EF⋅的值,再设斜率存在时的直线方程,联立椭圆方程,利用根与系数关系求弦长||AB,再利用几何法求圆中的弦||EF的长,最后计算2||||AB EF⋅的取值范围即可.【解析】(1)由已知可得ca=,所以2213c a=,故222223b ac a=-=,即2232a b=,所以椭圆的方程为2222132x ybb+=,将点32⎛⎝⎭带入方程得22b=,即23a=,所以椭圆C 的标准方程为22132x y +=;(2)由(1)知,21c =,故椭圆的右焦点为(1,0), ①若直线l 的斜率不存在,直线l 的方程为1x =,则,1,,(1,1),(1,1)A B E F ⎛⎛- ⎝⎭⎝⎭,所以22|||4,||||AB EF AB EF ==⋅=②若直线l 的斜率存在,设直线l 方程为(1)y k x =-,设()()1122,,,A x y B x y ,联立直线l 与椭圆方程()221321x y y k x ⎧+=⎪⎨⎪=-⎩,可得()2222236360k x k x k +-+-=, 则2122623k x x k+=+,21223623k x x k -=+, 所以)22123k AB k +===+, 因为圆心()0,0到直线l的距离d =所以在圆22:2O x y +=中由21||2EF ⎛⎫= ⎪⎝⎭()()222222242||44211k k EF r dk k +⎛⎫=-=-= ⎪++⎝⎭,所以)())2222222142223123k k k AB EF k k k +++⋅=⋅=+++2431233k ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭, 因为[)20k ∈+∞,,则222,33k ⎡⎫+∈+∞⎪⎢⎣⎭,230,2213k ⎛⎤∈ ⎥⎝⎦+,故(]20,22433k ∈+,(]24311,323k +∈+,故24312333k ⎫⎪⎛+∈ ⎪ ⎝ ⎪+⎝⎭,即2||3AB EF ⎛⋅∈ ⎝,综上,2||3AB EF ⎡⋅∈⎢⎣.13.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,右顶点、上顶点分别为A 、B ,原点O 到直线AB. (1)求椭圆C 的方程;(2)若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程 ②当三角形OPQOM 的取值范围.【试题来源】江苏省连云港市新海高级中学2020-2021学年高三上学期期末【答案】(1)22142x y +=(2)①230x y +-=,②OM ⎡∈⎣. 【解析】(1)设直线:1x yAB a b+=,即0bx ay ab +-=, 所以O 到直线AB==,所以226a b +=,因为2222226c e a a b c a b ⎧==⎪⎪⎪=+⎨⎪+=⎪⎪⎩,所以2242a b ⎧=⎨=⎩,所以椭圆C 的方程为22142x y +=;(2)①因为PQ 的中点为()1,1M ,且PQ 的斜率存在,设()()1122,,,P x y Q x y ,所以221122222424x y x y ⎧+=⎨+=⎩,所以()()222212122x x y y -=--,所以121212122x x y y y y x x +-=-+-, 因为12122,2x x y y +=+=,所以121212PQ y y k x x -==--,所以PQ 的直线方程为()1112y x -=--,即230x y +-=; ②若直线PQ 垂直于x轴,则2221222222p p p p p x x y x x ⎛⎫⨯=-=⇒= ⎪ ⎪⎝⎭ 22M x ⇒=,0M y =,所以OM =若直线PQ 不垂直于x 轴,设直线PQ 方程:()0y kx m m =+≠,()()1122,,,P x y Q x y ,()22222124240142y kx mk x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122412km x x k +=-+,21222412-⋅=+m x x k,()()()2224412240km k m∆=-+->,即2242k m +>,因为O 到PQ的距离为d =所以12OPQS===,()()()2222222222241212012m k m k k m k m ⎡⎤⇒+-=+⇒+-=⇒+=⎣⎦, 且此时2242k m +>,即0∆>满足,而12222212M x x km k x k m+-===-+, 1M M y kx m m =+=,所以OM ===,因为2212k m +=,所以21m ≥,所以21122m ≤-<,所以1OM ≤<综上可知OM ⎡∈⎣.14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率2e =,且经过点(0,1)D .(1)求椭圆C 的方程;(2)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于,M N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由. 【试题来源】北京市石景山区2021届高三上学期数学期末试题【答案】(1)2214x y +=;(2)BAM ∠=OAN ∠,理由见解析. 【解析】(1)由已知1b =,c e a ==, 又222a b c =+,解得2,1a b ==. 所以椭圆C 的方程为2214x y +=.(2)依题意设直线l 的方程为(4)y k x =+,设1122(,),(,)M x y N x y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则216(112)0k ∆=->,解得k <<. (*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =k =±与(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为1212121212(4)(4)332111111AM AN y y k x k x k k k k k x x x x x x +++=+=+=++++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++22222222323(2)3(242)142206443236311414k k k k k k k k k k k k -+-++=+=+=---++++,所以AM AN k k =-.所以BAM ∠=OAN ∠.15.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(.(1)求椭圆C 的方程;(2)若直线y x m =+与椭圆C 交于不同的两点,A B ,且线段的中点M 在圆221x y +=上,求m 的值.【试题来源】宁夏平罗中学2021届高三上学期期末考试(文)【答案】(1)22184x y +=;(2). 【解析】(1)因为椭圆()2222:10x y C a b a b+=>>的右焦点为()22,0F,且过点(,所以222421a b=⎨+=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩,因此椭圆C 的方程为22184x y +=; (2)设()11,A x y ,()22,B x y ,由22184y x m x y =+⎧⎪⎨+=⎪⎩消去y ,整理得2234280x mx m ++-=,由()221612280m m ∆=-->解得212m <, 又1243mx x +=-,则1212422233m m y y x x m m +=++=-+=,所以AB 的中点坐标为2,33m m M ⎛⎫-⎪⎝⎭, 又点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得295m =满足212m <,所以m =. 【名师点睛】求解本题的关键在于用m 表示出点M 的坐标;利用题中条件,联立直线与椭圆方程,消去x (y )得到关于y (或x )的一元二次方程,根据根与系数关系及中点坐标公式,求出M 坐标,即可求解.16.已知椭圆22:142x y C +=.(1)求椭圆C 的离心率和长轴长;(2)已知直线2y kx =+与椭圆C 有两个不同的交点,A B ,P 为x 轴上一点. 是否存在实数k ,使得PAB △是以点P 为直角顶点的等腰直角三角形?若存在,求出k 的值及点P 的坐标;若不存在,说明理由.【试题来源】北京市西城区2021届高三上学期数学期末试题 【答案】(1)2,4;(2)存在,当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-.【解析】(1)由题意:24a =,22b =,所以2a =. 因为222a b c =+,所以22c =,c =c e a ==. 所以椭圆C,长轴长为4. (2)联立222,142y kx x y =+⎧⎪⎨+=⎪⎩ 消y 整理得22(21)840k x kx +++=. 因为直线与椭圆交于,A B 两点,故0>,解得212k >. 设()()1122,,,A x y B x y ,则122821k x x k -+=+,122421x x k =+. 设AB 中点00(,)G x y ,则12024221x x k x k +-==+,0022221y kx k =+=+,故2242(,)2121k G k k -++. 假设存在k 和点(,0)P m ,使得PAB △是以P 为直角顶点的等腰直角三角形,则PG AB ⊥,故1PG AB k k ⋅=-,所以222211421k k k m k +⨯=--+,解得2221k m k -=+,故22(0)2+1kP k -,.因为2APB π∠=,所以0PA PB ⋅=. 所以1122(,)(,)0x m y x m y -⋅-=,即1112()()0x m x m y y --+=.整理得 221212(1)(2)()40k x x k m x x m ++-+++=.所以222248(1)(2)402121k k k m m k k +⋅--⋅++=++, 代入2221km k -=+,整理得41k =,即21k =. 当1k =-时,P 点坐标为2(,0)3;当1k =时,P 点坐标为2(,0)3-. 此时,PAB △是以P 为直角顶点的等腰直角三角形. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.17.已知椭圆()2222:10x y C a b a b +=>>过点⎛ ⎝⎭,且C的离心率为2. (1)求椭圆C 的方程;(2)过点()1,0P 的直线l 交椭圆C 于A 、B 两点,求PA PB ⋅的取值范围. 【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)2214x y +=;(2)3,34⎡⎤⎢⎥⎣⎦. 【解析】(1)由题意得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214xy +=;(2)分以下两种情况讨论:①若直线l 与x 轴重合,则()()21113PA PB a a a ⋅=-⋅+=-=;②若直线l 不与x 轴重合,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,联立22114x my x y =+⎧⎪⎨+=⎪⎩,消去x 可得()224230m y my ++-=,则()()22241241630m m m ∆=++=+>恒成立, 由根与系数关系可得12224m y y m +=-+,12234y y m =-+, 由弦长公式可得()()22121223114m PA PB y y m y y m +⋅==+⋅=+()2223499344m m m +-==-++,244m +≥,则299044m <≤+,所以,2393344m ≤-<+. 综上所述,PA PB ⋅的取值范围是3,34⎡⎤⎢⎥⎣⎦.18.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)因为AB 4=,椭圆C 离心率为12, 所以2222412a c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(2)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为()1,0,所以直线l 的方程是1x =.所以点M 的坐标是31,2⎛⎫⎪⎝⎭,点N 的坐标是31,2⎛⎫- ⎪⎝⎭.所以直线AM 的方程是()122y x =+,直线BN 的方程是()322y x =-.所以直线AM ,BN 的交点Q 的坐标是()4,3.所以点Q 在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k .所以直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y ,整理得()2223484120kx kx k +-+-=.显然0∆>.不妨设()11,M x y ,()22,N x y ,所以2122834k x x k +=+,212241234k x x k -⋅=+. 所以直线AM 的方程是()1122y y x x =++.令4x =,得1162=+yy x .直线BN 的方程是()2222y y x x =--.令4x =,得2222y y x =-.所以()()121212126121622222k x k x y y x x x x ---=-+-+- ()()()()()()12121261222122k x x k x x x x ---+-=+-分子()()()()1212612221k x x k x x =---+-()()12211212232222k x x x x x x x x =--+--+-⎡⎤⎣⎦()12122258k x x x x =-++⎡⎤⎣⎦()2222241258283434k k k k k ⎡⎤-⨯⎢⎥=-+++⎢⎥⎣⎦22228244024322034k k k k k ⎛⎫--++== ⎪+⎝⎭. 所以点Q 在直线4x =上.【名师点睛】本题第二问解题的关键在于分类讨论直线斜率不存在和存在两种情况,当直线斜率存在时,设()11,M x y ,()22,N x y ,写出直线AM 的方程是()1122y y x x =++和直线BN 的方程是()2222y y x x =--,进而计算得4x =时的纵坐标相等即可.考查运算求解能力,是中档题.19.椭圆C :22221x y a b +=(0)a b >>的左、右焦点分别为F 1、2F ,过1F 向圆2F :22(2)1x y -+=引切线F 1T (T 为切点),切线F 1T23, (1)求椭圆C 的方程;(2)设(,)M x y 为圆2F 上的动点,O 为坐标原点,过F 2作OM 的平行线,交椭圆C 于G ,H 两点,求MGH 的面积的最大值.【试题来源】江西省新余市2021届高三上学期期末统考(理)【答案】(1)22195x y +=;(2)52. 【解析】(1)连接2F T ,则F 1T ⊥2F T,由题意得12||4F F =,所以c =2. 因为23c e a ==,则a =3,b ==C 的方程为22195x y+=;(2)设1122(,),,()G x y H x y ,直线GH 的方程为x =my +2,由222,1,95x my x y =+⎧⎪⎨+=⎪⎩可得22(902)5250m y my ++-=,222(20)4(59)(25)900(1)0m m m ∆=-+-=+>则1222059m y y m +=-+,1222559y y m =-+.所以12||y y -===所以12||GH y y ===-2223030(1)5959m m m +==++. 因为//GH OM ,所以点M 到直线GH 的距离等于原点O 到直线GH的距离,距离为△MGH的面积为22130(1)259m S m +==+ 因为//GH OM ,所以直线OM :x my =,即0x my -=, 因为点(,)M x y 为圆2F 上的动点,所以点2F 到直线OM的距离1d =≤,解得23m ≥t =,则221(2)m t t =-≥,所以2230303045(1)9545t t S t t t t===-+++,因为4()5f t t t=+在[2,)+∞上单调递增,所以当t =2时,()f t 取得最小值,其值为12,所以△MGH 的面积的最大值为52.20.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =直线10x +-=被以椭圆C(1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.【试题来源】吉林省长春外国语学校2021届高三上学期期末考试(文)【答案】(1)2214x y +=;(2)2]3.【解析】(1)因为原点到直线10x -=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =.又22222314c b e a a ==-=,得2a = 所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=, 所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >, 所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y +==+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<.综上可得2133λ<≤,即2(]133. 【名师点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.如图,点()0,1P -是椭圆1C :22221x y a b+=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交椭圆1C 于另一点D ,2l 交圆2C 于A ,B 两点.(1)求椭圆1C 的方程;(2)当ABD △的面积取得最大值时,求直线1l 的方程.【试题来源】上学期江西省新余市2021届高三上学期期末质量检测(文)【答案】(1)2214x y +=;(2)1012y x =±- 【解析】(1)由题意可得1b =,24a =,即2a =.∴椭圆1C 的方程为2214xy +=;(2)设1(A x ,1)y ,2(B x ,2)y ,0(D x ,0)y .由题意可知直线1l 的斜率存在,设为k ,则直线1l 的方程为1y kx =-.又圆222:4C x y +=的圆心(0,0)O 到直线1l 的距离21d k =+.22243||2421k AB d k +∴=-+21l l ⊥,故直线2l 的方程为0x ky k ++=, 联立22044x ky k x y ++=⎧⎨+=⎩,消去y 得到22(4)80k x kx ++=,解得0284k x k =-+, 281||k PD +∴=.∴三角形ABD 的面积21843||||2ABDk S AB PD +==令244k t +=>,则24k t =-,224(4)34131244()13()131313t t f t t t -+-===--+,16S ∴=,当且仅132t =,即252k=,当k = 故所求直线1l 的方程为12y x =±-. 22.已知椭圆2222:1(0)x y C a b a b+=>>离心率为23,点A ,B ,D ,E 分别是C 的左,右,上,下顶点,且四边形ADBE 的面积为 (1)求椭圆C 的标准方程;(2)已知F 是C 的右焦点,过F 的直线交椭圆C 于P ,Q 两点,记直线AP ,BQ 的交点为T ,求证:点T 横坐标为定值.【试题来源】陕西省西安市2020-2021学年高三上学期第一次质量检测(文)【答案】(1)22195x y +=;(2)T 横坐标为定值92,证明见解析. 【解析】(1)设椭圆C 的半焦距长为c,根据题意222231222c a a b c a b⎧=⎪⎪⎪⋅⋅=⎨⎪=-⎪⎪⎩32a b c =⎧⎪=⎨⎪=⎩故C 的标准方程为22195x y +=.(2)由(1)知()30A -,,()3,0B ,()2,0F ,设00,,()T x y ,11(,)P x y ,()22,Q x y , 由010133TA PA y y k k x x =⇒=++'①,020233TB QB y y k k x x =⇒=--,② ①②两式相除得0120123333x y x x x y --=⋅++,又2211195x y +=,故2211195x y -=-, 所以2111(3)(3)95x x y -+=-,故11113539y x x y -=-⋅+. 所以0120123333x y x x x y --=⋅=++1212(3)(3)59x x y y ---③由题意知直线PQ 不平行于x 轴,由于直线PQ 经过F 点,所以设直线PQ 的方程为2x my =+,代入22195x y +=,得22(902)5250m y my ++-=, 把12212220592559m y y m y y m ⎧+=⎪⎪+⎨⎪=⎪+⎩代入③,所以0120123(3)(3)539x x x x y y ---=-⋅+1212(1)(1)59my my y y --=-⋅2121212()159m y y m y y y y -++=-⋅,所以0033x x -+22222520()()15595925959mm m m m m ---+++=-⋅-+15=,解得092x =. 所以点T 横坐标为定值92. 【名师点睛】解题的关键是根据A 、P 、T 和B 、Q 、T 共线得到TA PA k k =,TB QB k k =,化简整理,结合根与系数关系求解,直线PQ 的方程为2x my =+,可避免讨论直线PQ 的斜率是否存在,简化计算,提高正确率,考查分析理解,计算化简的能力,属中档题.23.已知椭圆2222:1(0)x y C a b a b+=>>倍,且过点.(1)求椭圆C 的标准方程;(2)点P 是圆心在原点OO 上的一个动点,过点P 作椭圆的两条切线,且分别交其圆O 于点E 、F ,求动弦EF 长的取值范围.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)22184x y +=;(2). 【解析】(1)由22a c =得a =,把点代入椭圆方程得22421a b +=, 又222a b c =+,所以228,4a b ==,椭圆的标准方程为22184x y +=.(2)设过点P 作椭圆的两条切线分别为12,l l .①当12,l l 中有一条斜率不存在时,不妨设1l 斜率不存在,因为1l与椭圆只有一个公共点,则其方程为x =x =-, 当1l方程为x =1l 与圆O交于点和2)-,此时经过点,2)-且与椭圆只有一个公共点的直线是2y =或2y =-, 即2l 为2y =或122,y l l =-⊥,由题目知,圆O 的方程为2212x y +=, 所以线段EF 应为圆O的直径,所以||EF =.②当12,l l 斜率都存在时,设点()00,P x y ,其中220012x y +=,且22008,4x y ≠≠,设经过点()00,P x y 与椭圆只有一个公共点的直线为()00y t x x y =-+,则()0022184y t x x y x y ⎧=-+⎪⎨+=⎪⎩,消去y 得到()()()2220000124280t x t y tx x y tx ++-+--=, 所以()2220000648163280x t x y t y ∆=-++-=,()2200122200328123281648648x y t t x x ---===---, 所以121t t =-,满足条件的两直线12,l l 垂直. 所以线段EF 应为圆O的直径,所以||EF =,综合①②知因为12,l l 经过点()00,P x y ,又分别交圆于点E ,F ,且12,l l 垂直,所以线段EF 为圆220012x y +=的直径,所以||EF =为定值.故EF的取值范围.24.椭圆()2222:10x y C a b a b+=>>的右焦点为F ,离心率为12,过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =. (1)求C 的方程;(2)若直线:4m x =与x 轴交于M 点,AD ⊥直线m ,垂足为D (不与M 重合),求证:直线BD 平分线段FM .【试题来源】贵州省贵阳市普通中学2021届高三上学期期末监测考试(文)【答案】(1)22143x y +=;(2)证明见详解. 【解析】(1)记椭圆()2222:10x y C a b a b+=>>的右焦点为(),0F c ,因为椭圆的离心率为12,即12caa ==,所以2234b a =;又过F 的直线l 与椭圆交于A ,B 两点,当AB x ⊥轴时,3AB =,将x c =代入22221x y a b +=可得2422221c b y b a a ⎛⎫=-= ⎪⎝⎭,则2b y a =±,所以223b a =,由2223423b a b a==解得2243a b ⎧=⎨=⎩,即椭圆C 的方程为22143x y +=;(2)因为直线:4m x =与x 轴交于M 点,则()4,0M ;又AD ⊥直线m ,垂足为D (不与M 重合),所以直线AB 斜率不为0, 不妨设直线AB 的方程为1x my =+,设()11,A x y ,()22,B x y ,由221143x my x y =+⎧⎪⎨+=⎪⎩消去x 可得()22314120my y ++-=,整理得()2234690m y my ++-=,则122122634934m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩,2334234m y m m -±==++, 不妨令1y=,2y =, 因为AD ⊥直线m ,垂足为D ,所以()14,D y , 因此直线BD 的方程为()211244y y y x y x -=-+-, 令0y =,则()()1212121212121433444y x y my my y y x y y y y y y ---=-=-=----293544422m-===-=;即直线BD与x轴的交点为5,02⎛⎫⎪⎝⎭,因为()1,0F,()4,0M,所以5,02⎛⎫⎪⎝⎭是FM中点,即直线BD平分线段FM.【名师点睛】求解本题第二问的关键在于求出直线BD与x轴交点的横坐标;解题时,需要先设AB的方程,联立直线与椭圆方程,结合根与系数关系,以及题中条件,表示出直线BD 的方程,即可求出与x轴交点的横坐标.25.椭圆()2222:10x yC a ba b+=>>过点()2,3M,其上、下顶点分别为点A,B,且直线AM,MB的斜率之积为34AM BMk k⋅=-.(1)求椭圆C的方程;(2)过椭圆C的左顶点(),0Q a-作两条直线,分别交椭圆C于另一点S,T.若2QS QTk k+=,求证:直线ST过定点.【试题来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考(理)【答案】(1)2211612x y+=;(2)证明见解析.【解析】(1)因为()0,A b,()0,B b-,所以333224MA MBb bk k-+⋅=⋅=-,解得212b=,将212b=,()2,3M都代入椭圆方程,得216a=,所以椭圆方程为2211612x y+=;(2)证明:设()11,S x y,()22,T x y,直线ST的方程为y kx t=+.将y kx t=+代入椭圆方程,整理得()2223484480k x ktx t+++-=,122843ktx xk+=-+,212244843tx xk-=+,由1212244y yx x+=++,得1212244kx t kx tx x+++=++.。
高考数学专题《椭圆》习题含答案解析
专题9.3 椭圆1.(浙江高考真题)椭圆的离心率是( ) A B C .D .【答案】B 【解析】,选B . 2.(2019·北京高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B 【解析】 椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.(上海高考真题)设p 是椭圆2212516x y+=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A.4B.5C.8D.10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .4.(2020·四川资阳�高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点(1,)2,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=22194x y +=235933e ==练基础【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A5.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) AB .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A,则4y x =由2AB c =,可知OA c ==c =,解得3x =,所以1,33A c c ⎛⎫⎪ ⎪⎝⎭把点A代入椭圆方程得到2222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=, 因01e <<,所以可得e =故选A 项.6.(2021·全国高三专题练习)已知1F ,2F 分别是椭圆2211615y x+=的上、下焦点,在椭圆上是否存在点P ,使11PF ,121F F ,21PF 成等差数列?若存在求出1PF 和2PF 的值;若不存在,请说明理由.【答案】不存在;理由见解析. 【分析】假设存在点P 满足题设,解方程组1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩得1PF 和2PF 的值,再检验即得解.【详解】解:假设存在点P 满足题设,则由2211615y x +=及题设条件有1212121282112PF PF F F PF PF F F ⎧⎪+=⎪⎪=⎨⎪⎪+=⎪⎩,即121288PF PF PF PF ⎧+=⎪⎨=⎪⎩,解得1244PF PF ⎧=+⎪⎨=-⎪⎩1244PF PF ⎧=-⎪⎨=+⎪⎩由2211615y x +=,得4a =,1c =. 则135a c PF a c -=≤≤+=,235a c PF a c -=≤≤+=.∵45+,43-, ∴不存在满足题设要求的点P .7.(2021·全国高三专题练习)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点i P (1i =,2,…),使1FP ,2FP ,3FP ,…组成公差为d 的等差数列,求a 的取值范围.【答案】11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【分析】分情况讨论等差数列是递增,还是递减,分别列出不等式求解范围. 【详解】解:注意到椭圆的对称性及i FP 最多只能两两相等,可知题中的等差数列可能是递增的,也可能是递减的,但不可能为常数列,即0d ≠.先考虑一般情形,由等差数列的通项公式有()11n FP FP n d =+-,(n *∈N ),因此11n FP FP n d-=+.对于椭圆2222x y a b +(0a b >>),其焦半径的最大值是a c +,最小值是a c -(其中c =.当等差数列递增时,有n FP a c ≤+,1FP a c ≥-. 从而()12n FP FP a c a c c -≤+--=. 再由题设知1c =,且21n ≥,故2211d ≤+,因此1010d <≤. 同理,当等差数列递减时,可解得1010d -≤<, 故所求d 的取值范围为11,00,1010⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦.8.(2021·全国高三专题练习)已知定点()2,2A -,点2F 为椭圆2212516x y +=的右焦点,点M 在椭圆上移动时,求2AM MF +的最大值;【答案】10+ 【分析】由椭圆定义,转化1121010A MF M MF AM AF ≤+=-++,即得解 【详解】如图所示,设1F 是左焦点,则()13,0F -,1121010A MF M MF AM AF ≤+=-++,而1AF ==∴10AM MF +≤当点F 1在线段AM 上时,等号成立,即AM MF +的最大值为109.(2021·云南师大附中高三月考(理))椭圆C : 22221(0)x y a b a b +=>>点A (2,1)在椭圆C 上,O 是坐标原点. (1)求椭圆C 的方程;(2)直线l 过原点,且l ⊥OA ,若l 与椭圆C 交于B , D 两点,求弦BD 的长度.【答案】(1)22182x y C +=:;(2 【分析】(1)利用离心率和点在椭圆上可求出椭圆的标准方程;(2)先利用直线垂直的判定得到直线l 的斜率和方程,联立直线和椭圆的方程,消元得到关于x 的一元二次方程,进而求出交点坐标,再利用两点间的距离公式进行求解. 【详解】(1)由e =得:12c b a =,, 又点(21)A ,在椭圆上, 所以224114a a +=,得a =b =所以椭圆的方程是22182x y C +=:.(2)直线OA 的方程是12y x =, 因为l OA ⊥,且l 过点O ,所以直线l 的方程是2y x =-, 与椭圆联立,得:2178x =,即x =所以B D ⎛ ⎝,,则||BD = 10.(2021·南昌大学附属中学高二月考)已知()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,且2259a b =.(1)求此椭圆的方程;(2)设点P 在椭圆上,且123F PF π∠=,求12F PF △的面积.【答案】(1)此椭圆的方程为22195x y +=;(2)12F PF △. 【分析】(1)由已知条件求出椭圆中229,5a b ==即可得到椭圆方程;(2)结合椭圆的定义以及余弦定理的知识求出12PF PF ⋅的值,运用三角形面积公式即可求解. 【详解】(1)因为()()122,0,2,0F F -是椭圆()222210x y a b a b +=>>两个焦点,所以2224c a b =-=,① 又因为2259a b =,②所以由①②可得229,5a b ==,所以此椭圆的方程为22195x y +=.(2)设()12,,,0PF m PF n m n ==>, 由椭圆定义可知26m n a +==,③在12F PF △中,由余弦定理得()2222cos23m n mn c π+-=,即2216m n mn +-=,④由③④式可得,203mn =,所以121120sin 2323F PF S mn π==⨯=△. 即12F PF △.1.(2021·全国高二课时练习)已知椭圆()22122:10x y C a b a b +=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得过点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1,12⎡⎫⎪⎢⎣⎭B .⎣⎦C .2⎫⎪⎢⎪⎣⎭ D .⎫⎪⎣⎭【答案】C 【分析】练提升若长轴端点P ',由椭圆性质:过P 的两条切线互相垂直可得45AP O α'=∠≤︒,结合sin baα=求椭圆离心率的范围. 【详解】在椭圆1C 的长轴端点P '处向圆2C 引两条切线P A ',P B ',若椭圆1C 上存在点P ,使过P 的两条切线互相垂直,则只需90AP B '∠≤︒,即45AP O α'=∠≤︒,∴sin sin 452b a α=≤︒=222a c ≤, ∴212e ≥,又01e <<,1e ≤<,即e ⎫∈⎪⎪⎣⎭. 故选:C2.(2020·湖北黄州�黄冈中学高三其他(文))已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,经过原点的直线与C 交于A ,B 两点,总有120AFB ∠≥︒,则椭圆C 离心率的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】如图,设椭圆右焦点为2F ,由对称性知2AFBF 是平行四边形,22AF F BFF ∠=∠, ∵120FB ∠≥︒,∴260FAF ∠≤︒,设AF m =,2AF n =,由椭圆定义知2m n a +=,则22()4m n mn a +≤=,当且仅当m n =时等号成立, 在2AFF 中,由余弦定理得2222222222222()244444cos 11122222m n FF m n mn c a c a c FAF e mnmn mn a+-+----∠===-≥-=-,又260FAF ∠≤︒,21cos 2FAF ∠≥,∴21122e -≥,解得102e <≤. 故答案为:10,2⎛⎤ ⎥⎝⎦.3.(2019·浙江高三月考)已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2F 关于直线y x =对称的点Q 在椭圆上,则椭圆的离心率为______;若过1F 且斜率为(0)k k >的直线与椭圆相交于AB 两点,且113AF F B =,则k =___.【答案】21 【解析】由于点2F 关于直线y x =对称的点Q 在椭圆上,由于y x =的倾斜角为π4,画出图像如下图所示,由于O 是坐标原点,根据对称性和中位线的知识可知12QF F ∆为等腰直角三角形,且Q 为短轴的端点,故离心率πcos 42c a ==.不妨设,a b c t ===,则椭圆方程化为222220x y t +-=,设直线AB 的方程为10x my t m k ⎛⎫=-=> ⎪⎝⎭,代入椭圆方程并化简得()222220my mty t +--=.设()()1122,,,A x y B x y ,则12222mty y m +=+①,21222t y y m -⋅=+②.由于113AF F B =,故123y y =-③.解由①②③组成的方程组得1m =,即11,1k k==.故填:(1)2;(2)1.4.(2019·浙江温州中学高三月考)已知点P 在圆22680x y y +-+=上,点Q 在椭圆()22211x y a a+=>上,且PQ 的最大值等于5,则椭圆的离心率的最大值等于__________,当椭圆的离心率取到最大值时,记椭圆的右焦点为F ,则PQ QF +的最大值等于__________.5+【解析】22680x y y +-+=化简为22(3)1x y +-=,圆心(0,3)A .PQ 的最大值为5等价于AQ 的最大值为4设(,)Q x y ,即22(3)16x y +-≤,又()22211xy a a+=>化简得到222(1)670(11)a y y a y --+-≤-≤≤ 当1y =-时,验证等号成立 对称轴为231x a =-满足231,21x a a =≤-≤-故12a <≤22222211314c a e e a a a -===-≤∴≤故离心率最大值为2当2a =时,离心率有最大值,此时椭圆方程为2214x y +=,设左焦点为1F11141455PQ QF PQ QF AQ QF AF +=+-≤++-≤+=+当1,,,A F P Q 共线时取等号.5+5.(2020·浙江高三月考)已知P 是椭圆2222111x y a b +=(110>>a b )和双曲线2222221x y a b -=(220,0a b >>)的一个交点,12,F F 是椭圆和双曲线的公共焦点,12,e e 分别为椭圆和双曲线的离心率,若123F PF π∠=,则12e e ⋅的最小值为________.【答案】2. 【解析】根据椭圆与双曲线的对称性,不妨设点P 在第一象限,那么12PF PF >, 因为椭圆与双曲线有公共焦点,设椭圆与双曲线的半焦距为c , 根据椭圆与双曲线的定义,有:1212+=PF PF a ,1222-=PF PF a , 解得112=+PF a a ,212=-PF a a , 在12F PF ∆中,由余弦定理,可得: 2221212122cos3π=+-F F PF PF PF PF ,即222121212124()()()()=++--+-c a a a a a a a a , 整理得2221243=+c a a , 所以22121134+=e e ,又221212113+≥e e ,所以12≥e e .6.(2020·浙江高三其他)已知当动点P 到定点F (焦点)和到定直线0x x =的距离之比为离心率时,该直线便是椭圆的准线.过椭圆2214x y +=上任意一点P ,做椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是___.【答案】⎫⎪⎪⎣⎭【解析】由题可知:椭圆2214x y +=的右准线方程为x =设()()00,,,P x y Q x y ,所以点03⎫⎪⎝⎭H y由λ=HQ PH ,所以λ=HQ PH0⎛⎫=- ⎪⎝⎭HQ x y y ,0,0⎫=⎪⎭PH x又λ=HQ PH ,所以00,0λ⎛⎫⎫-=- ⎪⎪⎝⎭⎭x y y x 所以00x y y ==由220014x y +=221=y 则点Q 221+=y 设点Q 的轨迹的离心率e则2222411144λλλ-==-e 由1λ≥,所以213144λ-≥ 所以234e ≥,则e ≥,又1e < 所以⎫∈⎪⎪⎣⎭e 故答案为:⎫⎪⎪⎣⎭7.(2021·全国高三专题练习)设椭圆的中心在坐标原点.长轴在z 轴上,离心率e =知点30,2P ⎛⎫⎪⎝⎭,求椭圆方程,并求椭圆上到点O 的距离的点的坐标.【答案】2214x y +=;12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.【分析】设以P 点为圆心的圆与椭圆相切,结合判别式等于零,参数值可确定,符合条件的两个点的坐标也可求得. 【详解】∵e =c a =2234c a =.∵222a c b -=,∴2214a b =,224a b =,∴设椭圆方程为222214x y b b+=①又∵30,2P ⎛⎫⎪⎝⎭,则可构造圆22372x y ⎛⎫+-= ⎪⎝⎭. ②此圆必与椭圆相切,如图所示,由①②整理得221933404y y b ++-=.∵椭圆与圆相切,∴219912404b ⎛⎫∆=--= ⎪⎝⎭,③ ∴1b =,则2a =.则所求椭圆方程为2214x y +=. ④把1b =代入方程③可得12y =-,把12y =-代入④得x =∴椭圆上到点P的点的坐标为12⎫-⎪⎭,12⎛⎫- ⎪⎝⎭.8.(2021·全国高三专题练习)椭圆22194x y +=的焦点为1F 、2F ,点P 为其上动点,当12F PF ∠为钝角时,求点P 横坐标的取值范围.【答案】⎛ ⎝⎭【分析】当12F PF ∠为直角时,作以原点为圆心,2OF 为半径的圆,若该圆与已知椭圆相交,则圆内的椭圆弧所对应的x 的取值范围即为所求点P 横坐标的取值范围. 【详解】22194x y +=的焦点为1(F、2F , 如图所示:A 、B 、C 、D 四点, 此时12F AF ∠、12F BF ∠、12F CF ∠、12F DF ∠都为直角, 所以当角的顶点P 在圆内部的椭圆弧上时,12F PF ∠为钝角,由22221945x y x y ⎧+=⎪⎨⎪+=⎩,解得x x ==. 因为椭圆和圆都关于坐标轴对称,所以点P横坐标的取值范围是⎛ ⎝⎭.9.(2021·全国)(1)已知1F ,2F 是椭圆22110064x y +=的两个焦点,P 是椭圆上一点,求12PF PF ⋅的最大值;(2)已知()1,1A ,1F 是椭圆225945x y +=的左焦点,点P 是椭圆上的动点,求1PA PF +的最大值和最小值.【答案】(1)100;(2)1||||PA PF +的最大值为66 【分析】(1)利用椭圆定义和基本不等式求12||||PF PF ⋅的最值;(2)求1||||PA PF +的最值时,利用椭圆的定义将其转化为求2||||PF PA -的最值,显然当P ,A ,2F 三点共线时取得最值. 【详解】(1)∵10a =,1220||||PF PF =+≥,当且仅当12||||PF PF =时取等号, ∴12||||100PF PF ⋅≤,当且仅当12||||PF PF =时取等号, ∴12||||PF PF ⋅的最大值为100.(2)设2F 为椭圆的右焦点,225945x y +=可化为22195x y+=, 由已知,得12||||26PF PF a +==,∴12||6||PF PF =-, ∴()12||||6||||PA PF PF PA +=--.①当2||||PA PF >时,有220||||||PA PF AF <-≤,等号成立时,1||||PA PF +最大,此时点P 是射线2AF 与椭圆的交点,1||||PA PF +的最大值是6②当2||||PA PF <时,有220||||||PF PA AF <-≤,等号成立时,1||||PA PF +最小,此时点P 是射线2F A 与椭圆的交点,1||||PA PF +的最小值是6 综上,可知1||||PA PF +的最大值为6610.(2021·贵州高三月考(文))已知椭圆C :22221(0)x y a b a b +=>>,直线l经过椭圆C 的右焦点F 与上顶点,原点O 到直线l. (1)求椭圆C 的方程;(2)斜率不为0的直线n 过点F ,与椭圆C 交于M ,N 两点,若椭圆C 上一点P 满足263MN OP =,求直线n 的斜率. 【答案】(1)2212x y +=;(2)±1.【分析】(1)由已知条件可得c a bc a⎧=⎪⎪⎨⎪=⎪⎩再结合222a b c =+,可求出,a b ,从而可求得椭圆方程,(2)设直线n 的方程为1x my =+,设点()()1122,,,M x y N x y ,将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,结合263MN OP =表示出点P 的坐标,再将其坐标代入椭圆方程中可求得直线n 的斜率 【详解】(1)由题意可得椭圆C 的右焦点(c,0)F 与上顶点(0,)b , 所以直线l 为1x yc b+=,即0bx cy bc +-=,因为椭圆C ,原点O 到直线0bx cy bc +-=所以c a bc a⎧=⎪⎪⎨⎪=⎪⎩且222a b c =+,解得1b c==,a =所以椭圆C 的方程为2212x y +=.(2)因为直线n 的斜率不为0,所以可设直线n 的方程为1x my =+.设点()()1122,,,M x y N x y ,联立方程22220,1,x y x my ⎧+-=⎨=+⎩得()222210my my ++-=,则12122221,22m y y y y m m +=-=-++. 因为263MN OP=,所以))2121P x x y y ⎫--⎪⎪⎝⎭, 将点P 的坐标代入椭圆方程得1212223x x y y +=-, 即()()121221123my my y y +++=-,解得21m =, 故直线n 的斜率为±1.1.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )练真题A.⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C.⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C 【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .2.(2018·全国高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14【答案】D 【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 3.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 4.(2019·全国高考真题(文))设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M 的坐标为(.5.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>. (1)证明:3ab ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y -=;②2213x y +=.【分析】(1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a ===b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y b b+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C的内部时,22293310b ⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b > 设点()11,P x y 、()22,Q x y,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x x y y y y +-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l方程为910y x ⎛⎫-=- ⎪ ⎭⎝⎭,即y = 所以,直线l0y --=;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->, 由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++ ()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==,因此,椭圆C 的方程为2213x y +=.6. (2020·天津高考真题)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-.。
【文.2010-2018.高考真题分类】九 解析几何第二十五讲 椭圆【有答案】
7.(2016 年全国 I 卷)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其
精品文档
1
短轴长的 1 ,则该椭圆的离心率为 4
A. 1 3
B. 1 2
C. 2 3
D. 3 4
8.(2016
年全国
III
卷)已知
O
为坐标原点,F
是椭圆
C:
x2 a2
+
y2 b2
= 1(a
> b > 0) 的左焦
∠PF2 F1 = 60° ,则 C 的离心率为
A.1 − 3 2
B. 2 − 3
C. 3 −1 2
D. 3 − 1
3.(2018 上海)设 P 是椭圆 x2 + y2 = 1上的动点,则 P 到该椭圆的两个焦点的距离之和为 53
A. 2 2
B. 2 3
C. 2 5
D. 4 2
4.(2017 浙江)椭圆 x2 + y2 = 1的离心率是 94
A、 1 2
B、 2 3
C、 3 4
D、 4 5
二、填空题
16.(2018
浙江)已知点
P(0,1)
,椭圆
x2
+
y2
=
m(
m
> 1)上两点
A
,
B
满足
uuur AP
=
uuur 2PB
,
4
则当 m =___时,点 B 横坐标的绝对值最大.
17.(2015 浙江)椭圆
x2 a2
+
y2 b2
= 1( a
>b
>
x2 a2
高三数学椭圆试题答案及解析
高三数学椭圆试题答案及解析1.椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(1)求椭圆C的方程;(2)当的面积为时,求直线的方程.【答案】(1);(2)直线方程为:或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于椭圆过点A,将A点坐标代入得到a和b的关系式,再利用椭圆的离心率得到a与c的关系式,从而求出a和b,得到椭圆的标准方程;第二问,过的直线有特殊情况,即当直线的倾斜角为时,先讨论,再讨论斜率不不为的情况,将直线方程与椭圆方程联立,利用韦达定理得到和,代入到三角形面积公式中,解出k的值,从而得到直线方程.试题解析:(1)因为椭圆过点,所以①,又因为离心率为,所以,所以②,解①②得.所以椭圆的方程为:(4分)(2)①当直线的倾斜角为时,,,不适合题意。
(6分)②当直线的倾斜角不为时,设直线方程,代入得:(7分)设,则,,,所以直线方程为:或(12分)【考点】椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式.2.如图,椭圆的左焦点为,过点的直线交椭圆于两点.的最大值是,的最小值是,满足.(1) 求该椭圆的离心率;(2) 设线段的中点为,的垂直平分线与轴和轴分别交于两点,是坐标原点.记的面积为,的面积为,求的取值范围.【答案】(1);(2).【解析】本题主要考查椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,设出F点坐标,数形结合,根据椭圆的性质,得到代入已知中,得到,计算出椭圆的离心率;第二问,根据题意,设出椭圆方程和直线方程,两方程联立,消参,利用韦达定理,得到和,利用三角形相似得到所求的比例值,最后求范围.试题解析:(1) 设,则根据椭圆性质得而,所以有,即,,因此椭圆的离心率为. (4分)(2) 由(1)可知,,椭圆的方程为.根据条件直线的斜率一定存在且不为零,设直线的方程为,并设则由消去并整理得从而有,(6分)所以.因为,所以,.由与相似,所以. (10分)令,则,从而,即的取值范围是. (12分)【考点】椭圆的标准方程、椭圆的离心率、椭圆与直线相交问题.3.椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.【答案】(1);(2)证明详见解析,.【解析】本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P 的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到和,由于AB为直径的圆过椭圆右顶点A2(2,0) ,所以,利用向量的数量积的运算公式,将前面的式子都代入,得到或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.试题解析:(1)由题:①左焦点 (-c,0) 到点 P(2,1) 的距离为:② 2分由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3. 3分∴所求椭圆 C 的方程为. 4分(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.∴,, 6分且y1 = kx1+ m,y2= kx2+ m.∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以. 7分所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2= (x1-2) (x2-2) + (kx1+ m) (kx2+ m)= (k 2 + 1) x1x2+ (km-2) (x1+ x2) + m 2 + 4= (k 2 + 1)·-(km-2)·+ m 2 + 4 =" 0" . 10分整理得 7m 2 + 16km + 4k 2 = 0.∴或 m = -2k 都满足△ > 0. 12分若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分若时,直线 l 为,恒过定点. 14分【考点】椭圆的标准方程及其几何性质、直线与椭圆相交问题.4.已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.(1)求动点C的轨迹E的方程;(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.【答案】(1)+=1(x≠±4)(2)16【解析】(1)由题意知|CA|+|CB|=12-4=8>|AB|,所以C的轨迹E为椭圆的一部分.由a=4,c=2,可得b2=12.故曲线E的方程为+=1(x≠±4).(2)设两直线的方程为y=kx与y=-kx(k>0).记y=kx与曲线E在第一象限内的交点为(x0,y),由,可得x2=.结合图形的对称性可知:四交点对应的四边形为矩形,且其面积S=2x0·2y=4kx2=.因为k>0,所以S=≤=16 (当且仅当k=时取等号).故四边形面积的最大值为16.5.椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.(1)求椭圆C的标准方程;(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.【答案】(1)+y2=1 (2)见解析【解析】(1)设椭圆的标准方程为+=1(a>b>0),因为|F1F2|=2,所以c=,由S△PF1F2=1,得|PF1||PF2|=2,又由PF1⊥PF2,得|PF1|2+|PF2|2=|F1F2|2=12,即(|PF1|+|PF2|)2-2|PF1||PF2|=12,即4a2-4=12,a2=4,b2=a2-3=1,所以椭圆C的标准方程为+y2=1.(2)由方程组,得(1+4k2)x2+8kmx+4m2-4=0,Δ=(8km)2-4(1+4k2)(4m2-4)>0,整理得4k2-m2+1>0.设M(x1,y1),N(x2,y2),则x1+x2=-,x1x2=.由AM⊥AN且椭圆的右顶点为A(2,0),得(x1-2)(x2-2)+y1y2=0,因为y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2,所以(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0,即(1+k2)·+(km-2)·+m2+4=0,整理得:5m2+16mk+12k2=0,解得m=-2k或m=-,均满足4k2-m2+1>0.当m=-2k时,直线的l方程为y=kx-2k,过定点(2,0),与题意矛盾,舍去;当m=-时,直线l的方程为y=k(x-),过定点(,0),符合题意.故直线l过定点,且定点的坐标为(,0).6.已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.(1)求出轨迹C的方程,并讨论曲线C的形状;(2)当m=时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.【答案】(1)当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为;(2)定点,定值为6.【解析】(1)利用线段的垂直平分线交直线于点,当时,根据椭圆的定义,即可求出轨迹的方程;当时,根据双曲线的定义,即可求出轨迹的方程;(2)当时,轨迹必为椭圆方程,设,分别过E取两垂直与坐标轴的两条弦CD,,根据求出E若存在必为定值为6.再进行证明.存在性问题,先猜后证是关键.再设设过点E的直线方程,代入椭圆方程,消去,设,,利用一元二次方程的根与系数的关系,求得为定值6.(1)由题意,,所以,所以轨迹是以、为焦点,以为长轴的椭圆,当m>2,,轨迹是以、为焦点的椭圆,其方程为;当m<2,轨迹是以、为焦点的双曲线,其方程为(4分)(2)由(1)当时,曲线C为,设,分别过E取两垂直于坐标轴的两条弦CD,,则,即解得,∴E若存在必为定值为6.(6分)下证满足题意.设过点E的直线方程为,代入C中得:,设、,则,,(8分).同理可得E也满足题意.综上得定点为E,定值为(13分)【考点】直线和圆的方程的应用,圆锥曲线的定义、性质与方程,轨迹方程的问题.7.已知椭圆的焦点为,点是椭圆上的一点,与轴的交点恰为的中点, .(1)求椭圆的方程;(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.【答案】(1)(2)【解析】(1)根据已知分析可得点横坐标为1,纵坐标为,,即点。
椭圆高考真题含详解
2012年椭圆高考真题1.【2012高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( ) 【解析】∵△21F PF 是底角为030的等腰三角形,∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322c a =,∴e =34,故选C.2.【2012高考全国文5】椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y +=(B )221128x y +=(C )22184x y +=(D )221124x y += 【解析】因为242c c =⇔=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县22448a a c c=⇔==,所以222844b a c =-=-=。
故选答案C 3.【2012高考浙江文8】 如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点。
若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C. 3D. 2【解析】设椭圆的长轴为2a ,双曲线的长轴为2a ',由M ,O ,N 将椭圆长轴四等分,则222a a '=⨯,即2a a '=,又因为双曲线与椭圆有公共焦点,设焦距均为c ,则双曲线的离心率为c e a '=',c e a =,2e a e a '=='. 4.【2012高考上海文16】对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件【解析】方程122=+ny mx 的曲线表示椭圆,常数常数n m ,的取值为0,0,,m n m n >⎧⎪>⎨⎪≠⎩所以,由0mn >得不到程122=+ny mx 的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出0mn >,因而必要.所以答案选择B.5.【2012高考江西文8】椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
高三数学椭圆试题答案及解析
高三数学椭圆试题答案及解析1.椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当的面积为时,求直线的方程.【答案】(1);(2)直线方程为:或.【解析】本题主要考查椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于椭圆过点A,将A点坐标代入得到a和b的关系式,再利用椭圆的离心率得到a与c的关系式,从而求出a和b,得到椭圆的标准方程;第二问,过的直线有特殊情况,即当直线的倾斜角为时,先讨论,再讨论斜率不不为的情况,将直线方程与椭圆方程联立,利用韦达定理得到和,代入到三角形面积公式中,解出k的值,从而得到直线方程.试题解析:(1)因为椭圆过点,所以①,又因为离心率为,所以,所以②,解①②得.所以椭圆的方程为:(4分)(2)①当直线的倾斜角为时,,,不适合题意。
(6分)②当直线的倾斜角不为时,设直线方程,代入得:(7分)设,则,,,所以直线方程为:或(12分)【考点】椭圆的标准方程及其几何性质、直线的标准方程、直线与椭圆相交问题、三角形面积公式.2.已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点.(1)当时,求直线AB的方程;(2)设点,求证:当实数变化时,恒为定值.【答案】(1);(2)见解析。
【解析】(1)利用A、F、B共线及其所在位置,找出λ满足的关系式,求出范围;(2)假设这样的M点存在,利用为定值寻求相应点的坐标.试题解析:(1)由已知条件知,直线过椭圆右焦点.又直线不与轴重合时,可设,代入椭圆方程,并整理得.设,由根与系数的关系得,.又由得,所以,.于是,解之得.故直线AB的方程为.(7分)(2)为定值.(经检验,当与轴重合时也成立)(13分)【考点】【考点】直线与椭圆的位置关系,平面向量3.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.-=1B.+=1C.-=1D.+=1【答案】D【解析】M为AQ垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹为椭圆,∴a=,c=1,则b2=a2-c2=,∴椭圆的标准方程为+=1.4.已知椭圆C:()的左焦点为,离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【答案】(1) ;(2)【解析】(1)由已知得:,,所以,再由可得,从而得椭圆的标准方程. )椭圆方程化为.设PQ的方程为,代入椭圆方程得:.面积,而,所以只要求出的值即可得面积.因为四边形OPTQ是平行四边形,所以,即.再结合韦达定理即可得的值.试题解析:(1)由已知得:,,所以又由,解得,所以椭圆的标准方程为:.(2)椭圆方程化为.设T点的坐标为,则直线TF的斜率.当时,直线PQ的斜率,直线PQ的方程是当时,直线PQ的方程是,也符合的形式.将代入椭圆方程得:.其判别式.设,则.因为四边形OPTQ是平行四边形,所以,即.所以,解得.此时四边形OPTQ的面积.【考点】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积.5.圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线交于A,B两点,若的面积为2,求C的标准方程.【答案】(1);(2)【解析】(1)首先设切点,由圆的切线的性质,根据半径的斜率可求切线斜率,进而可表示切线方程为,建立目标函数.故要求面积最小值,只需确定的最大值,由结合目标函数,易求;(2)设椭圆标准方程为,点在椭圆上,代入点得①,利用弦长公式表示,利用点到直线距离公式求高,进而表示的面积,与①联立,可确定,进而确定椭圆的标准方程.(1)设切点坐标为.则切线斜率为.切线方程为.即.此时,两个坐标轴的正半轴于切线围成的三角形面积.由知当且仅当时,有最大值.即有最小值.因此点的坐标为.(2)设的标准方程为.点.由点在上知.并由得.又是方程的根,因此,由,,得.由点到直线的距离为及得.解得或.因此,(舍)或,.从而所求的方程为.【考点】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式.6.已知抛物线的准线与椭圆相切,且该切点与椭圆的两焦点构成的三角形面积为2,则椭圆的离心率是()A.B.C.D.【答案】C【解析】抛物线的准线为又抛物线的准线与椭圆相切,所以,且切点为下顶点因为该切点与椭圆的两焦点构成的三角形面积为2,所以,即得由得所以故选【考点】抛物线和椭圆的简单几何性质;椭圆的离心率.7.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】由题意知在双曲线中得,在椭圆中,所以离心率为.选.【考点】椭圆、双曲线的几何性质.8.已知椭圆C: (a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2.(1)求椭圆C的方程;(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.【答案】(1) ; (2)【解析】(1)由题设知椭圆的标准方程为(2)因为当直线的斜率不存在时,,不适合题意,所以直线的斜率存在,设为,直线的方程为,它与椭圆的两交点坐标,则由得通过方程组,借助韦达定理,得到,结合得到与的关系式,并且可由得到的取值范围;另一方面,因为由前述的取值范围可使问题得到解决.试题解析:解:(1)由题意知:,且, 2分解得, 3分椭圆的方程为 . 4分(2)由题意得直线的斜率存在,右焦点,可设直线的方程为:由得由题意设,则 6分由得 7分9分令,在上单调递增,可得故,解得 2分= 13分即的取值范围是 14分【考点】1、椭圆的标准方程;2、平面向量的数乘运算与数量积;3、直线与椭圆的位置关系. 9.如图,,是双曲线:与椭圆的公共焦点,点是,在第一象限的公共点.若|F1F2|=|F1A|,则的离心率是().A.B.C.D.【答案】【解析】由题意知,的离心率是,故选【考点】椭圆、双曲线的几何性质.10.已知椭圆:()的右焦点,右顶点,且.(1)求椭圆的标准方程;(2)若动直线:与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.【答案】(1);(2)详见解析.【解析】(1)根据椭圆的右焦点,右顶点,且,求出椭圆的几何量,即可求椭圆的标准方程;(2)直线:,代入椭圆方程,结合,求出的坐标(参数表示),求出向量的坐标,利用,进行整理,如果为定值,那么不随的变化而变化,建立关于的方程,即可得出结论.此题属于中等题型,关键表示出P点坐标,转化为过定点恒成立的形式.试题解析:(1)由,,椭圆C的标准方程为. 4分得:, 6分.,,即P. 9分M.又Q,,,+=恒成立,故,即.存在点M(1,0)适合题意. 12分【考点】直线与圆锥的综合问题11.如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC 过椭圆中心O,且,|BC|=2|AC|.(1)求椭圆E的方程;(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.【答案】(1);(2)满足条件的点Q存在,且有两个.【解析】本题主要考查椭圆的标准方程及其性质,考查学生的转化思想和数形结合思想,考查分析问题解决问题的能力和计算能力.第一问,先由长轴长得到a的值,设出椭圆的标准方程,利用已知条件数形结合得到C点坐标,将C点坐标代入到椭圆中,得到b的值,从而得到椭圆的标准方程;第二问,先设出Q点坐标,利用已知等式计算,可知点Q在直线上,点在直线上,而在椭圆内部,数形结合得存在点Q而且存在2个;法二:用和椭圆方程联立消参,得到关于x的方程,看方程的判别式,判别式大于0时,方程有2个根,则直线与椭圆有2个交点;第三问,设出点P的坐标,由切线的性质得四点共圆,此圆的圆心为,直径为OP,得到此圆的方程,M、N既在此圆上,又在圆O上,2个方程联立,解出直线MN的方程,得出截距的值,再转化出P点坐标代入到椭圆中即可;法二:设出点P、M、N的坐标,利用直线的垂直关系,利用斜率列出等式,转化成直线PM和直线PN的方程,从而得到直线MN的方程.试题解析:(1)依题意知:椭圆的长半轴长,则A(2,0),设椭圆E的方程为 2分由椭圆的对称性知|OC|=|OB|又∵,|BC|=2|AC|∴AC⊥BC,|OC|=|AC|∴△AOC为等腰直角三角形,∴点C的坐标为(1,1),点B的坐标为(-1,-1), 4分将C的坐标(1,1)代入椭圆方程得∴所求的椭圆E的方程为 5分(2)解法一:设在椭圆E上存在点Q,使得,设,则即点Q在直线上, 7分∴点Q即直线与椭圆E的交点,∵直线过点,而点椭圆在椭圆E的内部,∴满足条件的点Q存在,且有两个. 9分解法二:设在椭圆E上存在点Q,使得,设,则即,① -7分又∵点Q在椭圆E上,∴,②由①式得代入②式并整理得:, -③∵方程③的根判别式,∴方程③有两个不相等的实数根,即满足条件的点Q存在,且有两个. 9分(3)解法一:设点,由M、N是的切点知,,∴O、M、P、N四点在同一圆上, 10分且圆的直径为OP,则圆心为,其方程为, 11分即 -④即点M、N满足方程④,又点M、N都在上,∴M、N坐标也满足方程 -⑤⑤-④得直线MN的方程为, 12分令得,令得, 13分∴,又点P在椭圆E上,∴,即=定值. 14分解法二:设点则 10分直线PM的方程为化简得④同理可得直线PN的方程为 -⑤ 11分把P点的坐标代入④、⑤得∴直线MN的方程为, 12分令得,令得, 13分∴,又点P在椭圆E上,∴,即=定值. -14分【考点】1.椭圆的标准方程;2.四点共圆;3.圆的标准方程.12.已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为,(1)求椭圆C的方程;(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.【答案】(1)(2)【解析】(1)根据椭圆的中心在原点可以设出椭圆的标准方程,已知焦点坐标,故可求的c值,所以利用长轴长与短轴长之比和a,b,c的关系可以建立关于a,b的两个方程式联立消元即可求的a,b的值,得到椭圆的标准方差.(2)根据题意设点P的坐标,表示,利用点P在椭圆上,得到关于m和P点横坐标的表达式,利用二次函数最值问题,可以得到取得最小值时,m和P点横坐标之间的关系,再利用P横坐标的范围得到m的取值范围即可.试题解析:(1)设椭圆的方程为. 1分由题意有:, 3分解得. 5分故椭圆的方程为. 6分(2)设为椭圆上的动点,由于椭圆方程为,故. 7分因为,所以10分因为当最小时,点恰好落在椭圆的右顶点,即当时,取得最小值.而,故有,解得. 12分又点在椭圆的长轴上,即. 13分故实数的取值范围是. 14分【考点】椭圆标准方程椭圆几何性质最值13.已知是椭圆上两点,点的坐标为.(1)当关于点对称时,求证:;(2)当直线经过点时,求证:不可能为等边三角形.【答案】(1)详见解析,(2)详见解析.【解析】(1)利用“点代法”求点的坐标关系,在求解过程中证明结论.因为关于点对称,所以,代入椭圆方程得,两式相减得,所以(2)本题实质为“弦中点”问题,设中点为,由“点差法”得又假设为等边三角形时,有所以这与弦中点在椭圆内部矛盾,所以假设不成立.试题解析:(1)证明:因为在椭圆上,所以 1分因为关于点对称,所以, 2分将代入②得③,由①和③消解得, 4分所以. 5分(2)当直线斜率不存在时,,可得,不是等边三角形. 6分当直线斜率存在时,显然斜率不为0.设直线:,中点为,联立消去得, 7分由,得到① 8分又,所以,所以 10分假设为等边三角形,则有,又因为,所以,即, 11分化简,解得或 12分这与①式矛盾,所以假设不成立.因此对于任意不能使得,故不能为等边三角形. 14分【考点】弦中点问题,点代法求点的坐标14.已知动点在椭圆上,为椭圆的右焦点,若点满足且,则的最小值为()A.B.C.D.【答案】A【解析】由题意得所以【考点】圆的切线长,椭圆定义15.如图,正方形CDEF内接于椭圆,且它的四条边与坐标轴平行,正方形GHPQ的顶点G,H在椭圆上,顶点P,Q在正方形的边EF上.且CD=2PQ=.(1)求椭圆的方程;(2)已知点M(2,1),平行于OM的直线l在y轴上的截距为m(m:≠0),l交椭圆于A,B两个不同点,求证:直线MA,MB与x轴始终围成一个等腰三角形.【答案】(1);(2)证明过程详见解析.【解析】本题主要考查椭圆的标准方程、直线与椭圆相交问题等数学知识,考查学生分析问题解决问题的能力和计算能力.第一问,由图形分析,利用CD和PQ的边长得出点E和点G的坐标,由于这2点都在椭圆上,联立方程得出和,从而得到椭圆的标准方程;第二问,通过对题意的分析,只需证明直线MA,MB的斜率之和为0即可,设出A,B点坐标,列出2条直线的斜率的表达式,直线与椭圆方程联立消参,得到关于x的方程,列出两根之和与两根之积,而通过转化可以将得到的两根之和与两根之积代入,只要最后化简结果为0即可.试题解析:(1)∵,∴点,又∵,∴点,则,解得,∴椭圆方程.(4分)(2)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可,设A(x1,y1),B(x2,y2),则,,直线l方程为,代入椭圆方程消去y,得x2+2mx+2m2-4=0可得x1+x2=-2m,x1x2=2m2-4.(9分)而,(12分)∴k1+k2=0,故直线MA、MB与x轴始终围成一个等腰三角形.(13分)【考点】1.椭圆的标准方程;2.韦达定理.16.如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,=.(1) 求直线BD的方程;(2) 求直线BD被过P、A、B三点的圆C截得的弦长;(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.【答案】(1)x+y-1=0.(2)4(3)x2+(y-3)2=2,(x-2)2+(y-1)2=2【解析】1) 设P(x0,y).因为=,且D(1,0),A(3,0),点B、P在椭圆上,所以B(-x,y 0),所以x=1,将其代入椭圆,得y=2,所以P(1,2),B(-1,2).所以直线BD的方程为x+y-1=0.(2) 线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为y=x-1.解方程组得圆心C的坐标为(0,-1).所以圆C的半径r=CP=.因为圆心C(0,-1)到直线BD的距离为d==,所以直线BD被圆C截得的弦长为2 =4.(3) 这样的圆M与圆N存在.由题意得,点M一定在y轴上,点N一定在线段PC的垂直平分线y=x-1上.当圆M与圆N是两个相外切的等圆时,一定有P、M、N在一条直线上,且PM=PN.M(0,b),则N(2,4-b).因为点N(2,4-b)在直线y=x-1上,所以4-b=2-1,b=3.所以这两个圆的半径为PM=,方程分别为x2+(y-3)2=2,(x-2)2+(y-1)2=217.P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.(1)求曲线Γ的方程;(2)当点P在第一象限,且时,求点M的坐标.【答案】(1);(2).【解析】本题主要考查椭圆的定义和标准方程、圆的方程、直线的方程、直线与曲线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力. 第一问,根据圆的方程得到圆心A的坐标和半径的长,利用垂直平分线得到,而,所以,根据椭圆的定义,判断点M的轨迹为椭圆,得到椭圆的标准方程;根据已知条件先得出P点坐标,从而得到直线AP的方程,利用直线与椭圆相交解出M点坐标,过程中应注意方程根的取舍.试题解析:(1)圆的圆心为,半径等于.由已知,于是,故曲线Γ是以为焦点,以为长轴长的椭圆,,曲线Γ的方程为. 5分(2)由,,得. 8分于是直线方程为.由解得,,.由于点在线段上,所以点坐标为. 12分【考点】1.椭圆的定义及标准方程;2.直线与椭圆的位置关系.18.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A、B两点,且=3,则C的方程为()(A) +y2=1 (B) +=1(C) +=1 (D) +=1【答案】C【解析】依题意设椭圆C的方程为+=1(a>b>0),由条件可得A(1,),B(1,-),因|AB|= -(-)==3,即2b2=3a,所以解得所以椭圆C的方程为+=1.故选C.19.设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,点P是椭圆上的动点,则使得△PAB的面积为的点P的个数为.【答案】4【解析】【思路点拨】先求出弦长|AB|,进而求出点P到直线AB的距离,再求出与l平行且与椭圆相切的直线方程,最后数形结合求解.由题知直线l恰好经过椭圆的两个顶点(1,0),(0,2),故|AB|=,要使△PAB的面积为,即··h=,所以h=.联立y=-2x+m与椭圆方程x2+=1得8x2-4mx+m2-4=0,令Δ=0得m=±2,即平移直线l到y=-2x±2时与椭圆相切,它们与直线l的距离d=都大于,所以一共有4个点符合要求.20.已知椭圆C:=1,过点M(2,0)且斜率不为0的直线交椭圆C于A,B两点.在x 轴上若存在定点P,使PM平分∠APB,则P的坐标为________.【答案】【解析】设A(x1,y1),B(x2,y2),直线AB的方程为x=my+2.将直线AB的方程与椭圆C的方程联立,消去x得(4m2+9)y2+16my-20=0,所以y1+y2=,y1y2=.若PM平分∠APB,则直线PA,PB的倾斜角互补,所以kPA +kPB=0.设P(a,0),则有+=0,将x1=my1+2,x2=my2+2代入上式,整理得=0,所以2my1y2+(2-a)(y1+y2)=0.将y1+y2=,y1y2=代入上式,整理得(-2a+9)·m=0.由于上式对任意实数m都成立,所以a=.综上,x轴上存在定点P,使PM平分∠APB.21.已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.(1)求该椭圆的方程;(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.【答案】(1);(2)抛物线上存在一点,使得与关于直线对称.【解析】(1)求椭圆的方程,可利用待定系数法求出的值即可,首先确定抛物线的焦点与准线方程为,利用椭圆焦点与抛物线的焦点重合,得,且截抛物线的准线所得弦长为,得交点为,建立方程,求出的值,即可求得椭圆的方程;(2)根据倾斜角为的直线过点,可得直线的方程,由(1)知椭圆的另一个焦点为,利用与关于直线对称,利用对称,可求得的坐标,由此可得结论.试题解析:(1)抛物线的焦点为,准线方程为,∴① 2分又椭圆截抛物线的准线所得弦长为,∴得上交点为,∴② 4分由①代入②得,解得或(舍去),从而∴该椭圆的方程为该椭圆的方程为 6分(2)∵倾斜角为的直线过点,∴直线的方程为,即, 7分由(1)知椭圆的另一个焦点为,设与关于直线对称,则得, 9分解得,即, 2分又满足,故点在抛物线上。
椭圆历年高考题
解得 e= = = -1.
4.(2017·全国乙卷文科·T12)设 A,B 是椭圆 C: x2 + y2 =1 长轴的两个端点,若 C 上存在点 M 满足 3m
A.
B.
C.
D.
3.(2018·全国卷 II 高考文科·T11)已知 F1,F2 是椭圆 C 的两个焦点,P 是 C 上的一点,若 PF1⊥PF2,且 ∠PF2F1=60°,则 C 的离心率为( )
C.
4.(2017·全国乙卷文科·T12)设 A,B 是椭圆 C: x2 + y2 =1 长轴的两个端点,若 C 上存在点 M 满足 3m
6
A.
3
3
B.
3
2
1
C.
D.
3
3
7.(2016·全国卷Ⅰ高考文科·T5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其
短轴长的 ,则该椭圆的离心率为( )
1
1
A. 3
B. 2
2
3
C. 3
D. 4
8.(2016·全国
卷
3·理
科·T11)已知
O
为坐
标原点,F是椭圆C:x2 a2
y2 b2
即
a2=3(a2-c2)?2a2=3c2,即
c2 a2
=
2 3
,e=
c a
=
6
.
3
高中数学椭圆、双曲线、抛物线历年真题及详解
【考点8】椭圆、双曲线、抛物线2021年考题1、〔2021高考〕双曲线1412222222=+=-b y x y x 的准线经过椭圆〔b >0〕的焦点,则b=( )A.3B.5C.3D.2选C.可得双曲线的准线为21a x c=±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、〔2021高考〕“0m n >>〞是“方程221mxny +=〞表示焦点在y 轴上的椭圆〞的( )〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充要条件 (D) 既不充分也不必要条件【解析】选C.将方程221mxny +=转化为22111x y m n+=, 根据椭圆的定义,要使焦点在y 轴上必须 满足110,0,m n>>且11n m >,应选 C.3、〔2021高考〕抛物线28y x =-的焦点坐标是( )A .〔2,0〕B .〔- 2,0〕C .〔4,0〕D .〔- 4,0〕 【解析】选B.由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,应选B. 4、〔2021全国Ⅰ〕椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 假设3FA FB =,则||AF =( )(A)2 (B) 23 (D) 3【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与*轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=5、〔2021高考〕设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 假设12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( ) A .32 B .2 C .52D .3【解析】选B.由3tan623c b π==有2222344()c b c a ==-,则2c e a==,应选B. 6、〔2021高考〕过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,假设1260F PF ∠=,则椭圆的离心率为( )A .22B .33C .12 D .13【解析】选B.因为2(,)b P c a-±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,应选B.7、〔2021高考〕过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .假设12AB BC =,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .10【解析】选C.对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b abab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭, 因222,4,5ABBC a b e =∴=∴=.8、(2021高考)设双曲线12222=-by a x 的一条渐近线与抛物线y=*2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】选D.双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b xx a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,应选D.9、(2021高考)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,假设△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =± B.28y x =± C. 24y x = D. 28y x =【解析】选B.抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,则直线l 的方程为2()4ay x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,应选B.10、〔20216( )〔A 〕22124x y -= 〔B 〕22142x y -= 〔C 〕22146x y -= 〔D 〕221410x y -=【解析】选B.由6e =得222222331,1,222c b b a a a =+==,选B. 11、〔2021**高考〕设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为〔 〕Ax y 2±= B x y 2±= C x y 22±= D x y 21±= 【解析】选 C.由得到2,3,122=-===b c a c b ,因为双曲线的焦点在*轴上,故渐近线方程为x x a b y 22±=±=. 12、〔2021、高考〕双曲线24x -212y =1的焦点到渐近线的距离为( )〔A 〕3 〔B 〕2 〔C 3 〔D 〕1【解析】选A.双曲线24x -212y =1的焦点(4,0)到渐近线3y x =的距离为34023d ⨯-==选A.13、〔2021、高考〕设抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
高考数学十年真题专题解析—椭圆
椭圆年份题号考点考查内容2011理14椭圆方程椭圆的定义、标准方程及其几何性质文4椭圆的几何性质椭圆离心率的计算2012文理4椭圆的几何性质椭圆离心率的计算2013卷1理10椭圆方程直线与椭圆的位置关系,椭圆方程的求法文理20椭圆定义、标准方程及其几何性质椭圆的定义、标准方程及其几何性质,直线与椭圆位置关系卷2理20直线与椭圆位置关系椭圆的方程求法,直线与椭圆位置关系,椭圆最值问题的解法文5椭圆定义、几何性质椭圆的定义,椭圆离心率的求法2014卷1理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系卷2理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系2015卷1理14圆与椭圆椭圆的标准方程及其几何性质,过三点圆的方程的求法卷2理20直线与椭圆直线和椭圆的位置关系,椭圆的存在型问题的解法文20直线与椭圆椭圆方程求法,直线和椭圆的位置关系,椭圆的定值问题的解法2016卷1理20圆、直线与椭圆椭圆定义、标准方程及其几何性质,直线与圆、椭圆的位置关系卷2理20直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文21直线与椭圆椭圆的几何性质,直线与椭圆的位置关系2017卷1理20直线与椭圆椭圆标准方程的求法,直线与椭圆的位置关系,椭圆的定点问题文12直线与椭圆椭圆的标准方程及其几何性质卷3文11理10直线与圆,椭圆的几何性质直线与圆的位置关系,椭圆的几何性质2018卷1理19直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文4椭圆椭圆的几何性质2019卷1理10文12椭圆椭圆的定义、标准方程及其几何性质,椭圆标准方程的求法卷2理8文9椭圆与抛物线抛物线与椭圆的几何性质理21椭圆椭圆的标准方程及其几何性质,直线与椭圆的位置关系,椭圆的最值问题的解法文20椭圆椭圆的定义、标准方程及其几何性质卷3文理15椭圆椭圆的定义、标准方程及其几何性质2020卷1理20文21椭圆椭圆的标准方程及其几何性质,椭圆定点问题卷2理19椭圆、抛物线椭圆、抛物线方程的求法,椭圆离心率的求法,抛物线的定义考点89椭圆的定义及标准方程1.(2019全国Ⅰ文12)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n FAB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.222243,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .2.(2018高考上海13)设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为()A .22B .23C .25D .42【答案】C【解析】由椭圆的定义可知椭圆上任意点P 到两个焦点的距离之和为25a =,故选C .【考点分析】椭圆的定义,考查考生的识记及基本运算能力.3.(2013广东文)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 【答案】D 【解析】∵1,2,3c a b ===D .4.(2015新课标1理)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.【答案】22325()24-+=x y 【解析】由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a ,解得32a =,所以圆的方程为22325()24-+=x y .5.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a=DF 1+DF 2=4,从而a=2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a=2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F 2的方程(x−1)2+y 2=16,解得y=±4.因为点A 在x 轴上方,所以A(1,4).又F 1(−1,0),所以直线AF 1:y=2x+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结E F 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E=∠B .因为F 2A=F 2B ,所以∠A=∠B ,所以∠A=∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.考点90椭圆的几何性质6.【2019年高考全国Ⅰ理】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.7.【2019年高考北京理】已知椭圆22221x ya b+=(a>b>0)的离心率为12,则A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b【答案】B【解析】椭圆的离心率2221,2ce c a ba===-,化简得2234a b=,故选B.8.【2018·全国Ⅰ文】已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为A.13B.12C .22D .223【答案】C【解析】由题可得2c =,因为24b =,所以2228a b c =+=,即a =,所以椭圆C 的离心率22e ==,故选C .9.【2018·全国Ⅱ文】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .12-B .2-C .312-D 1-【答案】D【解析】在12F PF △中,122190,60F PF PF F ∠=∠=︒,设2PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=+,则212c c e a a ====,故选D .10.(2018上海理)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为()A .B .C .D .【答案】C 【解析】由题意25=a ,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=aC .11.【2017·全国Ⅰ文】设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞ D .[4,)+∞【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab≥= ,≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞ ,故选A .12.【2017·浙江卷】椭圆22194x y +=的离心率是()A .133B .53C .23D .59【答案】B【解析】椭圆22194x y +=的离心率94533e ==,故选B .13.(2015新课标1文)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .12【答案】B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =-①,设椭圆E 的方程为22221(0)x y a b a b +=>>,所以椭圆E 的半焦距2c =,又椭圆的离心率为12,所以4,a b ==,椭圆E 的方程为2211612x y +=②,联立①②,解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB =,故选B .14.(2015广东文)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m =A .2B .3C .4D .9【答案】B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .15.(2014福建文理)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .26【答案】D 【解析】由题意可设10,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为2222||(10cos )(sin 6)509(sin )50523CQ ααα=+-=-+=,当且仅当2sin 3α=-时取等号,所以max max ||||52262PQ CQ r +==≤,所以Q P ,两点间的最大距离是62.16.(2012新课标文理)设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为o30的等腰三角形,则E 的离心率为A .21B .32C .43D .54【答案】C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==,故选C .17.【2019·全国Ⅲ文】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(15【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又122201482415,4152MF F S y =⨯-=∴=△,解得015y =,2201513620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(15.18.【2019·浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以15212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==19.(2012江西文理)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.【答案】55【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故55c e a ==.即椭圆的离心率为55.20.(2011浙江文理)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B = ;则点A 的坐标是.【答案】(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F,可得1()F A m n =+,2()F B c d =,∵125F A F B = ,∴62,55m n c d +==,又点,A B 在椭圆上,∴2213m n +=,2262(5()135m n ++=,解得0,1m n ==±,∴点A 的坐标是(0,1)±.21.【2019年高考全国Ⅱ文】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)1-;(2)4b =,a的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==-.(2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P ,所以4b =,a的取值范围为)+∞.22.(2015安徽理)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510.(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又10OM k =,从而210b a =,进而得,2a c b ==,故255c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1y b +=,点N 的坐标为51(,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为1517(,4244x b b +-+.又点T 在直线AB 上,且1NS ABk k ⋅=-,从而有151742441712252x b b b b ⎧+-+⎪+=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b =故椭圆E 的方程为221459x y +=.23.(2013安徽文理)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a ,b 的值.【解析】(Ⅰ)1216022c F AF a c e a ο∠=⇔=⇔==(Ⅱ)设2BF m =;则12BF a m =-,在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=,1AF B ∆面积211133sin 60()10,5,2252S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔===考点91直线与椭圆的位置关系24.【2018高考全国2理12】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △等腰三角形,12120F F P ∠= ,则C 的离心率为()A .23B .12C .13D .14【答案】D【解析】试题分析:先根据条件得22PF c =,再利用正弦定理得,a c 关系,即得离心率.试题解析:因为12PF F △为等腰三角形,12212120,2F F P PF F F c ∠=︒==,由AP 斜率为36得,222tan ,sin ,cos PAF PAF PAF ∠=∴∠=∴∠=,由正弦定理得22222sin 221,,4,sin 54sin 3PF PAF c a c e AF APF a c PAF ∠=∴==∴=∴=∠+-∠ ⎪⎝⎭,故选D .25.(2017新课标Ⅲ文理)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .63B .33C .23D .13【答案】A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,63c e a ==,故选A .26.【2016·新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()(A)13(B)12(C)23(D)34【答案】B【解析】如图,在椭圆中,11,,242OF c OB b OD b b ===⨯=,在Rt OFB △中,||||||||OF OB BF OD ⨯=⨯,且222a b c =+,代入解得224a c =,所以椭圆的离心率为12e =,故选B .27.(2016年全国III 文理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||||()FM k a c =-,||||OE k a =,设OE 的中点为H ,由OBH FBM △∽△,得1||||2||||OE OB FM BF =,即||2||()k a a k a c a c=-+,整理得13c a =,所以椭圆离心率为13e =,故选A .28.(2016江苏理)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【答案】3【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,,22b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,,22b CF c ⎛⎫=-- ⎪ ⎪⎝⎭ ,则22231044c a b -+=,由222b a c =-可得223142c a =,则3ce a ===.29.(2015福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A.(0,2B .3(0,]4C.,1)2D .3[,1)4【答案】A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义,有11||||||||4AF AF BF BF a +++=,所以84a =,解得2a =.因为点M 到直线l :340x y +=的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <所以02c a <≤,所以椭圆的离心率的取值范围为(0,2.30.(2013新课标1文理)已知椭圆22221(0)x y a b a b+=>>的右焦点为F(3,0),过点F 的直线交椭圆于A .B两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1【答案】D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b +=①2222221x y a b +=②①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D .31.【2020年高考上海卷10】已知椭圆22:143x y C +=,直线l 经过椭圆右焦点F ,交椭圆C 于,P Q 两点(点P 在第二象限),若Q 关于x 轴对称的点为'Q ,且满足'PQ FQ ⊥,则直线l 的方程为.【答案】1y x =-+【解析】由条件可知FQQ ' 是等腰直角三角形,所以直线l 的倾斜角是135 ,所以直线l 的斜率是tan1351=- ,且过点()1,0F ,得到直线l 的方程为()1y x =--,即1y x =-+.故答案为:1y x =-+.32.(2018浙江理)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324(m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤,当且仅当5m =时取最大值.33.(2018浙江文)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB = ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.34.(2015浙江文)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.【答案】22【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上,得||||OQ OF =,又1||||OF OF =,所以1F Q QF ⊥,不妨设1||QF ck =,则||QF bk =,1||F F ak =,因此2c ak =,又2a ck bk =+,由以上二式可得22c a k a b c ==+,即c a a b c=+,即22a c bc =+,所以bc =,22e =.35.(2014江西文理)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于.【答案】22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221(02a b +⨯-=,得222a b =,整理222a c =,所以22e =.36.(2014辽宁文)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=.【答案】12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.37.(2014江西文)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.【答案】33【解析】由题意可得2(,b A c a ,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,2b a -,由B F AD 1⊥,所以11AD F B k k ⋅=-232b ac =,解得33e =.38.(2014安徽文)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --将点B 坐标带入椭圆方程得22221()53()13b c b--+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.39.(2013福建文)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于.【答案】13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==ac e ,故答案为13-.40.【2020年高考全国Ⅲ文21理数20】已知椭圆()222:10525x y C m m +=<<的离心率为4,,A B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且,BP BQ BP BQ =⊥,求△APQ 的面积.【解析】解法一:(1)由c e a =,得2221b e a =-,即21511625m =-,∴22516m =,故C 的方程为221612525x y +=.(2)设点P 的坐标为(,)s t ,点Q 的坐标为(6,)n ,根据对称性,只需考虑0n >的情形,此时55s -<<,504t < .∵||||BP BQ =,∴有222(5)1s t n -+=+①.又∵BP BQ ⊥,∴50s nt -+=②.又221612525s t +=③.联立①、②、③,可得,312s t n =⎧⎪=⎨⎪=⎩或318s t n =-⎧⎪=⎨⎪=⎩.当312s t n =⎧⎪=⎨⎪=⎩时,(8,1)AP = ,(11,2)AQ =,∴15|82111|22APQ S ==⨯-⨯=△.同理可得,当318s t n =-⎧⎪=⎨⎪=⎩时,52APQ S =△.综上所述,可得APQ △的面积为52.解法二:(1) 222:1(05)25x y C m m +=<<,∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N,根据题意画出图形,如图,||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=.设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=, PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图,(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯=.②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图,(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:()22831114055185185811d ⨯--⨯+===+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=.综上所述,APQ 面积为:52.41.【2020年高考天津卷18】已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解析】(Ⅰ) 椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以椭圆的方程为221189x y +=.(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF = ,得点C 的坐标为()1,0,所以直线CP 的斜率为222303216261121CP k kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.42.【2019年高考天津理】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【解析】(1)设椭圆的半焦距为c ,依题意,524,5c b a ==,又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k-=-.在2y kx =+中,令0y =,得2M x k=-.由题意得()0,1N -,所以直线MN 的斜率为2k -.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而2305k =±.所以,直线PB 的斜率为2305或2305-.43.【2019年高考天津文】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B.已知|2||OA OB =(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x=4上,且OC AP ∥,求椭圆的方程.【解析】(1)设椭圆的半焦距为c,由已知有2b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =,所以椭圆的离心率为12.(2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-.因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知(2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l相切,得2=,可得=2c .所以,椭圆的方程为2211612x y +=.44.【2018高考全国III 文20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0 .证明:2FP FA FB =+.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得302m <<,故12k <-.(2)由题意得F(1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uur .于是1||22x FA ==-uur .同理2||=22x FB -uur .所以1214()32FA FB x x +=-+=uur uur ,故2FA FB FP +=uur uur uur .45.【2018高考天津文19】(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B.已知椭圆的离心率为3,AB =.(I)求椭圆的方程;(II)设直线():0l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点,P M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【解析】试题分析:(I)由题意结合几何关系可求得3,2a b ==.则椭圆的方程为22194x y +=.(I I)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意可得215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩可得1x =215x x =,可得89k =-,或12k =-.经检验 的值为12-.试题解析:(I)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由AB ==3,2a b ==.所以,椭圆的方程为22194x y +=.(II)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意,210x x >>,点 的坐标为()11,x y --.由BPM △的面积是BPQ △面积的2倍,可得2PM PQ =,从而()21112x x x x -=--⎡⎤⎣⎦,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩消去y,可得1x =.由215x x =,可得()532k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,211212,5x x ==,符合题意.所以,k 的值为12-.46.【2018高考江苏18】如图,在平面直角坐标系xOy 中,椭圆C过点12⎫⎪⎭,焦点())12,0,0F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为l的方程.【解析】试题分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得,a b ,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.试题解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12在椭圆C 上,2222311,43,a ba b ⎧+=⎪∴⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 直线l 与椭圆C 有且只有一个公共点,222222000000()()() 24443640(482)x x y y y x ∴∆=--+-=-=.0000,0,,1x y x y >∴== .因此,点P的坐标为),1.②OAB △,所以1 2AB OP ⋅=,从而427AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =2221212()()AB y x x y ∴=-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.22003x y += ,22022016(2)32(1)49x AB x -∴==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为(22.综上,直线l的方程为y =+.47.【2018高考全国1理19】(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】试题分析:(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程;(2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.试题解析:(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭.所以AM 的方程为222y x =-+222y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则122,2x x <<,直线MA MB ,的斜率之和为212122MA MB x x y yk k +=+--.由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.2212121333221222422441284,,23()40212121k k k k k k kk x x x x x x k k k k x x k ---+++==∴-++=∴=+++.从而0MA MB k k +=,故MA MB ,的倾斜角互补,OMA OMB ∴∠=∠.综上,OMA OMB ∠=∠.48.【2018高考全国3理20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++= 0.证明:,,FA FP FB成等差数列,并求该数列的公差.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知12121,22x x y y m ++==,于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<.又点P 在C 上,34m ∴=,从而331,,22P FP ⎛⎫-= ⎪⎝⎭ .于是122xFA ==-= .同理222x FB =- ,()121432FA FB x x +=-+=∴ .2FP FA FB =+∴ ,即,,FA FP FB成等差数列.设该数列的公差为d ,则12122d FB FA x x =-=-=②将34m =代入①得1k =-,l ∴的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得28d=49.【2018高考天津理19】(本小题满分14分)设椭圆22221x x a b +=(a>b>0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(,0)b ,且FB AB ⋅=.(I)求椭圆的方程;(II)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.【解析】试题分析:(Ⅰ)由题意结合椭圆的性质可得,32a b ==.则椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由题意可得1259y y =.由方程组22{ 194y kx x y =+=,,可得1y =.由方程组{20y kx x y =+-=,,可得221ky k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=,可得6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由已知有120y y >>,故12PQ sin AOQ y y ∠=-.又2y AQ sin OAB =∠ ,而∠OAB=π4,故2AQ =.由sin 4AQ AOQ PQ =∠,可得1259y y =.由方程组22,194y kx x y =⎧⎪⎨+=⎪⎩消去x,可得1y =易知直线AB 的方程为20x y +-=,由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128.50.(2017天津文)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i)求直线FP 的斜率;(ii)求椭圆的方程.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b ac =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =.所以,椭圆的离心率为12.(Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m.由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++.。
高考数学真题专题(文数) 椭圆
专题九 解析几何第二十五讲 椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23 D .595.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4A F B F +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1,)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为(Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)直线交椭圆于,P Q 两点,且PQ ⊥1PF .42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C ab a b+=>>的离心率为2,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标.49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。
高考椭圆最常考的题型(140分推荐)
高考椭圆最常考的题型(140分推荐)一、单选题(本大题共8小题,共40.0分)1. 已知椭圆:x 24+y 2b2=1(0<b <2) ,左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A,B 两点,若|BF 2⃗⃗⃗⃗⃗⃗⃗ |+|AF 2⃗⃗⃗⃗⃗⃗⃗ |的最大值为5,则b 的值是( )A. 1B. √2C. 32D. √32. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的离心率为√22,直线x =√2与椭圆C 交于A ,B 两点,O 为坐标原点,且OA ⊥OB ,则椭圆的方程为( )A.x 22+y 2=1B.x 24+y 22=1C.x 28+y 24=1D.x 26+y 23=13. 已知直线y =kx(k ≠0)与椭圆C :x 2a2+y 2=1(a >1)交于P ,Q 两点,点F ,A 分别是椭圆C 的右焦点和右顶点,若|FP|+|FQ|+|FA|=52a ,则a =( )A. 4B. 2C. 43D. 2√334. 已知直线2x +y −4=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,F 1是椭圆的左焦点,且|AB |=|AF 1|,则椭圆的方程为( )A. x 240+y 236=1B. x 220+y 216=1C. x 210+y 26=1D.x 25+y 2=15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ ,则椭圆的离心率为( )A. √32B. √22C. 12D. 136. 已知椭圆方程为x 2+ky 2=5的一个焦点是(0,2),那么k =( )A. 59B. 97C. 1D. 537. 已知焦点在x 轴上的椭圆C :x 2a 2+y 24=1的焦距为4,则C 的离心率( )A. 13B. 12C. √22D. 2√238. 已知椭圆C :x 2a 2+y 2b2=1 (a >b >0)的左、右焦点分别为F 1,F 2,离心率为√33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为4√3,则椭圆C 的方程为( )A. x 23+y 2=1B. x 23+y 22=1 C. x 212+y28=1 D. x 212+y24=1二、单空题(本大题共2小题,共10.0分)9.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.10.椭圆E:x2a2+y23=1的右焦点为F2,直线y=x+m与椭圆E交于A,B两点.若△F2AB周长的最大值是8,则m的值等于________.三、解答题(本大题共20小题,共240.0分)11.设椭圆C∶x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求C的方程;(2)求过点(3,0)且斜率为45的直线被C所截线段的中点坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√33,短轴一个端点到右焦点的距离为√3.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆的左焦点且斜率为1的直线l交椭圆于A,B两点,求|AB|.13.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,√32)在椭圆C上,且△PF1F2的面积为32.(1)求椭圆C的标准方程;(2)若椭圆C上存在A,B两点关于直线x=my+1对称,求m的取值范围.14.已知点P(3,4)是椭圆x2a2+y2b2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程;(2)△PF1F2的面积.15.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为2√3.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若斜率为k(k≠0)的直线l与椭圆C交于不同的两点A,B,且线段AB的垂直平分线过定点(13,0),求k的取值范围.16.已知椭圆x2a2+y2b2=1(a>b>0)和直线l:xa−yb=1,椭圆的离心率e=√63,坐标原点到直线l的距离为√32.(1)求椭圆的方程;(2)已知定点E(−1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使以CD为直径的圆过定点E?若存在,求出k的值,若不存在,说明理由.17.已知椭圆E:x2a2+y2b2=1(a>b>0)经过两点(0,1),(√3,12).(I)求椭圆E的方程;(II)若直线l:x−y−1=0交椭圆E于两个不同的点A,B,O是坐标原点,求△AOB 的面积S.18.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,M(√3,−12)是椭圆C上的一点.(1)求椭圆C的方程;(2)过点P(−4,0)作直线l与椭圆C交于不同两点A、B,A点关于x轴的对称点为D,问直线BD是否过定点?若是,求出该定点的坐标;若不是,请说明理由.19.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到右焦点的距离为3√2.(1)求椭圆的方程;(2)若直线y=x−1与椭圆相交于不同两点A、B,求|AB|.20.已知椭圆C1的方程为x24+y23=1,椭圆C2的短轴为C1的长轴且离心率为√32.(1)求椭圆C2的方程;(2)如上图,M,N分别为直线l与椭圆C1,C2的交点,P为椭圆C2与y轴的交点,△PON 的面积为△POM的面积的2倍,若直线l的方程为y=kx(k>0),求k的值.21.如图,在平面直角坐标系xOy中,已知A,B两点分别为椭圆x2a2+y2b2=1(a>b>0)的右顶点和上顶点,且AB=√7,右准线l的方程为x=4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P,交l于点Q.若以PQ为直径的圆经过原点,求直线PQ的方程.22.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.23.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,长轴长为4,直线y=kx+2与椭圆C交于A,B两点且∠AOB为直角,O为坐标原点.(1)求椭圆C的方程;(2)求AB的长度.24.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.25.如图,在平面直角坐标系xOy中,已知圆C:(x−3)2+y2=1,椭圆E:x2a2+y2b2=1(a>b>0)的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当AN=127AM时,求直线l的方程.26.在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,右焦点到右准线的距离为3.(1)求椭圆C的标准方程;(2)过点P(0,1)的直线l与椭圆C交于两点A,B.已知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.27.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆E上.(1)若F1F2=2√2,点P的坐标为(√3,√2),求椭圆E的方程;(2)若点P横坐标为a2,点M为PF1中点,且OP⊥F2M,求椭圆E的离心率.28.如图,在直角坐标系xOy中,设椭圆C:x2a2+y2b2=1 (a>b>0)的左右两个焦点分别为F1、F2过右焦点F2且与x轴垂直的直线l与椭圆C相交,其中一个交点为M( √2, 1 )(1)求椭圆C的方程;(2)设椭圆C的一个顶点为B( 0,−b ),直线BF2交椭圆C于另一点N,求△F1BN的面积29.如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且经过点(1,32),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C 于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若ΔAEF与ΔBDF的面积比为1:7,求直线l的方程.30.已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点坐标为F1(−√3,0),F2(√3,0),且椭圆E经过点P(−√3,12).(1)求椭圆E的标准方程;(2)设点M是椭圆E上位于第一象限内的动点,A,B分别为椭圆E的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求四边形ABCD的面积.答案和解析1.【答案】D【解析】【分析】本题主要考查椭圆的定义的应用,做题时要善于发现规律,进行转化,三角形AF2B为焦点三角形,周长等于两个长轴长,再根据椭圆方程,即可求出三角形AF2B的周长,欲使|BF2|+|AF2|的最大,只须|AB|最小,利用椭圆的性质即可得出答案.【解析】解:由椭圆的方程可知:长半轴长为a=2,由椭圆的定义可知:|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8−(|AF2|+|BF2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b2a=3,可求得b2=3,即b=√3.故选D.2.【答案】D【解析】【分析】本题考查椭圆的方程和离心率,属于简单题.结合已知条件建立关系式求得a2=6,b2=3,即可得到椭圆方程.【解答】解:因为椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,所以ca =√22①又因为直线x=√2与椭圆C交于A,B两点,O为坐标原点,且OA⊥OB,所以A(√2,√2)代入x2a2+y2b2=1得2a2+2b2=1②又因为a2=b2+c2③联立①②③解得a2=6,b2=3,所以椭圆的方程为x26+y23=1.故选D.3.【答案】D【解析】【分析】本题主要考查了椭圆的概念与标准方程、椭圆的几何性质、直线与椭圆的位置关系,属于基础题.取椭圆的左焦点F′,由三角形全等知|PF|=|QF′|,由椭圆的概念及集合性质知|FP|+ |FQ|=|F′Q|+|FQ|=2a,|FA|=a−c,b=1,代入条件及利用a,b,c的关系式求得a.【解答】解:取椭圆的左焦点F′,因为直线过原点,∴|OP|=|OQ|,|OF|=|OF′|,由椭圆的对称性,∴|PF|=|QF′|,∴|FP|+|FQ|=|F′Q|+|FQ|=2a,∵|FP|+|FQ|+|FA|=52a,|FA|=a−c,所以2a+a−c=52a,即a=2c,∵a2=b2+c2=1+14a2,a=2√33.故选D.4.【答案】D【解析】【分析】本题考查椭圆的定义、标准方程以及简单的几何性质,属于基础题.由直线2x+y−4=0经过椭圆x2a2+y2b2=1(a>b>0)的右焦点F2,可求得c=2,由椭圆定义可求得即a=√5,故a2=5,b2=1,椭圆方程可解.【解答】解:直线2x +y −4=0与x 轴和y 轴的交点分别为F 2(2,0),B(0,4), 所以c =2,又2a =|AF 1|+|AF 2|=|AB|+|AF 2|=|BF 2|=2√5, 所以a =√5,从而b 2=5−4=1, 所以椭圆方程x 25+y 2=1.故选D .5.【答案】C【解析】 【分析】本题考查椭圆的几何性质,涉及向量的线性关系,属基础题.根据向量关系得出|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,根据平行线截线段成比例定理得出|AO||AF|的值,得到a ,c 的关系,求得离心率. 【解答】 解:如图所示:∵AP⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ , ∴|AP ⃗⃗⃗⃗⃗ |=2|PB ⃗⃗⃗⃗⃗ |,∴|PA||AB|=23, 又∵PO//BF , ∴|AO||AF|=|PA||AB|=23, 即aa+c =23, ∴e =ca =12. 故选C .6.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4,∴k =59, 故选:A .7.【答案】C【解析】 【分析】本题主要考查椭圆的离心率,属于基础题.根据题意求出c =2,a =2√2,由e =ca 即可求出结果. 【解答】 解:∵椭圆C :x 2a 2+y 24=1的焦点在x 轴上,且焦距为4,∴a 2>4,c =2, ∴a 2−4=4, ∴a =2√2, ∴e =ca =2√2=√22. 故选C .8.【答案】B【解析】 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用△AF 1B 的周长为4√3,求出a =√3,根据离心率为√33,可得c =1,求出b ,即可得出椭圆的方程. 【解答】解:∵△AF 1B 的周长为4√3,∵△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a +2a =4a , ∴4a =4√3, ∴a =√3, ∵离心率为√33,∴ca =√33,c =1,∴b =√a 2−c 2=√2, 即椭圆C 的方程为x 23+y 22=1.故选B .9.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解.【解答】解:设椭圆的标准方程为 x 2a2+y 2b 2=1(a >b >0),∵离心率为12, ∴e =ca =√a 2−b 2a=12, ∴b =√32a , 令a =2,则b =√3,∴椭圆的标准方程为x 24+y 23=1.故答案为x 24+y 23=1(答案不唯一).10.【答案】1【解析】 【分析】本题考查的知识要点:椭圆的定义和方程的应用,属于基础题型.首先利用椭圆的定义建立周长的等式,进一步利用三角形的边长关系建立等式,求出相应的值,最后求出结果. 【解答】 解:椭圆E :x 2a 2+y 23=1的右焦点为F 2,N 为左焦点,直线y =x +m 与椭圆E 交于A ,B 两点,则△F 2AB 周长l =AB +BF 2+AF 2=AB +2a −NB +2a −NA =4a +(AB −NA −NB), 由于NA +NB ≥AB ,所以当N 、A 、B 三点共线时,△F 2AB 的周长l =4a =8, 所以a =2, 所以椭圆的方程为x 24+y 23=1,直线y =x +m 经过左焦点,所以m =1. 故答案为1.11.【答案】解:(1)将(0,4)代入C 的方程得16b 2=1,则b =4,∵e =ca =35,∴a 2−b 2a 2=925,即1−16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1. (2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线与C 的交点为A(x 1,y 1),B(x 2,y 2). 将直线方程y =45(x −3)代入C 的方程,得x 225+(x−3)225=1,即x 2−3x −8=0,故x 1+x 2=3.设线段AB 的中点坐标为(x′,y′),则x′=x 1+x 22=32,y′=y 1+y 22=25(x 1+x 2−6)=−65,即所求中点坐标为(32,−65).【解析】本题考查椭圆的标准方程及性质,以及直线与椭圆的综合应用,属于中档题目. (1)将(0,4)代入椭圆方程求出b ,再由椭圆的离心率求出a ,得到椭圆方程; (2)写出直线方程联立椭圆方程,利用中点坐标公式结合韦达定理得出.12.【答案】解:(Ⅰ)由题意:e =c a =√33,即a =√3c ,短轴一个端点到右焦点的距离为√3, 即b 2+c 2=(√3)2=3, 而a 2=b 2+c 2, 所以a 2=3,b 2=2, 所以椭圆的方程:x 23+y 22=1;(Ⅱ)由(Ⅰ),左焦点(−1,0),直线l 的方程:y =x +1, 设A(x,y),B(x′,y′),联立直线l 与椭圆的方程,消去y 整理得:5x 2+6x −3=0, 所以x +x′=−65,xx′=−35,∴|AB|=√1+k 2√(x +x′)2−4xx′ =√1+1×√(−65)2−4×(−35)=8√35.【解析】本题考查直线与椭圆的交点弦长,属于基础题.(Ⅰ)由题意得离心率及长半轴长及a ,b ,c 之间的关系,求出椭圆的方程;(Ⅱ)由题意写出直线l 的方程与椭圆联立写出两根之和及之积,再由弦长公式求出弦长.13.【答案】解:(1)由题意可得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2解得a =2,b =1,故椭圆C 的标准方程为x 24+y 2=1..(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0). 因为直线x =my +1过定点(1,0),所以(x 1−1)2+y 12=(x 2−1)2+y 22.因为A ,B 在椭圆上,所以x 124+y 12=1,x 224+y 22=1,所以(x 1−1)2+1−x 124=(x 2−1)2+1−x 224,整理得x 12−x 224=(x 1−x 2)(x 1+x 2−2),所以x 1+x 2=83,所以x 0=43.因为点M 在直线x =my +1上,所以x 0=my 0+1,则y 0=13m .由{x 24+y 2=1,x =43,得y =±√53, 则−√53<13m <0或0<13m <√53,解得m <−√55或m >√55.故m 的取值范围为(−∞,−√55)⋃(√55,+∞).【解析】本题考查椭圆的性质和标准方程,直线与椭圆的位置关系,属于中档题. (1)由题意得{ 1a 2+34b 2=1,√3c 2=32,c 2=a 2−b 2,解出a ,b ,进而求出答案.(2)设A(x 1,y 1),B(x 2,y 2),线段AB 的中点为M(x 0,y 0),由条件求出x 1+x 2=83,x 0=43,进而由条件求出y =±√53,进而求出答案.14.【答案】解:(1) 令F 1(−c,0),F 2(c,0),∵PF 1⊥PF 2,∴k PF 1·k PF 2=−1,即43+c ·43−c =−1,解得c =5,∴椭圆的方程为x 2a 2+y 2a 2−25=1.∵点P(3,4)在椭圆上,∴9a 2+16a 2−25=1,解得a 2=45,或a 2=5, 又a >c ,∴a 2=5舍去, 故所求椭圆方程为x 245+y 220=1.(2)P 点纵坐标的值即为F 1F 2边上的高,∴△PF1F2=12|F1F2|×4=12×10×4=20.【解析】本题考查椭圆的简单性质的应用,以及用待定系数法求椭圆的标准方程的方法.(1)设出焦点的坐标,利用垂直关系求出c值,椭圆的方程化为x2a2+y2a2−25=1,把点P的坐标代入,可解得a2的值,从而得到所求椭圆方程.(2)P点纵坐标的值即为F1F2边上的高,由S△PF1F2=12|F1F2|×4求得△PF1F2的面积.15.【答案】解:(Ⅰ)由题意可知:{2b=2√3ca=12a2=b2+c2,得{a=2b=√3c=1,故椭圆C的标准方程为x24+y23=1;(Ⅱ)设直线l:y=kx+m,A(x1,y1),B(x2,y2),将y=kx+m代入椭圆方程,消去y得(3+4k2)x2+8kmx+4m2−12=0,所以,即m2<4k2+3…………①由根与系数关系得x1+x2=−8km3+4k2,则y1+y2=k(x1+x2)+2m=6m3+4k2,所以线段AB的中点P的坐标为(−4km3+4k2,3m3+4k2).又线段AB的垂直平分线l′的方程为y=−1k (x−13),由点P在直线l′上,得3m3+4k2=−1k(−4km3+4k2−13),即4k2+3km+3=0,所以m=−13k(4k2+3)…………②由①②得(4k2+3)29k2<4k2+3,∵4k2+3>0,∴4k2+3<9k2所以k2>35,即k<−√155或k>√155,所以实数k的取值范围是.【解析】本题考查了椭圆方程的求法,考查了直线和圆锥曲线间的关系,考查了直线和圆锥曲线的关系问题,常采用联立直线方程和圆锥曲线方程,利用根与系数的关系求解,属于中档题.(Ⅰ)由离心率得到a ,c ,b 的关系,再代入椭圆的标准方程中即可求解.(Ⅱ)设出A ,B 的坐标,联立直线方程和椭圆方程,由判别式大于0得到m 2<4k 2+3,再结合根与系数关系得到AB 中点P 的坐标为(−4km3+4k 2,3m3+4k 2).求出AB 的垂直平分线l′方程,由P 在l′上,得到4k 2+3km +3=0.结合m 2<4k 2+3求得k 的取值范围.16.【答案】解:(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca=√63ab√a 2+b 2=√32,又a 2=b 2+c 2,解得:a 2=3,b =1, ∴椭圆的方程为x 23+y 2=1;(Ⅱ)假设存在这样的k ,使以CD 为直径的圆过定点E , 联立直线与椭圆方程得(1+3k 2)x 2+12kx +9=0, ∴△=(12k)2−36(1+3k 2)>0,∴k >1或设C(x 1,y 1),D(x 2,y 2), 则{x 1+x 2=−12k1+3k 2x 1·x 2=91+3k2,② 而y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4,EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),要使以CD 为直径的圆过点E(−1,0),当且仅当CE ⊥DE 时,故EC ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0, 则y 1y 2+(x 1+1)(x 2+1)=0,∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0,③ 将②代入③整理得k =76>1, 经验证使得①成立,综上可知,存在k =76,使得以CD 为直径的圆过点E .【解析】本题考查椭圆的方程及直线与椭圆的位置关系,注意合理地进行等价转化,属于中档题.(Ⅰ)直线l 方程为bx −ay −ab =0,依题意可得:{ca =√63√a 2+b 2=√32,由此能求出椭圆的方程;(Ⅱ)假设存在这样的值,联立方程得(1+3k 2)x 2+12kx +9=0,再由根的判别式和根与系数的关系进行求解即可.17.【答案】解:(1)由题意得{b 2=13a2+14b2=1,解得{a =2b =1,所以椭圆E 的方程为x 24+y 2=1.(2)记A(x 1,y 1),B(x 2,y 2),由{x 24+y 2=1x =y +1, 消去x 得5y 2+2y −3=0. 所以y 1,2=−1或35,直线l 与x 轴的交点为(1,0),记为点P ,S =12|OP||y 1−y 2|=45.【解析】本题主要考查了椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系,三角形面积的应用,属于简单题.(1)根据已知及椭圆的概念及标准方程,椭圆的性质及几何意义的计算,求出椭圆E 的方程;(2)根据已知及直线与椭圆的位置关系,三角形面积的计算,求出△AOB 的面积S .18.【答案】解:(1)∵c a =√32,a 2=b 2+c 2,∴a 2=4b 2,∴x 24b 2+y 2b 2=1,将M (√3,−12)代入椭圆C ,∴b 2=1, ∴椭圆C 方程为:x 24+y 2=1.(2)显然AB 斜率存在,设AB 为:y =k(x +4),{x 24+y 2=1,y =k(x +4)⇒(1+4k 2)x 2+32k 2x +64k 2−4=0,Δ=16−192k 2>0,∴k 2<112. 设A(x 1,y 1),B(x 2,y 2),D(x 1,−y 1), ∴x 1+x 2=−32k 21+4k2,x 1x 2=64k 2−41+4k 2,∵BD :y +y 1=y 2+y1x 2−x 1(x −x 1),∴y =0时x =x 1+x 2y 1−x 1y 1y 1+y 2=2kx 1x 2+4k(x 1+x 2)k(x 1+x 2)+8k=2k(64k 2−41+4k 2)+4k(−32k 21+4k 2)k(−32k 21+4k 2)+8k =128k 3−8k−128k 3−32k 3+8k+32k 3=−1,∴直线BD 过定点(−1,0).【解析】本题考查椭圆方程的求法,直线与椭圆的位置关系,直线的斜率的应用,考查转化思想以及计算能力.(1)根据点在椭圆上得3a 2+14b 2=1,与离心率联立方程组解得a 2=2,b 2=1,即得太严方程;(2)设直线l 的方程为y =k(x +4),A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=−32k 21+4k 2,x 1x 2=64k 2−41+4k 2求出BD 的方程,令y =0,解得横坐标,结合韦达定理化简可得横坐标为定值,即可证明直线BD 过定点.19.【答案】解:(1)根据题意,椭圆C 的短轴一个端点到右焦点的距离为3√2,则有a =3√2, 又由椭圆C 的离心率为√22,则有e =ca =√22,则有c=3,则b2=a2−c2=18−9=9,则椭圆的标准方程为:x218+y29=1;(2)设A(x1,y1),B(x2,y2).由(1)可得:椭圆的标准方程为:x218+y29=1,直线l的方程为:y=x−1,联立{x218+y29=1y=x−1,消去y得3x2−4x−16=0,则有x1+x2=43,x1x2=−163,|AB|=√1+12√(x1+x2)2−4x1x2=√2√169+643=4√263.【解析】本题考查椭圆的几何性质,直线与椭圆的位置关系,椭圆的标准方程,属基础题.(1)根据题意,由椭圆的几何性质可得e=ca =√22且a=3√2,解可得c的值,进而计算可得b的值,将a、b的值代入椭圆的标准方程,即可得答案;(2)联立直线与椭圆的方程,可得方程3x2−4x−16=0,结合根与系数的关系由弦长公式计算可得答案.20.【答案】解:(1)椭圆C1的方程为x24+y23=1的长轴长为4,设椭圆C2的方程为y2a2+x2b2=1(a>b>0),由题意可得b=2,e=ca =√32,a2−c2=4,解得a=4,b=2,c=2√3,可得椭圆C2的方程为y216+x24=1;(2)设M(x1,y1),N(x2,y2),△PON面积为△POM面积的2倍,可得|ON|=2|OM|,即有|x2|=2|x1|,联立{y =kx 3x 2+4y 2=12,消去y 可得x =±√123+4k2,即|x 1|=√123+4k 2,同样求得|x 2|=√164+k 2, 由√164+k 2=2√123+4k 2,解得k =±3, 由k >0,得k =3.【解析】本题考查椭圆的方程和性质及直线与椭圆位置关系,考查联立方程求交点,考查化简整理的运算能力,属于中档题. (1)由题意设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),运用离心率公式和a ,b ,c 的关系,解方程即可得到所求方程;(2)设M(x 1,y 1),N(x 2,y 2),由题意可得|x 2|=2|x 1|,联立直线y =kx 和椭圆方程,求得交点的横坐标,解方程即可得到所求值.21.【答案】解:(1)设椭圆的焦距为2c(c >0).由题意得{a 2c=4,a 2=b 2+c 2,√a 2+b 2=√7,解得a 2=4,b 2=3. 所以椭圆的标准方程为:x 24+y 23=1.(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y 23=1,消y 得(4k 2+3)x 2−16k 2x +16k 2−12=0. 又直线PQ 过点A(2,0),则方程必有一根为2,则x P =8k 2−64k 2+3. 代入直线y =k(x −2),得点P (8k 2−64k 2+3,−12k4k 2+3).联立{y =k(x −2),x =4,所以Q(4,2k).又以PQ 为直径的圆过原点,所以OP ⊥OQ , 则OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k 4k 2+3=8k 2−244k 2+3=0,解得k 2=3,所以k =±√3.所以直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x0−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0, 所以4x 0+2y 02x0−2=0 ①,又x 024+y 023=1 ②,联立①②,解得x 0=65或x 0=2(舍),所以P (65,−4√35)或P (65,4√35). 所以直线PQ 的斜率为±√3,从而直线PQ 的方程为√3x −y −2√3=0或√3x +y −2√3=0.【解析】本题考查椭圆的标准方程,椭圆的性质以及直线与椭圆的位置关系,属于难题. (1)由题意列出关于a ,b ,c 的方程组,求解即可;(2)方法一:由题意得直线PQ 不垂直于x 轴,设PQ 的方程为y =k(x −2),联立{y =k(x −2),x 24+y23=1,求出P (8k 2−64k 2+3,−12k 4k 2+3),Q(4,2k).利用OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =4⋅8k 2−64k 2+3+2k ⋅−12k4k 2+3=8k 2−244k 2+3=0,求出k 即可求解;方法二:设点P(x 0,y 0)(x 0≠2),所以直线PQ 方程为y =yx 0−2(x −2),与右准线x =4联立,得Q(4,2y 0x−2).又以PQ 为直径的圆过原点,所以OP ⊥OQ ,则OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0,求出x 0=65,得到P (65,−4√35)或P (65,4√35).所以直线PQ 的斜率为±√3,即可求解.22.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(1,32),(−1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.23.【答案】解:(1)由题意2a =4,∴a =2,∴ca =√32,∴c =√3,b 2=a 2−c 2=1,∴椭圆C 的方程为x 24+y 2=1;(2)设A(x 1,y 1),B(x 2,y 2), 把y =kx +2代入x 24+y 2=1,得(4k 2+1)x 2+16kx +12=0,Δ=(16k)2−4×12×(4k 2+1)=64(k 2−3)>0,即k 2>3, ∴x 1+x 2=−16k 1+4k 2,x 1x 2=121+4k 2,∵∠AOB 为直角,∴OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(k 2+1)x 1x 2+2k(x 1+x 2)+4=0, ∴12(k 2+1)1+4k 2−32k 21+4k 2+4=0,∴−4k 2+16=0,∴k 2=4,∴x 1+x 2=−16k1+4k 2=±3217,x 1x 2=121+4k 2=1217,∴|AB|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√5⋅√(3217)2−4817=4√6517, 故|AB|的长度4√6517.【解析】本题考查了椭圆方程与几何性质、直线与椭圆的位置关系等基础知识,属于中档题.(1)根据离心率和长轴长,可得a ,b ,然后即可写出椭圆方程;(2)联立直线与椭圆,利用韦达定理以及∠AOB =90°,求出k.再用弦长公式求出弦长|AB|.24.【答案】解:(1)由椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,右焦点到右准线的距离为3.得{e =c a =12,a 2c −c =3解得{a =2,c =1所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),因为OAQB 为平行四边形,所以OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ , 则Q(x 1+x 2,y 1+y 2),当直线l 的斜率不存在时,直线l 过原点O ,此时O 、A 、B 三点共线,不符合题意: 当直线l 的斜率存在时,设直线l 的方程为y =kx +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2,将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意, 所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系,属于较难题.(1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =kx +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.25.【答案】解:(1)记椭圆E 的焦距为2c(c >0).因为右顶点A (a , 0)在圆C 上,右准线x =a 2c与圆C :(x −3)2+y 2=1相切.所以{(a −3)2+02=1 , | a 2c−3 |=1 ,解得{a =4 ,c =8,(舍去) { a =2 ,c =1 .于是b 2=a 2−c 2=3,所以椭圆方程为:x 24+y 23=1.(2)法1:设N (x N , y N ) , M (x M , y M ),显然直线l 的斜率存在,设直线l 的方程为:y =k (x −2). 由方程组 {y =k (x −2) , x 24+y 23=1消去y 得,(4k 2+3)x 2−16k 2x +16k 2−12=0.所以x N ⋅2=16k 2−124k 2+3,解得x N =8k 2−64k 2+3. 由方程组{ y =k (x −2) ,(x −3)2+y 2=1 ,消去y 得(k 2+1)x 2−(4k 2+6)x +4k 2+8=0 , 所以x M ⋅2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.因为AN =127AM ,所以2−x N =127(x M −2).即124k 2+3=127⋅21+k 2,解得 k =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.法2:设N (x N , y N ) , M (x M , y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为:x =ty +2 (t ≠0).由方程组{x =ty +2 , x 24+y 23=1消去x 得,(3t 2+4)y 2+12ty =0,所以y N =−12t3t 2+4 , 由方程组 {x =ty +2 ,(x −3)2+y 2=1消去x 得(t 2+1)y 2−2ty =0, 所以y M =2tt 2+1, 因为AN =127AM ,所以y N =−127y M ,即−12t3t 2+4=−127⋅2t t 2+1,解得 t =±1,所以直线l 的方程为x −y −2=0或 x +y −2=0.【解析】本题主要考查了椭圆的概念及标准方程,直线与椭圆的位置关系,直线与圆的位置关系及判定,直线的一般式方程,考查学生的计算能力和推理能力,属于较难题. (1)记椭圆E 的焦距为2c ,根据题意可知{ (a −3)2+02=1 ,| a 2c −3 |=1 ,从而即可得a ,c 的值,进而求得椭圆E 的方程.(2)法1:设N (x N , y N ) , M (x M , y M )且直线l 的方程为:y =k (x −2),从而联立直线和椭圆方程消去y 后可得x N =8k 2−64k 2+3,同理联立直线和圆可得x M =2k 2+4k 2+1,再根据AN =127AM 即可求得k 的值,从而求得直线l 的方程.法2:设N (x N , y N ) , M (x M , y M )且设直线l 的方程为:x =ty +2 (t ≠0),联立直线和椭圆方程消去x 可得y N =−12t3t 2+4,再联立直线和圆可得y M =2tt 2+1,从而据AN =127AM 即可求得t 的值,从而求得直线l 的方程.26.【答案】解:(1)由椭圆C:x 2a 2+y2b 2=1的离心率为12,右焦点与右准线的距离为3, 得c a =12,a 2c−c =3,解得c =1,a =2,所以b 2=a 2−c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2),四边形OAQB 是平行四边形时OQ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ ; 当直线I 的斜率不存在时,直线l 过原点O ,此时OAB 三点共线,不符合题意: 当直线I 的斜率存在时,设直线l 的方程为y =k +1,与椭圆方程联立有{y =kx +1,x 24+y 23=1,所以x 24+(kx+1)23=1,即(3+4k 2)x 2+8kx −8=0,所以△>0,x 1+x 2=−8k3+4k 2,所以y 1+y 2=63+4k 2, 将Q(x 1+x 2,y 1+y 2)的坐标代入椭圆方程得(−8k3+4k 2)24+(63+4k 2)23=1,化简得k 2=14,所以k =±12,符合题意,所以Q 的坐标是(±1,32).【解析】本题考查了椭圆的标准方程及性质,考查了直线与椭圆的位置关系. (1)由离心率及右焦点F 到右准线的距离为3及a ,b ,c 之间的关系求出椭圆的方程; (2)设A(x 1,y 1),B(x 2,y 2),设直线l 的方程为y =k +1,与椭圆方程联立消去y 后结合韦达定理可得x 1+x 2,y 1+y 2,结合点Q(x 1+x 2,y 1+y 2)在椭圆上可解得k 的值,故可得Q 的坐标.27.【答案】解:(1)设椭圆E 焦距为2c ,则2c =|F 1F 2|=2√2,所以c 2=a 2−b 2=2, ① 又点(√3,√2)在椭圆E :x 2a 2+y 2b 2=1上,所以3a 2+2b 2=1,②联立①②解得{a 2=6b 2=4或{a 2=1b 2=−1(舍去),所以椭圆E 的方程为x 26+y 24=1;(2)设椭圆E 焦距为2c ,则F 1(−c,0),F 2(c,0),将x =a2代入x 2a 2+y 2b 2=1,得y 2=3b24,不妨设点P 在x 轴上方, 故点P 坐标为(a2,√3b2), 又点M 为PF 1中点,故点M 坐标为(a−2c 4,√3b4), 所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(a−6c 4,√3b 4),OP ⃗⃗⃗⃗⃗ =(a 2,√3b2),由,得OP ⃗⃗⃗⃗⃗ ⋅F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =0, 即a−6c 4⋅a2+√3b4⋅√3b 2=0,化简得a 2−6ac +3b 2=0,将b 2=a 2−c 2代入得3c 2+6ac −4a 2=0, 即3(ca )2+6⋅ca −4=0, 所以3e 2+6⋅e −4=0, 解得e =−1±√213,因为e ∈(0,1),所以椭圆E 的离心率为e =√213−1.【解析】本题考查向量的数量积、椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系,为基础题.(1)把点(√3,√2)代入椭圆方程,求出a ,b ,即可求出结果; (2)将x =a2代入x 2a2+y 2b 2=1,得出点P 坐标为(a 2,√3b2),得出点M 的坐标和相应向量的坐标,利用数量积,即可求出结果.28.【答案】解:(1)因为l ⊥x 轴,所以F 2(√2,0),由题意可得{2a 2+1b 2=1a 2−b 2=2,解得{a 2=4b 2=2,∴椭圆C 的方程为x 24+y 22=1.(2)直线BF 2的方程为y =x −√2. 由{y =x −√2x 24+y 22=1得点N 的纵坐标为√23.又| F 1F 2 |=2√2, ∴S △F 1BN =12×(√2+√23)×2√2=83.【解析】本题考查求椭圆的方程,三角形的面积,是直线与椭圆位置关系,属于基础题(1)由题意可得F 2(√2,0),进而得到{2a 2+1b 2=1a 2−b 2=2,求解即可得到椭圆C 的方程;(2)根据题意可得直线BF 2的方程为y =x −√2.联立直线方程和椭圆方程即可得到N 的纵坐标为√23.再根据| F 1F 2 |=2√2和三角形的面积公式即可得解.29.【答案】解:(1)设椭圆的半焦距长为c ,∴{ c a =121a 2+94b 2=1, 又∵a 2=b 2+c 2,∴{a =2b =√3,∴椭圆C 的方程为x 24+y 23=1;(2)设直线DE 的方程为x =ky −1,D(x 1,y 1),E(x 2,y 2),,联立{x =ky −13x 2+4y 2=12⇒3(ky −1)2+4y 2=12 ∴(3k 2+4)y 2−6ky −9=0 ∴{y 1+y 2=6k3k 2+4 ①y 1y 2=−93k 2+4 ②y 2=−37y 1 ③,由①③得{y 1=21k2(3k 2+4)y 2=−9k 2(3k 2+4)代入 ②21⋅9⋅k 24(3k 2+4)2=93k 2+4⇒k =±43综合图象知k =43∴l 的方程为3x −4y +3=0【解析】本题考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系和圆锥曲线中的面积问题,是中档题.(1)由离心率为12和(1,32)在椭圆上,再结合a 2=b 2+c 2,可得a 、b ,从而得出椭圆方程;(2)设直线DE 的方程为x =ky −1,由ΔAEF 与ΔBDF 的面积比为1:7,可得y 2y 1=−37,直线DE与椭圆联立,计算可得k的值,即可得出直线l的方程.30.【答案】解:(1)因为椭圆焦点坐标为F1(−√3,0),F2(√3,0),且过点P(−√3,12),所以2a=PF1+PF2=12+√494=4,所以a=2,从而b=√a2−c2=√4−3=1,故椭圆的方程为x24+y2=1;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),因为A(−2,0),且A,D,M三点共线,所以y0x0+2=n2,解得n=2y0x0+2,所以BD=1+2y0x0+2=x0+2y0+2x0+2,同理得AC=x0+2y0+2y0+1,因此,S ABCD=12AC⋅BD=12⋅x0+2y0+2x0+2⋅x0+2y0+2y0+1=(x0+2y0+2)2 2(x0+2)(y0+1)=x02+4y02+4x0y0+4x0+8y0+42(x0y0+x0+2y0+2),因为点M(x0,y0)在椭圆上,所以x024+y02=1,即x02+4y02=4,代入上式得:S ABCD=4x0y0+4x0+8y0+82(x0y0+x0+2y0+2)=2,∴四边形ABCD的面积为2.【解析】本题考查的是椭圆的标准方程和计划意义,直线与椭圆的位置关系,属于较难题.(1)由2a=PF1+PF2=12+√494=4得到a,再由焦点坐标可得到c,利用b=√a2−c2,即可得到b,从而得到椭圆E的标准方程;(2)设点M(x0,y0)(0<x0<2,0<y0<1),C(m,0),D(0,n),A,D,M三点共线,所以y0x0+2=n2,从而得到BD=1+2y0x0+2=x0+2y0+2x0+2,AC=x0+2y0+2y0+1,由S ABCD=12AC⋅BD,即可得到四边形ABCD的面积.。
2024年高考数学题源追溯专题12 椭圆(解析版)
专题12 椭圆目录一览2023真题展现考向一 椭圆的性质考向二 直线与椭圆相交问题真题考查解读近年真题对比考向一 椭圆的性质考向二 直线与椭圆相交问题命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 椭圆的性质1.(2023•新高考Ⅰ•第5题)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =( )A .233B .2C .3D .6【答案】A解:由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4−1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21−b 21)=4(a 21−1),∴a =233或a =−233(舍去).考向二 直线与椭圆相交问题2.(2023•新高考Ⅱ•第5题)已知椭圆C :x 23+y 2=1的左焦点和右焦点分别为F 1和F 2,直线y =x +m 与C 交于点A ,B 两点,若△F 1AB 面积是△F 2AB 面积的两倍,则m =( )A .23B .23C .−23D .−23【答案】C解:记直线y =x +m 与x 轴交于M (﹣m ,0),椭圆C :x 23+y 2=1的左,右焦点分别为F 1(−2,0),F 2(2,0),由△F 1AB 面积是△F 2AB 的2倍,可得|F 1M |=2|F 2M |,∴|−2−x M |=2|2−x M |,解得x M =23或x M =32,∴﹣m =23或﹣m =32,∴m =−23或m =﹣32,y 2=1x +m可得,4x 2+6mx +3m 2﹣3=0,∵直线y =x +m 与C 相交,所以Δ>0,解得m 2<4,∴m =﹣32不符合题意,故m =−23.【命题意图】考查椭圆的定义、标准方程、几何性质、直线与椭圆.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】椭圆的定义、方程、性质、直线与椭圆是高考常考内容,以小题形式出现,常规题,难度中等.【得分要点】一、椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.注:在椭圆的定义中必须要注意以下两个问题(1)定义中到两定点的距离之和是常数,而不能是变量.(2)常数(2a )必须大于两定点间的距离,否则轨迹不是椭圆.①若1212||||||MF MF F F +=,M 的轨迹为线段21F F ;②若1212||||||MF MF F F +<,M 的轨迹无图形二、椭圆的方程及简单几何性质x 2y 2y 2x 2椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)椭圆的定义:|PF 1|+|PF 2|=2a .(2)余弦定理:4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3)面积公式:S △PF 1F 2=12|PF 1||PF 2|·sin θ,当|y 0|=b ,即P 为短轴端点时,S △PF 1F 2取最大值,为bc .重要结论:S △PF 1F 2=2tan2b θ推导过程:由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ得2224||+||-2||||(1cos 121c PF PF PF PF θ=+())2212442||||(1cos )c a PF PF θ=-+2122||||1cos b PF PF θ=+由三角形的面积公式可得S △PF 1F 2=121|PF ||PF |sin 2θ=222222sincos12sin 22sin tan 21cos 1cos 2cos 2b b b b θθθθθθθθ⋅⋅===++注:S △PF 1F 2=2tan2b θ=||p y c =r c a )(+(r 是三角形内切圆的半径)(4)焦点三角形的周长为2(a +c ).(5)在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意的一点,当点P 在短轴端点时,12F PF ∠最大.四、点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系:点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 20b2>1.五、直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系,判断方法:联立Error!消y 得一元二次方程.当Δ>0时,方程有两解,直线与椭圆相交;当Δ=0时,方程有一解,直线与椭圆相切;当Δ<0时,方程无解,直线与椭圆相离.六、直线与椭圆相交的弦长公式1.定义:连接椭圆上两个点的线段称为椭圆的弦.2.求弦长的方法(1)交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求.(2)根与系数的关系法:如果直线的斜率为k ,被椭圆截得弦AB 两端点坐标分别为(x 1,y 1),(x 2,y 2),则弦长公式为:|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2·(y 1+y 2)2-4y 1y 2.y考向一 椭圆的性质3.(2021•新高考Ⅰ)已知F 1,F 2是椭圆C :+=1的两个焦点,点M 在C 上,则|MF 1|•|MF 2|的最大值为( )A .13B .12C .9D .6【解答】解:F 1,F 2是椭圆C :+=1的两个焦点,点M 在C 上,|MF 1|+|MF 2|=6,所以|MF 1|•|MF 2|≤=9,当且仅当|MF 1|=|MF 2|=3时,取等号,所以|MF 1|•|MF 2|的最大值为9.故选:C .4.(2022•新高考Ⅱ)已知直线l +=1在第一象限交于A ,B 两点,l 与x 轴、y 轴分别相交于M ,N 两点,且|MA |=|NB |,|MN |=2,则l 的方程为 .【解答】解:设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为E ,由+=1,+=1,相减可得:=﹣,则k OE •k AB =•==﹣,设直线l 的方程为:y =kx +m ,k <0,m >0,M (﹣,0),N (0,m ),∴E (﹣,),∴k OE =﹣k ,∴﹣k•k=﹣,解得k=﹣,∵|MN|=2,∴=2,化为:+m2=12.∴3m2=12,m>0,解得m=2.∴l的方程为y=﹣x+2,即x+y﹣2=0,故答案为:x+y﹣2=0.考向二直线与椭圆相交问题5.(2022•新高考Ⅰ)已知椭圆C:+=1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是 .【解答】解:∵椭圆C:+=1(a>b>0)的离心率为,∴不妨可设椭圆C:,a=2c,∵C的上顶点为A,两个焦点为F1,F2,∴△AF1F2为等边三角形,∵过F1且垂直于AF2的直线与C交于D,E两点,∴,由等腰三角形的性质可得,|AD|=|DF2|,|AE|=|EF2|,设直线DE方程为y=,D(x1,y1),E(x2,y2),将其与椭圆C联立化简可得,13x2+8cx﹣32c2=0,由韦达定理可得,,,|DE|====,解得c=,△ADE的周长等价于|DE|+|DF2|+|EF2|=4a=8c=.故答案为:13.根据近几年考查形式推测以小题形式出现,常规题,难度中等.椭圆的定义、方程、性质、直线与椭圆是高考常考内容。
(完整版)近五年椭圆高考题汇编,推荐文档
近年高考题 椭圆部分选编卷一1.已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) A 、4 B 、5 C 、7 D 、82.设椭圆的两个焦点分别为12F F 、,过1F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为( )A 、22B 、212- C 、22- D 、21- 3.已知△ABC 的顶点C B ,在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A 、2 3B 、6C 、4 3D 、124.曲线221(6)106x y m m m +=<--与曲线)95(19522<<=-+-n ny n x 的( ) A 、焦距相等 B 、离心率相等 C 、焦点相同 D 、准线相同5.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y += 6.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,椭圆C 上点A 满足212AF F F ⊥. 若点P 是椭圆C 上的动点,则12F P F A ⋅u u u r u u u u r 的最大值为 ( )A. 32B. 233 C. 94 D. 154 7.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,∆21F PF 是底角为30o的等腰三角形,则E 的离心率为 ( )A .12B .23C .34D .458.椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.9.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线3()y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________10.椭圆22221x y a b+=(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________.11.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,2BC =,则Γ的两个焦点之间的距离为________ .12.已知正方形ABCD ,则以A B ,为焦点,且过C D ,两点的椭圆的离心率为______________;13.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B+=_____; 14.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是。
专题三:椭圆高考真题赏析解析版
专题三:椭圆高考真题赏析一、单选题1.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)的圆与直线20bx ay ab -+=相切,则C 的离心率为【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所2.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991 cos2233n n nF ABn n+-∠==⋅⋅.在12AF F△中,由余弦定理得2214422243n n n n+-⋅⋅⋅=,解得3n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4,422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3.2018年全国普通高等学校招生统一考试理数(全国卷II)已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A .23B .12C .13D .14【答案】D 【解析】 【分析】 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos 6PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2221=4,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 4.2019年全国统一高考数学试卷(理科)(新课标Ⅱ) 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 二、填空题5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程6.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【答案】( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题7.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解. (2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)xE y aa+=>可得:(),0A a-,(),0B a,()0,1G∴(),1AG a=,(),1GB a=-∴218AG GB a⋅=-=,∴29a=∴椭圆方程为:2219xy+=(2)证明:设()06,P y,则直线AP的方程为:()()363yy x-=+--,即:()039yy x=+联立直线AP的方程与椭圆方程可得:()221939xyyy x⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y+++-=,解得:3x=-或223279yxy-+=+将223279yxy-+=+代入直线()039yy x=+可得:0269yyy=+所以点C的坐标为20022003276,99y yy y⎛⎫-+⎪++⎝⎭.同理可得:点D的坐标为2002200332,11y yy y⎛⎫--⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.8.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】 (1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =. 【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.9.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)AM 的方程为2y x =-+2y x =;(2)证明见解析. 【解析】 【分析】(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛⎫-⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程; (2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果. 【详解】(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为1,2⎛ ⎝⎭或1,2⎛-⎝⎭.所以AM 的方程为2y x =-+2y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<直线MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论. 10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.【答案】(1)12k <-(2)28或28- 【解析】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P 的坐标,得到FP ,再由两点间距离公式表示出,FA FB ,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得 1212043x x y y k +++⋅=. 由题设知12121,22x x y y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<. 又点P 在C 上,所以34m =,从而31,2P ⎛⎫- ⎪⎝⎭,32FP =.于是(122x FA x ===-. 同理222x FB =-. 所以()121432FA FB x x +=-+=. 故2FP FA FB =+,即,,FA FP FB 成等差数列. 设该数列的公差为d ,则()212112||2d FB FA x x x x =-=-=+②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得d =.所以该数列的公差为28或28-. 点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到0FP FM +=,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大. 11.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1) 2214x y +=.(2)证明见解析. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t,2),(t,2-).则1222122k k t t +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.12.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】 【分析】 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得0002x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 13.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM 的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <<.因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.14.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a>b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y +=(2)2y x =-【解析】试题分析:设出F ,由直线AF 的斜率为3求得c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF的斜率为3,()0,2A -所以2c =c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即2k <-或2k >时 1212221612,1414k x x x x k k+==++. 所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或22y x =--. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.15.2020年全国统一高考数学试卷(理科)(新课标Ⅲ)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ的面积. 【详解】(1)222:1(05)25x yC mm+=<<∴5 a=,b m =,根据离心率22154115c b mea a⎛⎫⎛⎫==-=-=⎪ ⎪⎝⎭⎝⎭,解得54m=或54m=-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525x y+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-= ∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.6.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+.【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示; (2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kb x k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k ==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = ∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+. ∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.。
高考文科数学练习题含解析椭圆
课时跟踪检测(四十九) 椭圆[A 级 基础题——基稳才能楼高]1.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x 2-n +y 2-m =1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m -(-n )=n -m .2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=1 解析:选B 椭圆9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),则c = 5.又2b =2,即b =1,所以a 2=b 2+c 2=6, 则所求椭圆的标准方程为x 2+y 26=1. 3.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.12解析:选D ∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12. 5.(2019·长沙一模)椭圆的焦点在x 轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.x 22+y 22=1 B.x 22+y 2=1 C.x 24+y 22=1 D.y 24+x 22=1 解析:选C 由条件可知b =c =2,a =2,所以椭圆的标准方程为x 24+y 22=1.故选C.6.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 解析:选C 如图所示,∵线段PF 1的中垂线经过F 2,∴|PF 2|=|F 1F 2|=2c ,即椭圆上存在一点P ,使得|PF 2|=2c .∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.[B 级 保分题——准做快做达标]1.(2019·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:选D 曲线x 225+y 29=1表示焦点在x 轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为45.曲线x 225-k +y 29-k =1(k <9)表示焦点在x 轴上的椭圆,其长轴长为225-k ,短轴长为29-k ,焦距为8,离心率为425-k.对照选项,知D 正确.故选D. 2.(2019·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6解析:选C ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a=14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C.3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t , 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105. 4.(2019·贵阳摸底)P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠PAF =12,则椭圆的离心率e 为( )A.23B.22C.33D.12解析:选D 不妨设点P 在第一象限,因为PF ⊥x 轴,所以x P =c ,将x P =c 代入椭圆方程得y P =b 2a ,即|PF |=b 2a ,则tan ∠PAF =|PF ||AF |=b 2a a +c =12,结合b 2=a 2-c 2,整理得2c 2+ac -a 2=0,两边同时除以a 2得2e 2+e -1=0,解得e =12或e =-1(舍去).故选D.5.(2019·长郡中学选拔考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与圆D :x 2+y 2-2ax +316a 2=0交于A ,B 两点,若四边形OADB (O 为原点)是菱形,则椭圆C 的离心率为( )A.13 B.12 C.32D.62解析:选B 由已知可得圆D :(x -a )2+y 2=1316a 2,圆心D (a ,0),则菱形OADB 对角线的交点的坐标为⎝⎛⎭⎫a 2,0,将x =a 2代入圆D 的方程得y =±3a4,不妨设点A 在x 轴上方,即A ⎝⎛⎭⎫a 2,3a 4,代入椭圆C 的方程可得14+9a 216b 2=1,所以34a 2=b 2=a 2-c 2,解得a =2c ,所以椭圆C 的离心率e =c a =12.6.(2019·沙市中学测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,双曲线x 2-y 2=1的渐近线与椭圆C 有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C 的方程为( )A.x 28+y 22=1 B.x 212+y 26=1 C.x 26+y 23=1 D.x 220+y 25=1 解析:选C 由题意知双曲线x 2-y 2=1的渐近线方程为y =±x ,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为22,所以点(2,2)在椭圆上,所以2a 2+2b2=1.①又椭圆的离心率为22, 所以a 2-b 2a 2=12,所以a 2=2b 2.②由①②得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.故选C.7.(2019·安阳模拟)已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1―→·(OF 1―→+OP ―→)=0(O 为坐标原点),若|PF 1―→|=2|PF 2―→|,则椭圆的离心率为( )A.6- 3B.6-32 C.6- 5D.6-52解析:选A 以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则, 由PF 1―→·(OF 1―→+OP ―→)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴|OP ―→|=|OF 1―→|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则|PF 1|=2x ,结合椭圆的性质和三角形勾股定理可得⎩⎨⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴e =c a =32+1=6- 3.故选A.8.(2019·西宁复习检测)在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则|PA |+|PB |的最大值为( )A .5B .4C .3D .2解析:选A ∵椭圆的方程为y 24+x 23=1,∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,|PB |+|PC |=4,∴|PB |=4-|PC |,∴|PA |+|PB |=4+|PA |-|PC |≤4+|AC |=5.9.已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线, ∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2的中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).10.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 在椭圆上且满足PF 1―→·PF 2―→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1 B.⎣⎡⎦⎤33,22C.⎣⎡⎦⎤13,12D.⎝⎛⎦⎤0,22 解析:选B 设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1―→=(-c -x ,-y ),PF 2―→=(c -x ,-y ).所以PF 1―→·PF 2―→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1―→·PF 2―→≤b 2. 所以b 2-c 2≤c 2≤b 2. 所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. 11.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.解析:当k >4 时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365. 答案:209或36512.(2019·湖北稳派教育联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+c a <0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.答案:⎝⎛⎭⎫0,12 13.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为______.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,解得e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,114.(2019·辽宁联考)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:在椭圆x 225+y 216=1中,a =5,b =4,c =3,所以焦点坐标分别为F 1(-3,0),F 2(3,0).根据椭圆的定义得|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).∵|PM |-|PF 2|≤|MF 2|,当且仅当P 在直线MF 2上时取等号, ∴当点P 与图中的点P 0重合时,有(|PM |-|PF 2|)max =(6-3)2+(4-0)2=5,此时得|PM |+|PF 1|的最大值,为10+5=15.答案:1515.(2019·武汉调研)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(a >1,a ∈R )上,过O 的直线交椭圆C 于A ,B 两点,F 为椭圆C 的左焦点.(1)若△FAB 的面积的最大值为1,求a 的值;(2)若直线MA ,MB 的斜率乘积等于-13,求椭圆C 的离心率.解:(1)S △FAB =12|OF |·|y A -y B |≤|OF |=a 2-1=1,所以a = 2.(2)由题意可设A (x 0,y 0),B (-x 0,-y 0),M (x ,y ),则x 2a 2+y 2=1,x 20a 2+y 20=1, k MA ·k MB =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=1-x 2a 2-⎝⎛⎭⎫1-x 20a 2x 2-x 20=-1a 2(x 2-x 20)x 2-x 20=-1a 2=-13,所以a 2=3,所以a =3,所以c =a 2-b 2=2, 所以椭圆的离心率e =c a =23=63.16.(2019·广东七校联考)已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2. (1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.解:(1)由椭圆的定义,可知点M 的轨迹是以F 1,F 2为焦点,42为长轴长的椭圆.由c =2,a =22,得b =2.故动点M 的轨迹C 的方程为x 28+y 24=1.(2)当直线l 的斜率存在时,设其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=[4k (k -2)]2-4(1+2k 2)(2k 2-8k )>0,则k >0或k <-47.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142.所以k 1+k 2=4. 综上,恒有k 1+k 2=4.。
高考数学试卷椭圆真题答案
1. 已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若C关于x轴对称,则下列哪个选项是正确的?A. $a>b$B. $a<b$C. $a=b$D. 无法确定答案:A解析:由于椭圆C关于x轴对称,所以其方程中$x^2$的系数大于$y^2$的系数,即$a>b$。
2. 椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若点P (x0,y0)在椭圆C上,则下列哪个选项是正确的?A. $x_0^2+y_0^2=a^2$B. $x_0^2+y_0^2=b^2$C. $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$D. $\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1$答案:C解析:点P在椭圆C上,所以满足椭圆的方程,即$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$。
3. 椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若直线l的方程为$y=kx+b$,且l与椭圆C相切,则下列哪个选项是正确的?A. $k^2=\frac{a^2}{b^2}$B. $k^2=\frac{b^2}{a^2}$C. $k^2=\frac{a^2+b^2}{a^2b^2}$D. $k^2=\frac{a^2-b^2}{a^2b^2}$答案:A解析:由于直线l与椭圆C相切,所以它们只有一个交点,即判别式$\Delta=0$。
根据直线与椭圆的位置关系,可得$\Delta=\frac{b^2k^2-a^2b^2}{a^2}=0$,解得$k^2=\frac{a^2}{b^2}$。
4. 椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($a>b>0$),若椭圆C的离心率e满足$e^2=\frac{c^2}{a^2}$,则下列哪个选项是正确的?A. $e^2=\frac{a^2-b^2}{a^2}$B. $e^2=\frac{a^2+b^2}{a^2}$C. $e^2=\frac{b^2}{a^2}$D. $e^2=\frac{a^2}{b^2}$答案:A解析:椭圆的离心率e定义为$\frac{c}{a}$,其中c是焦点到中心的距离。
高三文科椭圆题型全解
高三文科数学椭圆练习..........2021.....1.24..... 1..“..m>n>0.....〞是“方程.....mx ..2.+.ny ..2.=.1.表示焦点在.....y .轴上的椭圆〞的.......____________............条件....2..椭圆...x .2.10..-.m .+.y .2.m .-.2.=.1.,长轴在....y .轴上.假设焦距为........4.,那么...m .等于..___________.............3..假设椭圆.....x .2.m .+.y .2.n .=.1.〔.m .>.n .>.0.〕上的点到右准线的距离是到右焦点距离的...................3.倍,那么....m .n .=.________..........4..过椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点.....F .1.作.x .轴的垂线交椭圆.......于点..P .,.F .2.为右焦点,假设∠........PF ..2.F .1.=.30..°,那么椭圆的离心率为..........________________..................5..从一块短轴长为........2b ..的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是.............................[3b ...2,..4b ..2.].,那么这一椭圆离心率..........e .的取值范围是......________________..................6..椭圆...C .:.x .2.2.+.y .2.=.1.的右焦点为.....F .,右准线为.....l .,点..A .∈.l .,线段...AF ..交.C .于点..B...假设..FA ..→.=.3.FB ..→.,那么...|.AF ..→.|.=._____________. ..............7..过椭圆....x .2.6.+.y .2.5.=.1.内的一点....P .〔.2.,-..1.〕的弦,恰好被.......P .点平分,那么这条弦所在的直线..............方程..___________.............8..椭圆...x .2.9.+.y .2.2.=.1.的焦点为....F .1.、.F .2.,点..P .在椭圆上.假设.......|PF ...1.|.=.4.,那么...|PF ...2.|.=.__________..........;. ∠.F .1.PF ..2.的大小为...._._________...........9..椭圆...G .的中心在坐标原点,长轴在............x .轴上,离心率为.......3.2.,且..G .上一点到....G .的两个焦点的......距离之和为.....12..,那么椭圆.....G .的方程为....____________..............10....A .、.B .为椭圆...C .:.x .2.m .+.1.+.y .2.m .=.1.的长轴的两个端点,.........P .是椭圆...C .上的动点,且∠.......APB ...的最大...值是..2.π.3.,那么实数.....m .的值是...__________............11....A .、.B .两点分别是椭圆.......C .:.x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左顶点和上顶点,而...........F .是椭圆...C .的右焦点,假设.......AB ..→.·BF ..→.=.0.,那么椭圆.....C .的离心率....e .=.________..........12...直线...l .:.x .-.2y ..+.2.=.0.过椭圆左焦点......F .1.和一个顶点.....B .,那么该椭圆......的离心率为.....___________.............13...椭圆...x .2.16..+.y .2.12..=.1.的左、右焦点分别为.........F .1.、.F .2.,.M .是椭圆上一点,.......N .是.MF ..1.的中点,假设......|ON|....=.1.,那么...MF ..1.的长等于....______......________..........14...过椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点.....F .1.作.x .轴的垂线交椭圆于点.........P .,.F .2.为右焦点,假......设∠..F .1.PF ..2.=.60..°,那么椭圆的离心率.........__________............15...知椭圆....x .2.a .2.+.y .2.b .2.=.1.〔.a .>.b .>.0.〕的左焦点为......F .,右顶点为.....A .,点..B .在椭..圆上,且....BF ..⊥.x .轴,直线....AB ..交.y .轴于点...P...假设..AP ..→.=.2.PB ..→.,那么椭....圆的..离心率是...._________...........16...椭圆...5x ..2.-.ky ..2.=.5.的一个焦点是〔.......0.,.2.〕,那么....k .=.________..........17....F .1.、.F .2.是椭圆...x .2.a .2.+.y .2.9.=.1.的左、右两焦点,........P .为椭圆的一个顶点,假设△............PF ..1.F .2.是等边三角.....形,那么....a .2.=.________..........18....F .1.、.F .2.为椭圆...x .2.25..+.y .2.9.=.1.的两个焦点,过.......F .1.的直线交椭圆于.......A .、.B .两点.假设.....|F ..2.A|..+.|F ..2.B|..=.12..,那么...|AB|....=.________..........19....〔-..2.,.0.〕,..B .〔.2.,.0.〕,过点....A .作直线...l .交以..A .、.B .为焦点的椭圆于.......M .、.N .两点,线段.....MN ..的中点到....y .轴的距离为.....4.5.,且直线....l .与圆..x .2.+.y .2.=.1.相切,求该椭圆的方程............20....设.A .〔.x .1.,.y .1.〕,..B .〔.x .2.,.y .2.〕是椭圆....y .2.a .2.+.x .2.b .2.=.1.〔.a .>.b .>.0.〕上的两点,......m .=〔..x .1.b .,.y .1.a .〕,..n .=.〔.x .2.b .,.y .2.a .〕,且满足.....m .·n .=.0.,椭圆的离心率.......e .=.3.2.,短轴长为.....2.,.O .为坐标原点.......〔Ⅰ〕求椭圆的方程;..........〔Ⅱ〕假设存在斜率为..........k .的直线...AB ..过椭圆的焦点......F .〔.0.,.c .〕〔..c .为半焦距〕,求直线.........AB ..的斜..率.k .的值....21....在平面直角坐标系........xoy 中,圆心在第二象限、半径为.............的圆..C 与直线...y x =相切于...坐标原点....O .椭圆...22219x y a +=与圆..C 的一个交点到椭圆两焦点的距离之和为.................10..〔Ⅰ〕求圆.....C 的方程;....〔Ⅱ〕试探究圆.......C 上是否存在异于原点的点...........Q ,使..Q 到椭圆右焦点......F 的距离等于线段.......OF 的长.假设存在,请求出点............Q 的坐标;假设不存在,请说明.............理由....高三文科数学椭圆练习答案与解析...............2021.11.27.......... 1...解析:把椭圆方程化为..........x .2.1.m .+.y .2.1.n .=.1...假设..m>n>0.....,那么...1.n .>.1.m .>0....所以椭圆的焦点在........y .轴上.反....之,假设椭圆的焦点在..........y .轴上,那么.....1.n .>.1.m .>0..即有..m>n>0.......故为..充要条件....。
文科数学总复习练习:椭圆
第5讲椭圆基础巩固题组(建议用时:40分钟)一、选择题1.椭圆x2m+错误!=1的焦距为2,则m的值等于( )A.5 B.3 C.5或3 D.8解析当m>4时,m-4=1,∴m=5;当0〈m〈4时,4-m=1,∴m=3.答案C2.“2<m〈6”是“方程x2m-2+错误!=1表示椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若错误!+错误!=1表示椭圆.则有错误!∴2〈m<6且m≠4。
故“2〈m<6”是“错误!+错误!=1表示椭圆”的必要不充分条件.答案B3.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为() A。
错误! B.错误!C。
12D.错误!解析在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|= 3.故e=错误!=错误!=错误!.故选D。
答案D4.(2015·全国Ⅰ卷)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E 的两个交点,则|AB|=() A.3 B.6C.9 D.12解析抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2。
从而椭圆E的半焦距c=2。
可设椭圆E的方程为错误!+错误!=1(a>b>0),因为离心率e=错误!=错误!,所以a=4,所以b2=a2-c2=12。
由题意知|AB|=错误!=2×错误!=6.故选B。
答案B5.(2016·江西师大附中模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为错误!,则错误!的值为( ) A。
错误!B。
错误!C.错误!D。
错误!解析设A(x1,y1),B(x2,y2),则ax2,1+by错误!=1,ax错误!+by错误!=1,即ax错误!-ax错误!=-(by错误!-by错误!),错误!=-1,错误!=-1,∴错误!×(-1)×错误!=-1,∴ba=错误!,故选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.第六节 椭圆 强化训练当堂巩固1.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15答案:B解析:由2a,2b,2c 成等差数列,所以2b=a+c. 又222b a c =-,所以222()4()a c a c +=-. 所以53a c =.所以35c e a ==.2.已知椭圆22221(y x a b a b+=>>0)的左焦点为F,右顶点为A,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P.若AP 2PB =,则椭圆的离心率是( )A.32B.22C.13D.12答案:D解析:对于椭圆,∵AP 2PB =,则OA 2OF =, ∴a=2c.∴12e =.3.已知椭圆22221(y x a b a b+=>>0)的左、右焦点分别为1(0)F c -,、2(0)F c ,,若椭圆上存在一点P 使1221sin PFF sin PF F a c =,∠∠则该椭圆的离心率的取值范围为 . 答案:(211)-,解析:因为在△12PF F 中,由正弦定理得211221sin PFF sin PF F PF PF ||||=,∠∠则由已知,得1211a c PF PF =,||||即a|1PF |=c|2PF |. 由椭圆的定义知|1PF |+|2PF |=2a,则c a |2PF |+|2PF |=2a,即|2PF |22a c a=,+ 由椭圆的几何性质知|2PF |<a+c,则22a c a<+a+c,即2220c c a +->, 所以221e e +-,解得21e <-或21e >-.又(01)e ∈,,故椭圆的离心率(211)e ∈,.4.椭圆22192y x +=的左、右焦点分别为1F 、2F ,点P 在椭圆上,若|1PF |=4,则|2PF |= ;12F PF ∠的大小为 .答案:2 120解析:∵2292a b =,=,∴c ===∴|12F F|=又|1PF |=4,|1PF |+|2PF |=2a=6, ∴|2PF |=2.又由余弦定理,得cos 1212F PF ∠==-,∴12120F PF ∠=,故应填2,120.5.已知椭圆22221(y x a b a b+=>>0)的离心率e =连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A,B.已知点A 的坐标为(-a,0). ①若|AB|=求直线l 的倾斜角;②若点0(0)Q y ,在线段AB 的垂直平分线上,且QA QB ⋅=4.求0y 的值.解:(1)由c e a==得2234a c =.再由222c a b =-,解得a=2b. 由题意可知12242a b ⨯⨯=,即ab=2.解方程组 22a b ab =,⎧⎨=,⎩ 得a=2,b=1.所以椭圆的方程为2214x y +=. (2)①由(1)可知点A 的坐标是(-2,0).设点B 的坐标为11()x y ,,直线l 的斜率为k. 则直线l 的方程为y=k(x+2).于是A,B 两点的坐标满足方程组22(2)14y k x x y =+,⎧⎪⎨+=.⎪⎩ 消去y 并整理,得 2222(14)16(164)0k x k x k +++-=.由212164214k x k --=,+得2122814k x k -=+.从而12414k y k =+. 所以|AB|==由|AB|==. 整理得42329230k k --=,即22(1)(3223)0k k -+=,解得1k =±. 所以直线l 的倾斜角为4π或34π.②设线段AB 的中点为M,由①得M 的坐标为22282()1414k k k k-,++. 以下分两种情况:(ⅰ)当k=0时,点B 的坐标是(2,0),线段AB 的垂直平分线为y 轴, 于是0QA (2)y =-,-,0QB (2)y =,-. 由QA QB ⋅=4,得022y =±.(ⅱ)当0k ≠时,线段AB 的垂直平分线方程为222281()1414k k y x k k k -=-+++.令x=0,解得02614k y k=-+.由0QA (2)y =-,-,QB 110()x y y =,-,整理得272k =.故147k =±,所以02145y =±.综上022y ,=±或02145y =±.课后作业巩固提升见课后作业A题组一 椭圆的离心率问题1.椭圆22221(y x a b a b+=>>0)的右焦点为F,其右准线与x 轴的交点为A,在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是( )A.2(0]2,B.1(0]2,C.[211)-,D.1[1)2,答案:D解析:|AF|22a b c c c =-=,而|PF|a c ≤+, 所以2b a c c+≥, 即2210e e +-≥,解得112e ≤<.2.已知12F F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△2ABF 是等腰直角三角形,则这个椭圆的离心率是( )A.32B.22C.21-D.2答案:C解析:根据题意:2145AF F ∠=2222b c e e a,=,+-1=0,又(01)e ∈,,∴21e =-.3.设椭圆22221(0y x m m n+=>,n>0)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216y x += B.2211612y x += C.2214864y x += D.2216448y x += 答案:B解析:由题意可知:c=2,且焦点在x 轴上.由12e =,可得m=4,∴22212n m c =-=.故选B.题组二 椭圆的定义4.设P 是椭圆2212516y x +=上的点.若12F F ,是椭圆的两个焦点,则|1PF |+|2PF |等于( ) A.4 B.5 C.8 D.10 答案:D解析:因为a=5,所以|1PF |+|2PF |=2a=10.5.设直线l :2x+y-2=0与椭圆2214y x +=的交点为A 、B,点P 是椭圆上的动点,则使△PAB 面积为13的点P的个数为( )A.1B.2C.3D.4 答案:D解析:联立方程组 2222014x y y x +-=,⎧⎪⎨+=,⎪⎩ 消去y 整理解得:02x y =,⎧⎨=⎩ 或 10x y =,⎧⎨=,⎩|AB|= 结合图象知P 的个数为4.题组三 椭圆的综合应用6.已知椭圆G 的中心在坐标原点,长轴在x 轴上,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .答案:221369y x += 解析:212e a a ==,=6,b=3,则所求椭圆方程为221369y x +=. 7.已知1F 、2F 是椭圆C:22221(y x a b a b+=>>0)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若△12PF F 的面积为9,则b= .答案:3解析:依题意,有 1212222122184PF PF a PF PF PF PF c ||+||=,⎧⎪||⋅||=,⎨⎪||+||=,⎩ 可得2436c +24a =,即229a c -=,∴b=3.8.在平面直角坐标系xOy 中1212A A B B ,,,,为椭圆22221(y x a b a b+=>>0)的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T,线段OT 与椭圆的交点M恰为线段OT 的中点,则该椭圆的离心率为 .答案:5-解析:直线12A B 的方程为:1yx ab+=-;直线1B F 的方程为:1y x c b +=-;二者联立解得点()2()b a c ac T a c a c+,,--则OT 中点()()2()b a c ac M a c a c +,--在椭圆22221(y x a b a b+=>>0)上, 222222()11030()4()a c c c ac a a c a c ++=,+-=,--3e +10e-3=0, 解得5e =-.9.已知椭圆C:2212x y +=的两焦点为12F F ,,点00()P x y ,满足2200012x y <+<,则|1PF |+|2PF |的取值范围为,直线02x x+01y y =与椭圆C 的公共点个数为 .答案:[222), 0解析:延长1PF 交椭圆C 于点M,故|12F F |≤|1PF |+|2PF |<|1MF |+|2MF |=2a,即2≤|1PF |+|2PF |22<;当00y =时2002x ,<<,直线0012x xy y +=为x=02(2)(2)x ∈-∞,-⋃,+∞与椭圆C 无交点; 当00y ≠时,直线0012x xy y +=为0012x xy y -=,代入2212x y +=中有 222000()222x y x x x +-+-2020y =. ∵2222000044()(22)2x x y y ∆=-+-∴直线与椭圆无交点.10.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D,且2BF FD =,则椭圆C 的离心率为 .答案:33解析:如图,不妨设B(0,b)为上顶点,F(c,0)为右焦点, 设D(x,y).由2BF FD =,得(c,-b)=2(x-c,y),即 2()2c x c b y =-,⎧⎨-=,⎩ 解得 322c x b y ⎧=,⎪⎨⎪=-,⎩ 3()22c b D ,-.由2BF FD =,可得|FD |12=|BF |2a =, ①又由椭圆第二定义知,|FD |2233()()22a c a c c e c c a=-⋅=-⋅. ②由①②解得223a c =,即213e =,∴33e =. 11.如图,椭圆C:22221y x a b+=的顶点为1212A A B B ,,,,焦点为12F F ,,|11A B |7=,1122B A B A S11222B F B F S =.(1)求椭圆C 的方程;(2)设n 为过原点的直线,l 是与n 垂直相交于P 点.与椭圆相交于A,B 两点的直线,|OP |=1.是否存在上述直线l 使0OA OB ⋅=成立?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由|11A B |7=知227a b +=, ① 由112211222B A B A B F B F SS=知a=2c, ②又222b a c =-, ③由①②③,解得2243a b =,=,故椭圆C 的方程为22143y x +=. (2)设A,B 两点的坐标分别为1122()()x y x y ,,,,假设使0OA OB ⋅=成立的直线l 存在,①当l 不垂直于x 轴时,设l 的方程为y=kx+m ,由l 与n 垂直相交于P 点且|OP |=1得211m k ||=,+即221m k =+.由0OA OB ⋅=得12120x x y y +=.将y=kx+m 代入椭圆方程,得由求根公式可得122834km x x k-+=,+ ④212241234m x x k -=+. ⑤ 将④⑤代入上式并化简得222222(1)(412)8(34)0k m k m m k +--++=. ⑥ 将221m k =+代入⑥并化简得25(1)0k -+=,矛盾. 即此时直线l 不存在.②当l 垂直于x 轴时,满足|OP |=1的直线l 的方程为x=1或x=-1, 则A,B 两点的坐标为33(1)(1)22,,,-或(-133)(1)22,,-,-,当x=1时33(1)(1)22OA OB ,⋅=,⋅,-=504-≠;当x=-1时3(1)(12OA OB ,⋅=-,⋅-,32-5)04=-≠,∴此时直线l 也不存在.综上可知,使0OA OB ⋅=成立的直线l 不存在.12.如图,已知椭圆22221y x a b+=(a>b>0)过点2(1)2,,离心率为22,左 、右焦点分别为F 1 、F 2.点P 为直线l:x+y=2上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B ,和C ,(1)求椭圆的标准方程.(2)设直线1PF ,PF 2的斜率分别为1k ,k 2.(ⅰ)证明:12312k k -=.(ⅱ)问直线l 上是否存在点P,使得直线OA OB OC OD ,,,的斜率k OA ,k OB ,k OC ,k OD 满足+OA k +0OB OC OD k k k +=?若存在,求出所有满足条件的点P 的坐标;存不存在,说明理由.解:(1)因为椭圆过点22(1e ,=所以2221112c a a b+=,=.又222a b c =+,所以21a b c ==,=1.故所求椭圆的标准方程为2212x y +=. (2)(ⅰ)证明:方法一:由于1(10)F -,,F 21(10)PF ,,,PF 2的斜率分别为1k ,k 2,且点P 不在x 轴上,所以121200k k k k ≠,≠,≠.又直线12PF PF ,的方程分别为12(1)(1)y k x y k x =+,=-,联立方程解得 122112212k k x k k k k y k k +⎧=,⎪-⎪⎨⎪=,-⎪⎩所以121221212()k k k k P k k k k +,--. 由于点P 在直线x+y=2上,所以12122122k k k k k k ++=-.因此1212230k k k k +-=, 即12312k k -=,结论成立. 方法二:设00()P x y ,,则00120011y yk k x x =,=+-. 因为点P 不在x 轴上,所以0y ≠. 又002x y +=,所以000012000013(1)422312x x x y k k y y y y +---=-===. 因此结论成立.(ⅱ)设()()()A A B B C C A x y B x y C x y ,,,,,,()D D D x y ,.联立直线1PF 与椭圆的方程得 122(1)12y k x x y =+,⎧⎪⎨+=,⎪⎩ 化简得2222111(21)4220k x k x k +++-=,因此221122114222121A B A B k k x x x x k k -+=-,=,++由于OA,OB 的斜率存在,所以00A B x x ≠,≠,因此2101k ≠,. 因此11(1)(1)A B A B OA OB A B A By y k x k x k k x x x x +++=+=+ 12121k k =--. 相似地,可以得到220001C D x x k ≠,≠,≠,,22221OC OD k k k k +=-,- 故1222122()11OA OB OC OD k k k k k k k k +++=-+-- 121222122(1)()(1)(1)k k k k k k -+=---. 若0OA OB OC OD k k k k +++=,须有120k k +=或121k k =.①当120k k +=时,结合(ⅰ)的结论,可得22k =-,所以解得点P 的坐标为(0,2);②当121k k =时,结合(ⅰ)的结论,解得23k =或21(k =-此时11k =-,不满足12k k ≠,舍去),此时直线CD 的方程为y=3(x-1),联立方程x+y=2得5344x y =,=.因此53()44P ,.综上所述,满足条件的点P 的坐标分别为(0532)()44,,,.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 8文档来源为:从网络收集整理.word版本可编辑.。