高考数列压轴题选讲
专题16 数列(选填压轴题)(解析版)-【挑战压轴题】备战2023年高考数学高分必刷必过题
所以 x 0, 2023 ,则方程x x 1 由 2022 个根.①④正确,
2 故选:D.
4.(2022·河南信阳·高二期末(理))二进制数是用 0 和 1 表示的数,它的基数为 2,进位
规则是“逢二进一”,借位规则是“借一当二”,二制数
a0
a1a2
ak
2
(
k
N
*
)对应的十进制数
记为 mk ,即 mk a0 2k a1 2k1 ... ak1 2 ak 20 ,其中 a0 1 , ai 0,1(i 1,2,3,,k),
317
4
c13 c23 c33 c173
56 4 c23 16 64 ,
1 所以
c18
4
,所以
7 2
1 c18
4 ,则
1 4
c18
2 7
.
故选:C.
6.(2022·江苏南京·高二期末)将等比数列bn按原顺序分成 1 项,2 项,4 项,…, 2n1 项 的各组,再将公差为 2 的等差数列an 的各项依次插入各组之间,得到新数列cn:b1 ,a1 ,
1 2
nt
0
1 2
n
,
若
n
为偶数,此时
1 2
n
0
,则此时不存在 t
N*
,使得
1 nt 2
1 n 2
,
综上:B 选项错误;
设 an 2n 1 ,此时满足 a1 2 1 3 0 ,
也满足 n, s N*, ans 2n s 1, an as 2n 1 2s 1 2n s 2 ,
② n, s N*, ans an as ;③ n N* ,t N*, ant an .定义:同时满足性质①和②的数
高考数学压轴专题新备战高考《数列》难题汇编含解析
《数列》考试知识点一、选择题1.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.2.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0 B .55C .66D .78【答案】D 【解析】 【分析】先分n 为奇数和偶数两种情况计算出21sin 2n π+⎛⎫⎪⎝⎭的值,可进一步得到数列{}n a 的通项公式,然后代入12312a a a a +++⋅⋅⋅+转化计算,再根据等差数列求和公式计算出结果. 【详解】解:由题意得,当n 为奇数时,213sin sin sin sin 12222n n ππππππ+⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n 为偶数时,21sin sin sin 1222n n ππππ+⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭所以当n 为奇数时,2n a n =-;当n 为偶数时,2n a n =,所以12312a a a a +++⋅⋅⋅+22222212341112=-+-+-⋅⋅⋅-+ 222222(21)(43)(1211)=-+-+⋅⋅⋅+-(21)(21)(43)(43)(1211)(1211)=+-++-+⋅⋅⋅++- 12341112=++++⋅⋅⋅++ 121+122⨯=()78= 故选:D 【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.5.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.6.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.7.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.8.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42C .63D .84【答案】B【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.11.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q---====--+-,解得2q =,所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.12.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.13.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A.【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.14.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.15.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.16.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L ,[]363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.17.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.18.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9【答案】B【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.。
新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)
一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}na 满足递推关系()12211,1,+3nn n aa a aan --===≥,依次判断四个选项,即可得正确答案.【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;对于C ,可得()112nn n a aan +-=-≥,则()()()()1234131425311++++++++++nn n a a a a aa a a aa a a aa+-=----即212++1nnn n S a a aa++=-=-,∴202020221Sa=-,故C 正确;对于D ,由()112n n n a aan +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a aaa=---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3nn n a a a aan --===≥,能根据数列性质利用累加法求解.2.已知数列{}na 中,11a =,1111n na a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212n at a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n =-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解. 【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}na 称为“斐波那契数列”,记Sn为数列{}na 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .13520192022a a a aa++++=D .22212201920202019a a a aa+++=答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n aaa ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n naaa ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,可得13572019a a a a a+++++=242648620202018a a a a a a a aa+-+-+-++-2020a=,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a aaaa=+-+-+-+-20192020aa=,所以22212201920202019a a a aa+++=,故D 正确.故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.4.已知数列{}na 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--; 32131a a==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.5.设数列{}na 的前n 项和为*()nS n N ∈,关于数列{}na ,下列四个命题中正确的是( ) A .若1*()n naa n N +∈=,则{}na 既是等差数列又是等比数列B .若2nS An Bn =+(A ,B 为常数,*n N ∈),则{}na 是等差数列C .若()11n nS =--,则{}na 是等比数列D .若{}na 是等差数列,则nS ,2n n SS -,*32()n nS S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】 选项A: 1*()n n a a n N +∈=,10n n aa +∴-=得{}na 是等差数列,当0n a =时不是等比数列,故错; 选项B:2nS An Bn =+,12nn a aA -∴-=,得{}na 是等差数列,故对;选项C: ()11n nS =--,112(1)(2)n nn nS Sa n --∴-==⨯-≥,当1n =时也成立,12(1)n na -∴=⨯-是等比数列,故对;选项D: {}na 是等差数列,由等差数列性质得nS ,2n n SS -,*32()n nS S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.6.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .8答案:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N,所以n 为200的因数,()20012n n+-≥且为偶数,验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.7.公差不为零的等差数列{}na 满足38aa =,n S 为{}n a 前n 项和,则下列结论正确的A .110S =B .10nnS S-=(110n ≤≤)C .当110S >时,5nS S ≥D .当110S <时,5nS S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+, 即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;8.设{}na 是等差数列,nS是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为nS 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}na 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}na 的公差为d ,依次分析选项:{}na 是等差数列,若67SS =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a+>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为nS 的最大值,故D 正确;故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.9.已知等差数列{}na 的前n 项和为nS ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a=-C .当且仅当10n =时,nS 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D .【详解】等差数列{}na 的前n 项和为nS,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222na n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102nS n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}na的公差0d >,则{}na 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}na是等差数列,则数列{}12++nn aa也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}na必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}na是等差数列公差为d ,所以11112(1)223(31)nn a aa n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.11.在下列四个式子确定数列{}na 是等差数列的条件是( )A .na knb =+(k ,b 为常数,*n N ∈); B .2n naa d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}na 的前n 项和21nSn n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中na knb =+(k ,b 为常数,*n N ∈),数列{}na 的关系式符合一次函数的形式,所以是等差数列,故正确, B 选项中2n naa d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误; C 选项中()*2120n n n aaa n ++-+=∈N ,对于数列{}na 符合等差中项的形式,所以是等差数列,故正确;D 选项{}na 的前n 项和21nSn n =++(*n N ∈),不符合2nS An Bn =+,所以{}na 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.二、等差数列多选题13.在等差数列{}na 中,公差0d ≠,前n 项和为nS,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2nS n n a =-+,则0a =解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由nS 求出na 及1a ,根据数列{}na 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}na 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}na 递减,则12130,0aa ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2nS n n a =-+,则11a S a ==,2n ≥时,221(1)(1)nnn a S Sn n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.14.题目文件丢失!15.已知数列{}na 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,nn a n ⎧=⎨⎩为奇数为偶数B .1(1)1n na -=-+C .2sin 2n n a π=D .cos(1)1na n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}na 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.16.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4 B .5 C .7D .8解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 17.已知数列{}na :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记nS为数列{}na 的前n 项和,则下列结论正确的是( )A .68S a = B .733S =C .13520212022a a a aa++++=D .2222123202020202021a a a a aa++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020aaa=-,可得13520212022a a a aa +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n aaa ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018aaaa-,220202020202120202019a aaaa=-,故2222123202020202021a a a a a a+++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n na aa ++=+对所给式子进行变形.18.已知等差数列{}na 的公差不为0,其前n 项和为nS,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =解析:BD【分析】设等差数列{}na 的公差为d ,根据条件12a 、8S、9S 成等差数列可求得1a 与d 的等量关系,可得出na 、nS 的表达式,进而可判断各选项的正误.【详解】设等差数列{}na 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122nnn d n n dS na --=+=.对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d S d -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和nS 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 19.定义11222n nna a a H n-+++=为数列{}na 的“优值”.已知某数列{}na 的“优值”2n nH =,前n 项和为nS ,则( )A .数列{}na 为等差数列 B .数列{}na 为等比数列C .2020202320202S =D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nna a a H n-+++==,即112222n n na a a n -+++=⋅,则2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅,可求解出1na n =+,易知{}na 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出nS ,判断C ,D 的正误.【详解】 解:由112222n n nna a a H n-+++==,得112222n n na a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a an ---+++=-⋅,②得2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅, 即2n ≥时,1na n =+,当1n =时,由①知12a =,满足1na n =+.所以数列{}na 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错, 故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.20.数列{}n a 满足11,121n n naa a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2nS n =C .数列{}na 的通项公式为21nan =-D .数列{}na 为递减数列解析:ABD【分析】首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1na ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n naa a +=+,11a =, 所以121112n n nna a a a ++==+,即1112n na a+-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121nn a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.21.设等差数列{}na 的前n 项和为nS,若39S =,47a =,则( )A .2nS n =B .223nS n n =-C .21na n =-D .35na n =-解析:AC 【分析】利用等差数列{}na 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出na 与nS .【详解】等差数列{}na 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221na n n ∴+-⨯=-=.()21212nn nS n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.22.已知数列{}na 满足:13a =,当2n ≥时,()21111nn a a-=++-,则关于数列{}na 说法正确的是( )A .28a =B .数列{}na 为递增数列C .数列{}na 为周期数列D .22na n n =+解析:ABD【分析】由已知递推式可得数列{}1na +是首项为112a +=,公差为1的等差数列,结合选项可得结果. 【详解】()21111nn a a-=++-得()21111nn a a-+=++,∴1111nn a a-+=++,即数列{}1na +是首项为112a +=,公差为1的等差数列,∴12(1)11na n n +=+-⨯=+,∴22na n n =+,得28a =,由二次函数的性质得数列{}na 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.23.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列 B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}na 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列.故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.24.等差数列{}na 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( )A .109S S >B .170S <C .1819S S >D .190S>解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722aaa Sa <+⨯⨯===,()1191019101921919022aaa S a +⨯⨯===>,故BD 正确.【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确;()1191019101921919022aaa S a +⨯⨯===>,故D 正确;190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.三、等比数列多选题25.题目文件丢失! 26.题目文件丢失!27.在数列{}na 中,如果对任意*n N ∈都有211n n n na a k aa+++-=-(k 为常数),则称{}na 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0 C .若32n na =-+,则数列{}na是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}na ,考虑121,1,1nn n aaa++===,211n n n na aa a+++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na aa a a a+++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32n n a =-+,2113n n n na aa a+++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n na q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.28.已知数列{}na 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n= C .13(1)n a n n =--D .{}3nS 是等比数列解析:ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得nS ,利用nS 求出na ,并确定3n S 的表达式,判断D.【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113nn S S--=,所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3nn n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错; 由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD. 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.已知数列{}na 前n 项和为nS.且1a p =,122(2)nn S Sp n --=≥(p 为非零常数)测下列结论中正确的是( )A .数列{}na 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+解析:AC 【分析】 由122(2)nn S Sp n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n SSp ---=,相减可得120nn a a--=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得mnm na a a+⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.30.设等比数列{}na 的公比为q ,其前n 项和为nS,前n 项积为nT ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a <<C .nS 的最大值为7SD .nT 的最大值为6T解析:ABD 【分析】先分析公比取值范围,即可判断A,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确;因为0na >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)na ∈,当16n ≤≤时,(1,)na ∈+∞,所以nT 的最大值为6T ,即D正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.31.记单调递增的等比数列{}na 的前n 项和为nS,若2410a a +=,23464a a a =,则( ) A .112n n nSS ++-=B .12n naC .21n nS =-D .121n nS -=-解析:BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,nnn na S SS +-,进而判断出正确选项.【详解】由23464a a a =得3334a =,则34a =.设等比数列{}na 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q 或12q =.又因为数列{}na 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na,()1122112n nnS ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 12< C .S 2n <T 2nD .S 2n ≥T 2n解析:ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n+a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a aa a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n}为递增数列;∴b 1<b 2<b 3; ∵b n•b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b⎧⎨⎩>>; ∴1<b 12<,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b⋅--=+=+-()()122212221n n b b ≥-=-; ∴对于任意的n ∈N*,S 2n <T 2n;故C 正确,D 错误.故选:ABC 【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2x f x =C .()f x x =D .()ln f x x =解析:AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}na 的公比为q .对于A ,则2221112()()n n n n n nf a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n na a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则111()()n n n nnnaf a aq f a aa+++=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n nnnnna a q a q q f a f a a a a a++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0 B .a 9>a 10C .b 10>0D .b 9>b 10解析:AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列,则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误; ∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d ,由于910,a a 异号,因此90a <或100a<故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等差数列{}na 的公差为d ,前n 项和为nS,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( )A .7aB .8aC .15SD .16S解析:BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a aS a +==为定值,但()()11616891682a aS a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.36.对于数列{}na ,若存在正整数()2k k ≥,使得1kk aa-<,1kk a a+<,则称ka 是数列{}na 的“谷值”,k 是数列{}na 的“谷值点”,在数列{}na 中,若98nan n=+-,下面哪些数不能作为数列{}na 的“谷值点”?( )A .3B .2C .7D .5解析:AD。
数列-2024高考数学压轴小题(解析版)
数列-2024高考压轴小题一.选择题(共13小题)1.数列{a n}中,>1(∈∗),点(a n,a n+1)在双曲线2y2﹣x2=1上.若a n+2﹣a n+1>λ(a n+1﹣a n)恒成立,则实数λ的取值范围为()A.[12,+∞)B.(12,+∞)C.+∞)D.(1,+∞)2.已知等比数列{a n}的公比为−13,其前n项和为S n,且a1,2+43,a3成等差数列,若对任意的n∈N*,均有≤−2≤恒成立,则B﹣A的最小值为()A.2B.76C.103D.53 3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.54.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109) 5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.37.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703 8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.1369.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞) 11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4 12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.13613.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4二.多选题(共5小题)(多选)14.已知数列{a n}满足a1=2,a n+1a n=2a n﹣1(n∈N*),b1=20a4,b n+1=a n b n(n∈N •),数列{b n}的前n项和为T n,且对∀n∈N*,2T n+400≥λn恒成立,则()A.a4=45B.数列{1−1}为等差数列C.b n=16n D.λ的最大值为225(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.22024高考压轴练--数列小题参考答案与试题解析一.选择题(共13小题)1.数列{a n }中,>1(∈∗),点(a n ,a n +1)在双曲线2y 2﹣x 2=1上.若a n +2﹣a n +1>λ(a n +1﹣a n )恒成立,则实数λ的取值范围为()A .[12,+∞)B .(12,+∞)C .+∞)D .(1,+∞)【解答】解:由题意可知:双曲线2y 2﹣x 2=1的渐近线方程为,因为点(a n ,a n +1)在双曲线2y 2﹣x 2=1上,则2r12−2=1,且>1(∈∗),可得r12−2=1−r12<0,可知{2}为递减数列,且>1(∈∗),则{a n }为递减数列,可得a n +1﹣a n <0,且a n +2﹣a n +1>λ(a n +1﹣a n ),可得>r2−r1r1−,记点A n (a n ,a n +1),则r2−r1r1−为直线A n A n +1的斜率,记=r2−r1r1−,由双曲线的性质以及{a n }为递减数列可知,直线A n A n +1的斜率{k n }为递减数列,即k n ≤k 1,且随着a 1增大,直线A 1A 2越接近渐近线=,故k 1接近于22,所以则≥故选:C .2.已知等比数列{a n }的公比为−13,其前n 项和为S n ,且a 1,2+43,a 3成等差数列,若对任意的n ∈N *,均有≤−2≤恒成立,则B ﹣A 的最小值为()A .2B .76C .103D .53【解答】解:等比数列{a n}的公比为−13,因为a1,2+43,a3成等差数列,所以2×−131+43= 1+191,解得a1=2,所以=2[1−(−13)]1−(−13)=32−32⋅(−13),当n为奇数时,=32+32⋅(13),易得S n单调递减,且32+32⋅(13)>32,所以32<≤1=2;当n为偶数时,=32−32⋅(13),易得S n单调递增,且32−32⋅(13)<32,所以43=2≤<32.所以S n的最大值与最小值分别为2,43.函数=−2在(0,+∞)上单调递增,所以≤(−2)m=43−243=−16.≥(−2)B=2−22=1.所以B﹣A的最小值1−(−16)=76.故选:B.3.已知数列{a n}满足1=13,r1=(r1)+,1+12+⋯+12⋯<o∈p恒成立,则m的最小值为()A.1B.2C.3D.5【解答】解:依题意,a n≠0,由r1=(r1)+,得1r1=+(r1),即r1r1=+1,因此数列{}是首项11=3,公差d=1的等差数列,则=11+o−1)=+2,即=r2,则当n≥2时,12⋯=13⋅24⋅35⋅⋯⋅r2=2(r1)(r2)=2(1r1−1r2),1=13= 22×3也符合上式,1+12+⋯+12⋯=2(12−13+13−14+⋯+1r1−1r2)=1−2r2<1,所以m≥1,即m的最小值为1.故选:A.4.已知数列{a n}满足a1+2a2+…+2n﹣1a n=n•2n,记数列{a n﹣tn}的前n项和为S n,若S n≤S10对任意的n∈N*恒成立,则实数t的取值范围是()A.[1211,1110]B.(1211,1110]C.[1110,109]D.(1110,109)【解答】解:由1+22+⋯+2K1=⋅2①,当n=1时,a1=2,当n≥2时,1+22+⋯+2K2K1=(−1)⋅2K1②,①﹣②可得a n=n+1(n≥2),又a1也符合上式,∴a n=n+1,令b n=a n﹣tn=n+1﹣tn=(1﹣t)n+1,∴b n+1﹣b n=(1﹣t)(n+1)+1﹣[(1﹣t)n+1]=1﹣t为常数,∴数列{b n}是等差数列,首项b1=2﹣t,∴=2−r(1−pr12×=1−22+3−2,其对称轴为=−3−21−=−3−2−2,∵S n≤S10对任意的n∈N*恒成立,3−2−2≤10.5,解得1211≤≤1110,∴t的取值范围是[1211,1110].故选:A.5.已知数列{142+4K3}的前n项和为T n,若对任意的n∈N*,不等式12T n<3a2﹣a恒成立,则实数a的取值范围是()A.[−1,43]B.[−43,1] C.(−∞,−1]∪[43,+∞)D.(−∞,−43]∪[1,+∞)【解答】解:由142+4K3=1(2r3)(2K1)=14(12K1−12r3),可得T n=14(1−15+13−17+15−19+...+12K3−12r1+12K1−12r3)=14(1+13−12r1−12r3)<14×43=13.由对任意的n∈N*,不等式12T n<3a2﹣a恒成立,可得3a2﹣a≥12×13,解得a≥43或a≤﹣1.故选:C.6.设S n是一个无穷数列{a n}的前n项和,若一个数列满足对任意的正整数n,不等式<r1r1恒成立,则称数列{a n}为和谐数列,有下列3个命题:①若对任意的正整数n均有a n<a n+1,则{a n}为和谐数列;②若等差数列{a n}是和谐数列,则S n一定存在最小值;③若{a n}的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有()个.A.0B.1C.2D.3【解答】解:对于①,由<r1r1,可得(n+1)S n<nS n+1,则S n<n(S n+1﹣S n),即S n<na n+1,若a n<a n+1,则S n<na n<na n+1,故①正确;对于②,设等差数列{a n}的公差为d,则=22+(1−),则=2+1−2,即{}为公差为2的等差数列,若{a n}为和谐数列,即<r1r1,则2>0,所以关于n的二次函数=22+(1−)开口向上,则在n∈N•上一定存在最小值,故②正确;对于③,取1<0,=−14,则=11−⋅(1−)=451[1−(−14)],B r1=B1⋅(−14),下面证明S n<na n+1,即说明存在公比为负数的一个等比数列是和谐数列,即证451[1−(−14)]<B1(−14),即证45[1−(−14)]>o−14),即证(+45)(−14)<45,当n=2k+1,k∈N时,上式左边为负数,显然成立;当n=2k,k∈N•时,即证(2+45)⋅116<45,即证16−52−1>0(⋅),设op=16−52−1,′(p=16B16−52>B16−52>0,则f(k)>f(1)>0,即(*)式成立,故③正确.故选:D.7.已知数列{a n}的前n项和为S n,a1=2,且满足S n+1=2S n+2n+1,若存在实数λ,使不等式λa n≤(n﹣19)S n对任意n∈N*恒成立,则λ的最大值为()A.﹣24B.﹣18C.−683D.−703【解答】解:由S n+1=2S n+2n+1,得r12r1−2=1,∵S1=a1=2,∴121=1,∴{2}是首项为1,公差为1的等差数列,则2=1+1×(n﹣1)=n,即S n=n•2n,∴当n≥2时,a n=S n﹣S n﹣1=n•2n﹣(n﹣1)•2n﹣1=(n+1)•2n﹣1,验证n=1也满足,∴a n=(n+1)•2n﹣1,由λa n≤(n﹣19)S n,得λ(n+1)•2n﹣1≤(n﹣19)•n•2n,即λ≤2oK19)r1.令f(n)=2oK19)r1,则f(n+1)﹣f(n)=2(r1)(K18)r2−2oK19)r1=2(2+3K18)(r1)(r2)= 2(K3)(r6)(r1)(r2),可得f(1)>f(2)>f(3)=f(4)<f(5)<…,∴f(n)min=f(3)=f(4)=﹣24,而λ≤2oK19)r1,∴λ≤﹣24,得λ的最大值为﹣24.故选:A.8.已知等比数列{a n}的首项为2,公比为−13,其前n项和记为S n,若对任意的n∈N*,均有A≤3S n−1≤B恒成立,则B﹣A的最小值为()A.72B.94C.114D.136【解答】解:S n=2[1−(−13)]1−(−13)=32−32•(−13),①n为奇数时,S n=32+32•(13),可知:S n单调递减,且m m∞=32,∴32<S n≤S1=2;②n为偶数时,S n=32−32•(13),可知:S n单调递增,且m m∞=43,∴43=S2≤S n<32.∴S n的最大值与最小值分别为:2,43.考虑到函数y=3t−1在(0,+∞)上单调递增,∴A≤(3−1)m=3×43−143=134.B≥(3−1)B=3×2−12=112.∴B﹣A的最小值=112−134=94.故选:B.9.已知等差数列{a n}满足a2=2,a3+a6=1+a8,数列{b n}满足b n a n+1a n=a n+1﹣a n,记{b n}的前n项和为S n,若对于任意的a∈[﹣2,2],n∈N*,不等式<22+B−3恒成立,则实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:由等差数列的性质知a3+a6=a8+a1=a8+1,则a1=1,又a2=2,则等差数列{a n}的公差d=a2﹣a1=1,∴a n=1+(n﹣1)=n.由b n a n+1a n=a n+1﹣a n,得=1−1r1=1−1r1,∴=(1−12)+(12−13)+(13−14)+⋯+(1K1−1)+(1−1r1)=1−1r1,则不等式<22+B−3恒成立等价于1−1r1<22+B−3恒成立,而1−1r1<1,∴问题等价于对任意的a∈[﹣2,2],n∈N*,2t2+at﹣4≥0恒成立.设f(a)=2t2+at﹣4,a∈[﹣2,2],则o2)≥0o−2)≥0,即2+−2≥02−−2≥0,解得:t≥2或t≤﹣2.故选:A.10.已知数列{a n}的首项是a1=1,前n项和为S n,且S n+1=2S n+3n+1(n∈N*),设c n=log2(a n+3).若存在常数k,使得不等式k≥−1(r16)(∈∗)恒成立,则k的取值范围为()A.[19,+∞)B.[116,+∞)C.[125,+∞)D.[136,+∞)【解答】解:因为S n+1=2S n+3n+1,所以当n≥2时,S n=2S n﹣1+3(n﹣1)+1,两式相减,得a n+1=2a n+3,所以a n+1+3=2(a n+3),又a1+3=4,a1+a2=S2=2S1+3×1+1=6,所以a2=5,a2+3=2(a1+3),所以数列{a n+3}是以4为首项、2为公比的等比数列,所以+3=4×2K1=2r1,所以c n=log2(a n+3)=n+1,所以−1(r16)=(r16)(r1)=2+17r16=1r16+17≤18+17=125,当且仅当n=4时等号成立,所以≥125,所以k的取值范围为[125,+∞).故选:C.11.已知数列{a n}满足1=3,r1=+2−1,记数列{|a n﹣2|}的前n项和为S n,设集合={125,6225,4517,3512},N={λ∈M|λ>S n对n∈N*恒成立},则集合N的元素个数是()A.1B.2C.3D.4【解答】解:令r1=+2−1=,解得a n=2,即数列{a n}的不动点为2,其生成函数为=+2−1,所以,作出函数=+2−1与函数y=x的图像如图:故由上图:2<a n+1<a n≤3,∴13≤1<12,∴r1=22−1+1=2(1−14)2+78∈[89,1),即89≤r1<,又∵r1−=2−1=2−,∴a n﹣2=a n(a n﹣a n+1),一方面,由r1≥89得+r1≥179,∴≤917(+r1),−2=(−K1)≤917(2−r12),∴=(1−2)+(2−2)+⋯(−2)≤917[(12−22)+(22−32)+⋯+(2−r12)]=917(9−r12)∵a n+1>2,且当n→+∞,a n+1→2,∴<917(9−4)=4517,∵4517≥4517,3512>4517,∴4517,3512∈,另一方面,由r1−2=(−2)(−1),2<≤3,得r1−2−2=1−1>12,又∵1−2=1,2−2=23,3−2=512,∴=(1−2)+(2−2)+⋯(−2)≥1+23+512+512⋅12+⋯+512⋅(12)K3=52−53⋅2K1,又当→+∞,52−53⋅2K1→52,∴λ必须大于等于52,∵125<52,6225<52,∴125,6225∉,所以集合N的元素个数是2,故选:B.12.设S n是数列{a n}的前n项和,=32−3r1,若不等式≥n∈N+恒成A.13B.16C.19D.136【解答】解:当n=1时,1=321−32,所以a1=18,由=32−3r1,当n≥2时,K1=32K1−3,所以=−K1=32−3r1−32K1+2,所以=3K1+4⋅3,两边同除以3n,所以3=K13K1+4,所以数列{3}是以6为首项,以4为公差的等差数列,所以34(−1)=4+2,所以=(4+2),由≥n∈N+恒成立,即2(2+1)⋅3≥所以≥2⋅3,设=2⋅3,则r1=r12⋅3r12⋅3=r13=13+13<1,所以数列{c n}为递减数列,所以≥12×3=16,所以≥136,所以k的最小值为136,故选:D.13.S n为数列{a n}的前n项和,a1=2,a2=5,a3=10,a4=17,对任意大于2的正整数n,有S n+1﹣3S n+3S n﹣1﹣S n﹣2+m=0恒成立,则使得12−2+13−2+⋯+1K1−2+1−2≥2542成立的正整数k的最小值为()A.7B.6C.5D.4【解答】解:依题意知:当n=3时有S4﹣3S3+3S2﹣S1+m=0=a4﹣2a3+a2+m,∵a2=5,a3=10,a4=17,∴m=﹣2,S n+1﹣3S n+3S n﹣1﹣S n﹣2﹣2=0,即(S n+1﹣S n)﹣2(S n﹣S n﹣1)+(S n﹣1﹣S n)﹣2=0,﹣2∴a n+1﹣2a n+a n﹣1﹣2=0,即(a n+1﹣a n)﹣(a n﹣a n﹣1)=2,n≥3,又a2﹣a1=3,a3﹣a2=5,(a3﹣a2)﹣(a2﹣a1)=2,∴数列{a n+1﹣a n}是以3为首项,2为公差的等差数列,∴a n+1﹣a n=2n+1,故a2﹣a1=3,a3﹣a2=5,a4﹣a3=7,…,a n﹣a n﹣1=2n﹣1(n≥2),由上面的式子累加可得:a n ﹣2=(K1)(3+2K1)2=(n ﹣1)•(n +1),n ≥2,∴1−2=1(K1)(r1)=12(1K1−1r1),n ≥2.由12−2+13−2+⋯+1K1−2+1−2≥2542可得:12[(11−13)+(12−14)+(13−15)+…+(1K1−1r1)]=12(1+12−1−1r1)≥2542,整理得1+1r1≤1342,∵k ∈N *且k ≥2,∴解得:k ≥6.所以k 的最小值为6.故选:B .二.多选题(共5小题)(多选)14.已知数列{a n }满足a 1=2,a n +1a n =2a n ﹣1(n ∈N *),b 1=20a 4,b n +1=a n b n (n ∈N •),数列{b n }的前n 项和为T n ,且对∀n ∈N *,2T n +400≥λn 恒成立,则()A .a 4=45B .数列{1−1}为等差数列C .b n =16n D .λ的最大值为225【解答】解:∵数列{a n }满足a 1=2,a n +1a n =2a n ﹣1,∴r1=2−1,∴r1−1=−1,∴1r1−1=−1=1−1+1,∴1r1−1−1−1=1,又11−1=12−1=1,∴{1−1}是以1为首项,公差为1的等差数列,∴B 选项正确;∴1−1=,∴=r1,∴4=54,∴A 选项错误;∴1=20×54=25,∴r1=(r1),∴r1=r1,∴21=21,32=32,•••,K1=K1,累乘可得:21⋅32⋅⋅⋅⋅⋅K1=21×32×⋅⋅⋅×K1,∴1=,∴b n =b 1n =25n ,∴C 选项错误,∴=(25+25p2,又对∀n ∈N *,2T n +400≥λn ,∴对∀n ∈N *,25n 2+25n +400≥λn ,∴对∀n∈N*,λ≤25+400+25,又25+400+25≥225×400+25=225,当且仅当25=400,即n=4时,等号成立,∴λ≤225,∴λ的最大值为225,∴D选项正确.故选:BD.(多选)15.设等差数列{a n}的前n项和为S n,且4=235,S7=28,记T n为数列{1}的前n项和,若T n<λ恒成立,则λ的值可以是()A.1B.2C.3D.4【解答】解:∵4=235,∴41+4×32=23(51+5×42),整理得12a1+18d=10a1+20d,即a1=d,由S7=28,可得71+7×62=28,即a1+3d=4,∴a1=d=1,∴=+oK1)2=or1)2,1=2or1)=2(1−1r1),∴=11+12+...+1=2(1−12+12−13+...+1−1r1)=2(1−1r1)=2−2r1.∵T n<λ恒成立,∴λ≥2.结合选项可知,λ的值可以是2或3或4.故选:BCD.(多选)16.已知数列{a n}满足:a1=2,=2−1K1,n=2,3,4,…,则下列说法正确的是()A.5=65B.对任意n∈N*,a n+1<a n恒成立C.不存在正整数p,q,r使a p,a r,a q成等差数列D.数列{1−1}为等差数列【解答】解:∵=2−1K1,(n≥2,n∈N*),∴r1=2−1,(n∈N*),∴r1−1=1−1,又a1﹣1=1≠0,∴1r1−1=11−1=−1=1−1+1,∴1r1−1−1−1=1,且11−1=1,∴数列{1−1}是以首项为1,公差为1的等差数列,∴1−1=,∴=1+1,∴D正确;对A,∵5=1+15=65,∴A正确;对B,∵r1−=(1+1r1)−(1+1)=−1or1)<0,∴a n+1<a n,∴B正确;对C,若存在正整数p,q,r使a p,a r,a q成等差数列,则2a r=a p+a q,∴2+2=2+1+1,∴2=1+1,令p=3,r=4,q=6,满足等式,∴C错误;故选:ABD.(多选)17.已知数列{a n}满足a1=1,a n+1=(r1)+2,对于任意n∈N*,a∈[﹣2,2],不等式3⋅2<2t2+at﹣1恒成立,则t的取值可以是()A.1B.2C.32D.4【解答】解:根据题意,r1=(r1)+2,两边同时取倒数可得,r1r1=1+2,即得r1r1+1=2(+1),由此可得数列{1+}是首项为2,公比为2的等比数列,所以1+=2⇒=2−1,∴3⋅2=3(2−1)2=3−32<3,∴2t2+at﹣1≥3,又因为at+2t2﹣4≥0在a∈[﹣2,2]上恒成立,所以−2+22−4≥02+22−4≥0⇒t∈(﹣∞,﹣2]∪[2,+∞).故选:BD.(多选)18.已知数列{a n}中,a1=1,a n+1−1=(1+1),n∈N*.若对于任意的t∈[1,2],不等式<−22−(+1)+2−a+2恒成立,则实数a可能为()A.﹣4B.﹣2C.0D.2【解答】解:由a n+1−1=(1+1),得a n+1−1=r1,∴r1r1−=1or1)=1−1r1,∴=(−K1K1)+(K1K1−K2K2)+⋯+⋯+(a2﹣a1)+a1,=(1K1−1)+(1K2−1K1)+…+(1−12)+1=2−1<2,∵不等式<−22−(+1)+2−a+2恒成立,∴2≤﹣2t2﹣(a+1)t+a2﹣a+2,∴2t2+(a+1)t﹣a2+a≤0,在t∈[1,2]上恒成立,设f(t)=2t2+(a+1)t﹣a2+a,t∈[1,2],∴o1)=2++1−2+≤0o2)=8+2(+1)−2+≤0,解得a≤﹣2或a≥5,∴实数a可能为﹣4,﹣2.故选:AB.。
2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)
压轴题型09 数列通项、求和及综合灵活运用命题预测数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.高频考法(1)数列通项、求和问题(2)数列性质的综合问题(3)实际应用中的数列问题(4)以数列为载体的情境题(5)数列放缩01 数列通项、求和问题1、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n qq a p a p p +⎛⎫+=+ ⎪−−⎝⎭,则1nq a p ⎧⎫+⎨⎬−⎩⎭是以11qa p +−为首项,以p 为公比的等比数列,由此可以求出n a ; (2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n nn na a p q q q ++=⋅+,设2024届高考数学专项练习n n na b q =,从而变成1n b +=1n p b q +,从而将问题转化为第(1)个问题; (3)形如11n n n n qa pa a a ++−=,可以考虑两边同时除以1n n a a +,转化为11n n q p a a +−=的形式,设1n nb a =,则有11n n qb pb +−=,从而将问题转化为第(1)个问题.2、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.3、用裂项相消法求和时,要对通项进行变换,如:()11n k n kn n k=+−++,1111()n n k k n n k ⎛⎫=− ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式: (1)111(1)1n n n n =−++; (2)1111(21)(21)22121n n n n ⎛⎫=− ⎪−+−+⎝⎭;(3)1111(2)22n n n n ⎛⎫=− ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=−⎢⎥+++++⎣⎦; (5)(1)(2)(1)(1)(1)3n n n n n n n n ++−−++=.4、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS −”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和; (2)通项公式为,,n n n b n a c n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题. 【典例1-1】(2024·河北沧州·一模)在数列{}n a 中,已知321212222nn a a a a n −++++=. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a +成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).【解析】(1)当1n =时,12a =; 当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a −−−−⎛⎫⎛⎫=++++−++++⎪ ⎪⎝⎭⎝⎭()2212n n =−−=, 所以122nn a −=⇒2n n a =,2n ≥. 当1n =时,上式亦成立, 所以:2n n a =. (2)由()123155n n ⎡⎤+++++−=⎣⎦⇒10n =.所以新数列{}n b 前55项中包含数列{}n a 的前10项,还包含,11x ,21x ,22x ,31x ,32x ,,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=, ()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+.设123935719T a a a a =++++1239325272192=⨯+⨯+⨯++⨯则234102325272192T =⨯+⨯+⨯++⨯,所以()1239102322222192T T T −=−=⨯+⨯+++−⨯101722=−⨯−.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【典例1-2】(2024·高三·河南濮阳·开学考试)已知等比数列{}n a 的首项为2,公比q 为整数,且1243424a a a a ++=.(1)求{}n a 的通项公式;(2)设数列21n n n a ⎧⎫⋅的前n 项和为nS ,比较nS 与4的大小关系,并说明理由.【解析】(1)由已知可得12n n a q −=⨯,因为1243424a a a a ++=,所以324222242q q q ⨯+⨯+⨯=⨯,即324240q q q −++=,则()()22220q q q −−−=,解得2q或13所以2q,()1*222n n n a n −=⋅=∈N .(2)由(121212nnn n n a n =⋅⋅1122222n n n nn n n n −−=−=⋅⋅ 令12n n nb −=,设{}n b 前n 项和为n C ,则01211232222n n nC −=++++, 所以123112322222n n n C =++++,两式相减得1211111122222nn n n C −=++++−1122212212n n n n n −+=−=−−, 所以42442n nnC +=−<, 令12n n x n −=⋅0n x >, 设{}n x 前n 项和为n T ,则0n T >, 所以4n n n S C T =−<.【变式1-1】(2024·四川泸州·三模)已知n S 是数列{}n a 的前n 项和,11a =,()12n n na n S +=+,则n a = . 【答案】()212n n −+⋅【解析】当2n ≥时,()()111n n n a n S −−=+,即12n n n S a n +=+,111n n n S a n −−=+, 则11121n n n n n n n S S a a a n n −+−−=−=++,即()1221n n n a a n ++=+,则有()121nn n a a n −+=,1221n n a n a n −−=−,,21232a a ⨯=, 则()212112112n n n n n n a a a a a n a a a −−−−=⨯⨯⨯⨯=+⋅,当1n =时,11a =,符合上式,故()212n n a n −=+⋅.故答案为:()212n n −+⋅.【变式1-2】(2024·青海西宁·二模)已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++= .【答案】33−【解析】设数列{}n a 的公比为(0)q q >,则333221a a a q q ++=,即21112121qq ⎛⎫++= ⎪⎝⎭, 化简得23440q q −−=,解得2q(负值舍去),所以331312232n n n n a a q −−−=⋅=⨯=⨯.于是111333,4,12a a b a b =+=+=, 所以等差数列{}n n a b +的公差为()()3311431a b a b +−+=−,所以()14414,4432n n n n n a b n n b n a n −+=+−==−=−⨯,所以()()23412345412345312222b b b b b ++++=⨯++++−⨯++++()56032133=−⨯−=−.故答案为:33−02 数列性质的综合问题1、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=. 在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.2、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S . ①n S ,2n n S S −,32n n S S −,…也成等差数列,公差为2n d . ②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+− ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd −=奇偶,1k kS a S a +=偶奇. 若项数为奇数21k +,则1 k S S a +−=奇偶,1S k S k+=奇偶. (2)设等比数列{}n a 的公比为q ,前n 项和为.n S①当1q ≠−时,n S ,2n n S S −,32n n S S −,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =. ③若项数为偶数2k ,则()21 11k a q S S q−−=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质. 3、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}n a λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a 也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.【典例2-1】(2024·山西晋城·二模)已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a 的取值范围是( )A .67,78⎛⎫ ⎪⎝⎭B .613,715⎛⎫⎪⎝⎭C .67,,78⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭D .613,,715⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可得:()158168915080S a S a a =>⎧⎨=+<⎩,即88900a a a >⎧⎨+<⎩,可知90a <,设等差数列{}n a 的公差为d ,则980d a a =−<, 可得等差数列{}n a 为递减数列,则10a >,由88900a a a >⎧⎨+<⎩可得11702150a d a d +>⎧⎨+<⎩,则112715d a −<<−,所以211116131,715a a d d a a a +⎛⎫==+∈ ⎪⎝⎭. 故选:B.【典例2-2】(2024·北京顺义·二模)设1a ,2a ,3a ,…,7a 是1,2,3,…,7的一个排列.且满足122367a a a a a a −≥−≥≥−,则122367a a a a a a −+−++−的最大值是( )A .23B .21C .20D .18【答案】B【解析】122367a a a a a a −+−++−即为相邻两项之差的绝对值之和,则在数轴上重复的路径越多越好,又122367a a a a a a −≥−≥≥−,比如1726354→→→→→→,其对应的一个排列为1,7,2,63,5,4,则122367a a a a a a −+−++−的最大值是6+5+4+3+2+1=21故选:B【变式2-1】(2024·浙江宁波·二模)已知数列{}n a 满足2n a n n λ=−,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是( )A .11,148⎡⎤⎢⎥⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦【答案】C【解析】因为对任意{}1,2,3n ∈都有1n n a a +>, 所以数列{}n a 在[]1,3上是递减数列, 因为对任意{}7,N n n n n ∈≥∈都有1n n a a +<, 所以数列{}n a 在[)7,+∞上是递增数列,所以0172211522λλλ⎧⎪>⎪⎪>⎨⎪⎪<⎪⎩,解得11157λ<<, 所以实数λ的取值范围是11,157⎛⎫⎪⎝⎭.故选:C.【变式2-2】(多选题)(2024·浙江绍兴·二模)已知等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,且*n ∀∈N ,101na q q<−,则( ) A .数列{}n a 是递增数列B .数列{}n a 是递减数列C .若数列{}n S 是递增数列,则1q >D .若数列{}n T 是递增数列,则1q >【答案】ACD【解析】由题意可知()()()()111211111,1n n n n n n n a q S T a a q a q a qq−−−===−,且*n ∀∈N ,101na q q<−, 故有101a q <−且0q >(否则若0q <,则11na q q −的符号会正负交替,这与*n ∀∈N ,101n a q q<−,矛盾), 也就是有101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩,无论如何,数列{}n a 是递增数列,故A 正确,B 错误;对于C ,若数列{}n S 是递增数列,即110n n n S S a ++−=>,由以上分析可知只能101a q >⎧⎨>⎩,故C 正确;对于D ,若数列{}n T 是递增数列,显然不可能是1001a q <⎧⎨<<⎩,(否则()121n n n n T a q −=的符号会正负交替,这与数列{}n T 是递增数列,矛盾),从而只能是101a q >⎧⎨>⎩,且这时有111n n n T a T ++=>,故D 正确. 故选:ACD.03 实际应用中的数列问题(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; ②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点 ①根据题意,正确确定数列模型; ②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.【典例3-1】(2024·北京房山·一模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第三天走的路程为( ) A .12里 B .24里 C .48里 D .96里【答案】C【解析】由题意可得,此人6天中每天走的路程是公比为12的等比数列, 设这个数列为{}n a ,前n 项和为n S ,则16611163237813212a S a ⎛⎫− ⎪⎝⎭===−,解得1192a =, 所以321192482a =⨯=, 即该人第三天走的路程为48里. 故选:C.【典例3-2】(2024·北京海淀·一模)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为( )A .6B .7C .8D .9【答案】C【解析】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:3131134,2,248,则31353842155724+++=>+=, 黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和, 即1311432164316841+28114228231144++⎛⎫⎛⎫+++⨯+++≈+⨯=<= ⎪⎪⎝⎭⎝⎭−−, 综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm , 故选:C【变式3-1】(2024·四川·模拟预测)分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )A .2022312−B .2023332−C .202231−D .202333−【答案】A【解析】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得1113,2,2n n n n n n n n n a b a a b b b a −+++==+=+,且有111,0a b ==,故有()11113,,n n n n n n n n a b a b a b a b ++++⎧+=+⎨−=−⎩,所以{}n n a b +是以111a b 为首项,3为公比的等比数列,{}n n a b −为常数数列,且111a b −=,所以{}n n a b −是以111a b −=为首项,1为公比的等比数列,故13,1,n n n n n a b a b −⎧+=⎨−=⎩故1131,231,2n n n na b −−⎧+=⎪⎪⎨−⎪=⎪⎩所以20222023312b −=. 故选:A.【变式3-2】(2024·江西九江·二模)第14届国际数学教育大会(ICME -International Congreas of Mathematics Education )在我国上海华东师范大学举行.如图是本次大会的会标,会标中“ICME -14”的下方展示的是八卦中的四卦——3、7、4、4,这是中国古代八进制计数符号,换算成现代十进制是3210387848482020⨯+⨯+⨯+⨯=,正是会议计划召开的年份,那么八进制107777⋅⋅⋅个换算成十进制数,则换算后这个数的末位数字是( )A .1B .3C .5D .7【答案】B【解析】由进位制的换算方法可知,八进制107777⋅⋅⋅个换算成十进制得:1098110187878787878118−⨯+⨯+⋅⋅⋅+⨯+⨯=⨯=−−,()101001019919101010101010811021C 10C 102C 102C 21−=−−=+⨯+⋅⋅⋅+⨯+−因为01019919101010C 10C 102C 102+⨯+⋅⋅⋅+⨯是10的倍数,所以,换算后这个数的末位数字即为101010C 21−的末尾数字,由101010C 211023−=可得,末尾数字为3.故选:B04 以数列为载体的情境题解决数列与数学文化相交汇问题的关键【典例4-1】(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【解析】对于命题①,对于数列{}n a ,令21,12,2n n n a n −=⎧=⎨≥⎩,则11,12,2n n n S n −=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列, 当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S −=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项, 故命题①正确;对于命题②,等差数列{}n a ,令1a d =−,则()()112n a a n d n d =+−=−, 则()()()123222n n n d n d n a a n n S d ⎡⎤−+−+−⎣⎦===, 因为21n −≥−且2Z n −∈, ()2313912228n n n −⎛⎫=−−≥− ⎪⎝⎭,且()3N*,Z 2n n n −∈∈, 所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”, 故命题②正确; 故选:A.【典例4-2】(2024·广东梅州·二模)已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =−(1,2,3,n =⋅⋅⋅),并将数列{}n p 称为{}n a 的“生成数列”. (1)若3n n a =,求其生成数列{}n p 的前n 项和; (2)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =;(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +,⋅⋅⋅是等差数列.【解析】(1)因为3nn a =关于n 单调递增,所以{}12max ,,,3nn n n M a a a a =⋅⋅⋅==,{}121min ,,,3n n m a a a a =⋅⋅⋅==,于是33nn n n p M m =−=−,{}n p 的前n 项和()()()()()1231333333333313132n n nn P n n −=−+−++−=−=−−−.(2)由题意可知1n n M M +≥,1n n m m +≤, 所以11n n n n M m M m ++−≥−,因此1n n p p +≥,即{}n p 是单调递增数列,且1110p M m ==-, 由“生成数列”的定义可得n n q p =.(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,12n n n a a a ++⋯,,,是等差数列. 当{}n p 是一个常数列,则其公差d 必等于0,10n p p ==, 则n n M m =,因此{}n a 是常数列,也即为等差数列;当{}n p 是一个非常数的等差数列,则其公差d 必大于0,1n n p p +>, 所以要么11n n n M a M ++>=,要么11n n n m a m ++=<,又因为{}n a 是由正整数组成的数列,所以{}n a 不可能一直递减, 记2min ,{}n n a a a a =,,,,则当0n n >时,有n n M m =, 于是当0n n >时,0n n n n n p M m a a =−=−, 故当0n n >时,0n n n a p a =+,…,因此存在正整数0n ,当0n n ≥时,12n n n a a a ++,,,…是等差数列. 综上,命题得证.【变式4-1】(2024·全国·模拟预测)“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为由图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1220111a a a ++⋅⋅⋅+的值为 .【答案】4021【解析】设第n 个数为n a ,则11a =,212a a −=,323a a −=,434a a −=,…,1n n a a n −−=, 叠加可得()11232n n n a n +=+++⋅⋅⋅+=, ∴122011122212232021a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯ 111114021223202121⎛⎫=⨯−+−+⋅⋅⋅+−= ⎪⎝⎭.故答案为:4021. 【变式4-2】(2024·内蒙古呼伦贝尔·一模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等.对这类高阶等差数列的研究·杨辉之后一般被称为“垛积术”.现有高阶等差数列前几项分别为1,4,8,14,23,36,54,则该数列的第21项为 . (注:()()22221211236n n n n +++++⋅⋅⋅+=)【答案】1391【解析】设题设高阶等差数列为{}n a ,令1n n n b a a +=−,设数列{}n b 的前n 项和为n B ,则数列{}n b 的前几项分别为3,4,6,9,13,18,1111n n n B a a a ++=−=−,令1+=−n n n c b b ,设数列{}n c 的前n 项和为n C ,则数列{}n c 的前几项分别为1,2,3,4,5,1113n n n C b b b ++=−=−,易得2,2n n n n c n C +==,所以21332n n n n b C ++=+=+,故()21133222n n n n b n −=+=−+,则()()()()()1211111632626n n n n n n n n n B n n ⎡⎤++++−=−+=+⎢⎥⎣⎦, 所以11n n a B +=+,所以211391a =.故答案为:139105 数列放缩在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.【典例5-1】(2024·天津滨海新·二模)已知数列{}n a 满足112,1,2n n n n a t qa n a −−=⎧⎪=⎨+≥⎪⎩,其中220,0,0,N q t q t n ≥≥+≠∈.(1)若0qt =,求数列{}n a 的前n 项的和; (2)若0=t ,2q且数列{}n d 满足:11n nn n n a a d a a =++−,证明:121ni i d n =<+∑. (3)当12q =,1t =时,令)22,2n n b n n a =≥∈−N ,判断对任意2n ≥,N n ∈,n b 是否为正整数,请说明理由.【解析】(1)因为0qt =,220q t +≠,所以当0q =时,0t ≠,2n ≥时,1n n t a a −=,即n 为奇数时,2n a =;n 为偶数时,2n ta =. 记数列{}n a 的前n 项的和为n S ,当n 为偶数时,222n n t S ⎛⎫=+ ⎪⎝⎭,当n 为奇数时,112221224n n n t tn tS S n −−−⎛⎫=+=++=++ ⎪⎝⎭, 综上2,2221,214n n t n k S tn t n n k ⎧⎛⎫+= ⎪⎪⎪⎝⎭=⎨−⎪++=+⎪⎩,其中N k ∈.当0=t 时,0q ≠,2n ≥时,1n n a qa −=,此时{}n a 是等比数列, 当1q =时,2n S n =;当1q ≠时,()211nn q S q−=−,故()2,121,11nn n q S q q q=⎧⎪=−⎨≠⎪−⎩. (2)由(1)知,0=t ,2q时,2n n a =,22112121n n n n n n n n n a a d a a =+=++−+−1122121n n =+−−+,112211111112212121212121nin n i dn =⎛⎫⎛⎫⎛⎫=+−+−++− ⎪ ⎪ ⎪−+−+−+⎝⎭⎝⎭⎝⎭∑ 1212121n n n ≤+−<++(3)对任意2n ≥,N n ∈,n b 是正整数.理由如下: 当12q =,1t =时,21111322a a a =+=,此时24b =; 2321117212a a a =+=,此时324b =;由202n n b a =>−,平方可得2242n n a b =+,212142n n a b ++=+, 又222121111124n n n n n a a a a a +⎛⎫=+=++ ⎪⎝⎭,所以22221414221442n n n n b b b b +⎛⎫+=+++ ⎪+⎝⎭, 整理可得()222142n n n b b b +=+,当3n ≥时,()2221142n n n b b b −−=+,所以()()222222111424242n n n n n n b b b b b b +−−⎡⎤=+=++⎣⎦ ()()22242211141241n n n n n b b b b b −−−=++=+,所以()21121n n n b b b +−=+,由23N,N b b ∈∈,所以4N b ∈,以此类推,可知对任意2n ≥,N n ∈,n b 是正整数.【典例5-2】(2024·全国·模拟预测)已知数列{}n a 的各项均为正数,11a =,221n n n a a a ++≥.(1)若23a =,证明:13n n a −≥;(2)若10512a =,证明:当4a 取得最大值时,121112na a a +++<. 【解析】(1)由题意知,211n n n n a a a a +++≥,设1n n na q a +=,12n q q q ∴≤≤≤,23a =,11a =,13q ∴=,当2n ≥时,113211121111213n n nn n n a a a a a a q q q a q a a a −−−−=⋅⋅=⋅⋅≥⋅=.当1n =时,11a =满足13n n a −≥,综上,13n n a −≥.(2)()31011291231512a a q q q q q q a =⋅⋅=≥⋅⋅⋅,1238q q q ∴⋅⋅≤,4a ∴的最大值为8,当且仅当123456789q q q q q q q q q ⋅⋅=⋅⋅=⋅⋅时取等号.而12n q q q ≤≤≤,1292q q q ∴====,而10n ≥时,192n n q q q −≥≥≥=,1112n n n a a q −−≥∴⋅=,2112111111111121()()2121222212nn n n a a a −⎛⎫⋅− ⎪⎛⎫⎝⎭∴+++≤++++==−< ⎪⎝⎭−. 【变式5-1】(2024·浙江杭州·二模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d .由4224,21n nS S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+−=+−+⎩, 解得:1a 1,d2,所以()()12121n a n n n *=+−=−∈N .(2)由(1)知,()()12123n n n b n b +−=+, 即12123n n b n b n +−=+,12321n n b n b n −−=+,122521n n b n b n −−−=−,……,322151,75b b b b ==, 利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n −−−−−=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅+− ()()()99112212122121n n n n n ⎛⎫==−≥ ⎪−+−+⎝⎭,13b =也符合上式,12311nkn n k bb b b b b −==+++++∑9111111112335572121n n ⎡⎤⎛⎫=−+−+−++− ⎪⎢⎥−+⎝⎭⎣⎦911221n ⎛⎫=−⎪+⎝⎭所以191912212nk k b n =⎛⎫=−< ⎪+⎝⎭∑.【变式5-2】(2024·广西·二模)在等差数列{}n a 中,26a =,且等差数列{}1n n a a ++的公差为4. (1)求10a ; (2)若2111n n n n b a a a −+=+,数列{}n b 的前n 项和为n S ,证明:21228n S n n <++. 【解析】(1)设{}n a 的公差为d ,则1212()()24n n n n n n a a a a a a d +++++−+=−==,2d =, 又26a =,所以1624a =−=, 所以42(1)22n a n n =+−=+,1022a =. (2)由(1)得11114()44(1)(2)412n b n n n n n n =+=−+++++,所以2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=−+⨯=++−<++++.1.在公差不为0的等差数列{}n a 中,3a ,7a ,m a 是公比为2的等比数列,则m =( ) A .11 B .13C .15D .17【答案】C【解析】设等差数列的公差为d ,则0d ≠, 因为3a ,7a ,m a 是公比为2的等比数列,所以()1111162,226a m d a d a d a d +−+==++,由前者得到12a d =,代入后者可得128m +=, 故15m =, 故选:C.2.记数列{}n a 的前n 项积为n T ,设甲:{}n a 为等比数列,乙:2n n T ⎧⎫⎨⎬⎩⎭为等比数列,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件 【答案】D【解析】若{}n a 为等比数列,设其公比为q ,则11n n a a q −=,(1)12(1)211n n n n n n T a q a q−+++−==,于是(1)12()22n n n n n T a q −=,(1)111211(1)12()222()22n n n n n n n n n n nT a qa q T a q ++++−==⋅,当1q ≠时,12n a q ⋅不是常数, 此时数列2n n T ⎧⎫⎨⎬⎩⎭不是等比数列,则甲不是乙的充分条件;若2n nT ⎧⎫⎨⎬⎩⎭为等比数列,令首项为1b ,公比为p ,则112n n n T b p −=,112(2)n n T b p −=⋅, 于是当2n ≥时,112112(2)22(2)n n n n n T b p a p T b p −−−⋅===⋅,而1112a T b ==, 当1b p ≠时,{}n a 不是等比数列,即甲不是乙的必要条件, 所以甲是乙的既不充分也不必要条件. 故选:D3.已知数列{}n a 为等比数列,且11a =,916a =,设等差数列{}n b 的前n 项和为n S ,若55b a =,则9S =( ) A .-36或36 B .-36C .36D .18【答案】C【解析】数列{}n a 为等比数列,设公比为q ,且11a =,916a =, 则89116a q a ==,则44q =, 则45514b a a q ===,则()199599362b b S b+⨯===,故选:C.4.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n −=≥∈N ,20n S =,则n 的值为( )A .16B .12C .10D .8【答案】B【解析】由36S =,得1236a a a ++=①,因为()*3164,n S n n −=≥∈N ,20n S =,所以34n n S S −−=,即124n n n a a a −−++=②,①②两式相加,得1213210n n n a a a a a a −−+++++=,即()1310n a a +=, 所以1103n a a +=,所以()152023n n n a a n S +===,解得12n =. 故选:B.5.在等比数列{}n a 中,00n a >.则“001n n a a +>”是“0013n n a a ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】设等比数列{}n a 的公比为0q ≠,当001n n a a +>时,即有00n n a q a >⋅,又00n a >,故1q <且0q ≠,当1q <−时,有0002311n n n a q a a +++=>,故不能得到0013n n a a ++>,即“001n n a a +>”不是“0013n n a a ++>”的充分条件;当0013n n a a ++>时,即有0002311n n n a q a a +++=<,即21q <且0q ≠,则001n n a q a +=⋅,当()1,0q ∈−时,由00n a >,故010n a +<,故001n n a a +>, 当()0,1q ∈时,0001n n n a q a a +=⋅<,亦可得001n n a a +>, 故“001n n a a +>”是“0013n n a a ++>”的必要条件;综上所述,“001n n a a +>”是“0013n n a a ++>”的必要不充分条件. 故选:B.6.已知正项数列{}n a 的前n 项和为n S ,且22n n nS a a =+,数列{}n b 的前n 项积为n T 且2n n T S =,下列说法错误的是( )A .2n S nB .{}n b 为递减数列C .202420242023b = D .2(1)n a n n =−【答案】B【解析】当1n =时,11122a a a =+,解得12a = 当2n ≥时,1122n n n n n S S S S S −−=−−+,即2212n n S S −−=,且212S =,所以数列}{2n S 是首项为2,公差为2的等差数列,所以()22212n S n n =+⋅−=,又0n a >,所以2n S n =,故A 正确; 当2n ≥时,有()22121n a n n n n =−=−,取1n =时,121112a =−=1a ,故数列}{n a 的通项公式为21n a n n =−,故D 正确;因为数列{}n b 的前n 项积为n T 且2n n T S =,所以21232n n n T b b b b S n =⋅⋅==,当1n =时,12b =, 当2n ≥时,()12111121111n n n T n n n b T n n n n −−+=====+−−−−, 显然1n =不适用,故数列{}n b 的通项公式为2,111,21n n b n n =⎧⎪=⎨+≥⎪−⎩, 显然122b b ==,所以数列{}n b 不是递减数列,故B 错误, 由当2n ≥时,1n n b n =−,得202420242024202412023b ==−,故C 正确,故选:B.7.(多选题)数列{}n a 满足:()111,32n n a S a n −==≥,则下列结论中正确的是( )A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n −−⎛⎫=≥ ⎪⎝⎭【答案】AC【解析】由13(2)n n S a n −=≥, 当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n −+−=−≥,所以133(2)n n n a a a n +=−≥, 即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确; 因22112311413341,24313n n n n Sa a a a n −−−−⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭−,故D 错误. 故选:AC.8.(多选题)设{}n a 是等差数列,n S 是其前n 项的和.且56S S <,678S S S =>,则下面结论正确的是( )A .0d ≤B .70a =C .6S 与7S 均为n S 的最大值D .满足0n S <的n 的最小值为14【答案】BCD【解析】A :因为678S S S =>,所以7678780,0S S a S S a −==−=<, 所以870d a a =−<,故A 错误; B :由A 的解析可得B 正确;C :因为56S S <,678S S S =>,所以6S 与7S 均为n S 的最大值,故C 正确;D :因为71132a a a =+,由()113131302a a S +==,()()114147814702a a S a a +==+<,故D 正确; 故选:BCD.9.(多选题)已知数列{}n a 满足:212n n n a a a λ+=++*()N n ∈,其中R λ∈,下列说法正确的有( )A .当152,4a λ==时,1n a n ≥+ B .当1,4λ∞⎡⎫∈+⎪⎢⎣⎭时,数列{}n a 是递增数列C .当2λ=−时,若数列{}n a 是递增数列,则()()1,31,a ∞∞∈−−⋃+D .当13,0a λ==时,1211112223n a a a +++<+++【答案】ACD【解析】对于A ,当54λ=时,2215111042n n n n n a a a a a +⎛⎫−=++=++≥> ⎪⎝⎭,又12a =,故11n n a a +>+,所以1211211n n n a a a a n n −−>+>+>>+−+=,故A 项正确.对于B ,因为22111()24n n n n n a a a a a λλ+−=++=++−且1,4λ∞⎡⎫∈+⎪⎢⎣⎭,所以10n n a a +−≥, 当14λ=,112a =-时,22211111,,()2220n n n n n a a a a a a a ++⇒⇒−=+==-==-,此时数列{}n a 是常数列,故B 项错误;对于C, 由于数列{}n a 是递增数列, 当2n ≥时,故10n n a a −−>,2211111(22)(22)()(2)0n n n n n n n n n n a a a a a a a a a a +−−−−−=+−−+−=−++>,故120n n a a −++>, 所以2121020a a a a −>⎧⎨++>⎩,即()()211121112202220a a a a a a ⎧+−−>⎪⎨+−++>⎪⎩,解得11a >或13a <−,故C 项正确;对于D,当0λ=时,2212(1)1n nn n a a a a +=+=+−,结合13a =,可知2214111a a =−=>, 232133a a =−>,⋯,结合111()(2)n n n n n n a a a a a a +−−−=−++,可知{}n a 是递增数列,13n a a ≥=,则12(2)3(2)n n n n a a a a ++=+≥+, 即1232n n a a ++≥+,所以1121212223(2)222n nn n n a a a n a a a −−−−+++⨯⨯⨯≥≥+++, 即11523(2)3(2)3n nn a a n −+≥+=⨯≥,所以131(2)253n n n a ≤⨯≥+,当1n =时,1111312553a =≤⨯+,所以*131(N )253n n n a ≤⨯∈+, 可得2111(1)1311133133()125333510313nn n i i a =−≤+++=⨯<<+−∑,故D 项正确; 故选:ACD .10.(多选题)已知数列{}n a 满足2122n n n a a a +=−+,则下列说法正确的是( )A .当112a =时,()5124n a n <≤≥ B .若数列{}n a 为常数列,则2n a = C .若数列{}n a 为递增数列,则12a > D .当13a =时,1221n n a −=+【答案】AD【解析】对于A ,当112a =时,254a =,令1n nb a =−,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =−+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =−,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +−=−>,解得0n b <或1n b >.当11b <−时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b −≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <−或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =−,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列, 12log 2n n b −∴=,即11222,21n n n n b a −−=∴=+,D 正确.故选:AD.11.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = . 【答案】3【解析】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3.12.某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为 .【答案】134【解析】设第一层有m 根,共有n 层,则(1)20242n n n S nm −=+=, 4(21)404821123n m n +−==⨯⨯,显然n 和21m n +−中一个奇数一个偶数,则1121368n m n =⎧⎨+−=⎩或1621253n m n =⎧⎨+−=⎩或23176n m =⎧⎨=⎩,即11179n m =⎧⎨=⎩或16119n m =⎧⎨=⎩或2377n m =⎧⎨=⎩,显然每增加一层高度增加53当11179n m =⎧⎨=⎩时,10531096.6h =⨯≈厘米150<厘米,此时最下层有189根; 当16119n m =⎧⎨=⎩时,155310139.9h =⨯≈厘米150<厘米,此时最下层有134根;当2377n m =⎧⎨=⎩时,22310200.52150h =⨯≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根. 故答案为:13413.已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m nS S −{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00mn −的值为 .【答案】21【解析】不妨设数列{}n a 的公差大于零, 由于9100a a <,得9100,0a a <>, 且9n ≤时,0n a <,10n ≥时,0n a >, 不妨取m n >,则1mm n ii n S S a=+−=∑,设3030910i i k S S a ==−=∑,若9,30n m >=,则030301n ii n S S ak =+−≤<∑,此时式子取不了最大值;若9,30n m <=,则09301n ii n S S a k =+−≤+∑,又9i ≤时,0i a <, 因为09301n ii n S S a k k =+−≤+<∑,此时式子取不了最大值;因此这就说明09n n ==必成立. 若30m <,则0910m m i i S S a k =−≤<∑,这也就说明030m <不成立,因此030m =, 所以0021m n −=. 故答案为:21.14.已知数列 {}n a 是各项均为正数的等比数列, n S 为其前 n 项和, 1331614a a S ==,, 则2a = ; 记 ()1212n n T a a a n ==,,, 若存在 *0n ∈N 使得 n T 最大, 则 0n 的值为 .【答案】 4 3或4【解析】等比数列{}n a 中,公比0q >;由213216a a a ⋅==,所以24a =,又314S =,所以13131610a a a a ⋅=⎧⎨+=⎩解得1328a a =⎧⎨=⎩或1382a a =⎧⎨=⎩;若1328a a =⎧⎨=⎩时,可得2q,则21224a a q ==⨯=,且012,,,n a a a ⋯的值为2,4,8,16⋯,,可知数列{}n a 单调递增,且各项均大于1, 所以不会存在0n 使得012,,,n a a a ⋯的乘积最大(舍去);若1382a a =⎧⎨=⎩时,可得12q =,则211842a a q ==⨯=,且012,,,n a a a ⋯的值为118,4,2,1,,24,…,可知数列{}n a 单调递减,从第5项起各项小于1且为正数, 前4项均为正数且大于等于1,所以存在03n =或04n =,使得8421⨯⨯⨯的乘积最大, 综上,可得0n 的一个可能值是3或4. 故答案为:4;3或415.在数列{}n a 中,122,3a a ==−.数列{}n b 满足()*1n n n b a a n +=−∈N .若{}n b 是公差为1的等差数列,则{}n b 的通项公式为nb= ,n a 的最小值为 .【答案】 6n − 13−【解析】由题意1215b a a =−=−,又等差数列{}n b 的公差为1,所以()5116n b n n =−+−⋅=−; 故16n n a a n +−=−,所以当6n ≤时,10n n a a +−≤,当6n >时,10n n a a +−>, 所以123456789a a a a a a a a a >>>>>=<<<⋅⋅⋅,显然n a 的最小值是6a .又16n n a a n +−=−,所以()()()()()612132435465a a a a a a a a a a a a =+−+−+−+−+−()()()()()25432113=+−+−+−+−+−=−,即n a 的最小值是13−. 故答案为:6n −,13−16.第24届北京冬奥会开幕式由一朵朵六角雪花贯穿全场,为不少人留下深刻印象.六角雪花曲线是由正三角形的三边生成的三条1级Koch 曲线组成,再将六角雪花曲线每一边生成一条1级Koch 曲线得到2级十八角雪花曲线(如图3)……依次得到n 级*()n K n ∈N 角雪花曲线.若正三角形边长为1,我们称∧为一个开三角(夹角为60︒),则n 级n K 角雪花曲线的开三角个数为 ,n 级n K 角雪花曲线的内角和为 .。
高中数学数列压轴题练习及详解
1.已知数列是公差为正数的等差数列,其前n项和为,且•,(Ⅰ)求数列的通项公式;(Ⅱ)数列满足,①求数列的通项公式;②是否存在正整数m,,使得,,成等差数列?若存在,求出m,n的值;若不存在,请说明理由.解:(I)设数列的公差为d,则由•,,得,计算得出或(舍去).;(Ⅱ)①,,,,即,,,,累加得:,也符合上式.故,.②假设存在正整数m、,使得,,成等差数列,则又,,,,即,化简得:当,即时,,(舍去);当,即时,,符合题意.存在正整数,,使得,,成等差数列.解析(Ⅰ)直接由已知列关于首项和公差的方程组,求解方程组得首项和公差,代入等差数列的通项公式得答案;(Ⅱ)①把数列的通项公式代入,然后裂项,累加后即可求得数列的通项公式;②假设存在正整数m、,使得,,成等差数列,则.由此列关于m的方程,求计算得出答案.2.在数列中,已知,(1)求证:数列为等比数列;(2)记,且数列的前n项和为,若为数列中的最小项,求的取值范围.解:(1)证明:,又,,,故,是以3为首项,公比为3的等比数列(2)由(1)知道,,若为数列中的最小项,则对有恒成立,即对恒成立当时,有;当时,有⇒;当时,恒成立,对恒成立.令,则对恒成立,在时为单调递增数列.,即综上,解析(1)由,整理得:.由,,可以知道是以3为首项,公比为3的等比数列;(2)由(1)求得数列通项公式及前n项和为,由为数列中的最小项,则对有恒成立,分类分别求得当时和当的取值范围,当时,,利用做差法,根据函数的单调性,即可求得的取值范围.3.在数列中,已知, , ,设为的前n项和.(1)求证:数列是等差数列;(2)求;(3)是否存在正整数p,q, ,使, , 成等差数列?若存在,求出p,q,r的值;若不存在,说明理由.(1)证明:由,,得到,则又,,数列是以1为首项,以-2为公差的等差数列;(2)由(1)可以推知:,所以,,所以,①,②①-②,得,,,所以(3)假设存在正整数p,q,,使,,成等差数列. 则,即因为当时,,所以数列单调递减.又,所以且q至少为2,所以,①当时,,又,所以,等式不成立.②当时,,所以所以,所以,(数列单调递减,解唯一确定).综上可以知道,p,q,r的值分别是1,2,3.解析(1)把给出的数列递推式,,变形后得到新数列,该数列是以1为首项,以-2为公差的等差数列;(2)由(1)推出的通项公式,利用错位相减法从而求得求;(3)根据等差数列的性质得到,从而推知p,q,r的值.4.已知n为正整数,数列满足, ,设数列满足(1)求证:数列为等比数列;(2)若数列是等差数列,求实数t的值;(3)若数列是等差数列,前n项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.(1)证明:数列满足,,•,•,数列为等比数列,其首项为,公比为2;(2)解:由(1)可得:•,,数列是等差数列,,,计算得出或12.时,,是关于n的一次函数,因此数列是等差数列.时,,,不是关于n的一次函数,因此数列不是等差数列.综上可得;(3)解:由(2)得,对任意的,均存在,使得成立,即有••,化简可得,当,,,对任意的,符合题意;当,,当时,,对任意的,不符合题意.综上可得,当,,对任意的,均存在,使得成立.解析(1)根据题意整理可得,•,再由等比数列的定义即可得证;(2)运用等比数列的通项公式和等差数列中项的性质,可得,解方程可得t,对t的值,检验即可得到所求值;(3)由(2)可得,对任意的,均存在,使得成立,即有••,讨论为偶数和奇数,化简整理,即可得到所求值.5.已知常数,数列满足,(1)若, ,①求的值;②求数列的前n项和;(2)若数列中存在三项, , 依次成等差数列,求的取值范围.解:(1)①,,,,②,,当时,,当时,,即从第二项起,数列是以1为首项,以3为公比的等比数列, 数列的前n项和,,显然当时,上式也成立,;(2),,即单调递增.(i)当时,有,于是,,若数列中存在三项,,依次成等差数列,则有,即,.因此不成立.因此此时数列中不存在三项,,依次成等差数列.当时,有.此时于是当时,.从而若数列中存在三项,,依次成等差数列,则有,同(i)可以知道:.于是有,,是整数,.于是,即.与矛盾.故此时数列中不存在三项,,依次成等差数列.当时,有于是此时数列中存在三项,,依次成等差数列.综上可得:解析(1)①,可得,同理可得,②,,当时,,当时,,即从第二项起,数列是以1为首项,以3为公比的等比数列,利用等比数列的求和公式即可得出(2),可得,即单调递增.(i)当时,有,于是,可得,.利用反证法即可得出不存在.当时,有.此时.于是当时,.从而.假设存在,同(i)可以知道:.得出矛盾,因此不存在.当时,有.于是.即可得出结论.6.已知两个无穷数列和的前n项和分别为, , , ,对任意的,都有(1)求数列的通项公式;(2)若为等差数列,对任意的,都有.证明: ;(3)若为等比数列, , ,求满足的n值.解:(1)由,得,即,所以由,,可以知道所以数列是以1为首项,2为公差的等差数列.故的通项公式为,(2)证法一:设数列的公差为d,则,由(1)知,因为,所以,即恒成立,所以,即,又由,得,所以所以,得证.证法二:设的公差为d,假设存在自然数,使得,则,即,因为,所以所以,因为,所以存在,当时,恒成立.这与“对任意的,都有”矛盾!所以,得证.(3)由(1)知,.因为为等比数列,且,,所以是以1为首项,3为公比的等比数列.所以,则,因为,所以,所以而,所以,即当,2时,式成立;当时,设,则,所以,故满足条件的n的值为1和2.解析(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;(2)方法一、设数列的公差为d,求出,.由恒成立思想可得,求出,判断符号即可得证;方法二、运用反证法证明,设的公差为d,假设存在自然数,使得,推理可得,作差,推出大于0,即可得证;(3)运用等差数列和等比数列的求和公式,求得,,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值.7.已知数列, 都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列(1)设数列, 分别为等差、等比数列,若, , ,求;(2)设的首项为1,各项为正整数, ,若新数列是等差数列,求数列的前n项和;(3)设是不小于2的正整数), ,是否存在等差数列,使得对任意的,在与之间数列的项数总是若存在,请给出一个满足题意的等差数列;若不存在,请说明理由.解:(1)设等差数列的公差为d,等比数列的公比为q,根据题意得,,计算得出或3,因数列,单调递增,所以,,所以,,所以,因为,,,(2)设等差数列的公差为d,又,且,所以,所以因为是中的项,所以设,即当时,计算得出,不满足各项为正整数;当时,,此时,只需取,而等比数列的项都是等差数列,中的项,所以;当时,,此时,只需取,由,得,是奇数, 是正偶数,m有正整数解,所以等比数列的项都是等差数列中的项,所以综上所述,数列的前n项和,或(3)存在等差数列,只需首项,公差下证与之间数列的项数为.即证对任意正整数n,都有,即成立.由,所以首项,公差的等差数列符合题意解析(1)设等差数列的公差为d,等比数列的公比为q,根据题意得,,计算得出或3,因数列,单调递增,,,可得,,利用通项公式即可得出.(2)设等差数列的公差为d,又,且,所以,所以.因为是中的项,所以设,即.当时,计算得出,不满足各项为正整数当时,当时,即可得出.(3)存在等差数列,只需首项,公差.下证与之间数列的项数为.即证对任意正整数n,都有,作差利用通项公式即可得出.8.对于数列,称(其中,为数列的前k项“波动均值”.若对任意的,,都有,则称数列为“趋稳数列”.(1)若数列1,x,2为“趋稳数列”,求x的取值范围;(2)若各项均为正数的等比数列的公比,求证:是“趋稳数列”;(3)已知数列的首项为1,各项均为整数,前k项的和为.且对任意,,都有,试计算:.解:(1)根据题意可得,即,两边平方可得,计算得出;(2)证明:由已知,设,因且,故对任意的,,都有,,,因,,,,,,,,,即对任意的,,都有,故是“趋稳数列”;(3)当时,当时,,同理,,因,,即,所以或所以或因为,且,所以,从而,所以,.解析(1)由新定义可得,解不等式可得x的范围;(2)运用等比数列的通项公式和求和公式,结合新定义,运用不等式的性质即可得证;(3)由任意,,都有,可得,由等比数列的通项公式,可得,结合新定义和二项式定理,化简整理即可得到所求值.9.已知首项为1的正项数列{a n}满足+<a n+1a n,n∈N*.(1)若a2=,a3=x,a4=4,求x的取值范围;(2)设数列{a n}是公比为q的等比数列,S n为数列{a n}前n项的和,若S n<S<2S n,n∈N*,求q的取值范围;n+1(3)若a1,a2,…,a k(k≥3)成等差数列,且a1+a2+…+a k=120,求正整数k的最小值,以及k取最小值时相应数列a1,a2,…,a k(k≥3)的公差.解:(1)由题意,a n<a n+1<2a n,∴<x<3,<x<2x,∴x∈(2,3).(2)∵a n<a n+1<2a n,且数列{a n}是公比为q的等比数列,a1=1,∴q n-1<q n<2q n-1,∴q n-1(q-)>0,q n-1(q-2)<0,∴q∈(,1).∵S n<S n+1<2S n,当q=1时,S2=2S1,不满足题意,当q≠1时,<<2•,∴①当q∈(,1)时,,即,∴q∈(,1).②当q∈(1,2)时,,即,无解,∴q∈(,1).(3)设数列a1,a2,…,a k(k≥3)的公差为d.∵a n<a n+1<2a n,且数列a1,a2,…,a n成等差数列,∴a1=1,∴[1+(n-1)d]<1+nd<2[1+(n-1)d],n=1,2,…,k-1,∴,∴d∈(-,1).∵a1+a2+…+a k=120,∴S k=k2+(a1-)k=k2+(1-)k=120,∴d=,∴∈(-,1),∴k∈(15,239),k∈N*,∴k的最小值为16,此时公差d=.解析【解题方法提示】分析题意,对于(1),由已知结合完全平方公式可得a n<a n+1<2a n,由此可得到关于a2,a3,a4的大小关系,据此列式可解得x的取值范围;根据a n<a n+1<2a n,以及等比数列的通项公式可得q∈(,1),再结合S n<S<2S n以及等比数列的前n项和公式分类讨论可得q的取值范围;n+1设公差为d,根据a n<a n+1<2a n,以及等差数列的通项公式可得d∈(-,1),然后根据等差数列的前n项和公式结合题意可得d=,由此可解得k的取值范围,进而得到k的最小值和d的值.。
压轴题02 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题02数列压轴题题型/考向一:多选、填空综合题型/考向二:数列通项公式与数列求和题型/考向三:数列与其他知识综合一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一多选题综合一、多选题1.已知等差数列{}n a 的前n 项和为n S ,满足12321a a a ++=,525S =,下列说法正确的是()A .23n a n =+B .210n S n n=-+C .{}n S 的最大值为5S D .11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为1099-【答案】BCD【详解】根据等差中项,1232213a a a a ++==,解得27a =,()()512345315243255S a a a a a a a a a a a ==++++=++++=,解得35a =,设等差数列{}n a 的公差为d ,则322d a a =-=-,于是等差数列的通项公式为:2(2)112n a a n d n =+-=-,故A 选项错误;2.数列n 是等差数列,8,则下列说法正确的是()A .36a a +为定值B .若1272a =,则5n =时n S 最大C .若12d =,使n S 为负值的n 值有3个D .若46S =,则1212S =111的对角线向相邻的某个顶点移动,且向每个相邻顶点移动的概率相同,设蚂蚁移动n次后还在底面ABC的概率为n P,则下列说法正确的是()A.11 2P=B.213 25P=C.12nP⎧-⎫⎨⎬⎩⎭为等比数列D.11111052nnP-⎛⎫=-⨯-+⎪⎝⎭4.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy --= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=5.已知定义在[]0,1上的函数()0,010,1,1,,,,f x p p x p q q q q ⎧==⎪=⎛⎫⎨= ⎪⎪⎝⎭⎩或或为内的无理数为正整数为既约真分数该函数称为黎曼函数.若数列{}n a 满足1n n a f n ⎛⎫= ⎪+⎝⎭,则下列说法正确的是()A .0n a >B .1n na a +>C .11nn i a =<∑D .1112nn n i a a +=<∑二、填空题6.艾萨克牛顿是英国皇家学会会长,著名物理学家,他在数学上也有杰出贡献.牛顿用“作切线”的方法求函数()f x 零点时给出一个数列{}()()1:n n n n n f x x x x f x +-'=,我们把该数列称为牛顿数列.如果函数()2(0)f x ax bx c a =++>有两个零点1和2,数列{}n x 为牛顿数列.设2ln 1nn nx a x -=-,已知11a =,2n x >,{}n a 的前n 项和为n S ,则2023S =__________.【答案】202321-##202312-+7.对任意*n ∈N ,任意[1,2]a ∈,都有2112e 3ax x a n ⎛⎫+≤-+- ⎪⎝⎭恒成立(注:e 为自然对数的底数),则实数x 的取值范围是__________.123新编辑,编辑新序列为*234123,,,a a a A a a a ⎧⎫=⎨⎬⎩⎭,它的第n 项为1n na a +,若序列()**A 的所有项都是2,且41a =,532a =,则1a =__________.9.黎曼猜想由数学家波恩哈德·黎曼于1859年提出,是至今仍未解决的世界难题.黎曼猜想涉及到很多领域的应用,有些数学家将黎曼猜想的攻坚之路趣称为:“各大行长躲在银行保险柜前瑟瑟发抖,不少黑客则潜伏敲着键盘蓄势待发”.黎曼猜想研究的是无穷级数()1111123ss s s n s n ξ∞-===+++∑ ,我们经常从无穷级数的部分和1111123s s s sn ++++ 入手.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则12400111S S S ⎡⎤+++=⎢⎥⎣⎦ ______(其中[]x 表示不超过x 的最大整数).10.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n项和为____________.○热○点○题○型二数列通项公式与数列求和11.已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .【详解】(1)13,2,n n n a n a a n +⎧=⎨+⎩为奇数为偶数,得213213,232a a a a a ==+=+,因为1322a a a +=,即111326a a a ++=,解得11a =,由21n n c a -=,得111211,n n c a c a ++===,12.在①n b =②11n n n b a a +=;③2nn n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .13.在数列n a 中,19a =,2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.○热○点○题○型三数列与其他知识综合14.已知函数()y f x =是定义在()(),00,∞-+∞U 上的偶函数,当0x >时,()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,()n a f n =(n 为正整数).(1)当20x -≤<时,求()y f x =的解析式;(2)若函数()()g x f x m =-存在零点,且零点个数不超过10,求实数m 的取值范围;(3)求数列{}n a 的前n 项和为,n n S S 是否存在极限?若存在,求出这个极限;若不存在,请说明理由【详解】(1)当20x -≤<时,()02,x y f x <-≤= 是偶函数,()()11|2121x x f x f x --+∴=-=-=-∣(2)0x >,当()222N,1k x k k k -<≤∈≥时,()0212x k <--≤,()()()()()()2321111112222322211212122x k k k f x f x f x f x f x k -+--∴=-=-⨯=-⨯=⎡⎤=--=-⎣⎦ ,∴当02x <≤时,()[]1|210,1x f x -=-∈∣,当24x <≤时,()()()|31112210,222x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦∣,当24x <≤时,()()()521114210,244x f x f x -⎡⎤=-=-∈⎢⎥⎣⎦,图像如图所示:若1m =,函数()()g x f x m =-有1个零点2x =;若112m <<,函数()()g x f x m =-有2个零点;若12m =,函数()()g x f x m =-有3个零点;15.若无穷数列n 的各项均为整数.且对于,,i j i j *∀∈<N ,都存在,使得k j i j i a a a a a =--,则称数列{}n a 满足性质P .(1)判断下列数列是否满足性质P ,并说明理由.①n a n =,1n =,2,3,…;②2n b n =+,1n =,2,3,….(2)若数列{}n a 满足性质P ,且11a =,求证:集合{}3∣n n a *∈=N 为无限集;(3)若周期数列{}n a 满足性质P ,请写出数列{}n a 的通项公式(不需要证明).【详解】(1)对①,取1i =,对,1j j *∀∈>N ,则11,j i j a a a ===,可得11j j i i j a a a j a =---=--,显然不存在,k j k *>∈N ,使得1k a =-,所以数列{}n a 不满足性质P ;对②,对于,,i j i j *∀∈<N ,则2i b i =+,2j b j =+,故()()()()2222j i i j i j i j i j i j b b b b --=++-+-+=⋅++()22i j i j =⋅++-+,因为,,1,2i j i j *∈≥≥N ,则()2i j i j *⋅++-∈N ,且()()2123i j i j i j j ⋅++-=++-≥,所以存在()2k i j i j *=⋅++-∈N ,k j >,使得()22j k i j i b b i b j i j b b =⋅++-=--+,故数列{}n b 满足性质P ;(2)若数列{}n a 满足性质P ,且11a =,则有:取111,1,i j j j *==>∈N ,均存在111,k j k *>∈N ,使得111111k j j a a a a a =--=-,取2121,,i j j k j *==>∈N ,均存在2212,k j k k *>>∈N ,使得222111k j j a a a a a =--=-,取121,i k j k k ==>,均存在1211,m k m *>>∈N ,使得112123m k k k k a a a a a =--=,故数列{}n a 中存在n *∈N ,使得3n a =,即{}3∣n n a *∈=≠∅N ,反证:假设{}3∣n n a *∈=N 为有限集,其元素由小到大依次为()12,,,1l l n n n n >L ,取1,1l l i j n n ==+>,均存在1,L l L k n k *>+∈N ,使得11111Lllk n n a a a a a ++=--=-,取1,1L i j k ==+,均存在111,L L L k k k *++>+∈N ,使得111111L L L kk k a a a a a +++=--=-,取1,L L i k j k +==,均存在111,l L l l n k n n *+++>>∈N ,使得1113l LL LL n k k k ka a a a a +++=--=,即{}13∣l n n n a *+∈∈=N 这与假设相矛盾,故集合{}3∣n n a *∈=N 为无限集.(3)设周期数列{}n a 的周期为1,T T *≥∈N ,则对n *∀∈N ,均有n n T a a +=,设周期数列{}n a 的最大项为,,1M a M M T *∈≤≤N ,最小项为,,1N a N N T *∈≤≤N ,即对n *∀∈N ,均有N n M a a a ≤≤,若数列{}n a 满足性质P :反证:假设4M a ≥时,取,i M j M T ==+,则,k M T k *∃>+∈N ,使得22k M M T M M T M M a a a a a a a ++=--=-,则()2330k M M M M M a a a a a a -=-=->,即k M a a >,这对n *∀∈N ,均有N n M a a a ≤≤矛盾,假设不成立;则对n *∀∈N ,均有3n a ≤;反证:假设2N a ≤-时,取,i N j N T ==+,则,k N T k *∃>+∈N ,使得224k N N T N N T N N a a a a a a a ++=--=-≥,这与对n *∀∈N ,均有3n a ≤矛盾,假设不成立,即对n *∀∈N ,均有1n a ≥-;综上所述:对n *∀∈N ,均有13n a -≤≤,反证:假设1为数列{}n a 中的项,由(2)可得:1,3-为数列{}n a 中的项,∵()13135-⨯---=-,即5-为数列{}n a 中的项,这与对n *∀∈N ,均有13n a -≤≤相矛盾,即对n *∀∈N ,均有1n a ≠,同理可证:1n a ≠-,∵n a ∈Z ,则{}0,2,3n a ∈,当1T =时,即数列{}n a 为常数列时,设n a a =,故对,,i j i j *∀∈<N ,都存在k j >,使得22i k i j j a a a a a a a a =--=-=,解得0a =或3a =,即0n a =或3n a =符合题意;当2T ≥时,即数列{}n a 至少有两个不同项,则有:①当0,2为数列{}n a 中的项,则02022⨯--=-,即2-为数列{}n a 中的项,但{}20,2,3-∉,不成立;②当0,3为数列{}n a 中的项,则03033⨯--=-,即3-为数列{}n a 中的项,但{}30,2,3-∉,不成立;③当2,3为数列{}n a 中的项,则23231⨯--=,即1为数列{}n a 中的项,但{}10,2,3∉,不成立;综上所述:0n a =或3n a =.16.如果数列{}n a 对任意的*N n ∈,211n n n n a a a a +++->-,则称{}n a 为“速增数列”.(1)判断数列{}2n是否为“速增数列”?说明理由;(2)若数列{}n a 为“速增数列”.且任意项Z n a ∈,121,3,2023k a a a ===,求正整数k 的最大值;(3)已知项数为2k (2,Z k k ≥∈)的数列{}n b 是“速增数列”,且{}n b 的所有项的和等于k ,若2n bn c =,1,2,3,,2n k = ,证明:12k k c c +<.即32121k k k k k k b b b b b b +--+++>+>+,同理可得:211k m m k k b b b b -+++>+,*N m ∈,11m k ≤≤-,故()()()()1221222111k k k k k k k k b b b b b b b b b k b b -++=+++=++++++>+ ,故11k k b b ++<,1112222kk kk b b b bk k c c ++++=⨯=<,得证.。
高考数学压轴专题人教版备战高考《数列》难题汇编附解析
【高中数学】数学《数列》高考复习知识点一、选择题1.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( ) A .3∶4 B .4∶3 C .1∶2 D .2∶1【答案】A 【解析】 【分析】根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =,1534S x =,从而得到155:S S 的值. 【详解】解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =, 1051122S S x x x ∴-=-=-,151014S S x ∴-=,15113244S x x x ∴=+=, 故155334:4xS S x ==, 故选:A . 【点睛】本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.2.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.3.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--,所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( )A .5B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.6.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.7.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a . 【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.8.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.9.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.10.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.11.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可.由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.12.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.13.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.14.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.15.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n -+ D .1121n -- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------,则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是:1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.16.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=>B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.18.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( )A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a . 故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d < ②110S < ③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定. 【详解】Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确; Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>, ∴③⑤正确,②错误.故选:B . 【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
2021年高考数学高考数学压轴题 数列多选题分类精编及解析
2021年高考数学高考数学压轴题 数列多选题分类精编及解析一、数列多选题1.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2【答案】AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.2.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确;故选:CD【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.3.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=,所以()()()212342122n n n n T b b b b b b -=++++++=,当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=- ⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.4.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】由题意得,12n n S n S n++=,∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d = C .()261n S n n =+ D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确;对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.6.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.7.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.8.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.9.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( ) A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021 D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.10.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确; 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确;因为202112342021S a a a a a =+++++,202012S a a =+++2020a , 两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误;因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB.【点睛】 关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.。
高考数学压轴专题2020-2021备战高考《数列》单元汇编含答案解析
《数列》知识点汇总一、选择题1.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.2.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列. ∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.4.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( )A .1.5尺B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.5.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )AB.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.7.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.8.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.9.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C.该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.10.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.11.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016B .20162017C .20172018D .20182019【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.14.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.15.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C 【解析】 【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S . 【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列, 所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=. 故选:C 【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.16.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9【答案】B 【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242 (340)2 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .43钱 B .73钱 C .83钱D .103钱 【答案】C 【解析】 【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d ,由题意求得a =﹣6d ,结合a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10求得a =2,则答案可求. 【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a ﹣2d ,a ﹣d ,a ,a +d ,a +2d , 则由题意可知,a ﹣2d +a ﹣d =a +a +d +a +2d ,即a =﹣6d , 又a ﹣2d +a ﹣d +a +a +d +a +2d =5a =10,∴a =2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
新高考数学高考数学压轴题 数列多选题专项训练分类精编及解析
一、数列多选题1.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( )A .2-B .1-C .1D .2 答案:ABC【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解.【详解】根据不等式对于任意正整数n 恒成立,当n 为奇数时有:恒成立,由递减解析:ABC【分析】 根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n -<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】 根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n -<恒成立, 由12+n 递减,且1223n<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n <-恒成立, 由12n -第增,且31222n≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC .【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.2.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( )A .2B .5C .3D .4答案:BD【分析】利用递推关系可得,再利用数列的单调性即可得出答案.【详解】解:∵,∴时,,化为:,由于数列单调递减,可得:时,取得最大值2.∴的最大值为3.故选:BD .【点睛】本解析:BD【分析】 利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减, 可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD .【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.3.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( ) A .(1)1()2n nF n -+= B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()n n F n ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦答案:BC【分析】根据数列的前几项归纳出数列的通项公式,再验证即可;【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然,,,,,所以且,即B 满足条件;由,所以所以数列解析:BC【分析】根据数列的前几项归纳出数列的通项公式,再验证即可;【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列,所以()()1nF n n+-=⎝⎭()11515()nF F nn-+=++,令1nn nFb-=⎝⎭,则11n nb+=+,所以1n nb b+=-,所以n b⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1nnb-+,所以()11152n n n nF n--⎤⎤⎛⎫+⎥⎥=+=-⎪⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;即C满足条件;故选:BC【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.4.已知等差数列{}n a的前n项和为n S,公差为d,且35a=,73a=,则()A.12d=B.12d=-C.918S=D.936S=答案:BD【分析】由等差数列下标和性质结合前项和公式,求出,可判断C,D,由等差数列基本量运算,可得公差,判断出A,B.【详解】因为,所以.因为,,所以公差.故选:BD解析:BD【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B .【详解】因为1937538a a a a +=+=+=,所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD5.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( )A .0d <B .120a >C .13n S S ≤D .当且仅当0n S <时,26n ≥ 答案:AB【分析】根据等差数列的性质及可分析出结果.【详解】因为等差数列中,所以,又,所以,所以,,故AB 正确,C 错误;因为,故D 错误,故选:AB【点睛】关键点睛:本题突破口在于由解析:AB【分析】根据等差数列的性质及717S S =可分析出结果.【详解】因为等差数列中717S S =,所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误;因为125251325()2502a a S a +==<,故D 错误, 故选:AB【点睛】 关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.6.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列 B .(){}1n-是等方差数列 C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.7.已知数列{}n a 为等差数列,则下列说法正确的是( )A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项 答案:ABD【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.【详解】A.因为数列是等差数列,所以,即,所以A 正确;B. 因为数列是等差数列,所以,那么,所以数解析:ABD【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确; C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.故选:ABD【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.8.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 答案:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.9.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ).A .10a =0B .10S 最小C .712S S =D .190S = 答案:ACD【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确.【详解】因为,所以,所以,即解析:ACD【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确.【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2d n n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a +⨯===,故D 正确.故选:ACD.【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.10.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S > B .170S < C .1819S S > D .190S > 答案:ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >, ∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
高中数学23个典型必考数列压轴题精讲,建议收藏
高考数学23个典型的数列专题解答1、等差数列{}n a 中,前三项依次为x x x 1,65,11+,求:105?a = 解:由等差数列中项公式得:511261x x x ⋅=++,则:2x =. 首项为:11113a x ==+,公差为:15151621212d x x =-=-=;则数列通项为:1113(1)31212n n n a a n d -+=+-=+=. 故:1053105391212n a ++===.2、前100个自然数(1到100)中,除以7余2的所有数之和S 是? 解:这些数构成的数列为:7(1)275n a n n =-+=-;在100之内,n 的最大数m 为:10075m =-,即15m =;这些数之和S 为:151(115)15(75)75157652k S n =+⨯⎡⎤=-=-⨯=⎢⎥⎣⎦∑3、在等差数列{}n a 中,前n 项和为n S . 若10a >,160S >,170S <,则n S 最大时,?n =解:等差数列通项为:1(1)n a a n d =+-,求和公式为:1(1)2n n n S na d -=+; 则:16116151602S a d ⨯=+>,即:11502a d +>,170a d +>,即:80a >; 17117161702S a d ⨯=+<,即:180a d +<,即:90a <.故n S 最大时,8n =.4、数列{}n a 的通项公式n a =n 项和为9n S =,求:?n =解:通项:n a==;则:119nn k S ==-==∑,于是:99n =5、等差数列{}n a ,其公差不为0,其中,2a 、3a 、6a 依次构成等比数列,求公比?q = 解:等差数列通项:1(1)n a a n d =+-,则:32a a d =+,624a a d =+,构成等比数列,则:2326a a a =,即:2222()(4)a d a a d +=+; 即:222222224a a d d a a d ++=+.因为0d ≠,故:22d a =;所以:32222233a a d a q a a a +====.6、已知等差数列{}n a 的前n 项和n S ,且11a =,1133S =. 设14na nb ⎛⎫= ⎪⎝⎭,求证:{}n b 是等比数列,并求其前n 项和n T . 证明:通项:1(1)n a a n d =+-,求和公式:1(1)2n n n S na d -=+; 则:11111011332S d ⨯=+=,即:115533d +=,故:25d =.于是:2231(1)55n n a n +=+-=;则:23514n n b +⎛⎫= ⎪⎝⎭,2(1)35114n n b +++⎛⎫= ⎪⎝⎭则:2(1)323255511144n n n n b b +++-+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 故{}n b 是首项为114b =,公比为25114n n b q b +⎛⎫== ⎪⎝⎭,的等比数列,通项为:23514n n b +⎛⎫= ⎪⎝⎭.25145111111411143124n nn n q T b q ⎛⎫-⎛⎫ ⎪-⎛⎫⎝⎭ ⎪==⋅=⋅- ⎪-⎪⎝⎭-⎝⎭7、若x y ≠,且两个数列:12,,,x a a y 和123,,,,x b b b y 均为等差数列,求:13?a xy b -=- 解:设两个等差数列的公差分别为:1d 和2d ,则:11y x a x d --==,32y xy b d --==.故:131()4313()4y x a x y b y x --==--8、已知正项数列{}n a 的前n 项和n S 满足:21056n n n S a a =++,且1a 、3a 、15a 成等比数列,求数列{}n a 的通项?n a =解:由已知:2+1+1+11056n n n S a a =++ ①21056n n n S a a =++ ②由①-②:2211110()5()n n n n n a a a a a +++=-+-移项合并:2211()5()0n n n n a a a a ++--+=,即:11()(5)0n n n n a a a a +++--=由于正项数列1()0n n a a ++>,所以:150n n a a +--=,即:15n n a a +-=; 由此得到{}n a 是公差为5的等差数列.设:15(1)n a a n =+-,则:3110a a =+,15170a a =+;由1a 、3a 、15a 成等比数列得:23115a a a =,即:2111(10)(70)a a a +=+;即:2211112010070a a a a ++=+,故:12a =. 所以:25(1)53n a n n =+-=-9、已知数列{}n a 的前n 项和1(1)(2)3n S n n n =++,试求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和?n T =解:由已知:1111(1)(2)=(1)(24)=(1)(21)(1)3662n S n n n n n n n n n n n =++++++++及:211(1)(21)6nk k n n n ==++∑ 和:11(1)2n k k n n ==+∑得到上面求和公式可分成两部分,一个2n a n =求和,一个n a n =求和. 故:2(1)n a n n n n =+=+. 那么:1111(1)1n a n n n n ==-++; 所以:1111()1111nn k nT kk n n ==-=-=+++∑.10、已知数列{}n a 的前n 项和为n S ,其首项11a =,且满足3(2)n n S n a =+,求通项?n a = 解:由已知:3(2)n n S n a =+ ①113(1)n n S n a --=+ ②由①-②:13(2)(1)n n n a n a n a -=+-+ ; 移项合并:1(1)(1)n n n a n a --=+,即:111n n n a a n -+=- 由此递推得:()1211112......1121211(1)(1)1122n n n kk n n n n n k a a a a n n n n n k n n n n n n a a k k --++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭++=+⋅⋅⋅⋅==+11、如果数列{}n a 中,相邻两项n a 和1+n a 是二次方程23=0n n n x nx c ++(n=1,2,3…)的两个根,当12a =时,试求100?c =解:由韦达定理:13n n a a n ++=- ① 1n n n a a c +⋅= ②由①式可得:121()()3n n n n a a a a ++++-+=-,即:23n n a a +-=- ③ ③式表明:13521,,,...,k a a a a -和2462,,,...,k a a a a 都是公差为-3的等差数列. 又因12a =,代入①式可得:25a =-,于是得到等差数列为:211(1)(3)23353k a a k k k -=+--=-+=-; 22(1)(3)53323k a a k k k =+--=--+=--.那么: 1002350152a =--⨯=-,1015351148a =-⨯=- 代入②式得:100100101(152)(148)22496c a a =⋅=-⨯-=12、有两个无穷的等比数列{}n a 和{}n b ,其公比的绝对值都小于1,其各项和分别是11n k k S a ∞===∑和12n k k T b ∞===∑,对一切自然数都有:2n n a b =,求这两个数列的首项和公比. 解:由111a S q==-和121bT r ==-得:11a q =-,及12(1)b r =-. 数列的首项设这两个等比数列的通项公式分别为:111(1)n n n a a q q q --==- ① 1112(1)n n n b b r r r --==- ②将①②两式代入2n n a b =,并采用赋值法,分别令1n =和2n =得:211a b =,即:2(1)2(1)q r -=- ③222a b =,即:22(1)2(1)q q r r -=- ④由③④得:2r q = ⑤ 将⑤式代入③式得:22(1)2(1)q q -=-因为:1q ≠,则上式化简为:12(1)q q -=+,即:13q =-将13q =-代入⑤式得:19r = 这是这两个数列的公比.将13q =-和19r =分别代入①式和②式得:()1114114(1)413333n nn n n n a q q-+-⎛⎫⎛⎫=-=⋅-=--=-⋅ ⎪ ⎪⎝⎭⎝⎭;1181162(1)2999n n n nb r r --⎛⎫=-=⨯⨯=⎪⎝⎭13、已知数列{}n a 的前n 项和为n S ,112a =,当2n ≥时,满足:120n n n a S S -+=;求证:数列1n S ⎧⎫⎨⎬⎩⎭为等差数列;并求{}n S 的通项公式?n S =解:由120n n n a S S -+=得:1120n n n n S S S S ---+=,即:11120n nS S --+=,则:1112n n S S --=,11112S a ==. 上式表明:1n S ⎧⎫⎨⎬⎩⎭是一个首项为2,公差为2的等差数列.则:122(1)2n n n S =+-=,即:12n S n =,112(1)n S n -=-; 于是:111122(1)2(1)n n n a S S n n n n -=-=-=--- 故:1(1)21(2)2(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩14、已知等比数列{}n a 的首项112a =,且满足:10103020102(21)0S S S -++=. (1)求{}n a 的通项;(2)求{}n nS 的前n 项和n T .解:将3030111q S a q -=-、2020111q S a q -=-、1010111q S a q-=-代入上面等式得:10301020102(1)(21)(1)(1)0q q q --+-+-= 化简得:10102010102(1)(21)(1)10q q q ++-+++= 即:101010201010102(1)22(1)(1)10q q q q ++-+-++=整理得:10201020q q -=,即:12q =±则:111111222n n n n a a q --⎛⎫==⋅= ⎪⎝⎭或1111111(1)222n n n n na a q ---⎛⎫==⋅-=- ⎪⎝⎭第14题第(2)问解答:(2)A.对于等比数列:12a n n =,其求和公式为:11112112212n S n n -=⋅=--故:1(1)221111n n n n k T kS k k n k k k k k k k ⎛⎫==-=-∑∑∑∑ ⎪⎝⎭====1> (1)21n n n k k +=∑=2> 23123 (222)221n n n knR kk ⎛⎫==++++∑⎪⎝⎭= ①则:231234221 (22222)1n n n knR kk -⎛⎫==+++++∑⎪⎝⎭= ② 由②-①得:22331121324311()()()...()222222222n n n n n n nR ---=+-+-+-++--23112311...22222n n n -=+++++-111222(1)21222212nn n n n n n n -+=-=--=-- 综合1>和2>得:(1)2222211nn n kn n nT k n kk k ⎛⎫++=-=+-∑∑⎪⎝⎭== (2)B.对于等比数列:11(1)2n n n a -=-其求和公式为:11()11111(1)2[1(1)]12333221()2n n n S n n n ---=⋅=⋅--=-⋅-- 故:11[1(1)](1)333221111k kn n n n k k k T kS n k k k k k k k ⎛⎫==⋅--=--∑∑∑∑⎪⎝⎭==== 1> (1)361n k n n k +=∑= 2> 2311123(1)...(1)33222221k n n n nk n U kk ⎛⎫⎡⎤=-=-+-++-∑⎪⎢⎥⎣⎦⎝⎭= ③ 则:12111232...(1)31222n n n n U -⎡⎤=-+-++-⎢⎥⎣⎦④由③+④得:1221112132131()()...(1)()(1)32222222n n n n n n n n n U ---⎡⎤=-+---++--+-⎢⎥⎣⎦2111111...(1)(1)32222n n n n n -⎡⎤=-+-++-+-⎢⎥⎣⎦21111111...(1)(1)322232n n n n n -⎡⎤=-+-++-+⋅-⎢⎥⎣⎦ (1)1112(1)13321()2nnn n n --=-⋅+⋅---2(1)1[1](1)9232n n n n n -=-⋅-+⋅- 故:2(1)[1](1)322n n n n n nU -=-⋅-+-于是:1(1)2(1)(1)[1](1)336322211n k n n nn n k kn n n T nk k k ⎛⎫+-=--=-⋅-+-∑∑⎪⎝⎭== 15、若等差数列{}2log n x 的第m 项等于k ,第k 项等于m(其中m k ≠),求数列{}n x 的前m k +项的和。
高考数学高考数学压轴题 数列多选题专项训练分类精编含解析
一、数列多选题1.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( )A .1055a =B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=答案:AC【分析】由该数列的性质,逐项判断即可得解.【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,,故C 正确;对于D ,,,,,各式相加解析:AC【分析】由该数列的性质,逐项判断即可得解.【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误.故选:AC.【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.2.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( ) A .1(1)n n a =+- B .2cos 2n n a π=C .(1)2sin 2n n a π+=D .1cos(1)(1)(2)n a n n n π=--+-- 答案:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,取前六项得:,满足条件;对于选项B ,取前六项得:,不满足条件;对于选项C ,取前六项得:,解析:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,1(1)n n a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin 2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;故选:AC3.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0答案:ABD【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确;故选:ABD.【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题4.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+ 答案:BD【分析】根据选项求出数列的前项,逐一判断即可.【详解】解:因为数列的前4项为2,0,2,0,选项A :不符合题设;选项B :,符合题设;选项C :,不符合题设;选项D :,符合题设解析:BD【分析】根据选项求出数列的前4项,逐一判断即可.【详解】解:因为数列{}n a 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin 2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.5.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>0答案:AC【分析】由,可得,且,然后逐个分析判断即可得答案【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误,所以,,所以C 正确,D 错误,故选:AC解析:AC【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误,故选:AC6.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( )A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >答案:ABC【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=, 对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <, 所以614a a <,故选项D 不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.7.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .911a a =C .当9n =或10时,n S 取得最大值D .613S S = 答案:ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A 正确;∵,,故有,故B 正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确; ∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误;由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】 思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.8.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( )A .60a >B .6S 最大C .130S >D .110S >答案:ABD【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为,所以,即,因为数列递减,所以,则,,故A 正确;所以最大,故B 正确;所以,故C 错误解析:ABD【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解.【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确;所以6S 最大,故B 正确;所以()113137131302a a S a +⨯==<,故C 错误; 所以()111116111102a a S a +⨯==>,故D 正确. 故选:ABD.9.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( )A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥答案:BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 答案:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD【分析】根据等差数列的性质即可判断选项的正误.【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.。
河南省登封市第一高级中学高考数学高考数学压轴题 数列多选题分类精编含解析
河南省登封市第一高级中学高考数学高考数学压轴题 数列多选题分类精编含解析一、数列多选题1.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.2.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.3.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n ++==,且212n n n n a b a a ++=,则下列结论正确的是( )A .20202020a =B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】 由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立, ∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.4.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+ ⎪⎝⎭,从而判断,属于中档题.5.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤<【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭, 代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a nn n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+,当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确; 对于C ,令1121612mb m m ⎛⎫=-=⎪++⎝⎭得,215308m m ++=,解得m +=N ,所以C 错误;对于D , n +∀∈N ,1231111112233412n S b b b n n ⎛⎫=+++=-+-++- ⎪++⎝⎭112211222n n ⎛⎫=-=-< ⎪++⎝⎭,可以看出n S 是关于n 递增的,所以1n =时有最小值13, 所以113n S ≤<,D 正确. 故选:BD. 【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a ,然后代入求出n b ,考查了学生的推理能力、计算能力.6.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】 先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n nn b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1na 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++,所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .7.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( )A .11111n n n a a a +=-+ B .{}n a 是单调递增数列C .211011111111a a a a +++>+++ D .若1212120111n n a a a a a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确;对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.8.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( )A .等差数列一定是等差比数列B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.9.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错;选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.10.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB.【点睛】 关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.。
高考数学数列压轴题方法技巧 (1)
1⋅ 2 (k +1) =>高考数学压轴题专题一—数列型不等式的放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例 1 设 S n = + + ⋯ + n (n + 1). 求证 n (n + 1) < 2 S n < (n + 1)2 .2解析此数列的通项为a k = k (k + 1), k = 1,2,⋯, n . ∵ k < < k + k + 1 = k + 1 ,∴ ∑nk < S < n (k + 1 ) ,即 n (n +1) < 2S n < 2n (n + 1) 2+ n < 2 2 (n +1)2.2k =1n∑k =1注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式 ab ≤ a + b ,2 若放成< k + 1则得 S < ∑(n + 1)(n + 3)(n +1) 2 ,就放过“度”了!k =122②na +⋯ + a ≤ 1 + ⋯ + 1a 1a n≤ 1 n ≤n 其中, n = 2,3 等的各式及其变式公式均可供选用。
例 2 已知函数 f (x ) = 1 ,若 f (1) = 4,且 f (x ) 在[0,1]上的最小值为 1 ,1 + a ⋅ 2bx求证: f (1) + f (2) + ⋯ + f (n ) > n +1 2n +1 5 2− 1 . (02 年全国联赛山东预赛题)2简 析 f (x ) = 4x 1 + 4 x = 1 − 1 1 + 4 x > 1 − 1 2 • 2 x(x ≠ 0) ⇒ f (1) + ⋯ + f (n ) > (1 − 1 ) 2 × 2 + (1−1 ) + ⋯ + (1 − 1 ) = n − 1 (1 + 1 + ⋯ + 1) = n + 1 − 1 . 2 × 22 2 × 2n4 2 n −12n −1 2n +1 2 例 3 求证C 1 + C 2 + C 3 + ⋯ + C n > n ⋅ 2 2 (n > 1, n ∈ N ) .nnnn简析 不等式左边C 1+ C 2+ C 3+ ⋯ + C n = 2n −1 = 1 + 2 + 2 2 + ⋯ + 2n −1nnnnn −1> n ⋅ n1 ⋅2 ⋅ 2 2⋅⋯⋅ 2 n −1= n ⋅ 2 2 2.利用有用结论,故原结论成立.例 4 求证 (1 + 1)(1 + 1)(1 + 1)⋯(1+ 1 ) > 2n + 1.3 5 2n − 1简析 本题可以利用的有用结论主要有:法 1 利用假分数的一个性质 b > b + m (b > a > 0, m > 0) 可得a a + m2 ⋅ 4 ⋅ 6 ⋯2n > 3 ⋅ 5 ⋅ 7 ⋯ 2n + 1 = 1 ⋅ 3 ⋅ 5 ⋯ 2n − 1 ⋅ (2n + 1) 1 3 5 2n −1 2 4 6 2n 2 4 6 2n⇒ ( 2 ⋅ 4 ⋅ 6⋯ 2n ) 2 > 2n + 1 即 (1 +1)(1 + 1)(1 + 1)⋯(1 + 1 ) > 2n + 1. 1 3 5 2n − 13 5 2n −1 法 2 利用贝努利不等式 (1 + x )n > 1 + nx (n ∈ N ∗ , n ≥ 2, x > −1, x ≠ 0) 的一个特例1n 2 ⋅ 3 k (k + 1)k (k +1)n a 1 ⋯a n n2n 1 n ∑ n n ∏(1 +1) 2 > 1 + 2 ⋅ 1(此处 n = 2, x = 1 )得 2k −1 2k − 12k −1 1 +1> n⇒ ∏(1+ 1 ) = n = 2n +1. 2k −1k =1 2k − 1 k =1 注:例 4 是 1985 年上海高考试题,以此题为主干添“枝”加“叶”而编拟成 1998 年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
高考数学压轴专题新备战高考《数列》图文解析
【高中数学】高考数学《数列》解析一、选择题1.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )AB.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.2.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.3.已知数列{}n a 的通项公式是221sin 2n n a n π+⎛⎫=⎪⎝⎭,则12312a a a a +++⋅⋅⋅+=( ) A .0 B .55C .66D .78【答案】D 【解析】 【分析】先分n 为奇数和偶数两种情况计算出21sin 2n π+⎛⎫⎪⎝⎭的值,可进一步得到数列{}n a 的通项公式,然后代入12312a a a a +++⋅⋅⋅+转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当n 为奇数时,213sin sin sin sin 12222n n ππππππ+⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n 为偶数时,21sin sin sin 1222n n ππππ+⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭所以当n 为奇数时,2n a n =-;当n 为偶数时,2n a n =,所以12312a a a a +++⋅⋅⋅+22222212341112=-+-+-⋅⋅⋅-+ 222222(21)(43)(1211)=-+-+⋅⋅⋅+-(21)(21)(43)(43)(1211)(1211)=+-++-+⋅⋅⋅++- 12341112=++++⋅⋅⋅++ 121+122⨯=()78= 故选:D 【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.4.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.5.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.6.执行下面程序框图输出S 的值为( )A .2542B .3764C .1730D .67【答案】A 【解析】 【分析】模拟执行程序框图,依此写出每次循环得到的,S i 的值并判断5i >是否成立,发现当6i =,满足5i >,退出循环,输出运行的结果111111324354657S =++⨯⨯⨯⨯⨯++,利用裂项相消法即可求出S . 【详解】 由题意可知, 第1次循环时113S =⨯,2i =,否; 第2次循环111324S =+⨯⨯,3i =,否; 第3次循环时111132435S =++⨯⨯⨯,4i =,否; 第4次循环时111113243546S =++⨯⨯⨯⨯+,5i =,否;第5次循环时111111324354657S =+++⨯⨯⨯⨯⨯+,6i =,是; 故输出111111324354657S =++⨯⨯⨯⨯⨯++111111111112324354657⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦= 1111251226742⎛⎫=+--=⎪⎝⎭ 故选:A. 【点睛】本题主要考查程序框图中的循环结构,同时考查裂项相消法求和,属于基础题.7.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.8.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.9.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( )A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122n n n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.10.已知数列}{n a 为等比数列,n S 是它的前n 项和,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ). A .35 B .33C .31D .29【答案】C 【解析】试题分析:由题意得,设等比数列的公比为q ,则2231112a a a q a q a =⋅=,所以42a =,又3474452224a a a a q +=+=⨯,解得11,162q a ==,所以5515116(1())(1)2311112a q S q --===--,故选C . 考点:等比数列的通项公式及性质.11.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( ) AB .2CD .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.12.在数列{}n a 中,()111,1nn n a a a n +==++-,则2018a 的值为( )A .2017⨯1008B .2017⨯1009C .2018⨯1008D .2018⨯1009【答案】B 【解析】 【分析】根据已知条件()nn 1n a a n 1+-=+-,利用累加法并结合等差数列的前n 项和公式即可得到答案. 【详解】()nn 1n a a n 1+-=+-,()()20182017201720162016201520152014a a 20171,a a 20161,a a 20151,a a 20141,-=+--=+-=+--=+⋅⋅⋅32a a 21-=+,()21a a 11,-=+-将以上式子相加得20181a a 20172016-=++⋅⋅⋅+2, 即2018a 20172016=++⋅⋅⋅+2+1=2017(12017)201710092+=⨯,故选:B. 【点睛】本题考查数列递推关系式的应用和累加法求和,考查等差数列前n 项和公式的应用.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <,即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.15.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L ,[]363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.16.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( ) A .1008B .1009C .2016D .2018【答案】D【解析】【分析】 由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】 在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L . 本题选择D 选项.【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.17.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C【解析】【分析】 由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a . 故选C .【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.18.已知数列{}n a的首项112,9n n a a a +==+,则27a =( )A .7268B .5068C .6398D .4028 【答案】C【解析】【分析】由19n n a a +=+得2123)n a ++=,所以构造数列为等差数列,算出22(31)n a n +=-,求出27a .【详解】易知0n a >,因为19n n a a +=+,所以2123)n a ++=,3,是以3为公差,以2为首项的等差数列.231,2(31)n n a n =-+=-,即2278026398a =-=.故选 :C【点睛】本题主要考查由递推公式求解通项公式,等差数列的通项公式,考查了学生的运算求解能力.19.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C【解析】【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S .【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.20.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( )A .11aB .12aC .13aD .14a 【答案】A【解析】【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项.【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.。
高考数学压轴专题专题备战高考《数列》全集汇编及解析
数学《数列》高考复习知识点一、选择题1.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B .2C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.2.设等比数列{}n a 的前n 项和记为n S ,若105:1:2S S =,则155:S S =( ) A .34B .23C .12D .13【答案】A 【解析】 【分析】根据等比数列前n 项和的性质求解可得所求结果. 【详解】∵数列{}n a 为等比数列,且其前n 项和记为n S , ∴51051510,,S S S S S --成等比数列.∵105:1:2S S =,即1051 2S S =, ∴等比数列51051510,,S S S S S --的公比为105512S S S -=-, ∴()1510105511 24S S S S S -=--=, ∴15510513 44S S S S =+=, ∴1553:4S S =. 故选A . 【点睛】在等比数列{}n a 中,其前n 项和记为n S ,若公比1q ≠,则233,,,k k k k k S S S S S --L 成等比数列,即等比数列中依次取k 项的和仍为等比数列,利用此性质解题时可简化运算,提高解题的效率.3.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤15=斤,1斤16=两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( ) A .9两 B .266127两 C .26663两 D .250127两 【答案】B 【解析】 【分析】先计算出银的质量为266两,设分银最少的为a 两,由题意可知7人的分银量构成首项为a ,公比为2的等比数列,利用等比数列的求和公式可求得a 的值.【详解】共有银161610266⨯+=两,设分银最少的为a 两,则7人的分银量构成首项为a ,公比为2的等比数列, 故有()71226612a -=-,所以266127a =, 故选:B . 【点睛】本题以元代数学家朱世杰在《算学启蒙》中提出的问题为背景,贴近生活,考查了等比数列的求和问题,本题注重考查考生的阅读理解能力、提取信息能力、数学建模能力以及通过计算解决问题的能力,属中等题.4.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C 【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.5.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.6.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C .3 D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.7.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.8.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.9.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.10.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ). A .1- B .1 C .3 D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=, 13533105a a a a ∴++==,2464399a a a a ++==,335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.等比数列{}n a 的前n 项和为n S ,公比为q ,若639S S =,562S =,则1a =( )A B .2C D .3【答案】B 【解析】 【分析】根据题意,分析可得等比数列{}n a 的公比1q ≠±,进而由等比数列的通项公式可得()()631111911a q a q qq--=⨯--,解可得2q =,又由()5151131621a q Saq-===-,解可得1a 的值,即可得答案.【详解】根据题意,等比数列{}n a 中,若639S S =,则1q ≠±, 若639S S =,则()()631111911a q a q qq--=⨯--,解可得38q=,则2q =,又由562S =,则有()5151131621a q S aq-===-,解可得12a =;故选B . 【点睛】本题考查等比数列的前n 项和公式的应用,关键是掌握等比数列的前n 项和的性质.12.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.13.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.14.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.15.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】 【分析】由题意知5600a a >,< .由此可知569121256900...0,0,...0S S S S Sa a a a a ,,,>>><<,所以在912129...S S S a a a ,,,中最大的是55S a . 【详解】 由于191109510569()10()9050222a a a a S a S a a ++====+>,()< , 所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<, 而125125S S S a a a ⋯⋯<<<,>>>>0, ,所以在912129...S S S a a a ,,,中最大的是55S a .故选C . 【点睛】本题考查等数列的性质和应用,解题时要认真审题,仔细解答.属中档题.16.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.17.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】 由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥)由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n -+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.18.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.19.等比数列{}n a 共有21n +项,其中11a =,偶数项和为170,奇数项和为341,则n =( )A .3B .4C .7D .9【答案】B 【解析】由题意知1321...341n a a a ++++= ,可得3211...341340n a a a +++=-=,又因为242...170,n a a a +++= 所以321242...3402 (170)n n a a q a a a +++===+++ ,21211234117051112n n S ++-==+=- ,解得4n = ,故选B.20.执行如图所示的程序框图,若输入,则输出的S 的值是A .B .C .D .【答案】B 【解析】 【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果. 【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,; 第三次运算:,; 第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数列压轴题选讲1、已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈(1)求数列}{n a 的通项公式; (2)设n n n nn b b b T a b +++==21,2,若)(Z m m T n ∈<,求m 的最小值; (3)求使不等式12)11()11)(11(21+≥+++n p a a a n对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==-(2)由(1)得n n n b 212-=, n n n n n T 2122322523211321-+-++++=∴- ① 2311113252321222222n n n n n n n T -+---=+++++ ② ①-②得12311112222212222222n n nn n T -+-=+++++- 1122111111121()222222n n n n --+-=+++++-112122123+----=n n n . nn n n n n T 23232122132+-=---=∴-, 设*,232)(N n n n f n∈+=,则由1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f nn 得*,232)(N n n n f n∈+=随n 的增大而减小+∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m (3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对 恒成立记)11()11)(11(121)(21n a a a n n F ++++=,则1)1(4)1(2)32)(12(22)11()11)(11(121)11)(11()11)(11(321)()1(221121-++=+++=+++++++++=++n n n n n a a a n a a a a n n F n F n n n 1)1(2)1(2=++>n n)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p . 2、设数列{}n a 的前n 项和为n S ,对一切*n N ∈,点,n S n n ⎛⎫ ⎪⎝⎭都在函数()2na f x x x=+ 的图象上. (Ⅰ)求123,,a a a 的值,猜想n a 的表达式,并用数学归纳法证明;(Ⅱ)将数列{}n a 依次按1项、2项、3项、4项循环地分为(1a ),(2a ,3a ),(4a ,5a ,6a ),(7a ,8a ,9a ,10a );(11a ),(12a ,13a ),(14a ,15a ,16a ),(17a ,18a ,19a ,20a );(21a ),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{}n b ,求5100b b +的值;(Ⅲ)设n A 为数列1n n a a ⎧⎫-⎨⎬⎩⎭的前n 项积,是否存在实数a,使得不等式3()2n a A f a a +-对一切*n N ∈都成立?若存在,求出a 的取值范围;若不存在,请说明理由. 解:(Ⅰ)因为点,n S n n⎛⎫⎪⎝⎭在函数()2n a f x x x =+的图象上, 故2n n S a n n n =+,所以212n n S n a =+. 令1n =,得11112a a =+,所以12a =; 令2n =,得122142a a a +=+,所以24a =; 令3n =,得1233192a a a a ++=+,所以36a =. 由此猜想:2n a n =.用数学归纳法证明如下:① 当1n =时,有上面的求解知,猜想成立. ② 假设 (1)n k k =≥时猜想成立,即2k a k =成立, 则当1n k =+时,注意到212n n S n a =+*()n N ∈, 故2111(1)2k k S k a ++=++,212k k S k a =+. 两式相减,得11112122k k k a k a a ++=++-,所以142k k a k a +=+-. 由归纳假设得,2k a k =,故1424222(1)k k a k a k k k +=+-=+-=+.这说明1n k =+时,猜想也成立.由①②知,对一切*n N ∈,2n a n =成立 .(Ⅱ)因为2n a n =(*n N ∈),所以数列{}n a 依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…. 每一次循环记为一组.由于每一个循环含有4个括号, 故 100b 是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20. 同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20. 故各组第4个括号中各数之和构成等差数列,且公差为80. 注意到第一组中第4个括号内各数之和是68, 所以 1006824801988b =+⨯=.又5b =22,所以5100b b +=2010. (Ⅲ)因为111n n na a a -=-,故12111111nn A a aa ⎛⎫⎛⎫⎛⎫=--⋅⋅- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以12111111n A a a a ⎛⎛⎫⎛⎫=--⋅⋅- ⎪⎪⎝⎭⎝⎭⎝又333()2222n n n a a a f a a a a a a a++-=+-=-,故3()2n a A f a a+<-对一切*n N ∈都成立,就是 1211131112n a a a a a ⎛⎫⎛⎫⎛⎫--⋅⋅-- ⎪ ⎪⎪⎝⎭⎝⎭⎝对一切*n N ∈都成立.设12111()111n g n a a a ⎛⎛⎫⎛⎫=--⋅⋅-⎪⎪⎝⎭⎝⎭⎝max3[()]2g n a a <-即可. 由于1(1)1211()22ng n n g n a n +⎛⎫++=-= ⎪+⎝⎭1=<, 所以(1)()g n g n +<,故()g n是单调递减,于是max[()](1)2g n g ==.令322a a <-,即(0a a a ->,解得02a -<<,或a > 综上所述,使得所给不等式对一切*n N ∈都成立的实数a 存在,a 的取值范围是((3,)+∞. 3、已知点列()0,n n x A 满足:1110-=•+a A A A A n n ,其中N n ∈,又已知10-=x ,111>=a x ,. (1)若()()*+∈=N n x f x n n 1,求()x f 的表达式;(2)已知点B()0a ,,记()*∈=N n BA a n n ,且n n a a <+1成立,试求a 的取值范围;(3)设(2)中的数列{}n a 的前n 项和为n S ,试求:aa S n --<21 。
解:(1)∵)0,1(0-A ,)0,1(1A ,∴)1)(1(1110-+=⋅++n n n n x x A A A A ,∴1)1)(1(1-=-++a x x n n ,∴1)(1++==+n n n n x ax x f x , ∴1)(++=x ax x f . (2)∵)0,(a x BA n n -=,∴a x BA a n n n -==.∵a x f a x a n n n -=-=++)(11n n n n n n a a a x a a x x a a x a x )1()1(1)1(1-=-⋅-<-⋅+-=-++=∴要使n n a a <+1成立,只要11≤-a ,即41≤<a ∴]4,1(∈a 为所求.(3)∵…)1()1(121<-⋅-<--<-+a x a a x a a n n n 11)1()1(+-=-⋅-<n n a a x a ,∴n n a a )1(-<∴n n n a a a a a a S )1()1()1(221-++-+-<+++=[]aa a n ---⋅-=2)1(1)1(∵41≤<a ,∴110≤-<a ,∴1)1(0≤-<n a∴aa S n --<214、已知()f x 在(1,1)-上有定义,1()12f =且满足,x y (1,1)∈-时有()()(),1x y f x f y f xy--=- 若数列{}n x 满足 11221,21n n n x x x x +==+。
(1)求(0)f 的值,并证明()f x 在(1,1)-上为奇函数; (2)探索1()()n n f x f x +与 的关系式,并求()n f x 的表达式;(3)是否存在自然数m ,使得对于任意的*n N ∈,有12311118()()()()4n m f x f x f x f x -++++<恒成立?若存在,求出m 的最小值,若不存在, 请说明理由。
(0)0,00(0)()()()10()()()11.x y f yx f f y f f y yf y f y f x =⇒=-=⇒-==-⨯∴-=-∴-(1) 令 令 在(,)上为奇函数{}121112()()()[]()()2()11()()2((),()1()()122()2.n n n n n n n n n n n n n n n x x x f x f f f x f x f x x x x f x f x f x f x f q f x ++---===--=+--∴=∴===∴=(2) 常数)为等比数列 又,211231m 11111111()()()()()()22218()*,24816*,216m .n n n n f x f x f x f x m n N m n N m --++++=++++-<∈∴>-∈∴≥(3)假使存在自然数满足题设,则=2- 对于任意的成立 对于任意的成立 即的最小值为165、数列{}n a 满足11,2a =112n na a +=-. (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设数列{n a }的前n 项和为n S ,证明2ln()2n n S n +<-. 解:(Ⅰ)方法一:nn n n a a a a --=--=-+2112111, 所以11112111-+-=--=-+n n n n a a a a . 所以}11{-n a 是首项为2-,公差为1-的等差数列. 所以111--=-n a n ,所以1+=n na n . 方法二:322=a ,433=a ,544=a ,猜测1+=n n a n . 下用数学归纳法进行证明. ①当1=n 时,由题目已知可知211=a ,命题成立; ②假设当k n =(N k k ∈≥,1)时成立,即1+=k ka k ,那么 当1+=k n ,21121211++=+-=-=+k k k k a a k k , 也就是说,当1+=k n 时命题也成立.综上所述,数列}{n a 的通项公式为1+=n na n . (Ⅱ) 设()ln(1)(0)F x x x x =+-> 则1()10(0)11x F x x x x -'=-=<>++ 函数()F x 为(0,)+∞上的减函数,所以()(0)0F x F <=,即ln(1)(0)x x x +<> 从而 1111ln(1),11ln(1),1111n n n n +<-<-+++++ 111ln(2)ln(1),1n a n n n =-<-++++ (1ln 3ln 2)(1ln 4ln 3)[1ln(2)ln(1)]n S n n <-++-+++-+++2ln()2n n S n +<- 6、已知二次函数2()()f x x ax a x R =-+∈同时满足:①不等式()f x ≤0的解集有且只有一个元素;②在定义域内存在120x x <<,使得不等式12()()f x f x >成立,设数列{n a }的前n 项和()n S f n =. (1)求函数()f x 的表达式;(2) 设各项均不为0的数列{n b }中,所有满足10i i b b +⋅<的整数i 的个数称为这个数列{n b }的变号数,令1n na b a =-(n N *∈),求数列{n b }的变号数; (3)设数列{n c }满足:111nn i ii c a a=+=⋅∑,试探究数列{n c }是否存在最小项?若存在,求出该项,若不存在,说明理由.解(1)∵不等式()f x ≤0的解集有且只有一个元素∴240a a ∆=-= 解得0a =或4a =当0a =时函数2()f x x =在(0,)+∞递增,不满足条件②当4a =时函数2()44f x x x =-+在(0,2)上递减,满足条件② 综上得4a =,即2()44f x x x =-+.(2)由(1)知2244(2)n S n n n =-+=-当1n =时,111a S ==当n ≥2时1n n n a S S -=-=22(2)(3)n n ---=25n -∴1,(1)2 5.(2)n n a n n =⎧=⎨-≥⎩由题设可得3,(1)41.(2)25nn b n n -=⎧⎪=⎨-≥⎪-⎩ ∵1230,1450b b =-<=+=>,330b =-<,∴1i =,2i =都满足10i i b b +⋅< ∵当n ≥3时,14482523(25)(23)n n b b n n n n +-=-=----0> 即当n ≥3时,数列{n b }递增, ∵413b =-0<,由41025n ->-5n ⇒≥,可知4i =满足10i i b b +⋅< ∴数列{n b }的变号数为3.(3)∵111nn i i i c a a =+=⋅∑=12233411111n n a a a a a a a a +++++, 由(2)可得: 1111111(1)[(1)()()]23352523n c n n =-+-+-+-++--- =11432(1)22323n n n --+-=--=31(23)31222322(23)n n n ---=---- ∵当2n ≥时数列{n c }递增,∴当2n ≥时,22c =-最小, 又∵121c c =->, ∴数列{n c }存在最小项22c =- 〔或∵111nn i ii c a a=+=⋅∑=12233411111n n a a a a a a a a +++++,由(2)可得: 1111111(1)[(1)()()]23352523n c n n =-+-+-+-++---=11432(1)22323n n n --+-=-- 对于函数4323x y x -=- ∵223(23)2(43)1'(23)(23)x x y x x ----==--0> ∴函数4323x y x -=-在3(,)2+∞上为增函数,∴当2n ≥时数列{n c }递增,∴当2n ≥时,22c =-最小,又∵121c c =->, ∴数列{n c }存在最小项22c =- 7、已知数列{}n a 的前n 项和n S 满足:(1)1n n aS a a =--(a 为常数,且0,1a a ≠≠). (Ⅰ)求{}n a 的通项公式;(Ⅱ)设21=+nn nS b a ,若数列{}n b 为等比数列,求a 的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设11111n n n c a a +=++-,数列{}n c 的前n 项和为T n . 求证:123n T n >-.解:(Ⅰ)11(1),1-=-aS a a ∴1,=a a 当2n ≥时,11,11n n n n n a aa S S a a a a --=-=--- 1nn a a a -=,即{}n a 是等比数列. ∴1n n n a a a a -=⋅=; (Ⅱ)由(Ⅰ)知,2(1)(31)211(1)n n n n naa a a a ab a a a ⋅----=+=-,若{}n b 为等比数列, 则有2213,b b b =而21232323223,,,a a a b b b a a +++===故22232322()3a a a a a +++=⋅,解得13a =, 再将13a =代入得3n n b =成立, 所以13a =. (III )证明:由(Ⅱ)知1()3nn a =,所以11111331131311()1()33n n n n n n n c +++=+=++-+- 111311311111131313131n n n n n n ++++--+=+=-+++-+- 1112()3131+=--+-n n , 由111111,313313n n n n ++<>+-得111111,313133n n n n ++-<-+-所以1113112()2()313133+++=-->---n n n n n c , 从而122231111111[2()][2()][2()]333333n n n n T c c c +=+++>--+--+-- 22311111112[()()()]333333n n n +=--+-++-11112()2333n n n +=-->-.即123n T n >-.8、已知214)(x x f +-=数列}{n a 的前n 项和为n S ,点)1,(1+-n n n a a P 在曲线)(x f y =上)(*N n ∈且0,11>=n a a . (1)求数列}{n a 的通项公式; (2)数列}{n b 的前n 项和为且n T 满足381622121--+=++n n a T a T n nn n ,设定1b 的值使得数列}{n b 是等差数列; (3)求证:*,11421N n n S n ∈-+>. 解:(1)014)(121>+-==-+n nn n a a a f a 且∴21141n n a a +=+ ∴*)(411221N n a a n n ∈=-+∴数列}1{2n a 是等差数列,首项112=na 公差d=4 ∴)1(4112-+=n a n∴3412-=n a n ∵0>n a ∴*)(31N n a a n n ∈-=(2)由3816,341221--=-=+n n a T n a nn n得)14)(34()14()34(1+-++=-+n n T n T n n n ∴134141=--++n T n T nn ∴1341-+=-n T n T n ∴)1)(34(1-+-=n T n T n若}{n b 为等差数列,则11,01111===-b T T 即 ∴*78N n n b n ∈-=(3)341-=n a n∴143423422++->-=n n n a n 23414--+=n n∴)59()15(2121-+->+++=n n a a a S11421)3414(--=--+++n n n *11421N n n ∈=+>9、已知函数)(x f 的定义域为]1,0[,且同时满足:对任意]1,0[∈x ,总有2)(≥x f ,3)1(=f ; 若01≥x ,02≥x 且121≤+x x ,则有2)()()(2121-+≥+x f x f x x f .(1)求)0(f 的值;(2)试求)(x f 的最大值;(3)设数列}{n a 的前n 项和为n S ,且满足*)3(21,11N n a S a n n ∈--==,求证:121321223)()()(-⨯-+≤+++n n n a f a f a f . 解:(1)令021==x x ,则2)0(≤f ,又由题意,有2)0(≥f 2)0(=∴f(2)任取 且21x x <,则0<112≤-x x 2)(12≥-∴x x f)(2)()()()(11121122x f x f x x f x x x f x f ≥-+-≥+-=∴ )(x f ∴的最大值为3)1(=f(3)由*)3(21,11N n a S a n n ∈--== 2)3(2111≥--=⇒--n a S n n又由)2(1≥-=-n S S a n n n )2(311≥=⇒-n a a n n∴数列}{n a 为首项为1,公比为31的等比数列, 131-=∴n n a 当1=n 时,1113212233)1()(-⨯-+===f a f ,不等式成立, 当2=n 时,)31()(2f a f =4)31(32)3131()31()313131()1(-≥-++≥++=f f f f f , 37)31(≤∴f12211731()()(1)()32233223f a f a f f -∴+=+≤+=+⨯-⨯ 不等式成立 假设k n =时,不等式成立。