求数列通项专题高三数学复习教学设计
高三数学一轮复习学案:第31课时 数列的通项
例1在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),求a n思考题1 (1)设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项公式a n =________.(2)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1,求数列{a n }的通项公式.题型二累乘法例2 设数列{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),则它的通项公式是a n =________.思考题2 若a 1=1,a n +1a n=n +1,则通项a n =________. 题型三换元法例3 已知数列{a n },其中a 1=43,a 2=139,且当n ≥3时,a n -a n -1=13(a n -1-a n-2),求通项公式a n .思考题3 (1)已知数列{a n }中,其中a 1=1,且当n ≥2时,a n =a n -12a n -1+1,求通项公式a n .(2)若数列{a n }中,a 1=3且a n +1=a 2n (n 是正整数),则它的通项公式a n =________.题型四待定系数法(构造新数列法)例4 (1)已知数列{a n }中,a 1=1,a n +1=2a n +3,求a n .(2)在数列{a n }中,a 1=-1,a n +1=2a n +4·3n -1,求通项公式a n .(3)在数列{a n }中,a 1=-1,a 2=2,当n ∈N ,a n +2=5a n +1-6a n ,求通项公式a n .思考题4 已知数列{a n }满足a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0,求数列{a n }的通项公式.题型五公式法例5设数列{a n}的前n项和为S n,已知a1=a,a n+1=S n+3n,n∈N*.(1)记b n=S n-3n,求数列{b n}的通项公式;(2)若a n+1≥a n,n∈N*,求a的取值范围.思考题5(1)若a n>0,a n+22=2S n,求数列{a n}的通项公式.(2)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.①求a1的值;②求数列{a n}的通项公式.。
求数列通项专题高三数学复习教学设计
绝不同意为了成功而不择手段,刻薄成家,理无久享.求数列通项专题高三数学复习教学设计海南华侨中学邓建书课题名称求数列通项(高三数学第二阶段复习总第1课时)科目高三数学年级高三(5)班教学时间2009年4月10日学习者分析数列通项是高考的重点内容必须调动学生的积极让他们掌握!教学目标一、情感态度与价值观1. 培养化归思想、应用意识.2.通过对数列通项公式的研究体会从特殊到一般又到特殊的认识事物规律培养学生主动探索勇于发现的求知精神二、过程与方法1. 问题教学法------用递推关系法求数列通项公式2. 讲练结合-----从函数、方程的观点看通项公式三、知识与技能1. 培养学生观察分析、猜想归纳、应用公式的能力;2. 在领会函数与数列关系的前提下渗透函数、方程的思想教学重点、难点1.重点:用递推关系法求数列通项公式2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足若不满足必须写成分段函数形式;若满足则应统一成一个式子.教学资源多媒体幻灯教学过程教学活动1复习导入第一组问题:数列满足下列条件求数列的通项公式(1);(2)由递推关系知道已知数列是等差或等比数列即可用公式求出通项第二组问题:[学生讨论变式]数列满足下列条件求数列的通项公式(1);(2);解题方法:观察递推关系的结构特征可以利用"累加法"或"累乘法"求出通项(3)解题方法:观察递推关系的结构特征联想到"?=?)"可以构造一个新的等比数列从而间接求出通项教学活动2变式探究变式1:数列中求思路:设由待定系数法解出常数从而则数列是公比为3的等比数列教学活动3练习:数列中求思路一:模仿变式1尝试"?=?)"设此时没有符合题意的x引发认知冲突讨论新的出路思路二:由得故数列是公差为1的等差数列解题反思:反思上面两个问题的区别和联系讨论变式1的第二种解题思路变式1思路二:由得转化为我们熟悉的问题变式2:数列中求思路:通过类比转化化归为以上类型即可求解解题感悟:抓住递推关系的结构特征进行类比转化1.分层次训练拓展思维培养能力2.学生归纳总结:学到什么?会解决什么样的问题?哪些是难点?教学活动4先反思提高1、递推关系形如""的数列的通项的求解思路;2、在复习的过程中要注意提高自己在新的问题情境中准确、合理使用所学知识解决问题的能力;要了解事物间的联系与变化并把握变化规律再巩固落实1、数列中(是常数)且成公比不为的等比数列.(I)求的值;(II)求的通项公式.2、若数列中a1=3且an+ 1=an2(n是正整数)则数列的通项an=__________3、数列中求4、数列中求5、思考:在数列中.证明数列是等比数列;经过纠错---- 释疑 ---- 老师小结:掌握数列通项公式的求法如①直接(观察)法②递推关系法③累加法④累乘法⑤待定系数法等4.课后反馈:试卷和作业课后思考:高中阶段求数列通项有哪些类型和方法?课后自己寻找和总结下面是赠送的合同范本,不需要的可以编辑删除!!!!!!教育机构劳动合同范本为大家整理提供,希望对大家有一定帮助。
高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)
城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。
数列通项公式的求法课件-高三数学一轮复习
(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).
高中教学数列设计数学教案
高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
高三数学复习教案:高考数学数列复习教案
高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
高三复习课数列求通项公式的基本方法与技巧
高三复习课《数列求通项公式的基本方法与技巧》说课稿大家好!我本节课说课的内容是高三复习课《数列求通项公式的基本方法与技巧》,所用的教材是普通高中课程标准实验教科书(B版)。
高三第一阶段复习,也称“知识篇”。
在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。
在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。
对于高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、教材与学情分析(一)教材的地位和作用1、数列是高中数学的重要内容之一,也是与大学数学相衔接的内容,在测试学生逻辑推理能力和理性思维水平,以及考查学生创新意识和创新能力等方面有不可替代的作用。
数列是反映自然规律的基本数学模型之一。
通过对日常生活和现实世界中大量实际问题的分析,建立等差数列和等比数列两种数学模型,有利于培养数学抽象能力,发展数学建模能力。
2、在历年高考试题中,数列占有重要地位,近几年更是有所加强。
特别是2011年辽宁高考解答题第一题就是考查了数列求通项。
(二)学情分析学生通过对高中数学中数列的学习,已经对解决一些数列问题有一定的能力。
但是授课班级是理科普通班,学生的基础一般,反应速度不怎么快,缺乏独立思考的能力和深度思维,普遍感到数学难学。
但大部分学生主观上有学好数学的愿望,能认识到学习数学的重要性。
如果能让学生由被动接受转变为主动参与,亲身实践,那么听课的积极性和思维能力会有很大提高,自主学习和解决问题的能力也会得到很大的发展。
所以我采用的是分组展示、评价的教学方式。
二、教学目标分析(一)知识与技能目标:理解数列的通项公式的含义,熟练掌握求数列通项公式的基本方法与技巧。
高三数学一轮复习精品教案――数列
城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。
2023届高三数学一轮复习专题 数列通项公式的十三种求法 讲义 (解析版)
数列通项公式的十三种方法数列的通项公式是数列的核心概念之一,它如同函数中的解析式一样,有解析式便可研究其性质;而有了数列的通项公式则可求出其任意一项以及前项和等.因而求数列的通项公式往往是解题的突破口、关键点.本文总结出几种求解数列通项公式的方法,希望对大家有所帮助.一、观察法根据数列的前几项求通项公式时,常用“观察、归纳、猜想、验证”的思想方法,即先找出各项相同的部分,再找出不同的部分与序号之间的关系,并用n 表示出来.{}{}{}{}{}.2,12,,)1(,,;;,.:.232)1()2(.)12)(12(2.1212,,75,53,31,2)1(:;6461,3229,1613,85,41,21)2(;9910,638,356,154,32)1(.,:11等如列要注意联系一些基本数进行验证或调整再次是写出通项公式后号的联系与序其次要分析变化的因素而变化哪些因素随序号的变化与序号无关而保持不变首先要观察哪些因素其规律之间的对应关系中发现与序号要善于从数值点评的通项公式为别考虑可以得出此数列将符号、分子、分母分式为故此数列的一个通项公的积和是两个连续奇数分母为分子为偶数列解通项公式写出下面各数列的一个根据数列的前几项例----•-=+-=+-⋅⋅⋅⨯⨯⨯⋅⋅⋅--⋅⋅⋅n n n n n nn n n n n a a n n na n n n 二、定义法.)0,(.11的数列为常数且或递推公式为这种方法适用于式的方法叫定义法比数列的定义求通项公直接利用等差数列或等≠=+=++q q d qa a d a a n n n n 三、累加法).()1()3()2(),2()3()1()(,).2(),3(,),1(),(:),(11122321111n f n f f f a a f f n f n f a a f a a f a a n f a a n f a a n f a a a n n n n n n n n +-+⋅⋅⋅+++=++⋅⋅⋅+-+=-=-=-⋅⋅⋅-=-=-=-----即得相加所有等式左右两边分别即可以用“累加法”且已知.22,2)1(1,1),1(321112........................321,:,1,:22111223322111111+-=∴-=-∴=-+⋯⋯+++=--⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=-=--=--=--=-=-+==+=-----+++n n a n n a a n a a n a a a a n a a n a a n a a n a a a n a a a a n a n n n n n n n n n n n n n n n n 又得个式子相加所以得由解求已知例.,)1(,)1(,,2,1)(,)1()2()1(:1称为累加法个等式累加而求可得个代入以中就可以将的和是可求的只要点评n n n a n n n n n f a a n f f f --⋅⋅⋅=+=-+⋅⋅⋅+++四、累乘法).()1()3()2(),2()3()1()(,).2(),3(,),1(),(:),(11122321111n f n f f f a a f f n f n f a a f a af a a n f a a n f a a n f a a a n nn n n n n n•-•⋅⋅⋅•••=••⋅⋅⋅•-•===⋅⋅⋅-===----即得相乘所有等式左右两边分别即可以用“累乘法”且已知{}{}.,)(:.2,2,21122232........................32221212,1222)22(:.,)22(,2,:31111223322111111n n n n nn n n n n n n n n n n n n n a n n f n a a n a a n a a a a n n a a n n a a n n a a n n n a a a n a a a na a a 可用累乘法求项积可求前数列点评又得个式子相乘所以得由解求通项公式中已知数列例•=∴=•=-⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫•=•=--•=--•=-•=∴+•=+=+=+==------+++五、构造法(构造成等比数列).,)1(1.,11),1(1),1(1,)1(,,)1(),(:)1(.)01(:111111111n n n n n n n n n n n n n n a p p qa p q a p p qa p q a p q a p p q a p p qq p q pa a p pa a a p a q p q pa a 从而求出所以为公比的等比数列以为首项是以因此数列所以所以比较系数得与题设得设构造法项相减法”可用“构造法”或“逐且类型-+++++•-+=-+-+⎭⎬⎫⎩⎨⎧-+-+=-+≠-==-+=-+=+=+≠≠+=λλλλλ{}.,,),(),2(),1(:)(.21211111n n n n n n n n n n n a a a p a a a a p a a q pa a q pa a 从而求出为首项的等比数列公比为是以从而得数列两式相减得得由阶差法逐项相减法---=-+=+=+-+-+{}{}{}.213,313,13,33331)113(,3).(3,1313:1.,131,.4111121111-111-=∴=-+∴+==•=-∴=-+⨯=---=-+=+=+==+-++-+++n n nn n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a 其首项为的等比数列是公比为因此数列两式相减得得由解法的通项公式求数列且满足中在数列例{}.3,33331)113(,31:2111121n n n n n n n n n n a a a a a a a a a 可用“累加法”求出已知其首项为的等比数列是公比为得数列由解法解法=-=•=-∴=-+⨯=--+-++.,31:.213,32321,2321,321),21(32121,21,23),(313:3111111但殊途同归构造出的等比数列不同与解法解法点评首项为的等比数列是公比为数列即可化为设递推公式解法-=∴•=+∴=+⎭⎬⎫⎩⎨⎧+∴+=+∴=∴=∴+=+=++=-++++n n n n n n n n n n n n n a a a a a a a a a a a a λλλλλ.1,1.1,,).0,10(:2111111即类型的数列则转化形如令得两边同除以由且类型+•==+•=+=≠≠≠+=+--+++n n n n n n nn n n n n n n n n b q pb q a b qa q p q a q q pa a q p p q pa a {}{}.133,3133.3,232,323313),3(313,23313,32:.),2(32,6,:511111111111的等比数列首项为为公比是数列即令得由解的通项公式求数列满足中已知数列例-=-⎭⎬⎫⎩⎨⎧-∴-=∴=-∴-•=+•=+∴+•=⨯+=≥⨯+==--------a a k k k a a k a k a a a a a a n a a a a n n n n n n n n n n n n n n n n n n n n n n.1.1,,)0,10(:.33)31(33,)31(33,)31(1331111111111的数列则转化形如令得可先在其两边同除以的数列且对形如点评+•==+•=≠≠≠+=-=•-=∴-=∴⨯-=-∴+--+++-+--n n n n n n n n n n n n n n n n n n n n n n n n b qpb q a b q a q p q a q q p p q pa a a a a ..,,,)1()2(),2(),1(.:3211211的通项公式从而分奇偶项求出数列偶数项分别是等比数列所以奇数项得由得由类型q a a q a a q a a q a a nn n n n n n n n n n ==•=•=•++++++{}{}⎪⎩⎪⎨⎧=∴=•=•==•=∴=∴=•⋅⋅⋅⋅⋅⋅∴==•=•=•=------++++++.,2,,22222;22,2,2;,,,;,,,,2)1()2(),2(2,)1(2:.,2,1,:6221112211112212864275312112111为偶数为奇数又成等比数列成等比数列得由得由解的通项公式求数列满足中已知数列例n n a a a a a a a a a a a a a a a a a a a a a a a a a a a nn n nn n n n n n nn n n n n n n n n n n n .,)()1(,)1()2(),2( )1(),1( )()(:21211项公式分奇偶项求出数列的通得由得由数列形如点评n f n f a a n f a a n f a a n f a a n n n n n n n n +=+=•=•=•+++++六、待定系数法{}.,,.)1()1(,)1()1(,),()1()0,1,(:11111n n n n n n n n n n n n n a b B An a b bA B P k A P b kn pa A B P An P Pa a PB PAn Pa B A An a B An a P B n A a k p b k b kn pa a 求出通项是等比数列从而构造了数列令比较系数得设是常数且类型++=⎩⎨⎧=--=-++=--+-+=∴++=+++∴++=+++≠≠++=++++{}{}{}.132136,361.611,31,1.1,1,.123,22,,1232323,3333],)1([3:.),2(123,4,:7111111111--•=--•=∴•=++∴=++++∴++=++∴⎩⎨⎧==⎩⎨⎧-=+-=-+=+-+=∴+-+=++∴+-+=++≥-+==-------n n a n a a n a n a B An a B A B A A n a B A An a a B A An a B An a B n A a B An a a n n a a a a n n n n n n n n n n n n n n n n n n n 的等比数列首项为是公比为数列解得比较系数得设解的通项公式求数列满足中已知数列例{}.,.,),()1(,)0,1,(:11n n n n n n a p B An a B A B An a P B n A a k p b k b kn pa a 从而求出通项的等比数列是公比为则构造了数列比较系数相等求出设的数列是常数且递推公式为点评++++=+++≠≠++=++{}.,,.2,)2()(,2),()1()1()0,1,,(:2222122122121n n n n n n n n n n n n n a b C Bn An a b c C B A pC b A B PB aA pA c bn an pa CB A pC n A B PB n A pA Pa a pC PBn PAn Pa C B Bn A An An a C Bn An a P C n B n A a a p c b a c bn an pa a 求出通项是等比数列从而构造了数列令比较系数得设是常数且类型+++=⎪⎩⎪⎨⎧=---=--=-+++=---+--+-+=∴+++=++++++∴+++=+++++≠≠+++=++++{}{}{}.181032,18103218103232,23218103.321811013,218103.18103,18103,5242232,54322)22()2(2,22222),(2)1()1(:.,1,5432:82424211221222221221221121---=---=---•=∴•=+++∴=+⨯+⨯+++++++=+++∴⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=---=--=-+++=---+--+-+=∴+++=++++++∴+++=+++++=+++=++--++++n n a n n n n a n n a a n n a n n a C Bn An a C B A C B A C A B B A A n n a C B A C n A B B n A A a a C Bn An a C B Bn A An An a C Bn An a C n B n A a a a n n a a a n n n n n n n n n n n n n n n n n n n n n 为首项的等比数列为公比是所以数列解得比较系数得设解的通项公式求数列满足已知数列例{}.,,.,,),()1()1(,)0,1,,(:222121n n n n n n n n a b C Bn An a b C B A C Bn An a P C n B n A a a p c b a c bn an pa a 从而求出通项是等比数列则构造了数列令比较系数得设的数列是常数且形如点评+++=+++=+++++≠≠+++=++七、特征方程法{}.,,,,)(),().,(:1121121212的等比数列是公比为于是解得比较系数得所以可以变形为设为常数类型βαβααββααββααβαn n n n n n n n n n n n n n n a a qpa a a a a a a qa pa a q p qa pa a -⎩⎨⎧-==+-+=-=-+=+=++++++++++{}{}.)31(:1.),3731,3731231,131:2(.1,31:1.131311,3132,)(),(3132:.,3132,2,1,:9111112112112112121221-++++++++++++++-=-∴+==+∴=+=+⎭⎬⎫⎩⎨⎧+=---∴⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-==+-+=∴-=-+=+===n n n n n n n n n n n n n n n n n n n n n n n n n n a a q pa a a a a a a a a a a a a a a a a a a a a a a a a a a a a 法类型从而变成的等比数列首项为是公比为数列法的等比数列首项为是公比为数列法或解得比较系数得可以变形为设解求中已知数列例βαβααββααββααβα.314347]311[431,311311313131,)1(,)1(,2,13111121111-----+⎪⎭⎫ ⎝⎛-⨯-=⎪⎭⎫⎝⎛--+=∴+⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---⋯⋯=⎪⎭⎫⎝⎛-=-n n n n n n n n n a a a n n n n a a 得个等式累加再把代入以中将八、公式法{}.2,1,.,11求解利用公式法”的通项公式可用“公式求数列的关系与项和若已知数列前⎩⎨⎧≥-==-n s s n s a a a s n n n n n n n{}{}.,,1),2(,,:.2,261,5,51113,1,26)353(13]1)1()1(3[13,2:.,13:101111211222212否则要用分段函数表示才是通项公式相等时求得的与由时的当其方法是利用求数列的通项公式项和公式已知数列的前点评所以不符合上式时当时当解的通项公式求数列的前项和已知数列例n n n n n n n n n n n n a s a s a n n s s a n n n n a s a n n n n n n n n n n s s a n a n n s a ==≥-=⎩⎨⎧≥-===++•===-=+--++=+-+--++=-=≥++=--{}{}{}.,,:.12,122)1(3,2,320),(2))((,422:)2()1(),2(342,2),1(342,3,0,342,1:..342,0..11111111121211212111221的式子与含将所给关系式转化为只因此需利用已知条件中含点评的等差数列公差为是首项为数列,又式得式时当解得时当解的通项公式求数列已知的前项和为数列例------------=+=∴+=⨯-+=∴∴=-∴+=-+∴=--+-⋅⋅⋅⋅⋅⋅+=+≥∴⋅⋅⋅⋅⋅⋅+=+=+=+=+=+n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a s s a a s n a n n a a a a a a a a a a a a a a a a s a a n s a a a a a a a n a s a a a a s n九、数学归纳法{}{}{}{}.,,:.)1(),1(,)2)(1(.,1.)2()1()2()1(),2)(1()1()1(22,1,)1(),1(,)2(.,1)1(:.)1(),1(.25,20,16,12,9,6.,2:.,,,,,,)(,,,,,,4,2,,:122222221121224433221211432432*11111然后用数学归纳法证明其通项公式根据前几项的规律猜测前几项关键是准确求出数列的证明”求解数列问题的—猜测—使用“归纳点评对一切正整数都成立可知由结论也成立时所以当时那么当即时结论成立假设当由上知结论成立时当用数学归纳法证明猜测由此可得由条件得解的通项公式求数列的值及求成等比数列成等差数列且中在数列例+=+=+=+=+++==++=+-+=-=+=+=+===+=+========+=∈==+++++++++n b n n a k n k k k k b a b k k k k k a b a k n k b k k a k n n n b n n a b a b a b a b b a a a b b a b b b a a a N n b a b a b a b a b a n n k k k k k k k k n n n n n n n n n n n n n n n n n n 十、重新构造新方程组求通项法{}{}{}{}{}{}.,,,:.)311(21)311(21,)31(1.)31()()31()()31()(31,1.,2),(31,),2(31),2(31:.,),2(31),2(31,2,0,,1,.13.,,111111122211112211*11111111111111n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b a b a b a b a b a N n n b a b a b a b a b a b b a a b a b a b b a a n b b a a b a b a b a b a 出从而再通过解方程组求等差或等比数列相加或相减后恰好构成观察两个式子结构特征点评解得所以所以都成立对得由解求时当中数列中已知数列例和然后解方程组求得的方程组和关于必须重新构造与要想求出给出的通项以方程组的形式和有时数列⎪⎪⎩⎪⎪⎨⎧-=+=⎪⎩⎪⎨⎧=-=+=-=⋅⋅⋅=-=-=-=+=⋅⋅⋅=+=+=+∈≥-=-+=++=+=+=+=≥==-------------------------十一、取倒数法{}{}.121,122)1(11,11,21,211,121,12:.,12,2,1,:1411111111-=∴-=⨯-+=∴=⎭⎬⎫⎩⎨⎧∴=-+=+=+=≥=------n a n n a a a a a a a a a a a a a a n a a n n n n n n n n n n n n n n n 的等差数列首项为是公差为数列两边取倒数得将解的通项公式求数列时且当满足中已知数列例.1,11,,)0,0(:111111cbb c d b b a a c d c b ca d ba a a bcd d ba ca a n n n n n n n n n nn +•==•+=+=≠≠+=+++++则令型即转化为构造新数列可用两边取倒数的方法型数列的通项公式求点评十二、取对数法{}{}{}.,lg ,lg lg lg ),0,0(:.13,31,3lg 23lg )1lg(.3lg )1lg(,2)1lg()1lg(2)1lg(,)1lg()1lg(,)1(121,2:.,2,2,:151112221112122121211111类型则变成令两边取对数得形如点评的等比数列首项为是公比为数列两边取对数得得由解的通项公式求数列满足中已知数列例q pb b a b a r c a a c ca a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n r n n n n n n n n n n n n n n n n n n n n n n n n n n+==+==-=∴=+=•=+∴=++∴+=+∴+=++=++=++=+==+++-+++++---十三、平方(开方)法{}{}{}.,,),,0(:.13,0.133)1(4.3,4,3,3:.),2(3,2,:161222121221221221211类型则变成令则两边平方得为常数形如点评又为公差的等差数列为首项是以数列两边平方整理得将解的通项公式求数列满足中已知数列例q pb b a b da c a c d da c a n a a n n a a a a a a a a n a a a a n n n n n n n n n n n n n n n n n n n n +==+=≠+=+=∴>+=⨯-+=∴=∴=-+=≥+==+++---。
求数列的通项教案(精华版)
求数列的通项公式教学目的:1.理解数列的递推公式,明确递推公式与通项公式的异同; 2.会根据数列的递推公式写出数列的前几项;3.掌握由数列的递推公式求出数列的通项公式的方法。
4.理解数列的前n 项和与n a 的关系; 5.会由数列的前n 项和公式求出其通项公式.教学重点:根据数列的递推公式写出数列的前几项并求出通项公式。
教学难点:理解并掌握由递推数列求出通项公式的方法知识精要1.如何由n S 求n a 。
11 (n=1 )1 (n 2)n n s s s -⎧=⎨-≥⎩n ()a2.常见的几种由递推公式求通项公式的方法 (1)累加法形如1()n n a a f n +=+型数列,(其中()f n 不是常值函数)此类数列解决的办法是累加法,具体做法是将通项变形为1()n n a a f n +-=,从而就有21321(1),(2),,(1).n n a a f a a f a a f n --=-=-=-将上述1n -个式子累加,变成1(1)(2)(1)n a a f f f n -=+++- ,进而求解 (2)累积法形如)(1n f a a n n ⋅=+型数列,(其中()f n 不是常值函数) 此类数列解决的办法是累积法,具体做法是将通项变形为1()n na f n a +=,从而就有32121(1),(2),,(1)n n a a a f f f n a a a -===-将上述1n -个式子累乘,变成1(1)(2)(1)n a f f f n a =⋅⋅⋅- ,进而求解。
(3)凑t 法形如q pa a n n +=+1型数列此类数列解决的办法是将其构造成一个新的等比数列,再利用等比数列的性质进行求解,构造的办法是待定系数法构造,设)(1m a p m a n n +=++,展开整理1n n a pa pm m+=+-,比较系数有pm m b -=,所以1b m p =-,所以1n b a p +-是等比数列,公比为p ,首项为11b a p +-。
最新高三数学第二轮专题复习数列的通项公式与求和的常用方法教学设计
高三数学第二轮专题复习:数列的通项公式与求和的常用方法高考要求数列是函数概念的继续和延伸,数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法重难点归纳1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性2 数列{a n }前n 项和S n 与通项a n 的关系式 a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3 求通项常用方法①作新数列法 作等差数列与等比数列 ②累差叠加法 最基本形式是a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1③归纳、猜想法4 数列前n 项和常用求法①重要公式 1+2+…+n =21n (n +1) 12+22+…+n 2=61n (n +1)(2n +1)13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n③裂项求和 将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项 应掌握以下常见的裂项等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα④错项相消法 ⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法典型题例示范讲解例1已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),求数列{a n }和{b n }的通项公式;解 ∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1);又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(qq b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例2设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3;(1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4)(n na T 命题意图 本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,以及逻辑推理能力知识依托 利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点错解分析 待证通项d n =32n +1与a n 的共同点易被忽视而寸步难行;注意不到r 与n 的关系,使T n 中既含有n ,又含有r ,会使所求的极限模糊不清技巧与方法 (1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n 与r 的关系,正确表示B r ,问题便可迎刃而解解 (1)由A n =23(a n -1),可知A n +1=23(a n +1-1),∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n(2)∵32n +1=3·32n =3·(4-1)2n =3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n ]=4n +3,∴32n +1∈{b n }而数32n =(4-1)2n=42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++n n n n n D r r r r , 89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T 例3 设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项(1)写出数列{a n }的前3项(2)求数列{a n }的通项公式(写出推证过程)解析 (1)由题意,当n =1时,有11222S a =+,S 1=a 1, ∴11222a a =+,解得a 1=2 当n =2时,有22222S a =+,S 2=a 1+a 2,将a 1=2代入,整理得(a 2-2)2=16,由a 2>0,解得a 2=6当n =3时,有33222S a =+,S 3=a 1+a 2+a 3,将a 1=2,a 2=6代入,整理得(a 3-2)2=64,由a 3>0,解得a 3=10故该数列的前3项为2,6,10(2)解法一 由(1)猜想数列{a n } 有通项公式a n =4n -2下面用数学归纳法证明{a n }的通项公式是a n =4n -2,(n ∈N *)①当n =1时,因为4×1-2=2,,又在(1)中已求出a 1=2,所以上述结论成立②假设当n =k 时,结论成立,即有a k =4k -2,由题意,有k k S a 222=+,将a k =4k -2 代入上式,解得2k =k S 2,得S k =2k 2,由题意,有11222++=+k k S a ,S k +1=S k +a k +1,将S k =2k 2代入得(221++k a )2=2(a k +1+2k 2),整理得a k +12-4a k +1+4-16k 2=0,由a k +1>0,解得a k +1=2+4k ,所以a k +1=2+4k =4(k +1)-2,即当n =k +1时,上述结论成立根据①②,上述结论对所有的自然数n ∈N *成立解法二 由题意知n n S a 222=+,(n ∈N *) 整理得,S n =81(a n +2)2, 由此得S n +1=81(a n +1+2)2,∴a n +1=S n +1-S n =81[(a n +1+2)2-(a n +2)2]整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,∴a n +1-a n =4, 即数列{a n }为等差数列,其中a 1=2,公差d =4∴a n =a 1+(n -1)d =2+4(n -1),即通项公式为a n =4n -2学生巩固练习1 设z n =(21i -)n,(n ∈N *),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-z n |,则lim ∞→n S n =_________2 作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________3 数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n -1+1(1)求数列{a n }的通项a n 及它的前n 项和S n ;(2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由4 数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *)(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ; (3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由参考答案,)22(|)21()21(|||:.1111+++=---=-=n n n n n n i i z z c 设解析 22)22(1221])22(1[2121--=--=+++=∴nn n n c c c S 221222221lim +=+=-=∴∞→n n S 2 解析 由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2,面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2 3 解 (1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n , (2)T n =2n +n -1(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略)4 解 (1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }d =1414--a a =-2,∴a n =10-2n (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n)1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n n n n b b b T n n ;要使T n >32m总成立,需32m<T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为7。
高三数学一轮复习14求数列通项学案文.doc
精品教案学案 14 数列的通项班级 ____ 姓名 _________导学目标: 1.了解数列的概念和几种简单的表示方法 (列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.自 主 梳 理求数列的通项的方法:1,n = 1,S(1) 数列前 n 项和 S n 与通项 a n 的关系: a n =S n - S n -1, n ≥ 2.(2) 当已知数列 {a n }中,满足 a n +1- a n = f ( n ) ,且 f (1) +f (2) + + f (n )可求,则可用 累加求数列的通项 a n,常利用恒等式a n= a1+(a2-a1)+( a3- a2)++(a n- a n-1).a n+1(3) 当已知数列 {a n}中,满足a n =f (n ),且 f(1) f(2)·· ·f(n)可求,则可用累乘求数列的通项a n,常利用恒等式a2 a3 a n a n= a1· · · ·.a1 a2 a n-1(4)构造新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法.【自我检测】1 .设a n=-n2+10 n+ 11 ,则数列 {a n }从首项到第几项的和最大( )A. 10 B. 11 C.10 或 11 D.128 15 24( )2 .已知数列- 1 ,,-,,按此规律,则这个数列的通项公式是5 7 9n 2+ n n n +3A.a n= (- 1) n·B.a n= (- 1) n·2 n+1 2 n+1n +1 2- 1 n n+2C.a n=(-1) n· D .a n=( -1) n·2 n+ 1 2 n+ 33 、已知 {a n }的前n项和S n= 3n+ 1 ,则该数列的通项a n=_____________.1 2 1 14 .在数列 {a n }中,若a1= 1 ,a2=,=+(n∈ N * ),则该数列的通项a n=_________.2 a n+1 a n a n+2探究点一由数列前几项求数列通项(观察法 )12 4 6 8 10 1 9 25(3)3,5,9,17,33 (1) (2) 28 .3 15 35 63 99 2 2 2(4)25 2 211(5)1 0 1 0 1 0 .探究点二由 a n与 S n的关系求 a n例2已知数列 {a n }的前n项和S n=2 n 2-3 n +1 ,求 {a n }的通项公式.变式 2 1) 设数列 { a n }的前n项和为S n,已知a1= 1,S n+1=4 a n+ 2.(1) 设b n=a n+1-2 a n,证明数列 {b n}是等比数列;(2) 求数列 {a n}的通项公式.2) 已知在正项数列{ a n }中,S n表示前n项和且 2S n= a n+1,求 a n.探究点三由递推公式求数列的通项(累加或累乘)例3根据下列条件,写出该数列的通项公式.(1) a1= 2 ,a n+1=a n+n;(2) a1= 1 ,na n+1=(n+ 1) a n;【变式 3 】( 2012 全国)已知数列 { a n } 中,a1 =1 ,前 n 项和S n n 2a n。
关于高中数学数列的教案
关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。
二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。
三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。
四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。
2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。
3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。
4. 练习:让学生进行数列的计算练习,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。
6. 总结:总结本节课的重点知识,梳理数列的学习内容。
7. 作业:布置相关练习,巩固学生所学的知识。
五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。
六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。
七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。
八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。
以上教案为高中数学数列的教学范本,希望能对您有所帮助。
数学技巧高中数列教案模板
数学技巧高中数列教案模板
教学目标:
1.了解数列的概念和基本性质;
2.掌握常见数列的求和公式和通项公式;
3.运用数列的性质解决实际问题。
教学重点和难点:
重点:数列的概念和性质;
难点:应用数列的概念和公式求解实际问题。
教学准备:
1.教师准备课件和教材;
2.学生准备笔记本、铅笔等学习用品。
教学步骤:
一、引入
教师可以通过引入一个经典的数列问题,引发学生的兴趣,如:1,3,5,7,9,..请问下一个是多少?
二、概念讲解
1.数列的定义:数列是按照一定规律排列的一组数,每个数称为数列的项。
2.等差数列和等比数列的定义和性质。
3.常见数列求和公式和通项公式的介绍。
三、例题讲解
1.以等差数列和等比数列为例,讲解如何求解数列的通项公式和求和公式。
2.通过实例讲解如何应用数列的概念解决实际问题。
四、练习
学生进行练习,巩固所学知识。
五、作业
布置作业:练习册上的相关练习题。
六、总结
对本节课所讲内容进行总结,强调重点和难点,对学生提出问题,激发思考。
以上是一份高中数学技巧教案范本,教师可以根据实际情况进行适当修改和调整,以提高教学效果。
数列教案优秀5篇
数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。
按一定次序排列的一列数叫做数列。
数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。
由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。
当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。
由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据数列前几项的特点,以现规律后写出数列的通项公式。
给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。
给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
高考数学一轮复习 求数列的通项公式导学案 文
吉林省东北师范大学附属中学2015届高考数学一轮复习 求数列的通项公式导学案 文知识梳理:求数列通项公式常用的方法:(1)、观察法: 观察数列的前几项,写出数列的一个通项公式(2)、利用公式法求通项公式①n a =⎩⎨⎧≥-=-)2(,)1(,11n S S n S n n②等差(比)通项公式(3)、根据递推关系式求通项:(迭加,迭乘,迭代等化归为等差、等比数列): ①若数列满足),(1n f a a n n =-+其中)(n f 是一个前n 项和n s 可求的数列,那么可用逐项作差后累加的方法求n a 。
②若数列满足++∈=N n n f a a nn ),(1,其中数列{)(n f }前n 项积可求,可逐项作积后累乘求n a 。
③,1q pa a n n +=+p 、q 是常数。
方法:构造等比数列)(1λλ+=++n n a p a ④)(1n f pa a n n +=+。
方法:两边同除以1+n p ,令nn n p a b =,再用累加法求得。
⑤q pa a a n n n +=+1。
两边取倒数,令nn a b 1=,再“构造等比数列)(1λλ+=++n n a p a ”⑥m n n pa a =+1。
方法:两边取对数。
一、 题型探究探究一:利用公式法求通项例1、已知12+=n n a S ,求n a 。
例2、已知数列n a 的前n 项和为n S ,并满足,求n a 。
例3、已知数列{n a }满足下列关系1)1(log 2+=+n S n ,求n a 。
探究二:利用迭加(迭乘、迭代)法求通项例4:(1)、(2010年高考)已知数列{n a }满足21=a ,12123-+⋅=-n n n a a , 求数列{n a }的通项。
(2)、已知数列{n a }满足11=a ,)1(11-+=-n n a a n n ,(2≥n ),写出数列的前五项及它的一个通项。
例5:(1)、在数列{n a }中,,)2,3,4(211⋯==--n a a n n n ,求数列{n a }的通项。
高中数学 第二章 数列 数列通项公式的求法教案 新人教A版必修5(2021年整理)
重庆市綦江县高中数学第二章数列数列通项公式的求法教案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市綦江县高中数学第二章数列数列通项公式的求法教案新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市綦江县高中数学第二章数列数列通项公式的求法教案新人教A版必修5的全部内容。
数列通项公式的求法一、教学目标:1.由数列的前几项求数列的通项. 2.由n a 与n S 的关系求通项n a . 二、教学重点:由n a 与n S 的关系求通项n a . 三、教学难点:由n a 与n S 的关系求通项n a . 四、教学过程:(一)考 点 知 识 梳 理(教师引导学生完成) 1.观察法求数列的通项观察数列中各项与其序号间的关系,分解各项中的变化部分与不变部分,再探索各项中变化部分与序号间的关系,从而归纳出构成规律写出通项公式。
注:关键是找出各项与项数n 的关系. 2.由n a 与n S 的关系求通项n a若已知数列{an}前n 项和为Sn ,则该数列的通项公式为)1(,1==n S a n ,)2(,1≥-=-n S S a n n n 。
注意:要先分n =1和n ≥2两种情况分别进行运算,然后验证能否统一。
(二)典例分析考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…;(2)错误!,错误!,错误!,错误!,错误!,…; (3)错误!,2,错误!,8,错误!,…; (4)5,55,555,5 555,…。
解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n(6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.知所求数列的一个通项公式为a n =错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的.
求数列通项专题高三数学复习教学设计
海南华侨中学邓建书
课题名称
求数列通项(高三数学第二阶段复习总第1课时)
科目
高三数学
年级
高三(5)班
教学时间
2009年4月10日
学习者分析
数列通项是高考的重点内容
必须调动学生的积极让他们掌握!
教学目标
一、情感态度与价值观
1. 培养化归思想、应用意识.
2.通过对数列通项公式的研究
体会从特殊到一般
又到特殊的认识事物规律
培养学生主动探索
勇于发现的求知精神
二、过程与方法
1. 问题教学法------用递推关系法求数列通项公式
2. 讲练结合-----从函数、方程的观点看通项公式
三、知识与技能
1. 培养学生观察分析、猜想归纳、应用公式的能力;
2. 在领会函数与数列关系的前提下
渗透函数、方程的思想
教学重点、难点
1.重点:用递推关系法求数列通项公式
2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足
若不满足必须写成分段函数形式;若满足
则应统一成一个式子.
教学资源
多媒体幻灯
教学过程
教学活动1
复习导入
第一组问题:
数列满足下列条件
求数列的通项公式
(1);(2)
由递推关系知道已知数列是等差或等比数列即可用公式求出通项
第二组问题:[学生讨论变式]
数列满足下列条件
求数列的通项公式
(1);(2);
解题方法:观察递推关系的结构特征
可以利用"累加法"或"累乘法"求出通项
(3)
解题方法:观察递推关系的结构特征
联想到"?=?)"
可以构造一个新的等比数列
从而间接求出通项
教学活动2
变式探究
变式1:数列中
求
思路:设
由待定系数法解出常数
从而
则数列是公比为3的等比数列
教学活动3
练习:数列中
求
思路一:模仿变式1
尝试"?=?)"
设
此时没有符合题意的x
引发认知冲突
讨论新的出路
思路二:由得
故数列是公差为1的等差数列
解题反思:反思上面两个问题的区别和联系
讨论变式1的第二种解题思路
变式1思路二:由得
转化为我们熟悉的问题
变式2:数列中
求
思路:通过类比转化
化归为以上类型即可求解
解题感悟:抓住递推关系的结构特征进行类比转化
1.分层次训练
拓展思维培养能力
2.学生归纳总结:学到什么?会解决什么样的问题?哪些是难点?
教学活动4
先反思提高
1、递推关系形如""的数列的通项的求解思路;
2、在复习的过程中
要注意提高自己在新的问题情境中准确、合理使用所学知识解决问题的能力;要了解事物间的联系与变化
并把握变化规律
再巩固落实
1、数列中
(是常数
)
且成公比不为的等比数列.(I)求的值;(II)求的通项公式.
2、若数列中
a1=3
且an+ 1=an2(n是正整数)
则数列的通项an=__________
3、数列中
求
4、数列中
求
5、思考:在数列中
.证明数列是等比数列;
经过纠错---- 释疑 ---- 老师小结:
掌握数列通项公式的求法
如①直接(观察)法②递推关系法③累加法④累乘法⑤待定系数法等
4.课后反馈:试卷和作业
课后思考:高中阶段
求数列通项有哪些类型和方法?课后自己寻找和总结。