必修1 第三章函数的应用经典例题讲解
新课程标准数学必修1第三章课后习题解答[唐金制]
新课程标准数学必修1第三章课后习题解答第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x 1=-0.5,用计算器可算得f (-0.5)=3.375.因为f (-1)·f (-0.5)<0,所以x 0∈(-1,-0.5).再取(-1,-0.5)的中点x 2=-0.75,用计算器可算得f (-0.75)≈1.58.因为f (-1)·f (-0.75)<0,所以x 0∈(-1,-0.75).同理,可得x 0∈(-1,-0.875),x 0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x -1-lnx =0,令f (x )=0.8x -1-lnx ,f (0)没有意义,用计算器算得f (0.5)≈0.59,f (1)=-0.2.于是f (0.5)·f (1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x -1=lnx 在区间(0,1)内的近似解.取区间(0.5,1)的中点x 1=0.75,用计算器可算得f (0.75)≈0.13.因为f (0.75)·f (1)<0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x 2-在区间(2,3)内的近似解.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x 2a得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解. 取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x 3-6x 2-3x +5=0,令f (x )=x 3-6x 2-3x +5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.因为f(-2)·f(-1)<0,所以x0∈(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f (x )=2x 3-4x 2-3x +1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25.因为f (2.5)·f (3)<0,所以x 0∈(2.5,3). 再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09.因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75).同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125),x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x 1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x .所以CD=AB-2AE=4-2×42x =422x-. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8.由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22.所以所求的函数为y =22x -+2x +8,0<x <22.8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe 1<1. 又N 0是正常数,所以N=N 0(λe 1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N,所以-λt =ln 0N N ,即t =λ1-ln 0N N .(3)当N=20N 时,t =λ1-002N N =λ1-ln 2.9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始. B 组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y =f (t)=22,01,22)12,22.t t t t t <≤⎪⎪⎪--+<≤⎨>⎪⎩ 函数的图象为图3-5备课资料[备选例题]【例】对于函数f (x )=ax 2+(b +1)x +b -2(a ≠0),若存在实数x 0,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.(1)当a =2,b =-2时,求f (x )的不动点;(2)若对于任何实数b ,函数f (x )恒有两个相异的不动点,求实数a 的取值范围. 解:(1)f (x )=ax 2+(b +1)x +b -2(a ≠0),当a =2,b =-2时,f (x )=2x 2-x -4,设x 为其不动点,即2x 2-x -4=x ,则2x 2-2x -4=0,解得x 1=-1,x 2=2,即f (x )的不动点为-1,2.(2)由f (x )=x ,得ax 2+bx +b -2=0.关于x 的方程有相异实根,则b 2-4a (b -2)>0,即b 2-4ab +8a >0. 又对所有的b ∈R,b 2-4ab +8a >0恒成立,故有(4a )2-4·8a <0,得0<a <2.。
人教A版数学必修一必修①第三章函数的应用.docx
第20讲 §3.1.1 方程的根与函数的零点¤学习目标:结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;掌握零点存在的判定条件.¤知识要点:1. 对于函数()y f x =,能使()0f x =的实数x 叫作函数()y f x =的零点,函数的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标.2. 函数零点存在结论:若函数()y f x =的图象在区间[,]a b 上的图象是连续不断的一条曲线,且()()0f a f b <g ,则函数()y f x =在区间(,)a b 内有零点.¤例题精讲:【例1】函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5) 解:易知函数()f x 在定义域(0,)+∞内是增函数.∵ (1)ln12640f =+-=-<,(2)ln 246ln 220f =+-=-<,(3)ln366ln30f =+-=>. ∴ (2)(3)0f f <g ,即函数()f x 的零点在区间(2,3). 所以选B. 【例2】利用函数的图象,指出下列函数零点所在的大致区间: (1)3()21f x x x =--+; (2)1()32x f x e x +=++. 解:(1)易知函数3()21f x x x =--+在定义域R 上是减函数. 用计算器或计算机作出,()x f x 的对应值表或图象.x -3 -2 -1 0 1 2 3 ()f x 34 13 4 1 -2 -11 -32由列表或图象可知,(0)0f >,(1)0f <,即(0)(1)0f f <g ,说明函数()f x 在区间(0,1)内有零点,且仅有一个. 所以函数()f x 的零点所在大致区间为(0,1).(2)易知函数1()32x f x e x +=++在定义域R 上是增函数.用图形计算器或计算机作出图象.由图象可知,(2)0f -<,(1)0f ->,即(2)(1)0f f --<g ,说明函数()f x 在区间(2,1)--内有零点,且仅有一个. 所以函数()f x 的零点所在大致区间为(2,1)--.【例3】求证方程231x xx -=+在(0,1)内必有一个实数根. 证明:设函数2()31x xf x x -=-+. 由函数的单调性定义,可以证出函数()f x 在(1,)-+∞是减函数.而0(0)3210f =-=-<,115(1)3022f =-=>,即(0)(1)0f f <g ,说明函数()f x 在区间(0,1)内有零点,且只有一个. 所以方程231x xx -=+在(0,1)内必有一个实数根.点评:等价转化是高中数学解题中处理问题的一种重要思想,它是将不熟悉的问题转化为熟悉的问题,每个问题的求解过程正是这样一种逐步的转化. 此题可变式为研究方程231x xx -=+的实根个数. 【例4】(1)若方程2210ax -=在(0,1)内恰有一解,则实数a 的取值范围是 .(2)已知函数()34f x mx =-,若在[2,0]-上存在0x ,使0()0f x =,则实数m 的取值范围是 . 解:(1)设函数2()21f x ax =-,由题意可知,函数()f x 在(0,1)内恰有一个零点.∴ (0)(1)1(21)0f f a =-⨯-<g , 解得12a >. (2)∵在[2,0]-上存在0x ,使0()0f x =, 则(2)(0)0f f -≤g ,∴ (64)(4)0m --⨯-≤,解得23m ≤-.所以, 实数m 的取值范围是2(,]3-∞-.点评:根的分布问题,实质就是函数零点所在区间的讨论,需要逆用零点存在性定理,转化得到有关参数的不等式第20练 §3.1.1 方程的根与函数的零点※基础达标1.函数2243y x x =--的零点个数( ).A. 0个B. 1个C. 2个D. 不能确定2.若函数1y ax =+在(0,1)内恰有一解,则实数a 的取值范围是( ). A. 1a >- B. 1a <- C. 1a > D. 1a < 3.函数()23x f x =-的零点所在区间为( )A. (-1,0)B. (0,1)C. (1,2)D. (2,3) 4.方程lg x +x =0在下列的哪个区间内有实数解( ).A. [-10,-0.1]B. [0.1,1]C. [1,10]D. (,0]-∞5.函数()y f x =的图象是在R 上连续不断的曲线,且(1)(2)0f f >g ,则()y f x =在区间[1,2]上( ). A. 没有零点 B. 有2个零点 C. 零点个数偶数个 D. 零点个数为k ,k N ∈ 6.函数2()56f x x x =-+的零点是 . 7.函数3()231f x x x =-+零点的个数为 .※能力提高8.已知函数()f x 图象是连续的,有如下表格,判断函数在哪几个区间上有零点. x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 f (x ) -3.511.022.371.56-0.381.232.773.454.899.已知二次方程2(2)310m x mx -++=的两个根分别属于(-1,0)和(0,2),求m 的取值范围.※探究创新10.已知2()2(1)421f x m x mx m =+++-:(1)m 为何值时,函数的图象与x 轴有两个零点; (2)如果函数两个零点在原点左右两侧,求实数m 的取值范围.第21讲 §3.1.2 用二分法求方程的近似解¤学习目标:根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.¤知识要点:给定精度ε,用二分法求函数()f x 的零点近似值的步骤如下:A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε; B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤B~D . ¤例题精讲:【例1】借助计算器,方程ln 30x x +-=在区间(2,3)内的根是 (精确到0.1). 解:令()ln 3f x x x =+-,则(2)0,(3)0f f <>,又 (2.5)0,(2.25)0,(2.125)0,(2.1875)0f f f f >><<,∴ 在区间[2.1875,2.25]内有零点,且2.25-2.1875=0.0625<0.1,所以,取近似值2.2为方程的根. 【例2】借助计算器,用二分法求出ln(26)23x x ++=在区间(1,2)内的近似解(精确到0.1). 解:原方程即ln(26)320x x +-+=. 令()ln(26)32x f x x =+-+,用计算器做出如下对应值表x-2-112f(x) 2.5820 3.0530 27918 1.0794 -4.6974观察上表,可知零点在(1,2)内. 取区间中点1x =1.5,且(1.5) 1.00f ≈-,从而,可知零点在(1,1.5)内; 再取区间中点2x =1.25,且(1.25)0.20f ≈,从而,可知零点在(1.25,1.5)内;同理取区间中点3x =1.375,且(1.375)0f <,从而,可知零点在(1.25,1.375)内.由于区间(1.25,1.375)内任一值,精确到0.1后都是1.3. 故结果是1.3.【例3】证明方程632x x -=在区间[1,2]内有唯一一个实数解,并求出这个实数解(精确到0.1).证明:设函数()236x f x x =+-. ()()110,240f f =-<=>Q , 又()f x Q 是增函数,所以函数()236x f x x =+-在区间[1,2]有唯一的零点,则方程632x x -=在区间[1,2]有唯一一个实数解.设该解为00,[1,2]x x ∈则,取1 1.5,(1.5)0.330,(1)(1.5)0x f f f ==><g ,∴ 0(1,1.5)x ∈. 取2 1.25,(1.15)0.1280,(1)(1.25)0x f f f ==><g ,∴ 0(1,1.25)x ∈.取3 1.125,(1.125)0.440,(1.125)(1.25)0x f f f ==-<<g ,∴ 0(1.125,1.25)x ∈. 取4 1.1875,(1.1875)0.160,(1.1875)(1.25)0x f f f ==-<<g ,∴ 0(1.1875,1.25)x ∈. ∵ 1.25 1.18750.06250.1-=<,∴ 可取0 1.2x =,则方程的实数解为0 1.2x =.点评:用二分法求方程实数解的思想是非常简明的,但是为了提高解的精确度,用二分法求方程实数解的过程又是较长的,有些计算不用计算工具甚至无法实施,所以需要借助科学计算器.【例4】有一块边长为30cm 的正方形铁皮,将其四个角各截去一个边长为x cm 的小正方形,然后折成一个无盖的盒子,如果要做成一个容积是12003cm 的无盖盒子,那么截去的小正方形的30x边长x 是多少cm (精确到0.1cm )?解:盒子的体积y 和以x 为自变量的函数解析式为2(302)y x x =-,015x <<.由容积是12003cm ,则2(302)1200x x -=,下面求二分法来求方程在(0,15)内的近似解.令2()(302)1200,f x x x =--借助计算机画出函数图象.由图象可以看到,函数()f x 分别在区间(1,2)和(9,10)内各有一个零点,即方程2(302)1200x x -=分别在区间(1,2)和(9,10)内各有一个解.取区间(1,2)的中点1 1.5x =,用计算器算得(1.5)106.50f =-<.因为(1.5)(2)0f f <g ,所以0(1.5,2)x ∈.同理可得0(1.5,1.75)x ∈,0(1.625,1.75)x ∈,0(1.6875,1.75)x ∈.由于|1.75 1.6875|0.06250.1-=<,此时区间(1.6875,1.75)的两个端点精确至0.1的近似值都是1.7,所以方程在区间(1,2)内精确到0.1的近似解为1.7.同理可得方程在区间(9,10)内精确到0.1的解为9.4.所以,如果要做成一个容积是21200cm 无盖盒子时,截去的小正方形的边长大约是1.79.4cm cm 或. 点评:用二分法求解实际问题中最关键的一步是把实际问题转化为数学模型.也需借助计算工具.第21练 §3.1.2 用二分法求方程的近似解※基础达标1.函数5()3f x x x =+-的实数解落在的区间是( ).A. [0,1]B. [1,2]C. [2,3]D. [3,4]2.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( ).A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定3.如图所示,每个函数图象都有零点,但不能用二分法求图中函数零点的是( )4.(07年山东卷.文11)设函数3y x =与21()2x y -=的图象的交点为00()x y ,,则0x 所在的区间是( ). A. (01),B. (12),C. (23),D. (34),5.已知函数()f x 的一个零点0(2,3)x ∈,在用二分法求精确度为0.01的0x 的一个值时,判断各区间中点的函数值的符号最多( ).A. 5次B. 6次C. 7次D. 8次6.用“二分法”求方程3250x x --=在区间[2,3]内的实根,取区间中点为0 2.5x =,那么下一个有根的区间是 .7.举出一个方程,但不能用“二分法”求出它的近似解 . ※能力提高8.已知3()24f x x x =--+,求证此函数()f x 有且仅有一个零点,并求此零点的近似值(精确到0.1). 9.某电器公司生产A 种型号的家庭电脑. 1996年平均每台电脑的成本5000元,并以纯利润2%标定出厂价. 1997年开始,公司更新设备、加强管理,逐步推行股份制,从而使生产成本逐年降低. 2000年平均每台电脑出厂价仅是1996年出厂价的80%,但却实现了纯利润50%的高效率.(1)求2000年的每台电脑成本; (2)以1996年的生产成本为基数,用“二分法”求1996年至2000年生产成本平均每年降低的百分率(精确到0.01).※探究创新10.已知函数2()22f x x x =+-. (1)如果函数2()(2)g x f x =-,求函数()g x 的解析式; (2)借助计算器,画出函数()g x 的图象; (3)求出函数()g x 的零点(精确到0.1).第22讲 §3.2.1 几类不同增长的函数模型(一)¤学习目标:利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 体验指数函数等与现实世界的密切联系及其在刻画现实问题中的作用.¤知识要点:1.比较:幂函数(0)n y x n =>、指数函数(1)x y a a =>、对数函数log (1)a y x a =>在区间(0,)+∞上的增长差异.2.平均增长率的问题:可以用公式(1)x y N p =+表示. 人口问题的应用模型,还可探究英国经济学家马尔萨斯提出的自然状态下的人口增长模型0rt y y e =.¤例题精讲:【例1】光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈ 解:(1) (110%)().x y a x N *=-∈(2)111,(110%),0.9,333x x y a a a ≤∴-≤∴≤Q0.91lg3log 10.4,32lg31x -≥=≈- ∴ 11x =.【例2】1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿?解:设x 年后人口总数超过14亿. 由题意得 12(10.0125)14x ⨯+=,即 71.01256x =. 两边取常用对数,得lg1.0125lg7lg6x =-. ∴ lg7lg612.4lg1.0125x -=≈.所以,13年后,即2008年我们人口总数超过14亿.【例3】某公司拟投资100万元,有两种获利的可能提供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利计算,5年后收回本金和利息,哪一种投资更有利?5年后,这种有利的投资比另一种投资可多得利息多少元?解: 100万元,按单利计算,年利率10%,5年后的本利和为 100(1105)150⨯+%⨯=(万元).100万元,按复利计算,年利率9%,5年后的本利和为 5100(19153.86⨯+%)≈(万元).由此可见,按年利率9%的复利计算投资,要比年利率10%的单利计算投资更有利,5年后可多的利息3.86万元.点评:利率问题考察的函数模型是一次函数和幂函数,要理解“单利”和“复利”的实际意义.【例4】某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边上岸考察,然后又乘汽艇沿原航线提速返回. 设t 为出发后的某一时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能大致表示()S f t =的函数关系的为( C ).D.C.B.A.SSSttt ooooSt解:当汽艇沿直线方向匀速开往该岛时,S vt=,图象为一条线段;当环岛两周时,S两次增至最大,并减少到与环岛前的距离S;上岛考察时,S S=;返回时,'S S vt=-,图象为一条线段. 所以选C.点评:根据实践问题中变量的实际意义,寻找它们之间的大概函数关系,由函数关系式确定所要选择的图象.此题的关键是分析各段行程,找出汽艇到岛的距离S与时间t的简明关系.第22练§3.2.1 几类不同增长的函数模型(一)※基础达标1.2()f x x=,()2xg x=,2()logh x x=,当(4,)x∈+∞时,三个函数增长速度比较,下列选项中正确的是().A. ()f x>()g x>()h x B. ()g x>()f x>()h xC. ()g x>()h x>()f x D. ()f x>()h x>()g x2.如图,能使不等式22log2xx x<<成立的自变量x的取值范围是().A. 0x> B. 2x> C. 2x< D. 02x<<3.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林().A. 14400亩B. 172800亩C. 17280亩D. 20736亩4.某山区加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x年,绿色植被面积可增长为原来的y倍,则函数()y f x=的大致图象为()5.某人2003年1月1日到银行存入一年期存款a元,若按年利率为x,并按复利计算,到2008年1月1日可取回款().A. a(1+x)5元B. a(1+x)6元C. a(1+x5)元D. a(1+x6)元6.老师今年用7200元买一台笔记本. 电子技术的飞速发展,计算机成本不断降低,每隔一年计算机的价格降低三分之一. 三年后老师这台笔记本还值.7.某商品降价10%后,欲恢复原价,则应提价的百分数是.※能力提高8.某人有资金2000元,拟投入在复利方式下年报酬为8%的投资项目,大约经过多少年后能使现有资金翻一番?(下列数据供参考:lg2=0.3010,lg5.4=0.7324,lg5.5=0.7404,lg5.6=0.7482).9.家用冰箱使用的氟化物的释放破坏了大气上层臭氧层. 臭氧含量Q呈指数函数型变化,满足关系式400tQ Q e-=,其中Q是臭氧的初始量. (1)随时间的增加,臭氧的含量是增加还是减少?(2)多少年以后将会有一半的臭氧消失?※探究创新10.袁隆平-中国杂交水稻之父.他带领的杂交水稻研究小组经过30多年的不懈研究,于1973年使水稻亩产达到623千克,亩产比一般常规水稻增产20%左右,2000年亩产达到700千克,2004年亩产又达到800千克. (1)根据这样的研究速度,你能猜想中国于2010年杂交水稻的亩产为多少千克?为什么?(2)根据你的推算,2010年我国杂交水稻的亩产比1973年常规水稻的亩产增长率为多少?第23讲 §3.2.1 几类不同增长的函数模型(二)¤学习目标:结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 体验二次函数函数与现实世界的密切联系及其在刻画现实问题中的作用.¤知识要点:1. 模型优选:解答数学建模等应用问题时,往往并不确定所给出的数学模型,需要我们根据所得的数据,分析出其数字特征,选用适合的函数模型来解决实际问题.2. 二次函数:应用二次函数的有关知识,可解决生产、生活实际中的最大(小)值的问题. 解答时需遵循的基本步骤是:(1)反复阅读理解,认真审清题意;(2)依据数量关系,建立数学模型;(3)利用数学方法,求解数学问题;(4)检验所得结果,译成实际答案. 关键之处是第2步正确得到二次函数的模型,然后才能在第3步中利用二次函数的性质解决问题.¤例题精讲:【例1】有甲、乙两种商品,经销这两种商品所能获得的利润依次是p 万元和q 万元,它们与投入的资金x 万元的关系有经验公式:p =110x ,q =25x . 现有资金9万元投入经销甲、乙两种商品,为了获取最大利润,问:对甲、乙两种商品的资金分别投入多少万元能获取最大利润?解:设对乙商品投入x 万元,则对甲商品投入9-x 万元.设利润为y 万元,[]0,9x ∈.∴y =12(9)105x x -+=1(49)10x x -++=21((2)13)10x --+, ∴ 当x =2,即x =4时,y max =1.3.所以,投入甲商品5万元,乙商品4万元时,能获得最大利润1.3万元.【例2】某商店按每件80元的价格,购进时令商品(卖不出去的商品将成为废品)1000件;市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价x 元,请将获得总利润y 元表示为x 的函数,并确定合理售价,求出最大利润.解:设比100元的售价高x 元,总利润为y 元;则22(100)(10005)8010005500200005(50)32500y x x x x x =+--⨯=-++=--+. 显然,当50x =即售价定为150元时,利润最大;其最大利润为32500元.【例3】某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间? 解:(1)当0≤t ≤1时,y =4t ;当t ≥1时,1()2t a y -=,此时(1,4)M 在曲线上, ∴114(),32a a -==,这时31()2t y -=.所以34(01)1()()(1)2t t t y f x t -≤≤⎧⎪==⎨≥⎪⎩.(2)∵ 340.251()0.25,()0.252t t f t -≥⎧⎪≥⎨≥⎪⎩即, 解得1165t t ⎧⎪≥⎨≤⎪⎩ ,∴ 1516t ≤≤. ∴ 服药一次治疗疾病有效的时间为115541616-=个小时.点评:生活中有许多实际问题,常作为函数模型的应用背景. 我们需依据四步曲“读题理解→建模转化→求解问题→检验作答”求解,从冗长的文字语言中精炼出数学语言,选择合适的数学模型来研究.【例4】某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(024t ≤≤).从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?解:设t 小时后蓄水池中的水量为y 吨,则400601206y t t =+-.令6t =x ,则26x t =,即240010120y x x =+-210(6)40,[0,12]x x =-+∈. ∴ 当6x =,即6t =时,min 40y =,所以,从供水开始到第6小时时,蓄水池水量最少,只有40吨.点评:运用二次函数的模型,常解决一些最大(小)值的问题,对生产生活等问题进行优化.第23练 §3.2.1 几类不同增长的函数模型(二)※基础达标1.某工厂生产总值月平均增长率为p ,则年平均增长率为( ). A. p B. 12p C. (1+p )12 D. (1+p )12-12.某种放射性元素,100年后只剩原来质量的一半,现有这种元素1克,3年后剩下( ). A.30.5100⨯克 B. (1-0.5%)3克 C. 0.925克 D. 1000.125克3.1980年我国工农业总产值为a 亿元,到2000年工农业总产值实现翻两番的战略目标,年平均增长率至少达到( ).A. 1204-1 B. 1202-1 C. 1214-1 D. 1212-14.某商品2002年零售价比2001年上涨25%,欲控制2003年比2001年只上涨10%,则2003年应比2002年降价( ).A. 15%B. 12%C. 10%D. 8%5.向高为H 的水瓶中注水,注满为止,如果注水量V 与深h 的函数关系的图象如右图所示,那么水瓶的形状是( ).6.计算机成本不断降低,若每隔三年计算机价格降低13,则现在价格为8100元的计算机9年后价格可降为 元. 7.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是 元.※能力提高8.某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1000个.为适应市场需求,计划提高蛋糕档次,适度增加成本,若每个蛋糕成本增加的百分率为x (0<x <1),则每个蛋糕的出厂价相应提高的百分率为0.5x ,同时预计日销售量增加的百分率为0.8x ,已知日利润=(出厂价—成本)×日销售量,且设增加成本后的日利为y . (1)写出y 与x 的关系式; (2)为使日利润最大,问x 应取何值?9.某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?※探究创新10.(2007年上海卷.文理18)近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%). (1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦); (2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?第24讲 §3.2.2 函数模型的应用举例(一)¤学习目标:收集一些社会生活中普遍使用的函数模型(指数函数、分段函数等)的实例,了解函数模型的广泛应用. 体会解决实际问题中建立函数模型的过程,进一步加深对这些函数的理解与应用.¤知识要点:1. 分段函数模型:结合分类讨论的数学思想方法,根据实际情况,正确得到分段函数模型,并合理选用某段解析式和数学方法来解决实际问题.2. 常见的指数型函数模型如下:(1)放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.(2)1798年,英国经济学家马尔萨斯(T.R.Malthus ,1766-1834)提出自然状态下的人口增长模型:0rt y y e =,其中t 表示经过的时间,0y 表示0t =时的人口数,r 表示人口的年平均增长率.(教材P 115例4)(3)英国物理学家和数学家牛顿(Issac Newton ,1643-1727年)曾提出物体在常温环境下温度变化的冷却模型:010()kte θθθθ-=+-g ,其中t 表示经过的时间,1θ表示物体的初始温度,0θ表示环境稳定,k 为正的常数. (教材P 123 实习作业)¤例题精讲:【例1】1650年世界人口为5亿,当时的年增长率为3‰,用指数增长模型计算什么时候世界人口达到10亿(实际上1850年前已超过10亿). 1970年世界人口为36亿,年增长率为2.1‰,用指数增长模型预测什么时候世界人口会翻一番?解:由1650年世界人口数据,把05y =,0.003r =代入马尔萨斯人口模型,得0.0035t y e =.解不等式0.003510t y e =≥,得ln 22310.003t ≥≈ 所以,由马尔萨斯人口模型估算,经过231年后,即1881年世界人口达到10亿.由1970年世界人口数据,把036y =,0.0021r =代入马尔萨斯人口模型,得0.002136t y e =. 解不等式0.00213672t y e =≥,得ln 23300.0021t ≥≈.所以,由马尔萨斯人口模型估算,经过330年后,即2300年世界人口达到72亿. 【例2】“依法纳税是每个公民应尽的义务”. 国家征收个人所得税是分段计算,总收入不超过800元,免征个人所得税,超过800元部分需征税. 设全月纳税所得额为x ,x =全月总收入-800元,税率见下表:级 数 全月纳税所得额 税 率 1 不超过500元部分 5% 2 超过500元至2000元部分 10% 3 超过2000元至5000元部分 15% … … … 9 超过10000元部分 45%(1)若应纳税额为f (x ),试用分段函数表示1~3级纳税额f (x )的计算公式;(2)某人2005年10月总收入3000元,试求该人此月份应缴纳个人所得税多少元; (3)某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于 A .800~900元 B.900~1200元 C.1200~1500元 D.1500~2800元 解:(1)依税率表,有:第一段:x ·5%,0<x ≤500; 第二段:(x -500)×10%+500×5%,500<x ≤2000; 第三段:(x -2000)×15%+1500×10%+500×5%,2000<x ≤5000,即f (x )=0.050.1(500)250.15(2000)175x x x ⎧⎪⨯-+⎨-+⎪⎩ (0500)(5002000)(20005000)x x x <≤<≤<≤.(2)这个人10月份应纳税所得额x =3000-800=2200,f (2200)=0.15×(2200-2000)+175=205.所以,这个人10月份应缴纳个人所得税205元. (3)解法一:(估算法)由500×5%=25元,100×10%=10元,故某人当月工资应在1300~1400元之间,故选C.解法二:(逆推验证法)设某人当月工资为1200元或1500元,则其应纳税款分别为400×5%=20(元),500×5%+200×10%=45(元).可排除A 、B 、D ,故选C.点评:关系国民经济发展的纳税问题,与分段函数密切相关,我们需注意各级税率的正确理解,超过部分按此税率,并非一个税率来计算纳税.第24练 §3.2.2 函数模型的应用举例(一)※基础达标1.在本埠投寄平信,每封信不超过20g 时付邮资0.80元,超过20g 而不超过40g 付邮资1.60元,依次类推,每增加20g 需增加邮资0.80元(信重在100g 以内).如果某人所寄一封信的质量为82.5g ,那么他应付邮资 ( ).A. 2.4元B. 2.8元C. 3.2元D. 4元2.甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B 地,已知甲骑自行车比乙骑自行车快,若每人离开甲地的距离s 与所用时间t 的函数用图象表示,则甲、乙两人的图像分别是( ).A. 甲是(1), 乙是(2)B. 甲是(1), 乙是(4)C. 甲是(3), 乙是(2)D. 甲是(3), 乙是(4)3.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线nt y ae =. 假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有8a,则m 的值为( ). A. 7 B. 8 C. 9 D. 104.由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示大于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( ).A. 5.83元B. 5.25元C. 5.56元D. 5.04元5.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,汽车离开A 地的距离x 表示为时间t (小时)的函数式是( ).A. x =60tB. x =60t +50tC. x ={60,(0 2.5)15050,( 3.5)t t t t ≤≤-> D. x =60,(0 2.5)150,(2.5 3.5)15050( 3.5),(3.5 6.5)t t t t t ≤≤⎧⎪<≤⎨--<≤⎪⎩6.在国内投寄平信,每封信不超过20克重付邮资80分,超过节20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重(040)x x <≤克的函数,其表达式为()f x = .7.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x 年后的剩留量为y ,则()y f x =的函数解析式为 .※能力提高8.某冬晨,警局接到报案,在街头发现一位流浪者的尸体,早上六点测量其体温13℃,到早上七点时,其体温下降到11℃. 若假设室外温度约维持在10℃,且人体正常体温为37℃,运用牛顿冷却模型可以判定流浪汉已死亡多久?9.某厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台需要加可变成本(即另增加投入)0.25万元,市场对此产品的年需求量为500台,销售收入函数为21()52R x x x =-(万元)(0≤x ≤5),其中x 是产品售出的数量(单位:百台). (1)把利润L (x )表示为年产量x 的函数; (2)年产量是多少时,工厂所得的利润最大?※探究创新10.通过研究学生的行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间. 讲座开始时,学生的兴趣急增;中间有一段不太长的时间,学生的学习兴趣保持较理想的状态,随后学生的学习兴趣开始分散. 分析结果和实验表明,用()f x 表示学生掌握和接受概念的能力,x 表示提出和讲授概念的时间(单位分)可以使用公式:20.1 2.643,(010)()59,(1016)3107,(1630)x x x f x x x x ⎧-+-<≤⎪=<≤⎨-+<≤⎪⎩. (1)开讲后多少分钟,学生的接受能力最强?能持续多长时间? (2)一个数学难题,需要55的接受能力以及13分钟时间,教师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? (3)如果每隔5分钟测量一下学生的接受能力,在计算平均值(5)(10) (30)6f f f M +++=,它能高于45吗?第25讲 §3.2.2 函数模型的应用举例(二)¤学习目标:收集一些社会生活中普遍使用的函数模型的实例,了解函数模型的广泛应用. 体会解决实际问题中建立函数模型的过程,进一步加深对这些函数的理解与应用.¤知识要点:1. 图表分析:从给出的统计数据表中发现数学规律,寻找存在的数学模型,并用之解决实际问题.2. 函数图象:把实际中存在的规律用图象直观形象的表示出来,通过图象来求解函数模型. ¤例题精讲:【例1】某商场经销一批进货单价为40元的商品,销售单价与日均销售量的关系如下表:销售单价/元 50 51 52 53 54 55 56 日均销售量/个48464442403836为了获取最大利润,售价定为多少时较为合理?解:由题可知,销售单价增加1元,日均销售量就减少2个.设销售单价定为x 元,则每个利润为(x -40)元,日均销量为[482(50)]x --个. 由于400x ->,且482(50)0x -->,得4074x <<.则日均销售利润为2(40)[482(50)]22285920y x x x x =---=-+-,4074x <<. 易知,当228572(2)x =-=⨯-,y 有最大值.所以,为了获取最大利润,售价定为57元时较为合理.点评:从表格中发现存在的变化规律,是课标教材中对提价后销量减少一类应用问题相比大纲教材的改进. 这种表格背景更符合实际,规律都是从样本数据中发现,而不是直接生硬地得到,同时也提高了读表分析这一数学阅读理解能力.【例2】某公司是一家专做产品A 的国内外销售的企业,每一批产品A 上市销售40天内全部售完. 该公司对第一批产品A 上市后的国内外市场销售情况进行了跟踪调查,调查结果如图所示,其中图一中的折线表示的是国外市场的日销售量与上市时间的关系;图二中的抛物线表示国内市场的日销售量与上市时间的关系;图三中的折线表示的是每件产品A 的销售利润与上市时间的关系(国内外市场相同).(1)分别写出国内市场的日销售量()f t 、国外市场的日销售量()g t 与第一批产品A 的上市时间t 的关系式;(2)第一批产品A 上市后,求日销售利润()Q t 的解析式.解:(1)当030t ≤≤时,设()f t kt =,由6030k =解得k =2,则()2f t t =. 当3040t <≤时,设()f t at b =+,由{6030040a b a b =+=+解得{6240a b =-=,则()6240f t t =-+.所以,国内市场的日销售量{2(030)()6240(3040)t t f t t t ≤≤=-+<≤.设()(40)g t at t =-,由6020(2040)a =-解得320a =-.所以,国外市场的日销售量23()620g t t t =-+(040t ≤≤). (2)设每件产品A 的销售利润为()q t ,由图易得{3(020)()60(2040)t t q t t ≤≤=<≤,从而这家公司的日销售利润()Q t 的。
高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)
高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
人教A版高中数学必修一学第三章函数模型的应用实例讲解与例题新
3.2.2 函数模型的应用实例1.用已知函数模型解决实际问题解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答.解决此类型函数应用题的基本步骤是:第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景.在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题.第二步:根据所给模型,列出函数关系式.根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步:利用数学方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:再将所得结论转译成具体问题的解答.【例1】我国辽东半岛普兰店附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花.经测定,古莲子出土时14C(半衰期为5 730年)的残余量占原始含量的87.9%,试推算古莲子的生活年代(经过科学鉴定,若14C 的原始含量为Q 0,则经过t 年后的残余量Q 与Q 0之间满足Q =Q 0·e -kt ).解析:利用半衰期求出参数k ,再根据出土的古莲子14C 的残余量求出古莲子的生活年代.解:已知残余量Q 与Q 0之间满足Q =Q 0·e -kt ,其中Q 0是初始量,t 是时间.因为半衰期为5 730年,即当012Q Q 时,t =5 730. 所以e -5 730k =12,解得k ≈0.000 12.所以Q =Q 0·e -0.000 12t . 由题目条件得0Q Q =87.9%,代入上式,解得t ≈1 075. 故古莲子的生活年代约是1 075年前.2.建立函数模型解决实际问题通过收集数据直接去解决问题的一般过程如下:第一步:收集数据.第二步:根据收集到的数在平面直角坐标系内画出散点图.第三步:根据点的分布特征,选择一个能刻画散点图特征的函数模型.第四步:选择其中的几组数据求出函数模型.第五步:将已知数据代入所求出的函数模型进行检验,看其是否符合实际.若不符合实际,则重复第三、四、五步;若符合实际,则进入下一步.第六步:用求得的函数模型去解释实际问题.【例2则x ,y )A .y =a +bxB .y =b xC .y =2a x+b D .y =b x 解析:散点图如图所示:由散点图可知,此函数图象不是直线,排除A 选项;此函数图象是“上升”的,因此该函数为增函数,排除C ,D 选项,故选择B .答案:B3.已知函数模型的应用题(1)常用到的函数模型:①正比例函数模型:y =kx (k ≠0);②反比例函数模型:y =cx d ax b++(a ≠0); ③一次函数模型:y =kx +b (k ≠0);④二次函数模型:y =ax 2+bx +c (a ≠0);⑤指数函数模型:y =m ·a x +b (a >0,且a ≠1,m ≠0);⑥对数函数模型:y =m log a x +c (m ≠0,a >0,且a ≠1);⑦幂函数模型:y =k ·x n +b (k ≠0).(2)二次函数模型是高中阶段应用最为广泛的模型.随着新课标的实施,指数、对数函数模型将会起到越来越重要的作用,必将在高考舞台中扮演愈来愈重要的角色._________________________________________________________________________________________________________________________________________________________________________________【例3-1】在不考虑空气阻力的条件下,火箭的最大速度v (m/s)和燃料的质量M (kg)、火箭(除燃料外)的质量m (kg)的关系式为 2 000ln 1M v m ⎛⎫=+⎪⎝⎭.当燃料质量是火箭质量的多少倍时,火箭的最大速度可达12 km/s? 解:由12 000=2 000ln 1M m ⎛⎫+ ⎪⎝⎭,即6=ln 1M m ⎛⎫+ ⎪⎝⎭, 1+M m =e 6,利用计算器算得M m ≈402. 故当燃料质量约是火箭质量的402倍时,火箭的最大速度可达12 km/s .【例3-2】现有甲、乙两桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系式y =a e -nt ,那么乙桶的水就是y =a -a e -nt ,假设经过5 min ,甲桶和乙桶的水相等,则再经过__________min ,甲桶中的水只有8a L . 解析:由题意可得5 min 时,a e -5n =12a ,解得1ln 25n =. 那么剩余水y L 满足的函数关系式为1ln 25t y ae -=.由1ln 251e 8t a a -=,解得t =15. 因此,再经过10 min 后,甲桶中的水只有8a L . 答案:10点技巧 解决已知函数模型应用题的方法 一般来说,若题中已给出了函数模型,通常利用条件列方程(组),解得解析式中的参数的值,这样已知的函数模型完全确定,再将实际问题转化为求函数的函数值或最值等常见的函数问题来解.4.一次函数模型的应用现实生活中很多事例可以用一次函数模型来表示,例如:匀速直线运动的时间和位移的关系,弹簧的伸长和拉力的关系等.对一次函数来说,当一次项系数为正时,表现为匀速增长,即为增函数,一次项系数为负时为减函数.一次函数模型层次性不高,求解也较为容易,一般我们可以用“问什么,设什么,列什么”这一方法来处理.【例4】某列火车从北京西站开往石家庄,全程277 km .火车出发10 min 开出13 km 后,以120 km/h 匀速行驶.试写出火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式,并求离开北京2 h 时火车行驶的路程.解析:由“匀速行驶”可知总路程s 关于时间t 的函数为一次函数,注意时间t 的范围限制.解:因为火车匀速行驶的时间为27713111205-=(h),所以0≤t ≤115. 因为火车匀速行驶t h 所行驶的路程为120t km ,所以火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式为s =13+120t 1105t ⎛⎫≤≤ ⎪⎝⎭. 故离开北京2 h 时火车行驶的路程s =13+120×116=233(km). 5.二次函数模型的应用(1)在函数模型中,二次函数模型占有重要的地位,因为根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最大、最省问题.(2)在应用题中能够列出函数的解析式解答应用题的实质是要转化题意,寻找所给条件含有相等关系的关键词,用等式把变量联系起来,然后再整理成函数的解析式的形式.常用的方法有:①待定系数法:题目给出了含参数的函数关系式,或可确定其函数模型,此种情形下应用待定系数法求出函数解析式中相关参数(未知系数)的值,就可以得到确定的函数解析式.②归纳法:先让自变量x 取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数解析式.③方程法:用x ,y 表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出x ,y 的二元方程,把x 看成常数,解方程得y (即函数关系式),此种方法形式上和列方程解应用题相仿,故称为方程法.______________________________________________________________________________________________________________________________________________________________________________________________________【例5-1】有A ,B 两城相距100 km ,在A ,B 两城之间距A 城x km 的D 地建一核电站给这两城供电.为保证城市安全,核电站与城市距离不得少于10 km .已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城供电量为10亿度/月.(1)把月供电总费用y 表示成x 的函数,并求定义域;(2)核电站建在距A 城多远时,才能使供电费用最小?解:(1)由题意:y =0.25[20x 2+10(100-x )2]=2100500007.533x ⎛⎫-+ ⎪⎝⎭.∵x ≥10,且100-x ≥10,∴10≤x ≤90.∴函数的定义域为[10,90].(2)由二次函数知当1003x =时,y 最小, 因此当核电站建在距离A 城1003 km 时,供电费用最小. 【例5-2】某企业实行裁员增效,已知现有员工a 人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34,设该企业裁员x 人后年纯收益为y 万元. (1)写出y 关于x 的函数关系式,并指出x 的取值范围.(2)当140<a ≤280时,该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁员)解:(1)由题意可知,y =(a -x )(1+0.01x )-0.4x =21140100100100a x x a ⎛⎫-+-+ ⎪⎝⎭. ∵a -x ≥34a ,∴x ≤14a ,即x 的取值范围是区间0,4a ⎡⎫⎪⎢⎣⎭中的自然数. (2)∵2211707010021002a a y x a ⎡⎤⎛⎫⎛⎫=---+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,且140<a ≤280,∴当a 为偶数时,x =2a -70,y 取最大值. 当a 为奇数时,x =12a --70,y 取最大值(∵尽可能少裁人,∴舍去1702a x =-+). ∴当员工人数为偶数时,裁员702a ⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益; 当员工人数为奇数时,裁员1702a -⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益. 6.指数函数模型的应用(1)实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型来表示,在建立函数模型时注意用区分、列举、归纳等方法来探求内在的规律.(2)当实际应用题中没有给出函数模型而函数模型又唯一时,其解题步骤是:第一步:认真读题,缜密审题,确切理解题意,明确问题的实际背景;第二步:恰当地设未知数,列出函数解析式,将实际问题转化成函数问题,即实际问题函数化;第三步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解;第四步:将所得函数问题的解还原成实际问题的结论.(3)解决函数应用题关键在于理解题意,这就要求:一要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;二要不断拓宽知识面,提高自己的间接生活阅历;三要抓住题目中的关键词或关键量,特别是关于变量的相等关系,这是函数解析式的原型.【例6】有一种放射性元素,因放出射线,其质量在不断减少,经测算,每年衰减的百分率相同.若该元素最初的质量为50 g ,经过一年后质量变为40 g .(1)设x (x ≥0)年后,这种放射性元素的质量为y g ,写出y 关于x 的表达式;(2)求经过多长时间,这种放射性元素的质量变为原来的一半?(精确到0.1年,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)思路解析:本题属于降低率问题,建立指数函数模型解决.解:(1)由题意可知每经过一年该放射性元素衰减的百分率为504050-=20%,故y =50(1-20%)x ,则y =50×0.8x (x ≥0).(2)由题意知50×0.8x =25,即0.8x =0.5,则lg 0.8x =lg 0.5,从而可知x lg 0.8=lg 0.5.因此x =lg 0.5lg 20.3010lg 0.83lg 210.90301--=≈--≈3.1. 故约经过3.1年这种放射性元素的质量变为原来的一半.析规律 指数函数模型的应用 在实际问题中,有关增长率(减少率)问题常常用指数函数模型表示.通常可以表示为y =N (1±p )x ,其中N 为基础数,p 为增长率(减少率),x 为时间,增长率问题取“+”,减少率问题取“-”.7.对数函数模型的应用形如y =log a x (a >0,且a ≠1)的函数是对数函数,a >1时,此函数为增函数;0<a <1时,此函数为减函数.虽然直接以对数函数作为模型的应用问题不是很多,但我们要知道,对数运算实际是求指数的运算,因此在指数函数模型中,也常用对数计算.______________________________________________________________________________________________________________________________________________________________________________【例7】燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =25log 10Q ,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题意知,当燕子静止时,它的速度v =0,代入题给公式可得0=25log 10Q ,解得Q =10.故燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得v =2805log 10=5log 28=15(m/s). 故当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s .8.分段函数模型的应用由于分段函数与日常生活联系紧密,已成为考查的热点;对于分段函数,一要注意规范书写格式;二要注意各段的定义域的表示方法,对于中间的各个分点,一般是“一边闭,一边开”,以保证在各分点的“不重不漏”.例如,某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.试写出订购量与实际出厂单价的函数关系式.解:设每个零件的实际出厂价恰好降为51元时,一次订购量为100+60510.02-=550个. 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.设一次订购量为x 个,零件的实际出厂单价为P 元,当0<x ≤100时,P =60,当100<x <550时,P =60-0.02(x -100)=62-50x , 当x ≥550时,P =51,所以P=f(x)=60,0100,62,100550,5051,550.xxxx<≤⎧⎪⎪-<<⎨⎪≥⎪⎩【例8】某市居民自来水收费标准如下:每户每月用水不超过4 t时,每吨为1.80元,当用水超过4 t时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4 t,即5x≤4时,乙的用水量也不超过4 t,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4 t,乙的用水量不超过4 t,即3x≤4且5x>4时,y=4×1.80+3x×1.80+3×(5x-4)=20.4x-4.8;当甲、乙的用水量都超过4 t,即3x>4时,y=24x-9.6.故414.4, 0,54420.4 4.80,,534249.6,.3x xy x xx x⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪->⎪⎩(2)由于y=f(x)在各段区间上均为单调递增函数,当x∈40,5⎡⎤⎢⎥⎣⎦时,y≤45f⎛⎫⎪⎝⎭=11.52<26.4;当x∈44,53⎛⎤⎥⎝⎦时,y≤43f⎛⎫⎪⎝⎭=22.4<26.4;当x∈4,3⎛⎫+∞⎪⎝⎭时,令24x-9.6=26.4,解得x=1.5,因此5x=7.5,甲户用水量为7.5 t,甲应付费s1=4×1.80+3.5×3=17.70(元).3x=4.5,乙户用水量为4.5 t.乙应付费s2=4×1.80+0.5×3=8.70(元).点技巧分段函数解析式的求法分段函数的每一段的自变量变化所遵循的规律不同,可先将其看作几个问题,将各段的变化规律分别找出来,再将其合到一起,从而写出函数的解析式.要注意各段自变量的变化范围,特别是端点值.9.拟合函数模型的应用(1)此类题目的解题步骤①作图:根据已知数据作出散点图.画散点图时,首先确定自变量和因变量,再以自变量的值为横坐标,以观察到的对应的因变量的值为纵坐标,在平面直角坐标系中描出各点.当然,如果条件允许,最好借助于计算机画出最准确的散点图.②选择函数模型:根据散点图,结合基本初等函数的图象形状,利用“假设”,找出比较接近的函数模型.这要求会根据图象形状估计函数模型:图象是直线,那么函数模型是一次函数模型y=kx+b(k≠0);图象是抛物线,那么函数模型是二次函数模型y=ax2+bx+c(a≠0);图象位于某条垂直于y轴的直线一侧,与y轴相交,且是“上升”的或“下降”的,那么函数模型是指数函数模型;图象位于某条垂直于x轴的直线一侧,与x轴相交,且是“上升”的或“下降”的,那么函数模型是对数函数模型.③根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.④利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.(2)关于“假设”问题就一般的数学建模来说,是离不开“假设”的,如果在问题的原始状态下不作任何“假设”,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了.“假设”的作用主要表现在以下几个方面:①进一步明确模型中需要考虑的因素和它们在问题中的作用.通常初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗.在“假设”时就可以设这些因素不需考虑.②降低解题难度.经过适当的“假设”可以建立数学模型,使问题简单化,从而得到相应的解.一般情况下,最先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,从而得到更满意的解.【例9】某个体经营者把开始六个月试销A,B两种商品的逐月投资与所获纯利润列成下表:才合算.请你帮助设计一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示:观察散点图可以看出:A种商品的所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图①所示:取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15.故y=-0.15(x-4)2+2.B种商品所获纯利润y与投资额x之间的变化规律是线性的,可用一次函数模型模拟,如图②所示:设y=kx+b,取点(1,0.25)和(4,1)代入得0.25, 14,k bk b=+⎧⎨=+⎩解得0.25,0.kb=⎧⎨=⎩故y=0.25x.因此前6个月所获纯利润y关于月投资A种商品的金额x的函数关系式是y=-0.15(x -4)2+2;前6个月所获纯利润y关于月投资B种商品的金额x的函数关系式是y=0.25x.设下月投入A,B两种商品的资金分别为x A,x B(万元),总利润为W(万元),则212,0.15(4)20.25,A B A B A B x x W y y x x +=⎧⎨=+=--++⎩ 于是W =-0.152196A x ⎛⎫- ⎪⎝⎭+0.15×2196⎛⎫ ⎪⎝⎭+2.6, 当x A =196≈3.2(万元)时,W 取最大值,约为4.1万元. 此时x B ≈8.8(万元).故该经营者下月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.。
新教材人教B版必修一第三章3.3函数的应用(一)
第三阶梯
300 以上
5.83
记户年用水量为 x m3 时应缴纳的水费为 f (x) 元. (1)写出 f (x) 的解析式; (2)假设居住在上海的张明一家 2015 年共用水 260 m3,则张明一家 2015 年应缴纳水费多少
元?
二、例题讲解、学以致用
【交流与讨论 1:】 ① 何为阶梯水价?能否举例说明?
例 2:(课本 123 页例 5)已知某产品的总成本 C 与年产量 Q 之间的关系为 C aQ2 3000 ,且当年产量是 100 时,总成本是 6000.设改产品年产量为Q 时的平 均成本为 f (Q) . (1)求 f (Q) 的解析式; (2)求年产量为多少时,平均成本最小,并求最小值.
【交流与讨论3】:什么是平均成本?
答:当年产量为 100 时,平均成本最小,最小值为 60.
三、课堂练习、深化理解
1. (课本P124页练习A组第1题) 2. (课本P124页练习A组第2题) 3. (课本P124页练习B组第1题)
四、课堂小结、回顾反思
运用函数解决实际问题,关键在“审题”,这 是建立函数模型的重要一步,通过审题,理清问题 中的数量关系和因果关系,同时在审题的时候注意 准确理解有关概念,如利润,成本,平均成本等.
二、例题讲解、学以致用
(2)
分析:由 f (Q) C 3Q 3000 ,Q 0 可知:3Q 和 3000 均为正数且乘积为定值.可以运用
Q 10 Q
10 Q
均值不等式求最小值.
f (Q) C 3Q 3000 2 3Q 3000 60
Q 10 Q
10 Q
当且仅当 3Q 3000 ,即 Q 100 时,取等号. 10 Q
所以:
必修1第三章函数的应用经典例题讲解
第三章 函数的应用1:函数的零点【典例精析】例题1 求下列函数的零点。
(1)y=32x 2-+x ;(2)y =(2x -2)(2x -3x +2)。
思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。
答案:(1)①当x ≥0时,y=x 2+2x -3,x 2+2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2-2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2+2|x|-3的零点是-1,1。
(2)由(2x -2)(2x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。
∴函数y =(x 2-2)(x 2-3x +2)的零点为-2,2,1,2。
点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。
例题2方程|x 2-2x|=a 2+1 (a ∈R +)的解的个数是______________。
思路导航:根据a 为正数,得到a 2+1>1,然后作出y=|x 2-2x|的图象如图所示,根据图象得到y=a 2+1的图象与y=|x 2-2x|的图象总有两个交点,得到方程有两解。
∵a ∈R +∴a 2+1>1。
而y=|x 2-2x|的图象如图,∴y=|x 2-2x|的图象与y=a 2+1的图象总有两个交点。
∴方程有两解。
答案:2个点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。
做题时注意利用数形结合的思想方法。
例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2-ax 的零点是()A. 0,2B. 0,12C. 0,-12D. 2,-12思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。
令g (x )=0,得x 1=0,x 2=-12,故选C 。
高一数学必修一第三章测试题及答案:函数的应用
高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1xc.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。
人教版新课标高一数学必修一 第三章 函数的应用 3..2函数模型及其应用 函数的实际应用 教案及课后习题
函数的实际应用【考点精讲】1. 建立函数模型解决实际问题的一般步骤:①收集数据;②画散点图,选择函数模型;③待定系数法求函数模型;④检验是否符合实际,如果不符合实际,则改用其他函数模型,重复②至④步;如果符合实际,则可用这个函数模型来解释或解决实际问题。
解函数实际应用问题的关键:耐心读题,理解题意,分析题中所包含的数量关系(包括等量关系和不等关系)。
例如:(1)某种细胞分裂时,由1个分裂成2个,两个分裂成4个…,1个这样的细胞分裂5次后,得到32个细胞,分裂n次后得到n2个细胞,如果分裂x次后,得到y个细胞,那么y与x的关系式是x=。
y2(2)我国现有人口数为N,年平均增长率为P,经过x年后,我国人口数y与x的函数关系式是x=。
1(+pNy)【典例精析】例题1 如图所示的是某池塘中的浮萍蔓延的面积y(m2)与时间t(月)的关系:y=a t,有以下叙述:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每月增加的面积都相等;⑤若浮萍蔓延到2 m2,3 m2,6 m2所经过的时间分别为t1,t2,t 3,则t 1+t 2=t 3。
其中正确的是( ) A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤ 思路导航:解决此类问题的关键是选择合适的函数模型,此题已经给出指数函数的模型,只需结合图象判断选项即可。
将点(2,4)代入可得a =2。
故①正确。
当t =5时y =25=32>30,故②正确。
对于③,当浮萍从4 m 2经过1.5个月后,浮萍蔓延为8 2 m 2<12 m 2,故③错,由4-2≠8-4知④错。
⑤由于6=2×3,因此212132222t t t t t +=⋅=,所以t 3=t 1+t 2,故⑤正确,综上所述,选D 。
答案:D例题2 2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿。
第三章 函数(考点串讲)高一数学上学期期中考点(人教B版2019必修第一册)
则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.
2.函数的定义域和值域
函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数
集A)称为这个函数的定义域,所有函数值组成的集合{y∈B|y=f(x),
x∈A}称为函数的值域.
(4)f(x)=|x|,g(x)= x 2 .
判断两个函数是否为同一函数,要看三要素是
否对应相同.函数的值域可由定义域及对应关系
来确定,因而只要判断定义域和对应关系是否对
应相同即可.
考点3.同一函数
解析:
序号
是否相同
(1)
不同
(2)
不同
原因
定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义
为f(x0)(记作f x min =f(x0)),而x0 称为f(x)的最小值点.最大值和最小
值统称为最值,最大值点和最小值点统称为最值点.
考点8.直线的斜率,函数的平均变化率
一般地,给定平面直角坐标系中的任意两点A(x1,y1),B(x2,y2),当
y2 − y1
x 2 − x1
x1=x2
x1≠x2 时,称________为直线AB的斜率;当________时,称直线AB的斜
(1)y=-x+1,x∈Z;
(2)y=2x2-4x-3,0≤x<3;
(3)关键是根据x的取值去绝对值.(3)y=|1-x|.
考点8.函数图像
解析:(1)函数y=-x+1,x∈Z的图像是直线y=-x+1上所有横坐
标为整数的点,如图(a)所示.
形,其中能表示从集合M到集合N的函数关系的有(
必修一数学《函数的应用》经典习题(含答案解析)
必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。
高中数学必修一课件:第三章 函数的应用(共18张PPT)
元,. 元, 元, 元,
设成本为y元,则y可看作是x的函数, x y=a(1-p % ) 解析式为 ;
函数的定义域为 {x|x∈N*且x≤m}
平均增长率的问题
• 在实际问题中,常常遇到有关平均增 长率的问题 如果原来产值的基础数为N,平均增 长率为p,则对于时间x的总产值y,可以 用下面的公式表示 .
变式1 若小强心目中的大学按正常收费的话,学费包 括生活费每年需要15000元,问小强的爸爸每次 要存入多少钱才可以在小强高考结束时攒够小 强大学四年的费用? x(1+5%)6+x(1+5%)5+···+x(1+5%)=60000
变式2 2008年高考结束后,小强发挥出色,同时凭着自 己过硬的综合素质,过关斩将,赢得了全省唯一 一个去英国舰乔大学就读大学的名额,不过,四 年的学费和生活费初步预算要50万元,小强决 定向银行贷款40万元,大学毕业回国工作一年 后开始还款(假设其毕业后马上就找到了称心 的工作),计划在工作6年后还清贷款,假设银行 的年利率为3%,问小强每次应向银行还多少钱? 才可以达到工作6年后还清贷款的目标?
40(1+3%)10=x(1+3%)5+x(1+3%)4+···+x(1+5%)+x
课堂练习
1.某商品降价20%后,欲恢复原价,则应提价多少? 2.某服装个体户在进一批服装时,进价时按标价打了 七五折,他打算标一新价出售,并按新标价降价 20% 销售.这样,他可获利 25% .求这个体户给这批服装 定的新标价与原标价之间的函数关系.
y=N(1+p)x
其中P的值可以为正,也可以为负
例3 小强的爸爸从2002年,小强六年级开始,每年6月
人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx
3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。
高中数学必修1第三章函数的应用所有知识点和习题精选
③-④,得 n=6. 代入 17=9+n(4-m)+a,得 a=6m-16.
x=2.5, 又三月份用水量为 2.5 立方米,若 m<2.5,将 代入②,得 a=6m-13, y=11
2 a -ab,a≤b 16. 对于实数 a 和 b, 定义运算“*”: a*b= 2 , 设 f(x)=(2x-1)*(x-1), 且关于 x 的方程 f(x)=m(m∈R) b -ab,a>b
恰有三个互不相等的实数根,则 m 的取值范围是______. 1 16. 0,4 三、解答题 17.讨论方程 4x3+x-15=0 在[1,2]内实数解的存在性,并说明理由. 17.解 令 f(x)=4x3+x-15, ∵y=4x3 和 y=x 在[1,2]上都为增函数. ∴f(x)=4x3+x-15 在[1,2]上为增函数, ∵f(1)=4+1-15=-10<0,f(2)=4×8+2-15=19>0, ∴f(x)=4x3+x-15 在[1,2]上存在一个零点, ∴方程 4x3+x-15=0 在[1,2]内有一个实数解.
2
) D.22 10.C
11.用二分法判断方程 2x3+3x-3=0 在区间(0,1)内的根(精确度 0.25)可以是(参考数据:0.753=0.421 875,0.6253= 0.244 14) A.0.25 C.0.635 11.C 12.根据统计资料,我国能源生产自 1998 年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统 计数据:1998 年 8.6 亿吨,5 年后的 2003 年 10.4 亿吨,10 年后的 2008 年 12.9 亿吨,有关专家预测,到 2013 年 我 国 能 源 生 产 总 量 将 达 到 16.1 亿 吨 , 则 专 家 是 以 哪 种 类 型 的 函 数 模 型 进 行 预 测 的 ? ( ) B.二次函数 D.对数函数 B.0.375 D.0.825 ( )
人教版高中数学必修一《函数的应用》重难点解析(含答案)
人教版数学必修一第三章《函数的应用》重难点解析第三章 课文目录 3.1 函数与方程3.2 函数模型及其应用重点:1.通过用“二分法”求方程近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.2.认识指数函数、对数函数、幂函数等 函数模型的增长差异,体会直线上升、指数爆炸、对数增长的差异. 难点:1.在利用“二分法”求方程近似解的过程中,对给定精确度的近似解的计算. 2.如何选择适当的函数模型分析和解决 实际问题.一、方程的根和函数的零点1.函数的零点给出三个具体函数的图象——设置问题研究情景,通过对函数图像的观察,归纳出结论:一元二次方程()002≠=++a c bx ax 的根,就是相应的二次函数()02≠++=a c bx ax y 的图象与x 轴的交点的横坐标。
我们把使()0=x f 的实数x 叫做函数()x f y =的零点。
注意函数的零点与方程的根间的联系和区别,二者不能混为一谈。
例1 函数322--=x x y 的零点是( )A .31=-=x x 或B .()()030,1,或-C .31-==x x 或D .()()030,1,或- 函数的零点与方程的根——形数的结合的典范。
利用学生熟悉的二次函数的图象和性质,为理解函数的零点提供直观认识,为判定零点是否存在和求零点提供支持,使函数零点的求解与函数的变化建立联系。
为判断方程()0=x f 实数根的个数,只需观察函数()x f y =的图象与x 轴交点的个数——方程根的研究转化为函数零点的研究。
例2 判断方程062ln =-+x x 实根的个数。
2.函数零点存在的判定引导学生观察图象连续的函数的变化情况,让学生通过连续的函数值的变化情况认识到:当函数值由正变为负时必定经过一个零点; 当函数值由负变为正时必定经过一个零点。
由此概括得到函数零点存在的判定方法。
如果函数()x f y =在区间[]b a ,上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根。
高中数学必修一第三章函数的概念与性质知识总结例题(带答案)
高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数的应用1:函数的零点【典例精析】例题1 求下列函数的零点。
(1)y=32x 2-+x ;(2)y =(2x -2)(2x -3x +2)。
思路导航:判断函数零点与相应的方程根的关系,就是求与函数相对应的方程的根。
答案:(1)①当x≥0时,y=x 2+2x -3,x 2+2x -3=0得x=+1或x=-3(舍) ②当x <0时,y=x 2-2x -3,x 2-2x -3=0得x=-1或x=3(舍) ∴函数y=x 2+2|x|-3的零点是-1,1。
(2)由(2x -2)(2x -3x +2)=0,得(x +2)(x -2)(x -1)(x -2)=0, ∴x 1=-2,x 2=2,x 3=1,x 4=2。
∴函数y =(x 2-2)(x 2-3x +2)的零点为-2,2,1,2。
点评:函数的零点是一个实数,不是函数的图象与x 轴的交点,而是交点的横坐标。
例题2 方程|x 2-2x|=a 2+1 (a∈R +)的解的个数是______________。
思路导航:根据a 为正数,得到a 2+1>1,然后作出y=|x 2-2x|的图象如图所示,根据图象得到y=a 2+1的图象与y=|x 2-2x|的图象总有两个交点,得到方程有两解。
∵a∈R +∴a 2+1>1。
而y=|x 2-2x|的图象如图,∴y=|x 2-2x|的图象与y=a 2+1的图象总有两个交点。
∴方程有两解。
答案:2个点评:考查学生灵活运用函数的图象与性质解决实际问题,会根据图象的交点的个数判断方程解的个数。
做题时注意利用数形结合的思想方法。
例题3 若函数f (x )=ax +b 有一个零点为2,则g (x )=bx 2-ax 的零点是( )A. 0,2B. 0,12C. 0,-12D. 2,-12思路导航:由f (2)=2a +b =0,得b =-2a ,∴g (x )=-2ax 2-ax =-ax (2x +1)。
令g (x )=0,得x 1=0,x 2=-12,故选C 。
答案:C【总结提升】1. 函数y =f (x )的零点就是方程f (x )=0的根,因此,求函数的零点问题通常可转化为求相应的方程的根的问题。
2. 函数与方程二者密不可分,二者可以相互转化,如函数解析式y =f (x )可以看作方程y -f (x )=0,函数有意义则方程有解,方程有解,则函数有意义,函数与方程体现了动与静、变量与常量的辩证统一。
函数零点的求法:(1)解方程f (x )=0,所得实数根就是f (x )的零点;(2)画出函数y =f (x )的图象,图象与x 轴交点的横坐标即为函数f (x )的零点。
3. 函数零点与方程的根的关系根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根。
4. 函数y=f (x )的零点是函数图象与x 轴交点的横坐标,如果一个函数能通过变换化为两个函数之差的形式,则函数的零点就是这两个图象交点的横坐标,可以通过画出这两个函数的图象,观察图象的交点情况,对函数的零点作出判断,这种方法就是数形结合法。
2:二分法【考点精讲】1. 函数零点的存在性判断——二分法如果函数y =f (x )在区间[a ,b]上的图象是连续不断的曲线,并且有f (a )·f(b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在x 0∈(a ,b ),使f (x 0)=0,这个x 0也就是方程f (x )=0的根。
2. 逆定理:如果函数y=f (x )在[a ,b]上的图象是连续不断的曲线,且x 0是函数在这个区间上的一个零点,却不一定有f (a )·f(b )<0。
如f (x )=x 2,在区间[-1,1]上有零点x=0,但f (-1)·f(1)>0。
3. 用二分法求函数零点的步骤:已知函数y =f (x )定义在区间D 上,求它在D 上的一个变号零点x 0的近似值x ,使它与零点的误差不超过正数ε,即使得|x -x 0|≤ε。
(1)在D 内取一个闭区间[a ,b ] D ,使f (a )与f (b )异号,即f (a )·f (b )<0。
令a 0=a ,b 0=b 。
(2)取区间[a 0,b 0]的中点,则此中点对应的横坐标为x 0=a 0+21(b 0-a 0)=21(a 0+b 0)。
计算f (x 0)和f (a 0)。
判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止;②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]内,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]内,令a 1=x 0,b 1=b 0。
(3)取区间[a 1,b 1]的中点,则此中点对应的横坐标为x 1=a 1+21(b 1-a 1)=21(a 1+b 1)。
计算f (x 1)和f (a 1)。
判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止;②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1。
③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1。
……实施上述步骤,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<2ε时,区间[a n ,b n ]的中点x n =21(a n +b n )就是函数y =f (x )的近似零点,计算终止。
这时函数y =f (x )的近似零点与真正零点的误差不超过ε。
【典例精析】例题1 对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A. 一定有零点B. 一定没有零点C. 可能有两个零点D. 至多有一个零点思路导航:若函数f (x )的图象及给定的区间(a ,b ),如图(1)、图(2)所示,可知A 错;若如图(3)所示,可知B 错、D 错。
故C 对。
答案:C点评:结合二次函数的图象来判断给定区间根的情况。
例题2 用二分法研究函数f (x )=x 3+3x -1的零点时,经第一次计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈______,第二次应计算________,这时可判断0x ∈________。
思路导航:由题意知x 0∈(0,0.5),第二次计算应取x 1=0.25,这时f (0.25)=0.253+3×0.25-1<0,故x 0∈(0.25,0.5)。
答案:(0,0.5) f (0.25) (0.25,0.5)例题3 是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个零点,且只有一个零点。
若存在,求出范围,若不存在,说明理由。
思路导航:运用二分法可以求出a 的范围,但是要注意检验。
答案:∵Δ=(3a -2)2-4(4-1)=9a 2-16a +8=9⎝ ⎛⎭⎪⎫a -892+89>0,∴若实数a 满足条件,则只需使f (-1)·f (3)≤0即可。
f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0。
所以a ≤-15或a ≥1。
检验:(1)当f (-1)=0时,a =1。
所以f (x )=x 2+x 。
令f (x )=0,即x 2+x =0,得x =0或x =-1。
方程在[-1,3]上有两根,不合题意,故a ≠1。
(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65。
令f (x )=0,即x 2-135x -65=0,解之得x =-25或x =3。
方程在[-1,3]上有两根,不合题意,故a ≠-15。
综上所述,a <-15或a >1。
【总结提升】本部分内容是高中数学的重难点,也是高考考查的重点,对于本部分内容的备考需注意以下两个方面:一是准确理解函数零点的概念及其存在性定理,能通过特殊值的函数值判断函数零点所在的区间;二是熟记常见函数的图象,牢记图象的基本特征,灵活运用函数图象解决相关问题。
高中阶段,研究函数零点的主要方法有:零点定理法、数形结合法。
使用二分法求方程的近似解要注意:(i )要使第一步中的区间[a ,b]长度尽量小;(ii )区间[a ,b]的长度与一分为二的次数满足关系式||)21(nb a -。
3:函数零点的应用【考点精讲】二次函数零点分布:设)0(,)(2>++=a c bx ax x f 以下研究a>0 的情况,a<0分析方法同理(a )二次方程)0(02≠=++a c bx ax 的两个根21,x x 满足21x r x <<⇔函数)0(,)(2≠++=a c bx ax x f 两个零点为21,x x 满足21x r x <<0)(<⇔r f(b )方程)0(,02>=++a c bx ax 的两个根21,x x 满足r x x >>12⇔二次函数)0(,)(2≠++=a c bx ax x f 两个零点21,x x 满足r x x >>12⎪⎪⎩⎪⎪⎨⎧>>->-=∆⇔0)(2042r f ra bac b(c )方程)0(,02>=++a c bx ax 的两个根21,x x 满足q x x p <<<21时,⎪⎪⎪⎩⎪⎪⎪⎨⎧>><<>-=∆⇔0)(0)(2-042q f p f q a b p ac b(d )二次方程)0(02>=++a c bx ax 的两个根满足q x p x <<<21⇔函数c bx ax x f ++=2)(的零点满足q x p x <<<21⎩⎨⎧><⇔0)(0)(q f p f(e )二次方程)0(02>=++a c bx ax 的两个根有且只有一个根在(p ,q )内⇔函数)0()(2>++=a c bx ax x f 的两个零点有且只有一个在区间(p ,q )内0)()(<⇔q f p f 或检验f (p )=0,f (q )=0并检验另一根在(p ,q )内。