高考复习专题:函数零点的求法及零点的个数()

合集下载

高考解答题专项突破(一) 第3课时 利用导数研究函数的零点--2025年高考数学复习讲义及练习解析

高考解答题专项突破(一)  第3课时 利用导数研究函数的零点--2025年高考数学复习讲义及练习解析

第3课时利用导数研究函数的零点考点一确定函数零点的个数(多考向探究)考向1利用单调性和函数零点存在定理确定零点个数例1(2023·湖北武汉模拟)已知函数f (x )=e xx,g (x )=tan x .(1)讨论f (x )的单调性;(2)设函数F (x )=f (x )-g (x ),试判断F (x )-π2,解(1)函数f (x )=e xx 的定义域为{x |x ≠0},f ′(x )=e x x -e x x 2=e x (x -1)x 2,令f ′(x )=0,得x =1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增.(2)令F (x )=f (x )-g (x )=e xx -tan x =0,得x sin x -e x cos x =0.设h (x )=x sin x -e x cos x ,所以h ′(x )=(e x +1)sin x +(x -e x )cos x .①当x -π2,,可知e x >0>x ,则e x >x ,所以x -e x <0,又sin x <0,cos x >0,所以h ′(x )<0,从而h (x )=x sin x -e x cos x -π2,,又h (0)=-1,=π2>0,由零点存在定理及h (x )的单调性,得h (x )-π2,.②当x ,π4时,cos x ≥sin x >0,由(1)知函数f (x )=e xx在(0,1)上单调递减,所以当x ,π4时,函数f (x )=e xx >f (1)=e>1,则e x >x >0.所以e x cos x >x sin x ,则h (x )=x sin x -e x cos x <0恒成立.所以h (x ),π4上无零点.③当x,sin x >cos x >0,h ′(x )=e x (sin x -cos x )+(x cos x +sin x )>0,则h (x).又=π2>0,,由零点存在定理及h (x)的单调性,得h (x ).综上,h (x )-π2,2,即F (x )-π2,为2.利用单调性和函数零点存在定理确定零点个数的一般步骤及注意点(1)讨论函数的单调性,确定函数的单调区间.(2)在每个单调区间上,利用函数零点存在定理判断零点的个数.(3)注意区间端点的选取技巧.(4)含参数时注意分类讨论.1.(2023·江西高三质量监测(四))已知函数f (x )=(x -1)e x -13ax 3(a >e ,e 是自然对数的底数).(1)讨论函数f (x )的极值点的个数;(2)证明:函数f (x )在区间(0,+∞)上有且只有一个零点.解(1)f ′(x )=x e x -ax 2=x (e x -ax )(a >e),令f ′(x )=0,得x =0或e x -ax =0.设g (x )=e x -ax ,则g ′(x )=e x -a ,令g ′(x )=0,得x =ln a ,当x <ln a 时,g ′(x )<0,g (x )单调递减;当x >ln a 时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (ln a )=a -a ln a =a (1-ln a ).因为a >e ,则g (x )min <0,此时g (x )在R 上有且仅有两个零点,记为x 1,x 2(x 1<x 2),因为g (0)=1>0,g (1)=e -a <0,当x →+∞时,g (x )>0,所以0<x 1<1<x 2,且x 1,x 2是g (x )的两个变号零点,也是f ′(x )的两个变号零点,又当x <0时,f ′(x )<0,当0<x <x 1时,f ′(x )>0,所以0是f ′(x )的变号零点,即f ′(x )在R 上有且仅有3个变号零点,所以函数f (x )在R 上有且仅有3个极值点.(2)证明:f ′(x )=x (e x -ax ),由(1)知,当a >e 时,f (x )在R 上有3个极值点:0,x 1,x 2,其中0<x 1<1<x 2,且f (0)=-1<0,当0<x <x 1时,g (x )>0,则f ′(x )>0,f (x )单调递增;当x 1<x <x 2时,g (x )<0,则f ′(x )<0,f (x )单调递减;当x >x 2时,g (x )>0,则f ′(x )>0,f (x )单调递增.所以f (x )在区间(0,+∞)内的极大值为f (x 1),极小值为f (x 2),且e x 1=ax 1,e x 2=ax 2⇒a =e x 1x 1,a =e x 2x 2.所以f (x 2)=(x 2-1)e x 2-13ax 32=(x 2-1)e x2-13·e x 2x 2x 32=(x 2-1)e x 2-x 22e x 23=e x 23(-x 22+3x 2-3)=e x 23-2-34<0,同理,f (x 1)=e x 13-1-34<0,而当x →+∞时,f (x )>0,因此函数f (x )在区间(0,x 2]内无零点,在区间(x 2,+∞)上有且只有一个零点.综上所述,函数f (x )在区间(0,+∞)上有且只有一个零点.考向2利用两个函数图象的交点确定零点个数例2(2024·河北邢台第二中学高三阶段练习)已知函数f (x )=ax 2-|1+ln x |(a >0).(1)若a =1,求f (x )的单调区间;(2)讨论f (x )零点的个数.解(1)当a =1时,函数f (x )=x 2-|1+ln x |的定义域为(0,+∞),当0<x ≤1e 时,f (x )=x 2+1+ln x ,f ′(x )=2x +1x >0,因此f (x ),1e 上单调递增,当x >1e 时,f (x )=x 2-1-ln x ,f ′(x )=2x -1x =2x 2-1x ,当1e <x <22时,f ′(x )<0,当x >22时,f ′(x )>0,因此函数f (x ),+,所以函数f (x )+(2)函数f (x )=ax 2-|1+ln x |(a >0)的定义域为(0,+∞),由f (x )=0,得a =|1+ln x |x 2,令函数g (x )=|1+ln x |x2,x >0,当0<x ≤1e 时,g (x )=-1+ln x x 2,g ′(x )=-x -2x (1+ln x )x 4=1+2ln xx 3<0,函数g (x ),1e 上单调递减,由于-(1+ln x )≥0,即有-(1+ln x ),1e 上的取值集合是[0,+∞),又1x 2在,1e 上的取值集合是[e 2,+∞),因此函数g (x ),1e 上的取值集合是[0,+∞).当x >1e 时,g (x )=1+ln x x 2,求导得g ′(x )=-1+2ln x x 3,当1e <x <1e 时,g ′(x )>0,当x >1e 时,g ′(x )<0,因此函数g (x ),+,在x =1e 处取得极大值=e2,而∀x +g (x )>0恒成立,函数f (x )=ax 2-|1+ln x |(a >0)的零点,即方程a =|1+ln x |x 2(a >0)的根,亦即直线y =a (a >0)与函数y =g (x )的图象交点的横坐标,在同一坐标系内作出直线y =a (a >0)与函数y =g (x )的图象,如图,观察图象知,当0<a <e2时,直线y =a (a >0)与函数y =g (x )的图象有3个公共点;当a =e2时,直线y =a (a >0)与函数y =g (x )的图象有2个公共点;当a >e2时,直线y =a (a >0)与函数y =g (x )的图象有1个公共点.所以当0<a <e 2时,函数f (x )有3个零点;当a =e 2时,函数f (x )有2个零点;当a >e2时,函数f (x )有1个零点.在借助函数图象研究函数零点问题时,要准确画出函数的图象,不仅要研究函数的单调性与极值的情况,还要关注函数值的正负以及变化趋势,把函数图象与x 轴有无交点,哪一区间在x 轴上方,哪一区间在x 轴下方等情况分析清楚,这样才能准确地研究直线与函数图象交点的个数情况.2.(2023·湖北七市联考)已知函数f (x )=ln x +2x-2,g (x )=x ln x -ax 2-x +1.(1)证明:函数f (x )在(1,+∞)上有且仅有一个零点;(2)假设存在常数λ>1,且满足f (λ)=0,试讨论函数g (x )的零点个数.解(1)证明:f ′(x )=1x -2x 2=x -2x2,令f ′(x )=0,得x =2,当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.因为f (1)=0,f (2)=ln 2-1<0,f (e 2)=2e2>0,由零点存在定理及f (x )的单调性,得函数f (x )在(1,+∞)上有且仅有一个零点.(2)令g (x )=0,即x ln x -ax 2-x +1=0,从而有ax =ln x -1+1x.令φ(x )=ln x -1+1x ,从而g (x )的零点个数等价于y =ax 的图象与φ(x )图象的交点个数.φ′(x )=1x -1x 2=x -1x 2,令φ′(x )=0,得x =1.当0<x <1时,φ′(x )<0,当x >1时,φ′(x )>0,所以φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,且φ(x )min =φ(1)=0,其图象如图所示.当a =0时,y =ax 的图象与φ(x )的图象有一个交点.当a <0时,y =ax 的图象经过第二、四象限,与φ(x )的图象无交点.当a >0时,y =ax 的图象经过第一、三象限,与φ(x )的图象至少有一个交点.当y =ax 的图象与φ(x )的图象相切时,设切点横坐标为x 0,=φ′(x 0)=1x 0-1x 20,0=ln x 0-1+1x 0,即有ln x 0+2x 0-2=0,从而x 0=λ,此时a =1λ-1λ2=λ-1λ2>0.所以,当a =λ-1λ2时,y =ax 的图象与φ(x )的图象有两个交点;当0<a <λ-1λ2时,y =ax 的图象与φ(x )的图象有三个交点;当a >λ-1λ2时,y =ax 的图象与φ(x )的图象有一个交点.综上所述,当a <0时,g (x )没有零点;当0<a <λ-1λ2时,g (x )有三个零点;当a =λ-1λ2时,g (x )有两个零点;当a >λ-1λ2或a =0时,g (x )有一个零点.考点二根据零点情况求参数范围例3(2023·广东惠州实验中学高三下学期适应性考试)已知函数f (x )=a x ,其中0<a <1.(1)求函数g (x )=f (x )-x ln a 的单调区间;(2)若函数h (x )=a x-(ln a )22x 2-x ln a -a +(3-k )ln a +(ln a )2在x ∈[1,+∞)上存在零点,求实数k 的取值范围.解(1)由已知,g (x )=a x -x ln a ,g ′(x )=a x ln a -ln a ,令g ′(x )=0,解得x =0.由0<a <1,可知当x 变化时,g ′(x ),g (x )的变化情况如下表:x (-∞,0)0(0,+∞)g ′(x )-0+g (x )单调递减极小值单调递增所以函数g (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)令h (x )=0,则存在x ∈[1,+∞),使得a x -(ln a )22x 2-x ln a -a +(3-k )ln a +(ln a )2=0,两边同时除以ln a ,得a x ln a -ln a 2x 2-x -aln a +ln a +3-k =0,即a x ln a -ln a 2x 2-x -aln a+ln a +3=k .令t (x )=a x ln a -ln a 2x 2-x -aln a +ln a +3,x ∈[1,+∞),t ′(x )=a x -x ln a -1,由(1)知a x -x ln a ≥g (0)=1,即t ′(x )≥0,则函数t (x )在[1,+∞)上单调递增,所以t (x )≥t (1)=a ln a -ln a 2-1-a ln a +ln a +3=ln a2+2.故k ≥2+ln a2,即实数k 的取值范围为2+ln a 2,+根据零点情况求参数范围的解法3.(2022·全国乙卷)已知函数f (x )=ln (1+x )+ax e -x .(1)当a =1时,求曲线f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+∞)各恰有一个零点,求a 的取值范围.解(1)当a =1时,f (x )=ln (1+x )+x e -x ,∴f ′(x )=1x +1+e -x -x e -x ,∴f ′(0)=1+1=2,又f (0)=0,∴所求切线方程为y -0=2(x -0),即y =2x .(2)f (x )=ln (1+x )+ax e -x =ln (x +1)+ax e x ,①当a ≥0时,若x >0,则ln (x +1)>0,axe x ≥0,∴f (x )>0,∴f (x )在(0,+∞)上无零点,不符合题意.②当a<0时,f′(x)=e x+a(1-x2) (x+1)e x.令g(x)=e x+a(1-x2),则g′(x)=e x-2ax,g′(x)在(-1,+∞)上单调递增,g′(-1)=e-1+2a,g′(0)=1,(a)当g′(-1)≥0,即-12e≤a<0时,g′(x)>0在(-1,+∞)上恒成立,∴g(x)在(-1,+∞)上单调递增,∵g(-1)=e-1>0,∴g(x)>0在(-1,+∞)上恒成立,∴f′(x)>0在(-1,+∞)上恒成立,∴f(x)在(-1,+∞)上单调递增,∵f(0)=0,∴f(x)在(-1,0),(0,+∞)上均无零点,不符合题意.(b)当g′(-1)<0,即a<-12e时,存在x0∈(-1,0),使得g′(x0)=0.∴g(x)在(-1,x0)上单调递减,在(x0,+∞)上单调递增.g(-1)=e-1>0,g(0)=1+a,g(1)=e>0.(ⅰ)当g(0)≥0,即-1≤a<-12e时,g(x)>0在(0,+∞)上恒成立,∴f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.∵f(0)=0,∴当x∈(0,+∞)时,f(x)>0,∴f(x)在(0,+∞)上无零点,不符合题意.(ⅱ)当g(0)<0,即a<-1时,存在x1∈(-1,x0),x2∈(0,1),使得g(x1)=g(x2)=0,∴f(x)在(-1,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∵f(0)=0,∴f(x1)>f(0)=0,当x→-1时,f(x)<0,∴f(x)在(-1,x1)上存在一个零点,即f(x)在(-1,0)上存在一个零点,∵f(x2)<f(0)=0,当x→+∞时,f(x)>0,∴f(x)在(x2,+∞)上存在一个零点,即f(x)在(0,+∞)上存在一个零点.综上,a的取值范围是(-∞,-1).考点三“隐零点”问题例4已知函数f(x)=ln x+ax-a(a∈R).(1)讨论函数f(x)的单调性;(2)若不等式f(x)<a(x2-1)在(1,+∞)上恒成立,求实数a的取值范围.解(1)由f (x )=ln x +ax -a 知,定义域为(0,+∞),且f ′(x )=1x +a =ax +1x,①当a ≥0时,在(0,+∞)上f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a <0时,当x ,,f ′(x )>0,当x -1a,+,f ′(x )<0,故f (x ),,-1a ,+.(2)由f (x )<a (x 2-1),得ln x -a (x 2-x )<0,令g (x )=ln x -a (x 2-x ),①当a ≤0时,在(1,+∞)上,g (x )=ln x -a (x 2-x )=ln x -ax (x -1)>0恒成立,与题意不符;②当a >0时,g ′(x )=1x -a (2x -1)=1x -2ax +a 在(1,+∞)上单调递减,且g ′(1)=1-a ,当a ∈(0,1)时,g ′(1)>0,故在(1,+∞)上存在x 0,使得g ′(x )=0,当x ∈(1,x 0)时,g ′(x )>0,则在(1,x 0)上,g (x )单调递增,所以g (x )>g (1)=0,与题意不符.当a ∈[1,+∞)时,g ′(x )<g ′(1)=1-a ≤0,所以g (x )在(1,+∞)上单调递减,所以g (x )<g (1)=0,符合题意.综上所述,实数a 的取值范围为[1,+∞).在函数的零点中,有些零点不易求出,或者可以求出但无需求出,我们把这样的零点称为“隐零点”,即能确定其存在,但又无法或无需求出.对于“隐零点”问题的解题思路是对函数的零点设而不求,通过整体代换和过渡,再结合题目条件解决问题.4.已知函数f (x )=a e x -ln x ,g (x )=f (x )a,a ≠0.(1)若g (x )在[1,3]上是增函数,求实数a 的取值范围;(2)若a >0,求证:f (x )≥2+ln a .解(1)∵g (x )=f (x )a =e x -ln x a,∴g ′(x )=e x -1ax (x >0).∵g (x )在[1,3]上是增函数,∴g ′(x )≥0在[1,3]上恒成立,即1a ≤x e x 在[1,3]上恒成立.令t (x )=x e x ,则t ′(x )=(x +1)e x .∵当x ∈[1,3]时,t ′(x )>0,∴t (x )在[1,3]上是增函数,∴(x e x )min =e.∴1a ≤e ,解得a ≥1e或a <0,即实数a 的取值范围是(-∞,0)∪1e ,+(2)证明:f ′(x )=a e x -1x =ax e x -1x ,令h (x )=ax e x -1,则h ′(x )=a e x +ax e x =a e x (1+x ),∵a >0,∴h ′(x )>0,h (x )在(0,+∞)上单调递增,又h (0)=-1<0,e 1a -1>0,∴存在x 0使得h (x 0)=0,即存在x 0使得f ′(x 0)=a e x 0-1x 0=0,即x 0=1a e x 0.∴当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0,∴f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴f (x )min =f (x 0)=a e x 0-ln x 0=1x 0-ln 1a e x 0=1x 0+x 0+ln a ≥21x 0·x 0+ln a =2+ln a ,当且仅当1x 0=x 0,即x 0=1时等号成立,∴当a >0时,f (x )≥2+ln a .课时作业1.已知函数f (x )=2x 3-3x 2-12x +m .(1)若m =1,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )有3个零点,求实数m 的取值范围.解(1)由题意,得f ′(x )=6x 2-6x -12,故f ′(1)=-12,又当m =1时,f (1)=2-3-12+1=-12,故所求的切线方程为y +12=-12(x -1),即y =-12x .(2)由题意,得f ′(x )=6x 2-6x -12=6(x 2-x -2)=6(x +1)(x -2),令f ′(x )=0,得x =-1或x =2,当x ∈(-∞,-1)时,f ′(x )>0;当x ∈(-1,2)时,f ′(x )<0;当x∈(2,+∞)时,f′(x)>0,所以f(x)在(-∞,-1)上单调递增,在(-1,2)上单调递减,在(2,+∞)上单调递增,所以函数f(x)有极大值f(-1)=m+7,有极小值f(2)=m-20.若函数f(x)有3个零点,则实数m +7>0,-20<0,解得-7<m<20,即实数m的取值范围为(-7,20).2.已知函数f(x)=(x2-2x+a)e x.(1)讨论函数f(x)的单调性;(2)当a=1时,判断函数g(x)=f(x)-12x2+ln x的零点个数,并说明理由.解(1)f(x)的定义域为R,f′(x)=(2x-2)e x+(x2-2x+a)e x=(x2+a-2)e x,当a≥2时,f′(x)≥0,则f(x)在R上是增函数;当a<2时,f′(x)=[x2-(2-a)]e x=(x+2-a)(x-2-a)e x,令f′(x)=0,得x=±2-a;令f′(x)>0,得x<-2-a或x>2-a;令f′(x)<0,得-2-a<x<2-a.所以函数f(x)在(-2-a,2-a)上单调递减,在(-∞,-2-a)和(2-a,+∞)上单调递增.(2)当a=1时,g(x)=(x-1)2e x-12x2+ln x,其定义域为(0,+∞),则g′(x)=(x+1)(x-x设h(x)=e x-1x(x>0),则h′(x)=e x+1x2>0,从而h(x)在(0,+∞)上是增函数,又=e-2<0,h(1)=e-1>0,所以存在x0使得h(x0)=e x0-1x0=0,即e x0=1x0,x0=-ln x0.列表如下:x(0,x0)x0(x0,1)1(1,+∞)g ′(x )+0-0+g (x )增函数极大值减函数极小值增函数由表可得g (x )的极小值为g (1)=-12g (x )的极大值为g (x 0)=(x 0-1)2e x 0-12x 20+ln x 0=x 20-2x 0+1x 0-12x 20-x 0=-12x 20+1x 0-2.因为y =-12x 2+1x-2,所以-32<g (x 0)<-18,所以g (x )在(0,1]内没有零点.又g (1)=-12<0,g (2)=e 2-2+ln 2>0,g (x )在(1,+∞)上单调递增,所以g (x )在(1,+∞)内有一个零点.综上所述,g (x )只有一个零点.3.(2023·河北石家庄高三模拟(二))已知函数f (x )=x -2sin x ,x ,π2.(1)若函数g (x )=f (x )-x +sin2x ,求g (x )的最小值;(2)证明:函数f (x ),π2上有唯一零点.解(1)由题意,g (x )=-2sin x +sin2x ,g ′(x )=-2cos x +2cos2x =2(2cos 2x -cos x -1)=2(cos x -1)(2cos x +1),因为x ,π2,所以0≤cos x <1,所以g ′(x )<0,g (x )是减函数,所以g (x )min = 2.(2)证明:f (x )=x -2sin x ,设h (x )=x -sin x ,则h ′(x )=1-cos x ≥0,h (x )是增函数,所以x >0时,h (x )>h (0)=0,即x >sin x ,从而2x >2sin x ,由2x <x ,解得0<x <14,所以当0<x <14时,x >2sin x ,即f (x )>0,f (x )无零点;当π3<x ≤π2时,2sin x >2sin π3=3,x <π2<3,所以f (x )=x -2sin x <0,f (x )无零点;当14≤x ≤π3时,f ′(x )=12x-2cos x ,12x ≤1214=1,2cos x ≥2cos π3=1,所以f ′(x )=12x-2cos x ≤0,f (x )单调递减,又=12-2sin 14>12-2×14=0,=π3-2sin π3=π3-3<0,所以f (x )在14,π3上有唯一零点,,π2上有唯一零点.4.(2024·湖北武汉模拟)设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )的零点个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.解(1)f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )=2e 2a -1>0,当b 满足0<b <a 4,且b <14时,f ′(b )<0,(讨论a ≥1或a <1来检验,①当a ≥1时,则0<b <14,f ′(b )=2e 2b -a b <2e 12-4a ≤2e 12-4<0;②当a <1时,则0<b <a 4,f ′(b )=2e 2b -a b<2e a 2-4<2e 12-4<0.综上,f ′(b )<0.)故当a >0时,f ′(x )存在唯一零点.(2)证明:由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,则f ′(x 0)=2e2x 0-a x 0=0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,为f (x 0).所以f (x 0)=e2x 0-a ln x 0=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a ,当且仅当x 0=12时等号成立.故当a >0时,f (x )≥2a +a ln 2a.5.(2024·湖南邵东创新实验学校高三第二次月考)已知函数f (x )=e x -12x 2-x -1,(1)证明:当x >0时,f (x )>0恒成立;(2)若关于x 的方程f (x )x +x 2=a sin x 在(0,π)内有解,求实数a 的取值范围.解(1)证明:函数f (x )=e x -12x 2-x -1,x >0,求导得f ′(x )=e x -x -1,令y =e x -x -1,x >0,求导得y ′=e x -1>0,则函数f ′(x )在(0,+∞)上单调递增,f ′(x )>f ′(0)=0,因此函数f (x )在(0,+∞)上单调递增,f (x )>f (0)=0,所以当x >0时,f (x )>0恒成立.(2)设y =x -sin x ,x ∈(0,π),则y ′=1-cos x >0,则y =x -sin x 在(0,π)上单调递增,y >0,即x >sin x >0,方程f (x )x +x 2=a sin x 等价于e x -ax sin x -x -1=0,x ∈(0,π),令g (x )=e x -ax sin x -x -1,原问题等价于g (x )在(0,π)内有零点,由x ∈(0,π),得x sin x <x 2,由(1)知,当a ≤12时,g (x )=e x -ax sin x -x -1>e x -12x 2-x -1>0,当x ∈(0,π)时,函数y =g (x )没有零点,不符合题意;当a >12时,由g (x )=e x -ax sin x -x -1,求导得g ′(x )=e x -a (x cos x +sin x )-1,令t (x )=g ′(x )=e x -a (x cos x +sin x )-1,则t ′(x )=e x +a (x sin x -2cos x ),当x ∈π2,,t ′(x )>0恒成立,当x ,令s (x )=t ′(x )=e x +a (x sin x -2cos x ),则s ′(x )=e x +a (3sin x +x cos x ),因为e x >0,a (3sin x +x cos x )>0,则s ′(x )>0,即t ′(x ),又t ′(0)=1-2a <0,t e π2+π2a >0,因此t ′(x )x 0,当x ∈(0,x 0)时,t ′(x )<0,函数g ′(x )单调递减;当x ∈(x 0,π)时,t ′(x )>0,函数g ′(x )单调递增,显然g ′(x 0)<g ′(0)=0,g ′(π)=e π+a π-1>0,因此g ′(x )在(0,π)上存在唯一的零点x 1,且x 1∈(x 0,π),当x ∈(0,x 1)时,g ′(x )<0,函数g (x )单调递减;当x ∈(x 1,π)时,g ′(x )>0,g (x )单调递增,又g (0)=0,g (x 1)<g (0)=0,由(1)知,e x >12x 2+x +1>x +1(x >0),则g (π)=e π-π-1>0,所以g (x )在(0,x 1)上没有零点,在(x 1,π)上存在唯一零点,因此g (x )在(0,π)上有唯一零点.所以实数a +6.(2022·新高考Ⅰ卷)已知函数f (x )=e x -ax 和g (x )=ax -ln x 有相同的最小值.(1)求a ;(2)证明:存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解(1)f ′(x )=e x -a ,g ′(x )=a -1x =ax -1x.当a ≤0时,因为e x >0,所以f ′(x )>0,即f (x )在R 上单调递增,无最小值,不符合题意.当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,所以f (x )min =f (ln a )=a -a ln a ;g (x ),+,所以g (x )min =1+ln a .由题意,a -a ln a =1+ln a ,即(a +1)ln a =a -1,所以ln a -a -1a +1=0,(*)令h (a )=ln a -a -1a +1,则h ′(a )=1a -2(a +1)2=a 2+1a (a +1)2>0.所以h (a )在(0,+∞)上单调递增.又h(1)=0,由(*)式解得a=1.所以a=1.(2)证明:由(1)知a=1,函数f(x)=e x-x在(-∞,0)上单调递减,在(0,+∞)上单调递增.函数g(x)=x-ln x在(0,1)上单调递减,在(1,+∞)上单调递增.设u(x)=f(x)-g(x)=e x-2x+ln x(x>0),则u′(x)=e x-2+1x>ex-2,当x≥1时,u′(x)>e-2>0,所以函数u(x)在[1,+∞)上单调递增,因为u(1)=e-2>0,所以当x≥1时,u(x)≥u(1)>0恒成立,即f(x)-g(x)>0在[1,+∞)上恒成立,所以函数f(x)与g(x)的图象在[1,+∞)上无交点.当0<x<1时,u′(x)=e x-1+1-xx>0,所以u(x)在(0,1)上单调递增,又u(1)=e-2>0,e 1e2-2e2-2<e12-2e2-2<0,所以u(x)在(0,1)上存在唯一零点,所以函数f(x)与函数g(x)的图象在(0,1)上存在唯一交点,设该交点为M(m,f(m))(0<m<1),由此可作出函数y=f(x)和y=g(x)的大致图象,由图象可知,当且仅当直线y=b经过点M(m,f(m))时,直线y=b与两条曲线y=f(x)和y=g(x)共有三个不同的交点,此时,设三个交点的横坐标分别为x1,x2,x3,且x1<x2<x3,则f(x1)=f(x2)=g(x2)=g(x3)=b.因为f(x)=e x-x,g(x)=x-ln x=e ln x-ln x=f(ln x),所以f(x1)=f(x2)=f(ln x2)=f(ln x3).由于x2≠x1,x2≠ln x2,所以x2=ln x3,x1=ln x2,则f(ln x2)=e ln x2-ln x2=x2-ln x2=x2-x1=b,f(ln x3)=e ln x2-ln x3=x3-ln x3=x3-x2=b,上述两式相减得x1+x3=2x2,即从左到右的三个交点的横坐标成等差数列.综上可得,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.。

高考数学复习专题训练—利用导数研究函数的零点(含解析)

高考数学复习专题训练—利用导数研究函数的零点(含解析)

高考数学复习专题训练—利用导数研究函数的零点1.(2021·福建厦门月考)已知函数f (x )=x 3-43x 2e x 的定义域为[-1,+∞). (1)求f (x )的单调区间;(2)讨论函数g (x )=f (x )-a 在区间[-1,2]上的零点个数.2.(2021·江苏苏州月考)已知函数f (x )=x 2a -2ln x (a ∈R ,a ≠0). (1)求函数f (x )的极值;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),且a=4,证明:x 1+x 2>4. 3.(2021·山东烟台期中)已知函数f (x )=ax+2ex +1(a ∈R ). (1)若函数f (x )在区间(1,+∞)上单调递增,求实数a 的取值范围; (2)当a ≠0时,讨论函数g (x )=f (x )-a-3的零点个数,并给予证明.4.(2021·山西太原三模)已知函数f (x )=a ln x-14x 2+b-ln 2的图象在点(2,f (2))处的切线方程为y=-12x+1. (1)求f (x )的单调区间;(2)设x 1,x 2(x 1<x 2)是函数g (x )=f (x )-m 的两个零点,求证:x 2-x 1<32-4m.5.(2021·广东佛山期末)已知函数f (x )=ln x-mx 有两个零点. (1)求m 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:f'(x 1+x 2)<0.6.(2021·山东实验中学模拟)已知函数f (x )=2e x sin x (e 是自然对数的底数). (1)求f (x )的单调区间;(2)记g (x )=f (x )-ax ,0<a<6,试讨论g (x )在区间(0,π)上的零点个数(参考数据:e π2≈4.8).答案及解析1.解 (1)f'(x )=x 3+53x 2-83x e x =x3(3x+8)(x-1)e x ,因为x ∈[-1,+∞),所以函数f'(x )的零点为0和1. 所以当0<x<1时,f'(x )<0; 当x>1或-1≤x<0时,f'(x )>0.所以f (x )的单调递减区间为(0,1),单调递增区间为[-1,0),(1,+∞).(2)由(1)知,f (x )在区间[-1,2]上的极大值为f (0)=0,极小值为f (1)=-e3.因为f (-1)=-73e ,f (-1)f (1)=7e 2<72.72<1,所以f (1)<f (-1)<0.f (2)=8e 23,由g (x )=0,得f (x )=a.故当a<-e3或a>8e 23时,g (x )的零点个数为0; 当a=-e 3或0<a ≤8e 23时,g (x )的零点个数为1;当-e3<a<-73e 或a=0时,g (x )的零点个数为2; 当-73e ≤a<0时,g (x )的零点个数为3. 2.(1)解 函数f (x )的定义域为(0,+∞),f'(x )=2xa −2x =2x 2-2aax. 当a<0时,f'(x )<0,所以f (x )在区间(0,+∞)上单调递减,所以f (x )在区间(0,+∞)上无极值;当a>0时,若x ∈(0,√a ),f'(x )<0,f (x )在区间(0,√a )上单调递减.若x ∈(√a ,+∞),f'(x )>0,f (x )在区间(√a ,+∞)上单调递增,故f (x )在区间(0,+∞)上的极小值为f (√a )=1-2ln √a =1-ln a ,无极大值. (2)证明 当a=4时,f (x )=x 24-2ln x.由(1)知,f (x )在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,x=2是函数f (x )的极值点.又x 1,x 2为函数f (x )的零点,所以0<x 1<2<x 2,要证x 1+x 2>4,只需证x 2>4-x 1.∵f (4-x 1)=(4-x 1)24-2ln(4-x 1)=x 124-2x 1+4-2ln(4-x 1),又f (x 1)=x 124-2ln x 1=0,∴f (4-x 1)=2ln x 1-2x 1+4-2ln(4-x 1). 令h (x )=2ln x-2x+4-2ln(4-x )(0<x<2),则h'(x )=2x -2+24-x=2(x -2)2x (4-x )>0,∴h (x )在区间(0,2)上单调递增,∴h(x)<h(2)=0,∴f(4-x1)<0=f(x2),又4-x1>2,x2>2,∴4-x1<x2,即x1+x2>4得证.3.解(1)f'(x)=a-2e x.由题意得f'(x)≥0,即a≥2e x在区间(1,+∞)上恒成立.当x∈(1,+∞)时,2e x∈0,2e,所以a≥2e.故实数a的取值范围为2e,+∞.(2)当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.证明如下:由已知得g(x)=ax+2e x-a-2,则g'(x)=a-2e x=ae x-2e x.当a<0时,g'(x)<0,所以函数g(x)单调递减.又g(0)=-a>0,g(1)=2e-2<0,故函数g(x)有且只有一个零点.当a>0时,令g'(x)<0,得x<ln 2a,令g'(x)>0,得x>ln2a,所以函数g(x)在区间-∞,ln2a上单调递减,在区间ln 2a,+∞上单调递增,而g(ln2a)=a ln2a−2a<0,g(a+2a)=2ea+2a>0.由于x>ln x,所以a+2a>2a>ln2a,所以g(x)在区间ln2a,a+2a上存在一个零点.又g ln2a2+a+2=a a-ln a2+a+22,且ln2a2+a+2<ln2a,设h(a)=a-ln a2+a+22,则h'(a)=1-2a+1 a2+a+2=a2-a+1a2+a+2>0在区间(0,+∞)上恒成立,故h(a)在区间(0,+∞)上单调递增.而h(0)=0,所以h(a)>0在区间(0,+∞)上恒成立,所以g ln2a2+a+2>0,所以g(x)在区间ln2a2+a+2,ln2a上存在一个零点.综上所述,当a<0时,函数g(x)有且只有一个零点; 当a>0时,函数g(x)有两个零点.4.(1)解由题可知,函数f(x)的定义域为(0,+∞),f'(x)=ax −12x,又函数f(x)的图象在点(2,f(2))处的切线方程为y=-12x+1,所以{f(2)=0,f'(2)=-12,即{aln2-1+b-ln2=0,a2-1=-12,解得{a=1,b=1,所以f(x)=ln x-14x2+1-ln 2,f'(x)=1x−12x=2-x22x,当x∈(0,√2)时,f'(x)>0;当x∈(√2,+∞)时,f'(x)<0,所以函数f(x)的单调递增区间为(0,√2),单调递减区间为(√2,+∞).(2)证明由(1)得f(x)=ln x-14x2+1-ln 2(x>0),且f(x)在区间(0,√2)上单调递增,在区间[√2,+∞)上单调递减,由题意得f(x1)=f(x2)=m,且0<x1<√2<x2,∴x2-x1-32+4m=x2-x1-32+2(f(x2)+f(x1))=2ln x2+x2-12x22+2ln x1-x1-12x12+52-4ln 2.令t1(x)=2ln x+x-12x2,x>√2,则t1'(x)=(x+1)(x-2)-x,令t1'(x)>0,得√2<x<2;令t1'(x)<0,得x>2,∴t1(x)在区间(√2,2]上单调递增,在区间(2,+∞)上单调递减,∴t1(x)≤t1(2)=2ln 2.令t2(x)=2ln x-x-12x2,0<x<√2,则t2'(x)=(x+2)(x-1)-x,令t2'(x)>0,得0<x<1;令t2'(x)<0,得1<x<√2,∴t2(x)在区间(0,1)上单调递增,在区间[1,√2)上单调递减,∴t2(x)≤t2(1)=-32,∴x2-x1-32+4m≤t1(2)+t2(1)+52-4ln 2=1-2ln 2<0.∴x2-x1<32-4m.5.(1)解f'(x)=1x -m=1-mxx(x>0),当m≤0时,f'(x)>0,则f(x)在区间(0,+∞)上单调递增,至多有一个零点;当m>0时,若0<x<1m,则f'(x)>0,f(x)在区间0,1m上单调递增;若x>1m,则f'(x)<0,f(x)在区间1m,+∞上单调递减,∴f(x)在x=1m 处取得最大值,由题意得f(1m)=-ln m-1>0得0<m<1e,此时,有1m2>1 m >e>1,而f(1)=-m<0,f(1m2)=-2ln m-1m<0,∴由零点存在定理可知,f (x )在区间1,1m 和1m ,1m 2上各有一个零点.综上所述,m 的取值范围是0,1e .(2)证明 ∵x 1,x 2是f (x )的两个零点,不妨设x 1>x 2>0,∴ln x 1-mx 1=0①,ln x 2-mx 2=0②,①-②得ln x 1-ln x 2=mx 1-mx 2,即有m=ln x 1-ln x2x 1-x 2,由f'(x )=1x -m ,有f'(x 1+x 2)=1x 1+x 2-m=1x 1+x 2−ln x 1-ln x 2x 1-x 2, ∴要证f'(x 1+x 2)<0,即证ln x 1-ln x 2x 1-x 2>1x 1+x 2, 即证ln x 1-ln x 2>x 1-x2x 1+x 2,即证ln x1x 2−x 1x 2-1x 1x 2+1>0,即证ln x 1x 2+2x 1x 2+1-1>0,令x1x 2=t>1,设φ(t )=ln t+2t+1-1(t>1),则φ'(t )=t 2+1t (t+1)2>0,∴φ(t )在区间(1,+∞)上单调递增,则φ(t )>φ(1)=0, ∴f'(x 1+x 2)<0得证.6.解 (1)函数f (x )=2e x sin x 的定义域为R .f'(x )=2e x (sin x+cos x )=2√2e x sin x+π4.由f'(x )>0,得sin x+π4>0,可得2k π<x+π4<2k π+π(k ∈Z ),解得2k π-π4<x<2k π+3π4(k ∈Z ),由f'(x )<0,得sin x+π4<0,可得2k π+π<x+π4<2k π+2π(k ∈Z ),解得2k π+3π4<x<7π4+2k π(k ∈Z ).所以f (x )的单调递增区间为-π4+2k π,3π4+2k π(k ∈Z ),单调递减区间为3π4+2k π,7π4+2k π(k ∈Z ).(2)由已知g (x )=2e x sin x-ax ,所以g'(x )=2e x (sin x+cos x )-a ,令h (x )=g'(x ),则h'(x )=4e x cos x.因为x ∈(0,π),所以当x ∈0,π2时,h'(x )>0;当x∈π2,π时,h'(x)<0,所以h(x)在区间0,π2上单调递增,在区间π2,π上单调递减,即g'(x)在区间0,π2上单调递增,在区间π2,π上单调递减.g'(0)=2-a,g'(π2)=2eπ2-a>0,g'(π)=-2eπ-a<0.①当2-a≥0,即0<a≤2时,g'(0)≥0,所以∃x0∈π2,π,使得g'(x0)=0,所以当x∈(0,x0)时,g'(x)>0;当x∈(x0,π)时,g'(x)<0,所以g(x)在区间(0,x0)上单调递增,在区间(x0,π)上单调递减.因为g(0)=0,所以g(x0)>0.因为g(π)=-aπ<0,所以由零点存在定理可得,此时g(x)在区间(0,π)上仅有一个零点.②当2-a<0,即2<a<6时,g'(0)<0,所以∃x1∈0,π2,x2∈π2,π,使得g'(x1)=0,g'(x2)=0,且当x∈(0,x1),x∈(x2,π)时,g'(x)<0;当x∈(x1,x2)时,g'(x)>0.所以g(x)在区间(0,x1)和(x2,π)上单调递减,在区间(x1,x2)上单调递增.因为g(0)=0,所以g(x1)<0,因为g(π2)=2eπ2−π2a>2eπ2-3π>0,所以g(x2)>0,因为g(π)=-aπ<0,由零点存在定理可得,g(x)在区间(x1,x2)和(x2,π)内各有一个零点,即此时g(x)在区间(0,π)上有两个零点.综上所述,当0<a≤2时,g(x)在区间(0,π)上仅有一个零点;当2<a<6时,g(x)在区间(0,π)上有两个零点.。

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。

高考数学函数零点专题

高考数学函数零点专题

欢迎下载学习好资料 2.函数的零点专题高考解读函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利求方程的根、用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的x掌握零点存在性定理.增强根据实际问题建立数轴的交点的横坐标的等价性;图象与学模型的意识,提高综合分析、解决问题的能力.知识梳理 1.函数的零点与方程的根xffxfxx 的零(),我们把使叫做函数())=0 (1)函数的零点对于函数的实数( 点.函数的零点与方程根的关系(2)xfxgxyfFxxgxf的图象与)=函数((()=(=)-)(的根,)的零点就是方程即函数()xgy )(函数的图象交点的横坐标.= (3)零点存在性定理bbfafyfxa,上的图象是连续不断的一条曲线,且有)<0如果函数(=(([)在区间),·]cbfcyfxabca这个)使得)在区间(=,()内有零点,即存在∈(0, 那么,函数,=)(xf的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条=也就是方程(0) 件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解..在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数2即把方程分拆为一个等式,使两端都转化为我们所熟悉的函形结合是基本的解题方法,xxgfxgxf的形式,这时()),=((),即把方程写成)数的解析式,然后构造两个函数(可以根据图象的变化趋势找到方程中字母方程根的个数就是两个函数图象交点的个数,. 参数所满足的各种关系高频考点突破函数的零点判断考点一11?x?2x?)ea(?xf(x)?e?2x?有唯一零点,已知函数11课标20173,理】1例、【a=则111?DBCA.1...2231x fxx-2的零点所在的区间是+( 【变式探究】(1)函数)(=)e211)(,1,(0)(2,3)(1,2) D.A. B.. C222xfxfyxxgxxx=)(,若函数0)≥(3-=)(满足:R∈,)(=已知偶函数(2).学习好资料欢迎下载xx,,>0log?2??yfxgx)的零点个数为( )-则=(()1x,,<0-?x?A.1 B.3 C.2 D.4【方法技巧】函数零点的求法fx)=0(1)直接求零点:令,如果能求出解,则有几个解就有几个零点.(ab]上是连续不断的曲线,且,(2)零点存在性定理:利用定理不仅要函数在区间[fafb)<0,还必须结合函数的图象与性质(如单调性、奇偶性()(才能确定函数有多少)·个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点.fxxxfx)的零点所在的区间为( (=ln +) -2【变式探究】设(,则函数)A.(0,1) B.(1,2) C.(2,3) D.(3,4)考点二、二次函数的零点2axxafx∈R.)=+2+2例、已知函数,(2xfxfx的解集;1-[1,2],求不等式 ((1)若不等式)(≥)≤0的解集为2axxfxg的取值上有两个不同的零点,求实数1)+(2)若函数在区间((1,2))=(+范围.【方法技巧】解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【变式探究】22xaafxxa小,求实数大,一个零点比1的一个零点比+(-2)-1)已知1()=+(的取值范围.考点三函数零点的应用2xx?x?2)?aeea?(xf(). 21,理】已知函数2017例3、【课标1f(x)的单调性;(1)讨论f(x)a的取值范围.2)若有两个零点,求(xx,≤||,22-??xfgxbfx,其-)=)【变式探究】已知函数-()=(2函数(2xx?,>2-2,bxgxybf)( 的取值范围是个零点,则4恰有)(-)(=若函数.R∈中欢迎下载学习好资料7777)2(,(??)??,)(0,)(, D.A. B. C. 4444【方法规律】通过解方程即可得若方程可解,函数零点的应用主要表现在利用零点求参数范围,出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【变式探究】2nmmnm≤1--2+??xmfnxmn(2==⊕设对于实数),(定义运算“⊕”:2nnmmn?>-xxxfxxxax,则,,且关于恰有三个互不相等的实数根的方程(,)⊕-1)(=-1)1321xx+.+的取值范围是________32考点四、分段函数的模型,0,x?x?1?1的则满足15】设函数、【2017课标3,理例4?)f(x1)?f(x?f(x)??x2,?02,x?x的取值范围是_________.【变式探究】已知一家公司生产某品牌服装的年固定成本为10万元,每生产1千x千件并全部销售完,每千件万元.设该公司一年内共生产该品牌服装件需另投入2.71?2xx100<10.8-≤?30?xRRx的销售收入为(())万元,且=1000108?x.>10-?2xx3Wx(千件)关于年产量的函数解析式; (1)写出年利润万元()(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)【方法技巧】(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本(均值)不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【变式探究】国庆期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.写出飞机票的价格关于人数的函数;(1).学习好资料欢迎下载(2)每团人数为多少时,旅行社可获得最大利润?高考链接1.【2017北京,理14】三名工人加工同一种零件,他们在一天中的工作情况如图Ai名工人上午的工作时间和加工的零件数,点所示,其中点的横、纵坐标分别为第i Bii=1,2的横、纵坐标分别为第名工人下午的工作时间和加工的零件数,,3.i QiQQQ中最大的是则,①记,为第_________. 名工人在这一天中加工的零件总数,3112pippp中最大的名工人在这一天中平均每小时加工的零件数,则②记,为第,i312是_________.,若存在高考山东理数】已知函数其中2.【2016m=bbxfx的取值范围是实数有三个不同的根,则,使得关于)的方程(________________..,函数2016高考上海理数】已知3.【(1)当时,解不等式;的方程2的解集中恰好有一个元素,)若关于(求的取值范围;上的最大值与最小值,若对任意,函数在区间(3)设.1的差不超过,求的取值范围4.【都有()满足,对任意】存在函数72015高考浙江,理B. A.学习好资料欢迎下载D. C.,使函数,若存在实数155.【2015高考湖南,理】已知 . 的取值范围是有两个零点,则,则方2015高考江苏,,6.13【】已知函数程实根的个数为函数2015】已知函数高考天津,理 87.【的4个零点,则恰有,其中,若函数( )取值范围是(A)(B)(C)(D)8.【2015高考浙江,理10】已知函数,则,的最小值是.y(单位:小时)与储存温度x】某食品的保鲜时间(单【2015高考四川,理139.kb为常数)、)满足函数关系(为自然对数的底数,。

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

专题02函数3函数的零点(3大重难点详细讲解)2024高考数学重难点及压轴题突破(原卷版)

第03讲 函数的零点难点1:零点的定义——求函数零点或方程根的个数考试时我们经常会遇到求函数的零点个数问题,这种题常作为选择的压轴题出现,因其具有很强的综合性,常常与函数奇偶性,单调性,周期性等性质结合起来,并与各种函数以及导数和在一起考查,学生往往很难搞明白零点的位置,造成丢分。

求函数零点或方程的根的个数问题的步骤:(1)将问题转化为求两个函数交点的问题;(2)分析两个函数的性质,并做出函数图象;(3)找到两个函数的交点,即为所求。

【例题】(宁夏吴忠市吴忠中学2024届高三上学期开学第一次月考数学(理)试题)已知()f x 是定义在R 上的奇函数,满足(1)()f x f x +=-,当10,2x ⎡⎤∈⎢⎥⎣⎦时,()91x f x =-,则()()2(1)h x x x f =--在区间[]20212023-,上所有零点个数为____________.【答案】4044【解析】由题意, 我们根据题目条件知道,函数是奇函数得出()()f x f x -=-,而且满足(1)()f x f x +=-,便可以得出函数的对称轴,我们用1x +替换原来的x ,与(1)()f x f x +=-与结合,即可得出(2)()f x f x +=,进而得到函数的周期。

∵()f x 是定义在R 上的奇函数,∴()()f x f x -=-,∵(1)()f x f x +=-,12x =是其中一条对称轴, ∴(2)(1)()f x f x f x +=-+=,∴()f x 的周期是2 ,在()(1)()2h x x f x =--中,化简函数,将函数的零点问题转化成求函数()y f x =与函数21y x 的交点的问题,当()(1)()20h x x f x =--=时,()21f x x =-, ∴求函数零点, 即为求()y f x =与21y x 的交点的横坐标, 作出函数图象,根据图象得出,在一个周期上,两个函数有2个交点,进而可以求出在区间[]20212023-,上所有交点个数,即可知道在区间[]20212023-,上函数()()2(1)h x x x f =--所有零点个数.作出()y f x =与21yx 图象如图所示,由图知:∴交点关于(1,0)对称,每个周期有2个交点∴[2021,1)-有1011个周期, (1,2023]有1011个周期, ∴在区间[]20212023-,上所有零点个数为:1011224044⨯⨯=, 故答案为:4044.【变式训练】(2023 ·福建泉州·统考模拟预测)(多选)设函数2()ln ()f x x x a =--,则下列判断正确的是A. ()f x 存在两个极值点B. 当73a >时,()f x 存在两个零点 C. 当1a ≤时,()f x 存在一个零点D. 若()f x 有两个零点12,x x ,则122x x a +>难点2:零点存在性定理零点存在定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,则()f x 在开区间(,)a b 上存在零点。

微专题 利用导数研究函数的零点问题

微专题 利用导数研究函数的零点问题

利用导数研究函数的零点问题内容概览题型一 利用导数探究函数零点的个数题型二 利用函数零点问题求参数范围题型三 与函数零点有关的证明[命题分析]函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查基本初等函数、三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.题型一 利用导数探究函数零点的个数[典例1](2022·陇南模拟)已知函数f(x)=r1e-a(a∈R),讨论f(x)的零点个数.【解析】令f(x)=r1e-a=0,得a=r1e,设g(x)=r1e,则g'(x)=e−(r1)e(e)2=−e,当x>0时,g'(x)<0,当x<0时,g'(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,所以g(x)≤g(0)=1,而当x>-1时,g(x)>0,当x<-1时,g(x)<0,g(x)的大致图象如图所示:所以①当a>1时,方程g(x)=a无解,即f(x)没有零点;②当a=1时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;③当0<a<1时,方程g(x)=a有两解,即f(x)有两个零点;④当a≤0时,方程g(x)=a有且只有一解,即f(x)有唯一的零点;综上,当a>1时,f(x)没有零点;当a=1或a≤0时,f(x)有唯一的零点;当0<a<1时,f(x)有两个零点.【方法提炼】利用导数确定函数零点或方程的根的个数的方法:(1)构造函数:构造函数g(x)(要求g'(x)易求,g'(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值(最值),并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)应用定理:利用零点存在定理,先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.【对点训练】(2023·成都模拟)设函数f(x)=ln x+,m∈R.讨论函数g(x)=f'(x)-.3的零点个数【解析】由题设,可知g(x)=f'(x)-3=1-2-3(x>0),令g(x)=0,得m=-13x3+x(x>0),设φ(x)=-13x3+x(x>0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,φ(x)在(0,1)上单调递增,当x∈(1,+∞)时,φ'(x)<0,φ(x)在(1,+∞)上单调递减,所以x=1是φ(x)的极大值点,也是φ(x)的最大值点,所以φ(x)的最大值为φ(1)=23,画出y=φ(x)的大致图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;)有两个零点.当0<m<2时,函数g(x【加练备选】已知函数f(x)=x e x+e x.(1)求函数f(x)的单调区间和极值;(2)讨论函数g(x)=f(x)-a(a∈R)的零点的个数.【解析】(1)函数f(x)的定义域为R,且f'(x)=(x+2)e x,令f'(x)=0得x=-2,则f'(x),f(x)的变化情况如表所示:x(-∞,-2)-2(-2,+∞)f'(x)-0+f(x)单调递减-12单调递增所以f(x)的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞),当x=-2时,f(x)有极小值为f(-2)=-1e2,无极大值;(2)令f(x)=0,得x=-1,当x<-1时,f(x)<0;当x>-1时,f(x)>0,且f(x)的图象经过点(-2,-1e2),(-1,0),(0,1);当x→-∞时,与一次函数相比,指数函数y=e-x增长更快,从而f(x)=r1e−→0;当x→+∞时,f(x)→+∞,f'(x)→+∞,根据以上信息,画出f(x)大致图象如图所示,函数g(x)=f(x)-a(a∈R)的零点的个数为y=f(x)的图象与直线y=a的交点个数,当x=-2时,f(x)有极小值f(-2)=-1e2,所以关于函数g(x)=f(x)-a(a∈R)的零点个数有如下结论:当a<-1e2时,零点的个数为0;当a=-1e2或a≥0时,零点的个数为1;当-1e2<a<0时,零点的个数为2.题型二 利用函数零点问题求参数范围[典例2](2022·全国乙卷)已知函数f(x)=ax-1-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.【解析】(1)当a=0时,f(x)=-1-ln x,x>0,则f'(x)=12-1=1−2,当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=-1;(2)f(x)=ax-1-(a+1)ln x,x>0,则f'(x)=a+12-r1=(B−1)(K1)2,当a≤0时,ax-1<0,所以当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减;所以f(x)max=f(1)=a-1<0,此时函数无零点,不合题意;当0<a<1时,1>1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;又f(1)=a-1<0,由(1)得1+ln x≥1,即ln1≥1-x,所以ln x<x,ln <,ln x<2,当x>1时,f(x)=ax-1-(a+1)ln x>ax-1-2(a+1)>ax-(2a+3),则存在m=(3+2)2>1,使得f(m)>0,所以f(x)仅在(1,+∞)上有唯一零点,符合题意;当a=1时,f'(x)=(K1)22≥0,所以f(x)单调递增,又f(1)=a-1=0,所以f(x)有唯一零点,符合题意;当a>1时,1<1,在(0,1),(1,+∞)上,f'(x)>0,f(x)单调递增;在(1,1)上,f'(x)<0,f(x)单调递减;此时f(1)=a-1>0,由(1)得当0<x<1时,ln x>1-1,ln >1-1,所以ln x>2(1-1),此时f(x)=ax-1-(a+1)ln x<ax-1-2(a+1) (1-1)<-1+2(r1),存在n=14(r1)2<1,使得f(n)<0,所以f(x)在(0,1)上有一个零点,在(1,+∞)上无零点,所以f(x)有唯一零点,符合题意;综上,a的取值范围为(0,+∞).【方法提炼】由函数零点求参数范围的策略(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法;(3)含参数的函数的零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,得到不含参数的具体函数,作出该函数图象,根据图象特征求参数的范围.【对点训练】(2021·全国甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解析】(1)a =2时,f (x )=22,f'(x )=2b2−2ln2·2(2)2=o2−En2)2=ln2· 2ln2−g2,当x ∈ 0,2ln2 时,f'(x )>0,f (x )单调递增;当x ∈2ln2,+∞ 时,f'(x )<0,f (x )单调递减;(2)由题知f (x )=1在(0,+∞)上有两个不等实根,f (x )=1⇔x a =a x ⇔a ln x =x ln a ⇔ln=ln,令g (x )=ln,g'(x )=1−ln 2,g (x )在(0,e)上单调递增,在(e,+∞)上单调递减,又g (e)=1e,g (1)=0,lim m+∞g (x )=0,所以0<ln<1e⇒a >1且a ≠e .所以a 的取值范围为(1,e)∪(e,+∞).【加练备选】 (2020·全国卷Ⅰ)已知函数f(x)=e x-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解析】(1)当a=1时,f(x)=e x-x-2,则f'(x)=e x-1.当x<0时,f'(x)<0;当x>0时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)f'(x)=e x-a.当a≤0时,f'(x)>0,所以f(x)在(-∞,+∞)上单调递增,故f(x)至多存在1个零点,不合题意;当a>0时,由f'(x)=0可得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a(1+ln a).(i)若0<a≤1e,则f(ln a)≥0,f(x)在(-∞,+∞)上至多存在1个零点,不合题意; (ii)若a>1e,则f(ln a)<0.因为f(-2)=e-2>0,所以f(x)在(-∞,ln a)上存在唯一零点.易知,当x>2时,e x-x-2>0,所以当x>4且x>2ln(2a)时,f(x)=e2·e2-a(x+2)>e ln(2a)·2+2 -a(x+2)=2a>0.故f(x)在(ln a,+∞)上存在唯一零点,从而f(x)在(-∞,+∞)上有两个零点.综上,a的取值范围是1题型三 与函数零点有关的证明[典例3](2022·新高考Ⅰ卷)已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【解析】(1)f(x)=e x-ax的定义域为R,而f'(x)=e x-a,若a≤0,则f'(x)>0,此时f(x)无最小值,故a>0.g(x)=ax-ln x的定义域为(0,+∞),而g'(x)=a-1=B−1.当x<ln a时,f'(x)<0,故f(x)在(-∞,ln a)上单调递减,当x>ln a时,f'(x)>0,故f(x)在(ln a,+∞)上单调递增,故f(x)min=f(ln a)=a-a ln a.当0<x<1时,g'(x)<0,故g(x)在 0,1上单调递减,当x>1时,g'(x)>0,故g(x)在1,+∞ 上单调递增,故g(x)min=g1=1-ln1.因为f(x)=e x-ax和g(x)=ax-ln x有相同的最小值,故1-ln1=a-a ln a,整理得到K11+=ln a,其中a>0,设t(a)=K11+-ln a,a>0,则t'(a)=2(1+p2-1=−2−1o1+p2<0,故t(a)在(0,+∞)上单调递减,而t(1)=0,故t(a)=0的唯一解为a=1,故K11+=ln a的解为a=1.综上,a=1;(2)由(1)可得f(x)=e x-x和g(x)=x-ln x的最小值为1-ln 1=1-ln11=1.当b>1时,考虑e x-x=b的解的个数,x-ln x=b的解的个数.设S(x)=e x-x-b,S'(x)=e x-1,当x<0时,S'(x)<0,当x>0时,S'(x)>0,故S(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以S(x)min=S(0)=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,其中b>1,则u'(b)=e b-2>0,故u(b)在(1,+∞)上单调递增,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点,即e x-x=b的解的个数为2.设T(x)=x-ln x-b,T'(x)=K1,当0<x<1时,T'(x)<0,当x>1时,T'(x)>0,故T(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以T(x)min=T(1)=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,T(x)=x-ln x-b有两个不同的零点,即x-ln x=b的解的个数为2.当b=1,由(1)讨论可得x-ln x=b,e x-x=b仅有一个零点,当b<1时,由(1)讨论可得x-ln x=b,e x-x=b均无零点,故若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b>1.设h(x)=e x+ln x-2x,其中x>0,故h'(x)=e x+1-2,设s(x)=e x-x-1,x>0,则s'(x)=e x-1>0,故s(x)在(0,+∞)上单调递增,故s(x)>s(0)=0,即e x>x+1,所以h'(x)>x+1-1≥2-1>0,所以h(x)在(0,+∞)上单调递增,而h(1)=e-2>0,h(1e3)=e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,1e3<x0<1且:当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),因此若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,故b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的零点x1,x0(x1<0<x0),此时x-ln x=b有两个不同的零点x0,x4(0<x0<1<x4),故e1-x1=b,e0-x0=b,x4-ln x4-b=0,x0-ln x0-b=0,所以x4-b=ln x4,即e4−=x4,即e4−-(x4-b)-b=0,故x4-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,又e1-x1=b可化为e1=x1+b,即x1-ln(x1+b)=0,即(x1+b)-ln(x1+b)-b=0,故x1+b为方程x-ln x=b的解,同理x0+b也为方程x-ln x=b的解,所以{x1,x0}={x0-b,x4-b},而b>1,故0=4−s1=0−s即x1+x4=2x0.所以x1,x0,x4成等差数列.所以,存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法提炼】(1)证明与零点有关的不等式,函数的零点本身就是一个条件,即零点对应的函数值为0;(2)证明的思路一般是对条件进行等价转化,构造合适的新函数,利用导数知识探讨该函数的性质(如单调性、极值情况等),再结合函数图象来解决.【对点训练】 (2019·全国Ⅰ卷)已知函数f(x)=sin x-ln(1+x),f'(x)为f(x)的导数.证明:(1)f'(x)在区间 −1,π2上存在唯一极大值点;(2)f(x)有且仅有2个零点.【证明】(1)设g(x)=f'(x),则g(x)=cos x-11+,g'(x)=-sin x+1(1+p2,当x∈ −1,π2时,g'(x)单调递减,而g'(0)>0,g'(π2)<0,可得g'(x)在 −1,π2上有唯一零点,设g'(x)的零点为α.则当x∈(-1,α)时,g'(x)>0;当x∈ sπ2时,g'(x)<0.所以g(x)在(-1,α)上单调递增,在 sπ2上单调递减,故g(x)在 −1,π2上存在唯一极大值点,即f'(x)在 −1,π2上存在唯一极大值点;(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f'(x)在(-1,0)上单调递增,而f'(0)=0,所以当x∈(-1,0)时,f'(x)<0,故f(x)在(-1,0)上单调递减,又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点.②当x∈ 0,π2时,由(1)知,f'(x)在(0,α)上单调递增,在 sπ2上单调递减,而f'(0)=0, f'π2<0,所以存在β∈ sπ2,使得f'(β)=0,且当x∈(0,β)时,f'(x)>0;当x∈ sπ2时,f'(x)<0.故f(x)在(0,β)上单调递增,在 sπ2上单调递减.又f(0)=0,fπ2=1-ln 1+π2>0,所以当x∈ 0,π2时,f(x)>0.所以f(x)在 0,π2上没有零点.③当x∈π2,π 时,f'(x)<0,所以f(x)在π2,π 上单调递减.而fπ2>0,f(π)<0,所以f(x)在π2,π 上有唯一零点.④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.【加练备选】 (2023·菏泽模拟)已知函数f(x)=ln x-x+2sin x,f'(x)为f(x)的导函数.(1)求证:f'(x)在(0,π)上存在唯一零点;(2)求证:f(x)有且仅有两个不同的零点.【证明】(1)设g(x)=f'(x)=1-1+2cos x,当x∈(0,π)时,g'(x)=-2sin x-12<0,所以g(x)在(0,π)上单调递减,又因为g(π3)=3π-1+1>0,g(π2)=2π-1<0,所以g(x)在(π3,π2)上有唯一的零点;(2)设f'(x)在(0,π)上的唯一零点为α,由(1)知π3<α<π2.①当x∈(0,π)时,x∈(0,α)时,f'(x)>0,f(x)单调递增;x∈(α,π)时,f'(x)<0,f(x)单调递减;所以f(x)在(0,π)上存在唯一极大值点α.所以f(α)>f(π2)=lnπ2-π2+2>2-π2>0,又因为f(1e2)=-2-1e2+2sin1e2<-2-1e2+2<0,所以f(x)在(0,α)上恰有一个零点.又因为f(π)=ln π-π<2-π<0,所以f(x)在(α,π)上也恰有一个零点.②当x∈[π,2π)时,sin x≤0,f(x)≤ln x-x,设h(x)=ln x-x,h'(x)=1-1<0,所以h(x)在[π,2π)上单调递减,所以h(x)≤h(π)<0,所以当x∈[π,2π)时,f(x)≤h(x)≤h(π)<0恒成立,所以f(x)在[π,2π)上没有零点.③当x∈[2π,+∞)时,f(x)≤ln x-x+2.设φ(x)=ln x-x+2,φ'(x)=1-1<0,所以φ(x)在[2π,+∞)上单调递减,所以φ(x)≤φ(2π)<0,所以当x∈[2π,+∞)时,f(x)≤φ(x)≤φ(2π)<0恒成立,所以f(x)在[2π,+∞)上没有零点.综上,f(x)有且仅有两个零点.。

高考数学复习考点题型解题技巧专题讲解10 函数零点

高考数学复习考点题型解题技巧专题讲解10 函数零点

高考数学复习考点题型解题技巧专题讲解第10讲函数零点专项突破高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难.考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.14B.18C.78-D.38-【答案】C利用函数零点的意义结合函数f (x )的性质将问题转化为一元二次方程有等根即可. 【详解】依题意,函数y =f (2x 2+1)+f (λ-x )的零点,即方程f (2x 2+1)+f (λ-x )=0的根, 由f (2x 2+1)+f (λ-x )=0得f (2x 2+1)=-f (λ-x ),因f (x )是R 上奇函数, 从而有f (2x 2+1)=f (x -λ),又f (x )是R 上的单调函数,则有2x 2+1=x -λ,而函数y =f (2x 2+1)+f (λ-x )只有一个零点,于是得2x 2-x +1+λ=0有两个相等实数解, 因此得Δ=1-8(1+λ)=0,解得λ=78-,所以实数λ的值是78-.故选:C.练(2021·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( )A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)【答案】B 【详解】因为()f x 为开口向上的抛物线,且对称轴为2a x =-,在区间(-1,1)上有两个不同的所以()()101002112f f a f a ⎧->⎪>⎪⎪⎛⎫⎨-< ⎪⎝⎭⎪⎪⎪-<-<⎩,即22102102022222a a a a a a a a ⎧-->⎪⎪⎪+->⎪⎨⎪⎛⎫---<⎪ ⎪⎝⎭⎪⎪-<<⎩,解得023a <<, 所以实数a 的取值范围是2(0,)3.故选:B例1-2.(2021·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定 【答案】C解析:()()22x f x x x a e '=++当1a ≥时,220x x a ++≥在R 恒成立,所以()()2'20xf x x x a e =++≥在R 恒成立,所以函数()()2x f x x a e =+在R 上单调递增,没有最小值;当1a <时,令() '0f x =得111x a =---,211x a =--,且12x x <当x →-∞时,所以若有最小值,只需要2∵()()22221022100xf x a e a a =--⇔--≤⇔≤≤,∴20x x a ++=的判别式1410a ∆=->≥,因此()2g x x x a =++有两个零点.故选:C .类型二、区间零点存在性定理例2-1.(2021·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( ) A .()0,1B .()1,2 C .()2,3D .()3,4【答案】B 【详解】∵()ln 1f x x x =-,()1ln f x x '=+,由()1ln 0f x x '=+=得,1ex =,∴1,()0ex f x '>>,函数()f x 为增函数,当01x <<时,()ln 10f x x x =-<,又()()410,2ln 21ln 0e12f f =-<=-=>,故()f x 的零点所在的区间是()1,2.练.(2021·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B 【详解】因为()2xf x x =+为单调递增函数,当2x =-时,()2722204f --=-=-<,当1x =-时,()1112102f --=-=-<,当0x =时,()002010f =+=>,由于()()010f f ⋅-<,且()f x 的图象在()1,0-上连续, 根据零点存在性定理,()f x 在()1,0-上必有零点,故选:B.类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个B .2个C .3个D .0个【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个.故选:B .练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( )A .ln 3,92e e ⎡⎫⎪⎢⎣⎭B .ln 20,4e ⎛⎫⎪⎝⎭C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e⎡⎫⎪⎢⎣⎭【分析】()1ln 0x f x ax x +=-=可得21ln xa x +=,作出函数()21ln x g x x +=的图象,可知满足不等式()a g x <的整数解有且只有一个,从而可得出关于实数a 的不等式,由此可解得实数a 的取值范围. 【详解】由()1ln 0x f x ax x +=-=可得21ln xa x +=,令()21ln x g x x +=,其中0x >,则()()243121ln 2ln 1x x x x x g x x x ⋅-+--'==.当120x e -<<时,()0g x '>,此时函数()g x 单调递增,当12x e ->时,()0g x '<,此时函数()g x 单调递减.且当12x e ->时,()21ln 0xg x x +=>,作出函数()g x 的图象如下图所示:由图可知,满足不等式()a g x <的整数解有且只有一个,所以,()1,m n ∈,()2,m n ∉,所以,()()21g a g ≤<,即1ln2ln2144e a +=≤<.因此,实数a 的取值范围是ln 2,14e ⎡⎫⎪⎢⎣⎭.故选:D. 【点睛】关键点点睛:本题考查利用函数不等式的整数解的个数求参数,解题的关键在于利用图象确定整数有哪些,进而可得出关于参数不等式(组)来进行求解.例3-2(一个曲线一个直线)28.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.【答案】7,24⎛⎫ ⎪⎝⎭ 【分析】求出函数()()y f x g x =-的表达式,构造函数()()(2)h x f x f x =+-,作函数()h x 的图象,利用数形结合进行求解即可. 【详解】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--⎪-=⎨<⎪⎩… ,∵函数y =f (x )−g (x )恰好有四个零点,∴方程f (x )−g (x )=0有四个解,即f (x )+f (2−x )−b =0有四个解, 即函数y =f (x )+f (2−x )与y =b 的图象有四个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩剟 , 作函数y =f (x )+f (2−x )与y =b 的图象如下,115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,74<b <2, 故答案为:7,24⎛⎫⎪⎝⎭. 例3-3【一个曲线和一个倾斜直线】【2021福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.【答案】13a ≤-或2a e ≥【解析】函数g x f x ax a =-+()()存在零点,即方程0f x ax a -+=() 存在实数根,也就是函数y f x =()与1y a x =-()的图象有交点.如图:直线1y a x =-()恒过定点10(,), 过点21-(,)与10(,)的直线的斜率101213k -=---=; 设直线1y a x =-()与x y e =相切于00x x e (,),则切点处的导数值为0x e ,则过切点的直线方程为()000x x y e e x x --=,由切线过10(,),则()00000012x x x x e e x x e e --∴=,=, 得02x = .此时切线的斜率为2e .由图可知,要使函数g x f x ax a =-+()() 存在零点,则实数a 的取值范围为13a ≤- 或2a e ≥.【点睛】本题考查函数零点的判定,其中数形结合的解题思想方法与数学转化思想方法的灵活应用.例3-4(两个曲线)49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2 【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定. 【详解】2π()2sin sin()2f x x x x =+-222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数, 在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点, 即f (x )的零点个数为2. 故答案为:2.(两个曲线)8.(2021·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3B .72C .4D .92【答案】B 【分析】根据函数的奇偶性确定函数()f x 的周期,将函数的零点问题转化为两函数的交点,最后通过数形结合求解出参数的值. 【详解】因为()1f x +是奇函数,所以函数()y f x =的图象关于点()1,0成中心对称, 即(2)()0f x f x -+=.又因为函数()f x 为奇函数,所以(2)()()f x f x f x -=-=-,即(2)()f x f x +=,所以函数()y f x =是周期为2的周期函数.由于函数()y f x =为定义在R 上的奇函数,则(0)0f =,得(2)(4)0f f ==. 又因为当(]0,1x ∈时,21()log f x x=,所以21log 212f ⎛⎫== ⎪⎝⎭,11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.作出函数()y f x =与函数()sin y x π=的图象如下图所示,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-,12-,0,12,1,32,2,52,3,72,第11个交点的横坐标为4.因此,实数m 的取值范围是7,42⎡⎫⎪⎢⎣⎭,故实数m 的最小值为72.故选:B.f x满足(两个曲线)【2021河北省武邑中学高三】若定义在R上的偶函数() ()()=,则函数()3logf x xy f x x=-的零点个数是+=,且当[]2x∈时,()f x f x0,1()A. 6个 B. 4个 C. 3个 D. 2个【答案】B|x|的图象,【解析】分析:在同一个坐标系中画出函数y=f(x)的图象与函数y=log3这两个函数图象的交点个数即为所求.详解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f (x)=x,|x|的零点的个数等于函数故当x∈[﹣1,0]时,f(x)=﹣x.因为函数y=f(x)﹣log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f y=f(x)的图象与函数y=log3|x|的图象,如图所示:(x)的图象与函数y=log3显然函数y=f (x )的图象与函数y=log 3|x|的图象有4个交点,故选B .点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,根据函数零点和方程的关系进行转化是解决本题的关键.判断零点个数一般有三种方法:(1)方程法;(2)图像法;(3)方程+图像法.本题利用的就是方法(3).例3-5(直接解出零点)(2021·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12B .14C .16D .18 【答案】C 【分析】令()25sin sin 10f x x x =--=可得21sin sin 5x x -=,根据()2sin sin g x x x =-为偶函数,只需求()21sin sin 5g x x x =-=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解的个数,等价于21sin sin 5x x -=或21sin sin 5x x -=-的解的个数,结合正弦函数的性质以及对称性即可求解.【详解】令()0f x =可得21sin sin 5x x -=,设()2sin sin g x x x =-,则()()22sin sin sin sin g x x x x x g x -=--=-=,所以()2sin sin g x x x =-是偶函数,故只需要讨论21sin sin 5x x -=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解得个数, 当0x ≥时,由21sin sin 5x x -=可得21sin sin 5x x -=或21sin sin 5x x -=-,解方程21sin sin 5x x -=可得sin x =sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =解方程21sin sin 5x x -=-可得sin x =或sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =有三解,sin x =有三解, 所以在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,()21sin sin 5g x x x =-=有8解, 根据对称性可得()21sin sin 5g x x x =-=在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上有16解,所以函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为16, 故选:C.类型三、利用周期性判断零点个数例3-1.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( )A .404B .804C .806D .402 【答案】A 【分析】根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数. 【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为()f x 为偶函数,所以()()()444f x f x f x +=-=-, 所以()()8f x f x +=所以()f x 是周期函数,且周期为8,且()f x 关于4x =对称,又当(]0,4x ∈时,()()ln 2x f x x=, 则()()()221ln 21ln 2(0)x x xx f x x x x ⋅--'==>, 令()0f x '=,解得e2x =,所以当e0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为增函数,当e ,42x ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x 为减函数,作出()f x 一个周期内图象,如图所示:因为()f x 为偶函数,且不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,所以不等式在()0,200内有100个整数解,因为()f x 周期为8,所以在()0,200内有25个周期, 所以()f x 在一个周期内有4个整数解,(1)若0a >,由()()20f x af x +>,可得()0f x >或()f x a <-,由图象可得()0f x >有7个整数解,()f x a <-无整数解,不符合题意; (2)若0a =,则()0f x ≠,由图象可得,不满足题意;(3)若0a <,由()()20f x af x +>,可得 ()f x a >-或()0f x <,由图象可得()0f x <在一个周期内无整数解,不符合题意, 所以()f x a >-在一个周期()0,8内有4个整数解,因为()f x 在()0,8内关于4x =对称, 所以()f x 在()0,4内有2个整数解,因为()1ln 2f =,()ln 42ln 22f ==,()ln 633f =, 所以()f x a >-在()0,4的整数解为1x =和2x =,所以ln 6ln 23a ≤-<,解得ln 6ln 23a -<≤-. 故选:C类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24 【答案】A 【分析】首先判断()f x 的奇偶性,再根据奇偶函数的对称性计算可得;【详解】由()()0g x g x -+=得()y g x =的图象关于()0,0对称,因为()1sin sin f x x x=+,定义域为{}|,x x k k Z π≠∈,且()()()()11sin sin sin sin f x x x f x x x -=+-=--=--,所以()1sin sin f x x x=+为奇函数,即()1sin sin f x x x=+也关于()0,0对称, 则函数()1sin sin f x x x=+与()y g x =图象的交点关于()0,0对称,则不妨设关于点()0,0对称的坐标为()()1166,,,,x y x y ⋯,则16160,022x x y y ++==, 252534340,0,0,02222x x y y x x y y ++++==== 则1616252534340,0,0,0,0,0x x y y x x y y x x y y +=+=+=+=+=+=,即()61i i i x y =+=∑()3000⨯+=,故选:A .例4-2(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36 【答案】C 【分析】根据题意可得函数()f x是周期为4,关于点(4,0)中心对称的函数,再将函数()()()4y k x=与()4=-的交点的横坐标,又函数=--的所有零点转化为()y f xg x f x k x()4=-经过定点(4,0),且关于(4,0)中心对称,在坐标系中作出草图,根据数形结合y k x即可求出结果.【详解】∵定义在R上的奇函数()=-,故图象关于1f x f x2f x满足()()x=对称,∴()()2+=-,f x f x--=-,故()()2f x f x∴()()()f x f x f x+=-+=,即周期为4,42又()f x一个对称中心,f x定义在R上的奇函数,所以(4,0)是函数()又因为当[]=,作出函数()f x的草图,如下:f x xx∈-时,()31,1函数()()()4=与()4y k x=-的交点的横坐标,y f xg x f x k x=--的所有零点即为()易知函数()4=-经过定点(4,0),且关于(4,0)中心对称,y k x又1335k <<,分别作出函数()143y x =-和()345y x =-的图象,则函数()4y k x =-的图象在函数()143y x =-和()345y x =-的图象之间,如下图所示:则()y f x =与()4y k x =-交点关于(4,0)中心对称,由图像可知关于(4,0)对称的点共有3对,同时还经过点(4,0),所以1324428ni i x ==⨯⨯+=∑.故选:C.类型五、等高线的使用例5-1.(2021·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________. 【答案】[)3,10/310a b c ≤++<【分析】根据题意,作出函数()y f x =图象,数形结合即可求解.根据题意,作出函数()y f x =图象,令()()()f a f b f c t ===,可知函数()y f x =图象与y t =的图象有三个不同交点,由图可知01t ≤<.因a 、b 、c 互不相等,故不妨设a b c <<,由图可知1212a b +=⨯=.当01t <<,时()8log 1c t -=,因01t <<,所以118c <-<,即29c <<,故310a b c <++<; 当0t =时,2c =,故3a b c ++=. 综上所述,310a b c ≤++<. 故答案为:[)3,10.例5-2(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫⎪⎝⎭【答案】A根据分段函数解析式研究()f x 的性质,并画出函数图象草图,应用数形结合及题设条件可得123412345x x x x <<<<<<<<、348x x +=、12(1)(1)1x x --=,进而将目标式转化并令11121t x x =-+,构造1()21g x x x =-+,则只需研究()g x 在3(,2)2上的范围即可. 【详解】由分段函数知:12x <≤时()(,0]f x ∈-∞且递减;23x <≤时()[0,1]f x ∈且递增;34x <<时,()(0,1)f x ∈且递减;4x ≥时,()[0,)f x ∈+∞且递增;∴()f x 的图象如下:()f x a =有四个实数根1x ,2x ,3x ,4x 且1234x x x x <<<,由图知:01a <<时()f x a =有四个实数根,且123412345x x x x <<<<<<<<,又348x x +=, 由对数函数的性质:121212(1)(1)()11x x x x x x --=-++=,可得21111x x =-, ∴令()3411122111112214x x x x x t x x x ++=+=-+=,且1322x <<, 由1()21g x x x=-+在3(,2)2上单增,可知31()21(2)2g x g x<-+<,所以10932t <<故选:A.例5-3(2021·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( ) ①()0,1m ∈;②()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ③函数()y f x x m =--恰有三个零点.A .①②B.①③C.②③D.①②③ 【答案】D 【分析】①将问题转化为直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,观察图像可得答案;②设a b c d <<<,则可得2a b +=-, ()1ln 1ln c d -+=+,根据关系代入a b c d +++求值域即可;③函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,关注1m =和0m =时的交点个数即可得答案根据图像可得答案. 【详解】解:函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩的图像如图:()()()()f f b f d a c f m ====,即直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,故()0,1m ∈,①正确;()()()()f f b f d a c f m ====,不妨设a b c d <<<,则必有2a b +=-, ()1ln 1ln c d -+=+,ln ln 2d c ∴+=-,则2e c d-=,且11e d << 2e c d d d-∴++=,由对勾函数的性质可得函数2e y x x -=+在1,1e ⎛⎫ ⎪⎝⎭上单调递增,()2122e ,e 1e dc d d ---∴+=∈++,()1222,1a b c d e e --∴+++∈--,②正确;函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,如图当1m =时,函数()y f x =与y x m =+的图像有3个交点, 当0m =时,研究y x =与1ln y x =+是否相切即可,1y x'=,令1y '=,则1x =,则切点为()1,1,此时切线方程为11y x -=-,即y x =, 所以y x =与1ln y x =+图像相切,此时函数()y f x =与y x m =+的图像有3个交点, 因为()0,1m ∈,故函数()y f x =与y x m =+的图像恒有3个交点, 即函数()y f x x m =--恰有三个零点,③正确.故选:D. 【点睛】关键点点睛:将函数的零点问题转化为图像的交点问题,可以使问题更加直观,并方便解答.例5-4.(2021·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1B .2C .3D .4 【答案】ABC 【分析】在同一平面直角坐标系中作出(),y f x y m ==的函数图象,根据图象有3个交点确定出123,,x x x 的关系,所以可将方程转化为()3315(ln 21)n x x -+=-,然后构造函数()()()ln 21g x x x =+-并分析()g x 的单调性确定出其值域,由此可求解出n 的取值范围,则n 的值可确定.【详解】在同一平面直角坐标系中作出(),y f x y m ==的函数图象如下图所示:当1x ≤时,()2333y x =-++≤,当1x >时,ln 11y x =+>,所以由图象可知:()1,3m ∈时关于x 的方程()f x m =恰有三个不同实数解,又()221223236,ln 625x x x x x ++=⨯-=+-=--,所以()()()121223323ln 2)5651(16n x x x x x x x -+=+++-=-, 又因为()1,3m ∈,所以()3ln 11,3x +∈,所以()231,e x ∈ , 设()()()()()2ln 211,e g x x x x =+-∈,所以()1ln 3g x x x'=-+,显然()g x '在()21,e 上单调递增,所以()()120g x g ''>=>,所以()g x 在()21,e 上单调递增,所以()()()()21,e g x g g ∈,即()()20,4e 4g x ∈-, 所以()1250,4e 4n -∈-,所以n 可取1,2,3 故选:ABC.类型六、嵌套函数零点例6-1.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个 【答案】C 【详解】函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩的图象如图所示,由()()102y f f x =-=,得()()12f f x =,令()f x t =,则1()2f t =,当0t ≤时,1322t +=,得12t =-,当0t >时,1lg 2t =,则t所以当12t =-时,1()2f x =-,由图象可知方程有两个实根,当 =t ()f x =,由图象可知,方程有1个实根,综上,方程()()12f f x =有3个实根,所以函数()()12y f f x =-的零点个数为3,故选:C例6-2.(2021·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x=-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________. 【答案】3ln3- 【分析】设()f x t =,则根据题意得2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <,故122t t +=,212t t =-,再结合()f x 的图象可得1221x x e t ==,3212x t t ==-,101t <<,进而1231122ln 34x x x t t -+=-+,再构造函数()()ln 34,01h t t t t =-+<<,分析函数的单调性,求得最大值. 【详解】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根,即2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,方程1()f x t =或2()f x t =有三个不等实根123,,x x x ,且123x x x <<, 作出图象如图所示:那么1221x x e t ==,可得3212x t t ==-,101t <<, 所以1231122ln 34x x x t t -+=-+,构造新函数()()ln 34,01h t t t t =-+<<,则13()t h t t-'=,所以()h t 在10,3⎛⎫ ⎪⎝⎭上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,所以max 1()3ln 33h t h ⎛⎫==- ⎪⎝⎭,所以12322x x x -+的最大值为3ln3-. 故答案为:3ln3-.例6-3(2021·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________. 【答案】(]01,.【分析】令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =,采用数形结合法即求. 【详解】函数()g x 的零点即为方程()0g x =的解,令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =的图象,由图象可知,当1t>时,有唯一的x与之对应;当1t≤时,有两个不同的x与之对应.由方程组()()t f xf t a=⎧⎪⎨=⎪⎩,①②有三个不同的x知,需要方程②有两个不同的t,且一个1t>,一个1t≤,结合图象可知,当(]01a∈,时,满足一个(]10t∈-,,一个(]12t∈,,符合要求,综上,实数a的取值范围为(]01,.故答案为:(]01,.例6-4. 已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意结合函数的图形将原问题转化为二次方程根的分布的问题,据此得到关于a的不等式组,求解不等式组即可.【详解】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得: .即 的取值范围是.类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x xax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3B .(]1,3C .[]1,3D .[)3,+∞【解析】(1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,令2x -πsin x=0,得2,0π==x x ,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)【答案】B 【解析】由题意得()221362f x x ax a a'=+++()0a >, 因为()f x 有极值,所以()2213620f x x ax a a'=+++=有2个不等实根,即()222116432120a a a a a ⎛⎫⎛⎫∆=-⨯⨯+=-> ⎪ ⎪⎝⎭⎝⎭,即310a a->, 因为0a >,解得1a >.令()()()2213620h x f x x ax a a a '==+++>,由()660h x x a '=+=得x a =-,设()f x 的极值点为1x ,2x ,则1x ,2x 为方程()2213620f x x ax a a'=+++=的根,则122x x a +=-,2122133a x x a=+, 因为()()3223221211122211321321f x f x x ax a x x ax a x a a ⎛⎫⎛⎫+=+++++++++ ⎪ ⎪⎝⎭⎝⎭()()()()3221212121212121336220x x x x x x a x x ax x a x x a ⎛⎫=+-+++-++++= ⎪⎝⎭,所以()()()2121263f x f x f a a a '++-=-+≥-, 令()()211g a a a a =-+>,易得()g a 在()1,+∞上单调递减,且()2633g =-,所以31≤<a . 故选:B.例7-2已知函数()ln()(0)x a f x e x a a -=-+>. (1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.【答案】(1)证明见解析;(2)12(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明()'f x 在(0,)+∞上存在唯一的零点即可;(2)根据导函数零点0x ,判断出()f x 的单调性,从而()min f x 可确定,利用()min 1f x =以及1ln y x x=-的单调性,可确定出0,x a 之间的关系,从而a 的值可求. 【详解】(1)证明:∵()ln()(0)x a f x e x a a -=-+>,∴1()x af x e x a-'=-+. ∵x a e -在区间(0,)+∞上单调递增,1x a+在区间(0,)+∞上单调递减, ∴函数()'f x 在(0,)+∞上单调递增.又1(0)a aaa e f e a ae--'=-=,令()(0)a g a a e a =->,()10ag a e '=-<, 则()g a 在(0,)+∞上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+ 所以函数()'f x 在(0,)+∞上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得()00010x af x ex a-'=-=+,即001x a e x a-=+(*). 函数1()x af x e x a-'=-+在(0,)+∞上单调递增. ∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.∴()()0min 00()ln x af x f x e x a -==-+.由(*)式得()()min 0001()ln f x f x x a x a==-++. ∴()001ln 1x a x a-+=+,显然01x a +=是方程的解. 又∵1ln y x x =-是单调递减函数,方程()001ln 1x a x a -+=+有且仅有唯一的解01x a +=, 把01x a =-代入(*)式,得121a e -=,∴12a =,即所求实数a 的值为12.【方法总结】类型一:化为一元二次函数得零点问题 类型二:复杂函数得零点思想:①先设后求、设而不求②与零点存在性定理结合使用步骤:(1)用零点存在性定理判定导函数零点的存在性,列出零点方程f(x 0)=0,并结合f(x)的单调性得到零点的取值范围.(2)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围. 【答案】(],2-∞.解:原不等式等价于()()ln 21xxe x x b x -+≥-+,即ln 1x xe x x bx +--≥,在()0,x ∈+∞上恒成立,等价于ln 1x xe x x b x +--≥,在()0,x ∈+∞上恒成立,令()ln 1x xe x x t x x +--=,()0,x ∈+∞,∴()22ln x x e xt x x+'=, 令()2ln xx x e x ϕ=+,则()x ϕ为()0,∞+上的增函数,又当0x →时,()x ϕ→-∞,()10e ϕ=>,∴()x ϕ在()0,1存在唯一的零点0x ,即0020e n 0l xx x +=,由0001ln 2000000ln 1ln 0ln x x x x x e x x e e x x ⎛⎫+=⇔=-= ⎪⎝⎭,又有x y xe =在()0,∞+上单调递增, ∴0001ln ln x x x ==-,001x e x =,∴()()00000min 0ln 12x x e x x t x t x x +--===⎡⎤⎣⎦, ∴2b ≤,∴b 的取值范围是(],2-∞.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.【答案】(1)答案见解析;(2)()g x 只有一个零点,理由见解析.(1)求出导数()'f x ,按a 分类讨论确定()'f x 的正负,得函数的单调性;(2)求出导函数()'g x ,对其中一部分,设()1e xh x x=-(0x >),用导数确定它的零点0(0,1)x ∈,这样可确定()g x 的单调性与极值,然后结合零点存在定理确定结论. 【详解】(1)()f x 的定义域为R ,()()()()2222e 2e 2e x x xx x x a f x a x =-+-+=+-',当2a ≥时,()0f x '≥,则()f x 在R 上是增函数;当2a <时,()(2(2)e e xx x a x x f x ⎡⎤=--=⎣⎦',所以()0x f x =⇔='()0x f x >⇔<'或x > ()0f x x ⇔<'<所以()f x 在(上是减函数,在(,-∞和)+∞上是增函数.(2)当1a =时,()()2211e ln 2xg x x x x =--+,其定义域为()0,∞+,则()()()1e 11x g x x x x '=+--⎛⎫⎪⎝⎭.设()1e xh x x =-(0x >),则()21e 0xh x x'=+>,从而()h x 在()0,∞+上是增函数,又1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->, 所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0x h x x =-=,即001e x x =,00ln x x =-. 列表如下:由表格,可得()g x 的极小值为()12g =-;()g x 的极大值为()()022222000000000002111111e ln 2222x x x g x x x x x x x x x -+=--+=--=-+-因为()0g x 是关于0x 的减函数,且01,12x ⎛⎫∈ ⎪⎝⎭,所以()03128g x -<<-,所以()g x 在(]0,1内没有零点.又()1102g =-<,()22e 2ln 20g =-+>,所以()g x 在()1,+∞内有一个零点. 综上,()g x 只有一个零点.类型八、隐零点之极值点偏离类型一、目标与极值点相关 思想:偏离−−→−转化对称步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数 类型二、目标与极值点不相关步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2021·江苏高三开学考试)已知函数()ln a f x x x=+(a ∈R )有两个零点.(1)证明:10ea <<.(2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)首先求出导函数,当0a ≤时显然不成立,当0a >时求出函数的单调区间,即可得到函数的极小值()f a ,依题意()0f a <,即可求出参数a 的取值范围;(2)由(1)可得120x a x <<<,设()()()2g x f a x f x =--,求出函数的导函数,即可得到122x x a +>,(3)由(1)可得120x a x <<<,再设21x tx =,1t >,则1221ln ln x x t x x ==,则()()12ln 1ln ln 1t t x x t t t +⎛⎫+=- ⎪-⎝⎭,再利用导数说明()ln 1th t t =-的单调性,即可得到121x x +<,从而得证; 【详解】(1)证明:由()ln af x x x=+,0x >,可得()21af x x x '=-,0x >.当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,与题意不符.当0a >时,令()210af x xx '=-=,得x a =. 当()0,x a ∈时,()0f x '<,()f x 单调递减;当(),x a ∈+∞时,()0f x '>,()f x 单调递增.可得当x a =时,()f x 取得极小值()ln 1f a a =+.又因为函数()ln a f x x x=+有两个零点,所以()n 10l a f a =+<,可得1e a <.综上,10ea <<.(2)解:由上可得()f x 的极小值点为x a =,则120x a x <<<.设()()()()l 2ln 22n a ag x f a x f x a x a x xx =--=-+---,()0,x a ∈, 可得()()()()222224110222a x a a ag x a x x x a x x a x ---'=--+=>---,()0,x a ∈,所以()g x 在()0,a 上单调递增,所以()()0g x g a <=,即()()20f a x f x --<,则()()2f a x f x -<,()0,x a ∈,所以当120x a x <<<时,12a x a ->,且()()()1122f a x f x f x -<=.因为当(),x a ∈+∞时,()f x 单调递增,所以122a x x -<,即122x x a +>.(3)由(1)可得120x a x <<<,设21x tx =,1t >,则1122ln 0,ln 0,a x x a x x ⎧+=⎪⎪⎨⎪+=⎪⎩则1221ln ln x x t x x ==,即()1211ln ln ln ln ln x t x t tx t x t ===+.所以1ln ln 1t tx t =--, 所以()()()()()1211ln 1ln ln ln ln 1ln ln 1ln 111t t tt x x x t x t t t t t t ⎛⎫++=+=++=-++=- ⎪--⎝⎭.又因为()ln 1th t t =-,则()()211l n 01t t h t t --'=<-,所以()h t 在()1,+∞上单调递减,所以()ln 1ln 1t t t t +<-,所以()12ln 0x x +<,即12 1.x x +<综上,1221a x x <+<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π. 【解析】 (1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,当x∈⎝ ⎛⎭⎪⎫0,π2时,设h(x)=2x -πsin x ,h′(x)=2-πcos x ,显然h′(x)单调递增,而h′(0)<0,h′⎝ ⎛⎭⎪⎫π2>0,由零点存在性定理知,存在唯一的x 0∈⎝ ⎛⎭⎪⎫0,π2,使得h′(x 0)=0.当x∈(0,x 0)时,h′(x)<0,h(x)单调递减,当x∈⎝ ⎛⎭⎪⎫x 0,π2时,h′(x)>0,h(x)单调递增,而 h(0)=0,h ⎝ ⎛⎭⎪⎫π2=0,故x∈⎝ ⎛⎭⎪⎫0,π2,h(x)<0,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)证明:依题意得x 1∈⎝ ⎛⎭⎪⎫0,π2,x 2∈⎝ ⎛⎭⎪⎫π2,+∞,f(x 1)=f(x 2), 构造函数F(x)=f(x)-f(π-x),x∈⎝⎛⎭⎪⎫0,π2,F′(x)=f′(x)+f′(π-x)=2π-2πsin x >0,即函数F(x)单调递增,所以F(x)<F ⎝ ⎛⎭⎪⎫π2=0,即当x∈⎝⎛⎭⎪⎫0,π2时,f(x)<f(π-x),而x 1∈⎝ ⎛⎭⎪⎫0,π2,所以f(x 1)<f(π-x 1),又f(x 1)=f(x 2),即f(x 2)<f(π-x 1),此时x 2,π-x 1∈⎝ ⎛⎭⎪⎫π2,+∞. 由(1)可知,f(x)在⎝ ⎛⎭⎪⎫π2,+∞上单调递增,所以x 2<π-x 1,即x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当12()()f x f x =12()x x ≠时,120x x +<【解析】解: (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=((( ;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,()y f x =在0]-∞在(,上单调递增;在[0x ∈+∞,)上单调递减. (Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。

2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。

若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。

2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。

例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。

分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。

二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数零点的求法及零点的个数题型1:求函数的零点。

[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根 [解析]令 32220x x x --+=,∴2(2)(2)x x x ---= ∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或 即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。

方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得372a -±=①当 372a --=时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

③当()y f x =在[]1,1-上有两个零点时,则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩或()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩解得5a ≥或352a --<综上所求实数a 的取值范围是 1a > 或352a --≤。

[反思归纳]①二次函数、一元二次方程和一元二次不等式是一个有机的整体,也是高考热点,要深刻理解它们相互之间的关系,能用函数思想来研究方程和不等式,便是抓住了关键. ②二次函数2()f x ax bx c =++的图像形状、对称轴、顶点坐标、开口方向等是处理二次函数问题的重要依据。

考点3 根的分布问题[例5] 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围[解题思路]由于二次函数的图象可能与x 轴有两个不同的交点,应分情况讨论[解析](1)若m=0,则f (x )=-3x+1,显然满足要求.(2)若m ≠0,有两种情况:原点的两侧各有一个,则⇒⎪⎩⎪⎨⎧<=>--=0104)3(212m x x m m Δm <0;都在原点右侧,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+≥--=,01,023,04)3(21212m x x m m x x m m Δ解得0<m ≤1,综上可得m ∈(-∞,1]。

[反思归纳]二次方程根的分布是高考的重点和热点,需要熟练掌握有关二次方程ax2+bx+c=0(a≠0)的根的分布有关的结论:①方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a·f(r )<0.②二次方程f (x )=0的两根都大于r ⎪⎪⎩⎪⎪⎨⎧>⋅>->-=⇔.0)(,2,042r f a r a b ac b Δ③二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=⇔.0)(,0)(,2,042p f a q f a q a b p ac b Δ④二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f(q )<0,或f (p )=0,另一根在(p ,q )内或f (q )=0,另一根在(p ,q )内.⑤方程f (x )=0的两根中一根大于p ,另一根小于q (p <q )⎩⎨⎧>⋅<⋅⇔.0)(,0)(q f a p f a (二)、强化巩固训练 1、函数()221f x mx x =-+有且仅有一个正实数的零点,则实数m 的取值范围是( )。

A .(],1-∞;B .(]{},01-∞;C .()(],00,1-∞;D .(),1-∞[解析] B ;依题意得(1)⎪⎩⎪⎨⎧<>--=∆>0)0(04)2(02f m m 或(2)⎪⎩⎪⎨⎧>>--=∆<0)0(04)2(02f m m 或(3)⎩⎨⎧=--=∆≠04)2(02m m 显然(1)无解;解(2)得0<m ;解(3)得1=m又当0=m 时12)(+-=x x f ,它显然有一个正实数的零点,所以应选B 。

2、方程223x x -+=的实数解的个数为_______ 。

[解析] 2;在同一个坐标系中作函数xy )21(=及32+-=x y 的图象,发现它们有两个交点故方程223x x -+=的实数解的个数为2。

3、已知二次函数22()42(2)21f x x p x p p =----+,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p 的取值范围是_________。

[解析] (-3,23) 只需2(1)2290f p p =--+>或2(1)210f p p -=-++>即-3<p <23或-21<p <1.∴p ∈(-3, 23)。

4、设函数321()2x y x y -==与的图象的交点为00(,)x y ,则0x 所在的区间是( )。

A.(0,1)B.(1,2)C.(2,3)D.(3,4) 答案B 。

5、若方程2(2)210x k x k +-+-=的两根中,一根在0和1之间,另一根在1和2之间,求实数k的取值范围。

[解析]1223k <<;令12)2()(2-+-+=k x k x x f ,则依题意得⎪⎩⎪⎨⎧><>0)2(0)1(0)0(f f f ,即⎪⎩⎪⎨⎧>-+-+<-+-+>-01242401221012k k k k k ,解得1223k <<。

(三)、小结反思:本课主要注意以下几个问题:1.利用函数的图象求方程的解的个数;2.一元二次方程的根的分布;3.利用函数的最值解决不等式恒成立问题 。

补充题:1、定义域和值域均为[-a,a] (常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1) 方程f[g(x)]=0有且仅有三个解; (2) 方程g[f(x)]=0有且仅有三个解;(3) 方程f[f(x)]=0有且仅有九个解; (4)方程g[g(x)]=0有且仅有一个解。

那么,其中正确命题的个数是( )。

A . 1; B. 2; C. 3; D. 4。

[解析] B ;由图可知,][)(a a x f ,-∈,][)(a a x g ,-∈,由左图及f[g(x)]=0得]2[)(1a a x x g --∈=,,]02[)(2,ax x g -∈=,2)(ax g =,由右知方程f[g(x)]=0有且仅有三个解,即(1)正确;由右图及g[f(x)]=0得)2()(0a ax x f ,∈=,由左图知方程g[f(x)]=0有且仅有一个解,故(2)错误;由左图及f[f(x)]=0得]2[)(1aa x x f --∈=,,]02[)(2,a x x f -∈=,2)(ax f =,又由左图得到方程f[f(x)]=0最多有三个解,故(3)错误;由右图及g[g(x)]=0得)2()(0a ax x g ,∈=,由右图知方程g[g(x)]=0有且仅有一个解,即(4)正确,所以应选择B2、已知关于x 的二次方程22210x mx m +++=。

(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围。

(2)若方程两根均在区间(0,1)内,求m 的范围。

[解析](1)条件说明抛物线2()221f x x mx m =+++与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组 y y =f ( a yy =g (a⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m<1是因为对称轴x=-m 应在区间(0,1)内通过) 即解得1122m -<≤-.∴1,122m ⎛⎤∈-- ⎥⎝⎦.。

相关文档
最新文档