高中数学常见题型解法归纳 函数的零点个数问题的求解方法

合集下载

2018年高考数学常见题型解法归纳反馈训练第13讲函数的零点个数问题的求解方法

2018年高考数学常见题型解法归纳反馈训练第13讲函数的零点个数问题的求解方法

第13讲 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <g ,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a =+--+区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =L .(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案422510152025oy=cosxy=lgxyx【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=- 令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x] ] 极小值ZZ极大值]因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

函数的零点问题

函数的零点问题

函数的零点问题函数的零点问题是数学中的重要概念,也是不少学生学习数学时比较困难的部分。

本文将对函数的零点问题进行深入阐述,包括其定义、求解方法和实际意义等方面的内容,希望对读者加深对这一概念的理解。

一、定义在数学中,函数的零点指的是函数图像与x轴交点的横坐标。

也就是说,对于函数f(x),它的零点是指f(x)=0的x值。

经常把求解函数零点问题转换为求解方程f(x)=0的根。

二、求解方法求解函数的零点,关键是求解方程f(x)=0的根。

对于一些形式简单的函数,可以通过手工计算求解;而对于形式复杂、无法手工求解的函数,可以借助计算机等工具进行数值求解。

1.手工计算法手工计算法求解函数零点问题,需要掌握函数的性质和一些基本的求解方法。

以下是几种常见的方法:(1)代数法对于一些形如ax+b=0的方程,可以通过一些基本的代数运算来求解。

比如:对于f(x)=2x-3,要求f(x)=0的解,就要解方程2x-3=0,得到x=3/2。

对于f(x)=x^2-4,要求f(x)=0的解,就要解方程x^2-4=0,得到x=±2。

对于f(x)=x^3+2x^2-x-2,设f(x)=(x-a)(x^2+bx+c),化简得到a=-1,b=1,c=-2,然后再利用求根公式进行求解。

(2)图像法对于一些简单的函数,可以通过画出函数图像来求解零点。

具体方法是,在坐标系中画出函数f(x)的图像,根据图像与x轴的交点所在的位置和数量来求解零点。

例如:对于f(x)=x^2-1,画出函数图像后可以看出函数有两个零点,即x=1和x=-1。

对于f(x)=sinx,画出函数图像后可以看出函数有无数个零点,它们分别在x=nπ(其中n为整数)处。

(3)因式分解法对于一些可以因式分解的函数,可以通过将其因式分解后再求解。

例如:对于f(x)=x^2-4x+3,将其因式分解为(x-1)(x-3),得到函数的两个零点分别为1和3。

对于f(x)=x^3-3x^2+2x,将其因式分解为x(x-1)(x-2),得到函数的三个零点分别为0、1和2。

高考复习专题函数零点的求法及零点的个数

高考复习专题函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1] 求函数2223+--=x x x y 的零点.[解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根 [解析]令 32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴11x x x=-==或或 即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2] 求函数f(x)=lnx +2x -6的零点个数.[解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数[解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。

方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y xy x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围[例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论 [解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=,解得372a -±=①当372a --=时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

零点个数怎么求

零点个数怎么求

零点个数怎么求①解方程:通过解方程 f(x)=0 得到零点;②数形结合:这是经常用到的分析方法,特别是选填题中得到广泛应用;③零点存在定理:用零点存在定理来确定某区间是否有零点,这是解答题中的重要方法;④求零点个数:求零点个数时,就要判断每个单调区间,同时还要判断个单调区间的零点存在性.而具体解答题的过程中,我们也会遇到函数较复杂,先将复杂问题转化为简单问题,再选择合适的方法来求零点.我们来看一个具体的例子.【例1】(2018全国2卷文数21-2)已知函数f(x)=\frac{1}{3}x^3-a(x^2+x+1),证明: f(x) 只有一个零点.【分析】 f(x) 是一个含参的三次函数,貌似是一个三次函数求零点个数问题,但是带着参数问题就变复杂了,所以这个时候可以转化一下,分离参数为求: a=\frac{x^3}{3(x^2+x+1)} 的解个数问题.进一步转化为函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.【解析】因为 x^2+x+1>0 恒成立.所以 f(x) 零点个数等价于函数函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.先判断 g(x) 单调性,用导数法:g'(x)=\frac{3x^2(x^2+x+1)-x^3(2x+1)}{3(x^2+x+1)^2}=\frac{x^2(x^2+2x+3)}{3(x^2+x+ 1)^2}\geq0 ,当且仅当 x=0 时 g'(x)=0 ,g(x) 单调递增.所以 g(x) 至多有一个零点,从而 f(x)至多有一个零点.又因为 f(3a+1)=\frac{1}{3}>0 , f(3a-1)=-6a^2+2a-\frac{1}{3}=-6(a-\frac{1}{6})^2-\frac{1}{6}<0 ,所以 f(x) 恰有一个零点.【小结】分离参数读者们应该还好理解,为什么要选择f(3a+1),f(3a-1) 就是一脸懵了.这属于找点的内容(内点定理),我们后面专门花章节来讲解这个内容.我们还是先理解零点存在定理的应用.本节我们重点讲解求零点个数问题的求法,近年高考也是热点题型,也是我们零点问题将面临的重点问题.【例2】(2019全国2卷理数20-1改编)已知函数f(x)=lnx-\frac{x+1}{x-1} ,求 f(x) 的零点个数.【分析】求零点个数问题,我们要求函数的单调区间,然后判断每一个单调区间的零点存在性.【解析】 f(x) 定义域为 (0,1)\cup(1,+\infty) ,而f(x)=lnx-1-\frac{2}{x-1} ,由和差法: y=lnx 和 y=-\frac{1}{x-1} 在(0,1)\cup(1,+\infty)上都是单调递增了,所以 f(x) 在(0,1)\cup(1,+\infty)单调递增;在 (0,1) 上 f(x) 单调递增,当 \frac{1}{3}<x<1 时,f(x)>f(\frac{1}{3})=\frac{2}{1-\frac{1}{3}}-1-ln3>\frac{2}{1-\frac{1}{3}}-3=0 ,当 0<x<\frac{1}{e^2} 时,f(x)<f(\frac{1}{e^2})=\frac{2}{1-\frac{1}{e^2}}-3<\frac{2}{1-\frac{1}{3}}-3=0 ,由零点存在定理和单调性, f(x) 在 (0,1) 有唯一零点,在 (1,+\infty) 上 f(x) 单调递增,当 1<x<3 时, f(x)<f(3)=ln3-2<0 ,当 x>e^2 时, f(x)>f(e^2)=1-\frac{2}{e^2-1}>1-\frac{2}{3-1}=0 ,所以 f(x) 在 (1,+\infty)有唯一零点.综上, f(x) 在定义域上有两个零点.【例3】(2019全国1卷文数20-1改编)已知函数h(x)=cosx+xsinx-1 ,证明: h(x) 在区间 (0,\pi) 存在唯一零点.【分析】让我确定零点个数,需要结合单调区间和零点存在定理来证明.【解析】给定了定义域区间为 (0,\pi) ,用导数法判断单调性: h'(x)=xcosx ,判正负区间: h'(x) 正负区间同 y=cosx ,易知在(0,\frac{\pi}{2}) 上 h'(x)>0,h(x) 单调递增;在(\frac{\pi}{2},\pi) 上, h'(x)<0,h(x) 单调递减.而 h(0)=0,h(\frac{\pi}{2})=\frac{\pi}{2}-1>0,h(\pi)=-2<0 ,由零点存在定理和单调性,所以在(0,\frac{\pi}{2})上 h(x) 无零点,在 (\frac{\pi}{2},\pi) 上有唯一零点.得证.【例4】(2015全国1卷文书21-1)设函数 f(x)=e^{2x}-alnx .讨论 f(x) 的导函数 f'(x) 零点的个数.【分析】先求出 f'(x) 及定义域,通过判断 f'(x) 单调性和零点存在性来确定零点个数.【解析】 f'(x)=2e^{2x}-\frac{a}{x}(x>0) .①当 a\leq0 时,显然 f'(x)>0 恒成立,无零点.②当 a>0 时,判断 f'(x) 的单调性,用和差法:y=2e^{2x},y=-\frac{a}{x} 都是在 (0,+\infty) 上的单调递增函数,所以 f'(x) 单调递增.当 x>max(1,\frac{a}{2e^2}) 时, f'(x)>2e^2-2e^2=0 ,当 x<min(1,\frac{a}{2e^2}) 时, f'(x)<2e^2-2e^2=0 ,所以此时 f'(x) 有唯一零点,综上,当 a\leq0 , f'(x) 无零点,当 a>0 时,有唯一零点.【例5】(2015广东理数19-2)设 a>1 ,函数f(x)=(1+x^2)e^x-a .证明 :f(x) 在 (-\infty,+\infty) 上仅有一个零点.【分析】还是求零点个数问题,用单调性+存在性来求解.【解析】 f(x) 的单调性,用求导法:f'(x)=e^x(x+1)^2\geq0 ,当且仅当 x=-1 时, f'(x)=0 ,所以 f(x) 是定义域上的单调递增函数.当 x>lna 时, f(x)>f(lna)>0 .当 -\sqrt{e-1}<x<-1 时,f(x)<\frac{e}{e}-a<0 ,由零点存在性定理及单调性,得证::f(x) 在 (-\infty,+\infty) 上仅有一个零点.【总结】通过上面五题,是否明白求解零点个数问题的基本方法,如果遇到复杂函数,分参转化为新函数的零点个数问题不失为一种思路;具体求解过程,先判断函数的单调性,再确定每个单调区间函数的零点存在性.但是对于开区间上零点的存在,往往很难通过取点来确定函数值的符号,我们也不容易用极限的思想来解释。

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧函数零点是指函数取值为零的点,即f(x)=0的解。

在高中数学、大学数学以及各类数学竞赛中,函数零点常见的题型有很多种,这里我们将从题型归纳与解题技巧两方面进行探讨。

一、题型归纳1. 求解一元函数零点:例如求解f(x) = x^3-2x^2-x+2=0的零点。

2. 求解二元函数零点:例如求解f(x,y) = x^2+y^2-1=0的零点。

3. 求解多项式方程零点:例如求解f(x) = x^3-x^2+2x-2=0的零点。

4. 求解参数方程零点:例如求解x(t) = t^2-t+2,y(t) =t^3-t^2+2t-2,求解当f(x,y)=0时对应的参数t。

5. 利用零点求解函数的性质:例如已知f(x)的零点及其性质,求解f'(x)或f''(x)的零点。

6. 证明存在或不存在零点:例如证明函数f(x)在区间(a,b)上存在唯一零点。

二、解题技巧1. 分类讨论:对于不同的函数类型,采用不同的方法求解零点。

例如线性函数、二次函数、三次函数、对数函数等,都有相应的求解方法。

2. 利用代数方法:通过代数运算,将原方程转化为容易求解的方程。

例如将原方程化为因式分解的形式,利用韦达定理等。

3. 利用几何方法:将方程与几何图形进行关联,求解图形的相交点即为零点。

例如将方程与直线、圆、椭圆、抛物线等几何图形关联起来。

4. 利用数学分析方法:利用微积分知识,如导数、二分法、牛顿法等,求解零点。

例如,求解f'(x)=0的零点,可以找到函数的拐点;二分法则多用于求解逼近零点。

5. 利用数值方法:通过计算机进行数值逼近求解零点。

例如求解非线性方程组零点时,可以采用牛顿法、拟牛顿法等。

6. 利用泰勒展开:对于非常复杂的函数,可以考虑将其在某一点附近进行泰勒展开,将高次函数近似为低次函数(如线性、二次),再求解零点。

7. 利用解析几何方法:通过解析几何知识,求解平面或空间上的几何问题。

微专题 函数零点个数有关问题的处理

微专题 函数零点个数有关问题的处理

微专题:函数零点个数有关问题的处理一.知识点:h (x )=f (x )-g (x )的零点等价于方程f (x )-g (x )=0的根,等价于函数y =f (x )与y =g (x )图象的交点的横坐标。

二、处理方法已知函数零点的个数求参数范围,常利用数形结合法将其转化为两个函数的图象的交点个数问题,需准确画出两个函数的图象,利用图象写出满足条件的参数范围.通常情况下:f (x )要可画或知道其单调性走向,g (x )为常数函数或过定点的直线或常见函数.三、新课讲授类型一:右边为常数形【例1】若方程f (x )=|3x -1|-k 有一零点,则k 的取值范围为________.【思考】有两个零点呢?没有零点呢?【例2】若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是________.【例3】已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.类型二:右边为直线形【例4】若函数f (x )=|2x -1|+ax -5(a 是常数,且a ∈R )恰有两个不同的零点,则a 的取值范围为________.【例5】已知函数f (x )=⎩⎪⎨⎪⎧ 1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是________.【例6】已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是________.类型三:右边为其它曲线形【例7】已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有 对类型四:复合函数形【例8】已知函数f (x )=⎩⎪⎨⎪⎧e |x -1|,x >0-x 2-2x +1,x ≤0,若关于f (x )的方程[f (x )]2-3f (x )+a =0(a ∈R )有8个不等的实数根,则a 的取值范围是_______.【思考1】若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.【思考2】已知函数f (x )=⎩⎪⎨⎪⎧x 2-3x (x ≥0),-e -x +1(x <0),则方程|f (x )-1|=2-c (c 为常数且c ∈(-1,0))的不同的实数根的个数为________.【思考3】若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.【思考4】已知函数f (x )=⎩⎪⎨⎪⎧ x 2+x -94,x ≤0,x -2,x >0.若方程f (x )=a 有两个不相等的实数根,则实数a 的取值范围是________.【思考5】已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R),若函数f (x )在R 上有两个零点,则实数a 的取值范围是________.【思考6】若函数()(0)f x a a =≠存在零点,则a 的取值范围是_______.【思考7】已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.。

高考数学-函数零点问题及例题解析

高考数学-函数零点问题及例题解析

1函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:二分法:对于在区间对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二的零点所在的区间一分为二,,使区间的两个端点逐步逼近零点使区间的两个端点逐步逼近零点,,进而得到零点的近似值的方法叫做二分法值的方法叫做二分法; ;二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间在区间[a,b][a,b][a,b]上的图象是连续不断的一上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(在区间(a,b a,b a,b)内有零点,即存在)内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点间上是否有零点(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)(或方程在某个区间上是否有根)时,时,一定要注意该定理是函数存在零点的充分不必要条件:如分不必要条件:如例、函数x x x f 2)1ln()(-+=的零点所在的大致区间是(的零点所在的大致区间是() (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析

高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

相关文档
最新文档