运筹学 第六章 整数规划 第一讲 整数规划数学模型与纯整数规划的求解

合集下载

《运筹学整数规划》课件

《运筹学整数规划》课件

应用案例
生产调度问题的整数规划 模型
交通流优化问题的整数规 划模型
使用整数规划解决生产调度问题, 提高生产效率和资源利用率。
应用整数规划优化交通流,实现 道路拥堵疏导和交通效率提升。
建模思路与求解过程的演示
分享一个实际问题的建模思路和 整数规划的求解过程。
总结
整数规划的意义和局限性
总结整数规划在实际问题中的意义和局限性,并思考其未来发展方向。
求解方法与难点
介绍整数规划的求解方法,以及其中的挑战和难点。
模型建立与求解
1
模型的建立
讲解整数规划模型的建立过程,包括约枚举法和割平面法 Nhomakorabea2
束条件和目标函数的设定。
简要介绍传统的枚举法和割平面法,并
讨论这些方法的优缺点。
3
分支定界法和分支限界法
详细解释分支定界法和分支限界法,并
分支定价法和混合整数线性规划
整数规划的发展趋势
展望整数规划领域未来的发展趋势和可能的研究方向。
《运筹学整数规划》PPT 课件
这是一份关于《运筹学整数规划》的PPT课件,旨在为大家介绍整数规划的定 义、背景和实际应用中的重要性。通过本课件,我们将深入探讨整数规划的 求解方法、工具以及一些实际应用案例。
引言
定义和背景
整数规划的概念和历史背景,为后续内容提供基础。
重要性
探讨整数规划在实际问题中的重要性和应用范围。
4
分享一些实际案例。
介绍分支定价法和混合整数线性规划方 法,以及它们的应用领域。
求解工具
Gurobi的介绍
详细介绍Gurobi求解器,包 括其功能、优势和适用范围。
Gurobi求解整数规划的 步骤

数学建模中的整数规划与混合整数规划

数学建模中的整数规划与混合整数规划

数学建模作为一种解决实际问题的方法,旨在从实际问题中抽象出数学模型,并运用数学方法来对模型进行分析和求解。

在数学建模过程中,整数规划与混合整数规划是两种常用的数学工具,适用于解决许多实际问题。

整数规划是指在约束条件下,目标函数为整数变量的线性规划问题。

而混合整数规划是在整数规划的基础上,允许部分变量为实数,部分变量为整数。

这两种规划方法可以广泛应用于许多领域,如物流、生产规划、资源分配等。

整数规划的一个经典问题是背包问题。

假设有一个容量为C的背包,有n个物品,每个物品有自己的重量w和价值v。

目标是在不超过背包容量的情况下,选择装入背包的物品,使得背包中的物品总价值最大化。

这个问题可以用整数规划的方式进行建模和求解,将每个物品视为一个二进制变量,表示是否选择该物品,目标函数为物品价值的总和,约束条件为背包容量不能超过C。

通过对目标函数和约束条件的线性化处理,可以得到整数规划模型,并利用整数规划算法进行求解,得到最优解。

混合整数规划在实际问题中更为常见。

一个典型的实际问题是运输网络设计问题。

假设有一组供应地和一组需求地,需要建立供需之间的运输网络,以满足需求地对各种商品的需求,同时要考虑供给地的产能限制和运输成本。

这个问题可以用混合整数规划的方法进行建模和求解。

将供需地视为节点,建立连通性矩阵表示供需之间的运输路径,将路径的运输量作为决策变量,目标函数可以是运输成本的最小化,约束条件可以包括供给地产能限制和需求地需求量的满足。

通过对目标函数和约束条件的线性化处理,可以得到混合整数规划模型,并利用相应的求解算法进行求解,得到最优的运输网络设计方案。

整数规划与混合整数规划在数学建模中起着重要的作用。

它们既具备一般整数规划问题的优点,可以提高问题的精度和可行性,又具备一般线性规划问题的优点,可以通过线性规划算法来求解。

同时,整数规划与混合整数规划也存在一些挑战,如求解时间长、难以处理大规模问题等。

对于这些问题,研究者们一直在不断提出新的算法和优化方法,以提高整数规划与混合整数规划的求解效率。

运筹学整数规划

运筹学整数规划

运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。

整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。

整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。

整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。

整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。

由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。

求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。

分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。

分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。

割平面法是一种通过添加新的约束条件来减少解空间的方法。

它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。

割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。

启发式算法是一种基于经验和启发式搜索的方法。

它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。

常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。

启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。

综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。

整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。

常用的求解方法包括分支定界法、割平面法和启发式算法等。

这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。

管理运筹学讲义整数规划

管理运筹学讲义整数规划

管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。

本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。

一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。

在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。

与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。

二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。

1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。

在整数规划中,决策变量通常表示为整数。

2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。

它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。

3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。

在整数规划中,约束条件可以是线性等式或线性不等式。

三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。

这些算法通过不断对问题进行优化,逐步逼近最优解。

1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。

它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。

2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。

它通过不断分支和剪枝来找到最优解。

3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。

它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。

四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。

以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每单位利润为100元,产品B每单位利润为150元。

运筹学 第六章 整数规划 第一讲 整数规划数学模型与纯整数规划的求解

运筹学 第六章 整数规划 第一讲 整数规划数学模型与纯整数规划的求解
项目 所需资金(万元) 收益期望值(万元)
A B C D E
6 4 2 4 5
10 8 7 6 9
A,B,C,D,E 之间的关系是: ① A、C、E 三项中需且只能选一项; ② B、D 两项中需且只能选一项; ③ 选 C 必须先选 D 。 问题:如何选择投资决策,使总投资期望值最大?
6.1 整数规划的数学模型 Mathematical Model of IP
① 求解LP : 如果LP无最优解, 则IP无最优解;
设LP的最优解为x , 最优值为z , 则IP的最优值z * 满足 :
z z* z
其中 z 为IP在任何一个可行解处的目标值.
② 检验与分支:
如果x 满足IP的整数要求, 则x为IP的最优解:z* z . 否则 考虑一个不满足整数要求的xr , 将约束
示不安排第i人去做 j工 作。逻辑变量也是只允许取整数值的一类变量。
整数线性规划数学模型的一般形式:
max Z (或 min Z ) c j x j
j 1 n
要求一部分或全部决策变量取整数值
n a ij x j bi ( i 1.2 m ) j 1 x j 0 (j 1.2n) 且 部 分 或 全 部 为 整 数
xr xr 和
xr xr 1
分别加入LP形成两个子问题 a] ([
不超过a的最大整数)
6.2 纯整数规划的求解 Solving Pure Integer Programming
Ch6 整数规划 Integer Programming
n
max
z cj xj
j 1
ij j
不考虑整数条件,由余下的目标函数和 约束条件构成的规划问题称为该整数规 划问题的松弛问题。

运筹学第6章整数规划资料.

运筹学第6章整数规划资料.

9
2020/7/6
9
分枝定界法
分枝定界法是求解整数规划的一种常用的有效的方法,它既 能解决纯整数规划的问题,又能解决混合整数规划的问题。大多 数求解整数规划的商用软件就是基于分枝定界法而编制成的。
1. 先求解整数规划的线性规划问题(伴随LP)。
2. 如果其最优解不符合整数条件,则求出整数规划的上下界。
管理运筹学
——模型与方法
赵明霞 山西大学经济与管理学院
1
第6章 整数规划
6.1 一般模型 6.2 一般解法 6.3 0-1规划 6.4 指派模型
22
6.1 一般模型
在整数规划(IP,整数线性规划)中: 如果所有的变量都为整数,则称为纯整数规划问题; 如果所有的变量都为0-1变量,则称之为0-1规划。 如果只有一部分变量为整数,则称之为混合整数规划问题。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
11
2020/7/6
11
第四步:在B的最优解中任选一个(或最远离整数要求的变量),不妨 设此变量为xj,以[bj]表示小于bj的最大整数,构造以下两个约束条件,并 加入问题B,得到B的两个分枝B1和B2。
A
B
C
D
课时系数




5




6



8
学分
1.5
2
2
3
学时
24
32
32
48
门次
4
5
3
4
6
7
6.2 一般解法

第六章 运筹学 整数规划案例

第六章   运筹学 整数规划案例

第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。

1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。

3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。

运筹学中的线性规划与整数规划

运筹学中的线性规划与整数规划

运筹学中的线性规划与整数规划在运筹学中,线性规划和整数规划是两个常用且重要的数学模型。

它们被广泛应用于资源分配、生产调度、物流管理等问题的决策过程中。

本文将介绍线性规划和整数规划的基本概念、数学模型以及求解方法。

一、线性规划线性规划是一种通过线性关系来描述问题的数学模型。

它的目标是在给定的约束条件下,找到使目标函数达到最优的决策变量取值。

线性规划模型一般可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁,b₂, ..., bₙ为约束条件的右侧常数。

线性规划的求解方法主要有两类:图形法和单纯形法。

图形法适用于二维问题,通过绘制目标函数和约束条件在坐标系中的图形,找到交点来确定最优解。

而单纯形法适用于多维问题,通过迭代计算,逐步接近最优解。

二、整数规划整数规划是线性规划的一种特殊情况,它要求决策变量的取值必须为整数。

整数规划模型可以表示为如下形式:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t. a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z表示目标函数值,c₁, c₂, ..., cₙ表示目标函数的系数,x₁, x₂, ..., xₙ为整数决策变量,a₁₁, a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右侧常数。

第六章 整数规划

第六章 整数规划

原来的上界 .
在分枝定界法的整个求解过程中,上界的值在不断减小.
问题 B5
max f 20 x1 10 x2
问题 B6
max f 20 x1 10 x2
5 x1 8 x2 60 x1 8 x2 4 s.t x1 6 x2 3 x ,x 0 1 2
第六章 整数规划
整数规划模型
分支定界法
割平面法 0-1整数规划问题
指派问题
整数规划模型
在许多线性规划问题中,要求最优解必须取整数.例如 所求的解是机器的台数、人数、车辆船只数等.如果所得的 解中决策变量为分数或小数则不符合实际问题的要求. 对于一个规划问题,如果要求全部决策变量都取整数, 称为纯(或全)整数规划;如果仅要求部分决策变量取整数, 称为混合整数规划问题.有的问题要求决策变量仅取0或l两
解 设计划甲种宿舍建 x1 幢,乙种宿舍建 x2 幢,则本题数学 模型为 :
max Z 20 x1 10 x2
0.25 x1 0.4 x2 3 x1 8 s.t x2 4 x1 , x2 0, 取整数
这是一个纯整数规划问题,称为问题 A0 。
(1)
作出问题 A1 , A2 的伴随规划 B1 , B2 , 则问题 B1 , B2 , 的可行 域为 K1 , K 2 , 见图2(b). 以下我们将由同一问题分解出的两 个分枝问题称为"一对分枝".
x2
4
3
x2
2 1
O
2
4
6
8
x1
O
1
2
4
6
8
x1
(a)
(b)

运筹学习题答案第六章

运筹学习题答案第六章

运筹学习题答案第六章运筹学习题答案第六章第一节:线性规划线性规划是运筹学中的一种重要方法,它通过建立数学模型来解决实际问题。

在第六章中,我们学习了线性规划的基本概念和求解方法。

本节将针对第六章的习题提供详细的解答。

第1题:某公司生产两种产品,产品A和产品B。

每单位产品A的利润为5万元,每单位产品B的利润为4万元。

产品A每单位需要3个工时,产品B每单位需要2个工时。

公司每天有8个小时的工时可用。

求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设产品A的产量为x,产品B的产量为y。

根据题意可得以下线性规划模型:目标函数:Max Z = 5x + 4y约束条件:3x + 2y ≤ 8非负约束:x ≥ 0,y ≥ 0根据图形法,我们可以绘制出约束条件的图形,并找到最优解。

通过计算,我们得到最优解为x = 2,y = 1。

即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。

第2题:某公司有两个生产车间,分别生产产品A和产品B。

车间1每天可生产产品A 4个单位或产品B 2个单位;车间2每天可生产产品A 3个单位或产品B 6个单位。

产品A的利润为3万元,产品B的利润为2万元。

公司每天有8个小时的工时可用。

求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设车间1生产的产品A的单位数为x1,车间2生产的产品A的单位数为x2。

设车间1生产的产品B的单位数为y1,车间2生产的产品B的单位数为y2。

根据题意可得以下线性规划模型:目标函数:Max Z = 3x1 + 2x2 + 2y1 + 3y2约束条件:4x1 + 3x2 ≤ 82x1 + 6x2 ≤ 8非负约束:x1 ≥ 0,x2 ≥ 0,y1 ≥ 0,y2 ≥ 0通过计算,我们得到最优解为x1 = 2,x2 = 0,y1 = 0,y2 = 1。

即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。

运筹学整数规划PPT课件

运筹学整数规划PPT课件
2
B1 (x1≤4)
2
4
B2 6
(4,2.1) z=349
(5,1.57) z=341 7x1+20x2=70
若情况③发生,得到(A)问题最优值的一个上界。同时可以通 过观察的方法任找(A)问题的一个可行解,那么对应的目标函 数值是(A)最优值的一个下界 z 。即得到
z ≤ z* <z,转2,进行以下一步的迭代;
步骤2.对当前问题进行分支和定界
分支:任取非整数的分量 xr。构造两个附加约束: xr ≤ [xr] 和 xr ≥ [xr]+1 ,
s.t.
9 7
x1 x1
7 x2 56 20 x2 70
x1,x
2
0, 且为整数
x2
8
6
4 (0,3.5) Z=315
2
等值线
9x1+7x2=56
选x1来分支
松弛规划问题最优解
(4.81,1.82) Z=356 7x1+20x2=70
2
4
6
8
10
x1
x2 8
6
9x1+7x2=56
4 (0,3.5) Z=315
① 过滤隐枚举法 ② 分支隐枚举法 4.匈牙利法——解决指派问题(0-1规划特殊情形)
5.蒙特卡洛法——求解各种类型规划(不要求掌握) 6. 分支切割方法(不要求掌握) 7. 启发式算法(不要求掌握)
分 支 定 界 法
分支定界法是求整数规划的一种常用的有效的 方法,既能解决纯整数规划的问题,也能解决 混合整数规划的问题。
划 变量全限制为整数的,为纯(完全)整数规划。

特例:0-1整数规划
义 变量部分限制为整数的,为混合整数规划。

运筹学实验6整数规划

运筹学实验6整数规划

实验六、用EXCEL 求解整数规划用单纯形法求解线性规划问题,最优解可能是整数,也可能不是整数,但在很多实际问题中,要求全部或部分变量的取值必须是整数,如所求的解是安排上班的人数,按某个方案裁剪钢材的根数,生产设备的台数等等。

对于整数解的线性规划问题,不是用四舍五入或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法加以解决,如分枝定界法和割平面算法。

这些算法比单纯形法更为复杂,因此,一般的学习者要想掌握整数规划的数学算法有一定的困难。

然而事实上,由于Excel 的[工具][规划求解]可以求解整数规划问题,所以,对于一个真正有志于运用运筹学方法解决生产经营中问题的管理者来说,算法将不是障碍因素。

一、实验目的1、 掌握如何建立整数线性规划模型,特别是0~1逻辑变量在模型中的应用。

2、 掌握用Excel 求解整数线性规划模型的方法。

3、 掌握如何借助于Excel 对整数线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。

4、 读懂Excel 求解整数线性规划问题输出的运算结果报告和敏感性报告。

二、 实验内容1、 整数规划问题模型该问题来自于《运筹学基础及应用》(第四版)胡运权主编P126习题4.13,题目如下: 需生产2000件某种产品,该种产品可利用A 、B 、C 、D 设备中的任意一种加工,已知每种设备的生产准备结束费用、生产该产品时的单件成本以及每种设备限定的最大加工数量(件)如表1所示,问企业应该如何安排设备生产该产品才能使得总的生产成本最少,试建立该问题的数学模型并求解。

该产品可以利用四种不同的设备加工,由于采用不同的设备加工需要支付不同的准备结束费用,而如果不采用某种设备加工,是不需要支付使用该设备的准备结束费用的,所以必须借助于逻辑变量来鉴定准备结束费用的支付。

再设,种设备加工的产品数量为利用第设;4,3,2,1=j j x j⎪⎩⎪⎨⎧=>=)种设备生产(即,若不使用第)种设备生产(即若使用第000,1j j i x j x j y 4,3,2,1=j则问题的整数规划模型为:43214321281624207008009801000min x x x x y y y y z +++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≤≤≤≤=+++4,3,2,110,01600120010009002000..443322114321j y x y x y x y x y x x x x x t s j j,或2、 [工具][规划求解]命令求解下面我们用Excel 中的[工具][规划求解]对该问题进行求解。

整数线性规划

整数线性规划

×
× 1
195x1+273x2=1365
x1
利 用 图 解 法 , 得 到 线 性 规 划 的 最 优 解 为 x1=2.44, x2=3.26,目标函数值为14.66。 由图表可看出 , 整数规划的最优解(黄色叉号)为 x1=4, x2=2,目标函数值为14。 7
§1 整数规划的图解法
由于相应的线性规划的可行域包含了其整 数规划的可行点,则对于整数规划,易知 有以下性质: 性质1:任何求最大目标函数值的纯整数规 划或混合整数规划的最大目标函数值小于 或等于相应的线性规划的最大目标函数值; 任何求最小目标函数值的纯整数规划或混 合整数规划的最小目标函数值大于或等于 相应的线性规划的最小目标函数值。
根据变量的取值情况,整数线性规划又可以分 为纯整数规划(所有变量取非负整数),混合整 数规划(部分变量取非负整数), 0-1 整数规划 (变量只取0或1)等。
3
第六章 整数规划
整数规划是数学规划中一个较弱的分支,目前 有成熟的方法解线性整数规划问题,而非线性整 数规划问题,还没有好的办法。 整数线性规划(Integer Linear Programming, 简记为ILP)问题研究的是要求变量取整数值时, 在一组线性约束条件下一个线性函数最优问题, 是应用非常广泛的运筹学的一个重要分支。
8
§2 整数规划的计算机求解
例2: 纯整数规划问题 Max z = 3x1 + x2 + 3x3 s.t. -x1 + 2x2 + x3 ≤ 4 4x2 -3x3 ≤2 x1 -3x2 + 2x3 ≤3 x1, x2, x3 ≥ 0 , 为整数 用《管理运筹学》软件 求解得: x 1 = 5 x2 = 2 x3 = 2 例 3: Max z = 3x1 + x2 + 3x3 s.t. -x1 + 2x2 + x3 ≤ 4 4x2 -3x3 ≤2 x1 - 3x2 + 2x3 ≤3 x3 ≤1 x1, x2, x3 ≥ 0 x1,x3 为整数,x3 为0-1 变量

运筹学课程06-整数规划(胡运权 清华大学)

运筹学课程06-整数规划(胡运权 清华大学)

NEUQ
全整数规划:除了所有决策变量要求取非负整数外,系数 和常数也要求取整数(这时引进的松弛变量和剩余变量也必须 是整数)。
混合整数规划:只有一部分的决策变量要求取非负整数, 另一部分可以取非负实数。 0-1整数规划:所有决策变量只能取 0 或 1 两个整数。
14
NEUQ
3、IP与LP关系:
设整数规划问题如下

c1n c2n cin b c nn
min Z Z b
min Z Z b
,则X 0也是 min Z的最优解 若X 0是 min Z的最优解
24
NEUQ
指派问题的最优解: 若 C中有n 个位于不同行不同列的零元素,则令这
些零元素对应的变量取1,其余变量取零,即得指派问 题的最优解 匈牙利算法:
B1 B2 L Bn A1 c11 c12 L c1n a1 f1 A2 c21 c22 L c2 n a2 f 2 M M M M M M Am cm1 cm 2 L cmn am f m b1 b2 L bn
6
NEUQ
设: xij 表示从工厂运往销地的运量(i=1.2…m; j=1.2…n), 1 在Ai建厂 又设 yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
NEUQ
整数规划 Integer Linear Programming
整数规划的难度远大于一般线性规划
1
NEUQ
本章主要内容
整数规划的模型 0-1 整数规划
指派问题
分支定界法 割平面法
2
NEUQ
一、整数规划的模型
1、案例: 某财团有 B万元的资金,经初期考察选中 n个 投资项目,每个项目只能投资一个。其中第 j 个项目需投资金额为 b j ( j 1, 2,L , n) 万元, 预计5年后获利 c j 万元,问应如何选择项目使 得5年后总收益最大?

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第6章 整数规划

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第6章 整数规划

解为:
表 6-1 问题 B1 z1 = 349 x1 = 4.00 x2 = 2.10
问题 B2 z2 = 341 x1 = 5.00 x2 = 1.57
显然没有得到全部变量是整数的解。现存在两个打开节点 B1 和 B2,因 z1 > z2 ,故将 z 改 为 349,那么必存在最优整数解,得到 z* ,并且
3.定界与剪枝:通过不断的分枝和求解各个子问题,分枝定界法不断修正其上下界的 过程称为定界。上界通常由各打开节点中最大的目标函数值确定,下界则由已经找到的最好 的整数解来确定。求解任何一个子问题都有以下三种可能的结果。
(1)子问题无可行解。此时无需继续向下分枝,该节点因不可行而被关闭。因为与父节 点相比,子节点是一个约束得更紧得的问题(比父节点多一个约束)。如果父节点不可行,
z3 = z = z* = 340 问题 B3 得解 x1 = 4.00 , x2 = 2.00 为最优整数解。
问题 B
x1=4.81 x2=1.82 z0=356
z=0, z=356
x1 4
问题 B1
明显减少搜索的计算量。所有节点的被关闭表明搜索已经完成。如果此时没有找到任何整数
解,则该问题没有整数解;否则搜索过程中得到的最好的整数解就是该问题的最优解。
6.2.2 分枝定界算法
下面结合一具体例子来说明分枝定界法是如何工作的。
例 2 求解 A
max z = 40x1 + 90x2

⎧⎪⎪⎨⎪79xx11x++1,27x02xx2≥2≤0≤5760
0 ≤ z* ≤ 349 继续对问题 B1 和 B2 进行分解,因 z1 > z2 ,故先分解 B1 为两支。增加条件 x2 ≤ 2 者,称为问 题 B3 ;增加条件 x2 ≥ 3 者称为问题 B4 。在图 1-4 中再舍去 x2 > 2 与 x3 < 3 之间的可行域,再 进行第二次迭代。解题过程的结果都列在图 1-5 中。可见问题 B3 的解已都是整数,它的目 标函数值 z3 = 340 ,可取为 z ,而它大于 z4 = 327 。所以再分解 B4 已无必要。而问题 B2 的 z2 = 341,所以 z* 可能在 340 ≤ z* ≤ 341 之间有整数解。于是对 B2 分解,得问题 B5 ,既非整 数解,且 z5 = 308 < z3 ,问题 B6 为无可行解。于是可以断定

整数规划教学大纲

整数规划教学大纲

整数规划教学大纲整数规划是运筹学中的一个重要分支,它在实际问题的建模和求解中有着广泛的应用。

为了有效地教授整数规划知识,制定一份合理的教学大纲是非常必要的。

本文将探讨整数规划教学大纲的设计要点和内容安排。

一、整数规划的基础知识整数规划是线性规划的一种扩展形式,它要求决策变量取整数值。

在教学大纲中,首先要介绍线性规划的基本概念和求解方法,为后续的整数规划知识打下基础。

同时,还应该对整数规划的基本特点进行介绍,如可行解集的离散性和求解难度的增加等。

二、整数规划的建模方法整数规划的建模是整个教学过程中的核心内容。

在教学大纲中,应该详细介绍整数规划的建模方法,包括整数规划模型的一般形式、目标函数和约束条件的设定,以及如何将实际问题转化为整数规划模型。

同时,还可以通过实例分析和练习题来帮助学生掌握建模的技巧和方法。

三、整数规划的求解算法整数规划的求解是整数规划教学中的重点内容。

在教学大纲中,应该介绍整数规划的常见求解算法,如分支定界法、割平面法和启发式算法等。

对于每种算法,要详细介绍其基本原理和具体步骤,并通过实例演示和练习题来帮助学生理解和掌握算法的应用。

四、整数规划的应用领域整数规划在实际问题中有着广泛的应用,如生产调度、物流配送、资源配置等。

在教学大纲中,应该介绍整数规划在不同领域的具体应用案例,以及如何将实际问题转化为整数规划模型。

通过实例分析和讨论,可以帮助学生理解整数规划在实际问题中的价值和作用。

五、整数规划的软件工具随着计算机技术的不断发展,整数规划的求解软件工具也得到了广泛应用。

在教学大纲中,可以介绍一些常用的整数规划求解软件,如LINGO、Gurobi等,并通过实例演示和练习题来帮助学生掌握软件的使用方法和技巧。

同时,还可以引导学生进行课程设计或实验,利用软件工具解决实际问题。

六、整数规划的发展趋势整数规划作为运筹学的重要分支,其研究和应用也在不断发展。

在教学大纲的最后,可以对整数规划的发展趋势进行展望,介绍一些前沿的研究方向和应用领域,激发学生的兴趣和求知欲望。

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。

其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。

一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。

在生产、运输、选址等问题中,线性规划都有着重要的应用。

其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。

如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。

线性规划的求解方法一般分为单纯形法和内点法两种方法。

单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。

内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。

这种方法对大规模问题求解能力强,使用较多。

二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。

整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。

与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。

因此,通常需要采用分支定界、割平面等方法来求解。

分支定界是一种常用的整数规划求解方法。

它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。

割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。

总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表6-1 物品 重量 (公斤/每件) 体积 (m3/每件) 价值 (元/每件)
甲 乙
1.2 0.8
0.002 0.0025
4 3
【解】设甲、乙两种物品各装x1、x2件,则数学模型为:
max Z 4 x1 3x 2 1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 x , x 0, 且均取整数 1 2
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0 2 1
整数规划的特点及应用
先求整数解(最优解):如用舍 入取整法可得到4个点即(1, 3),(2,3),(1,4),(2,4)。显然, 它们都不可能是整数规划的最优 解。 按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右 图所示。其中(2,2),(3,1)点的目
项目 所需资金(万元) 收益期望值(万元)
A B C D E
6 4 2 4 5
10 8 7 6 9
A,B,C,D,E 之间的关系是: ① A、C、E 三项中需且只能选一项; ② B、D 两项中需且只能选一项; ③ 选 C 必须先选 D 。 问题:如何选择投资决策,使总投资期望值最大?
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
【解】 用 xj 分别表示 A ,B ,C ,D ,E 的被选情况,则
1, 项目 j 被选中, xj 0, 项目 j未 被选中,
于是投资总收益期望值:
j 1, 2, 3, 4, 5
z 10x1 8x2 7 x3 6x4 9x5
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
很多实际规划问题都属于整数规划问题
1. 变量是人数、机器设备台数或产品件数等都要求是整数;
2. 对某一个项目要不要投资的决策问题,可选用一个逻辑变量 x,当x=1
表示投资,x=0表示不投资; 3. 人员的合理安排问题,当变量xij=1表示安排第i人去做 j工作,xij=0表
Ch6 整数规划 Integer Programming
• 例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问题)。nFra bibliotekmax
n ij
z cj xj
j 1
j
LP1 x [ x ] r r x j 0, j 1,2,, n
j 1
a x
n
bi
i 1, 2,, m,
j 1 LP2 xr [ xr ] 1 x j 0, j 1,2,, n
示不安排第i人去做 j工 作。逻辑变量也是只允许取整数值的一类变量。
整数线性规划数学模型的一般形式:
max Z (或 min Z ) c j x j
j 1 n
要求一部分或全部决策变量取整数值
n a ij x j bi ( i 1.2 m ) j 1 x j 0 (j 1.2n) 且 部 分 或 全 部 为 整 数
y1 y, y2 1 y
同样可以讨论对于有m个条件互相排斥、有m(≤m、≥m) 个条件起作用的情形。
Ch6 整数规划 Integer Programming
• 整数规划问题解的特征:
整数规划问题的可行解集合是它松弛问题可行解集合的一 个子集,任意两个可行解的凸组合不一定满足整数约束条件, 因而不一定仍为可行解。 整数规划问题的可行解一定是它的松弛问题的可行解(反 之不一定),但其最优解的目标函数值不会优于后者最优解 的目标函数值。
xr xr 和
xr xr 1
分别加入LP形成两个子问题 a] ([
不超过a的最大整数)
6.2 纯整数规划的求解 Solving Pure Integer Programming
Ch6 整数规划 Integer Programming
n
max
z cj xj
j 1
ij j
(6.1)
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
【例6.3 】在例6.2中,假设此人还有一只旅行箱,最大载重量 为12公斤,其体积是0.02m3。背包和旅行箱只能选择其一,建 立下列几种情形的数学模型,使所装物品价值最大。 (1) 所装物品不变; (2) 如果选择旅行箱,则只能装载丙和丁两种物品,价值分别 是4和3,载重量和体积的约束为
1.8 x1 0.6 x 2 12 1.5 x1 2 x 2 20
【解】此问题可以建立两个整数规划模型,但用一个模型描述 更简单。引入0-1变量 yi,令
1, 采用第i种方式装载时 yi 0, 不采用第i种方式装载时
i=1,2 分别是采用背包及旅行箱装载。
i 1,2
6.1 整数规划的数学模型 Mathematical Model of IP
a x
bi
i 1, 2,, m,
③ 求解LP1, LP2 : 设其解及最优值分别为
( x1 , z1 z( x1 )), ( x 2 , z 2 z( x 2 )) .
剪支及上下界改进分析 (以LP为例,其他分支类似) 1 (i)如 z 1 z, 则LP1及由LP1分支的所有子问题的最优值均满足: 故对LP1剪支. z 1 z z*,
运筹学
Operations Research
Chapter 6 整数规划
Integer Programming
6.1 整数规划数学模型 Mathematical Model of IP 6.2 纯整数规划的求解 Solving Pure Integer Programming 6.3 0-1规划的求解 Solving Binary Integer Programming
约束条件: ① 资金总额限制:
6x1 4x2 2x3 4x4 5x5 15
② A,C,E 选且只选一项:
x1 x3 x5 1
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
③ B,D 选且只选一项: ④ 选 C 必须先选 D :
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
式中M为充分大的正数。从上式可知,当使用背包时 (y1=1,y2=0),式(6.3b)和(6.3d)是多余的;当使用旅行箱时
(y1=0,y2=1),式(6.3a)和(6.3c)是多余的。上式也可以令:
x2 x4 1
x3 1 x4 1 , 或x3 0 x4 0 或1 ,
x3 x4
于是数学模型为以下 0-1 规划:
max z 10x1 8 x2 7 x3 6 x4 9 x5 6 x1 4 x2 2 x3 4 x4 5 x5 15 x1 x3 x5 1 x2 x4 1 x3 x4 x j 0或1,j 1,2,3,4,5
Ch6 整数规划 Integer Programming
(1) 由于所装物品 不变, 式(6.1)约束 左边不变, 整数规 划数学模型为
max Z 4 x1 3x2 1.2 x1 0.8 x2 10 y1+12 y2 2 x1 2.5 x2 25 y1 20 y2 y1 y2 1 xi 0, 且取整数, yi 0或1 i 1, 2
6.1 整数规划数学模型
Mathematical Model of IP
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
【例6.1】投资项目选取问题 某单位拟利用闲置资金15 万元进行对外投资,现有 5个投资项
目可供 选择,所需资金及投资回报收益期望值为
6.2 纯整数规划的求解 Solving Pure Integer Programming
Ch6 整数规划 Integer Programming
① 求解LP : 如果LP无最优解, 则IP无最优解;
设LP的最优解为x , 最优值为z , 则IP的最优值z * 满足 :
z z* z
其中 z 为IP在任何一个可行解处的目标值.
② 检验与分支:
如果x 满足IP的整数要求, 则x为IP的最优解:z* z . 否则 考虑一个不满足整数要求的xr , 将约束
6.1 整数规划的数学模型 Mathematical Model of IP
Ch6 整数规划 Integer Programming
【例6.2 】某人有一背包可以装10公斤重、0.025m3的物品。他准备 用来装甲、乙两种物品,每件物品的重量、体积和价值如表6-1所 示。问两种物品各装多少件,所装物品的总价值最大?
max Z 4 x1 3x2
(3.2)
(3.3a) 1.2 x1 0.8 x2 10+My2 (2) 由于不同载体 (3.3b) 1.8 x1 0.6 x2 12 My1 所装物品不一样, (3.3c) 2 x1 2.5 x2 25 My2 数学模型为 (3.3d ) 1.5 x1 2 x2 20 My1 y1 y2 1 x1 , x2 0, 且均取整数, yi 0或1(i 1, 2)
相关文档
最新文档