上拉、下拉电阻的作用分析.

合集下载

上拉电阻和下拉电阻电路分析

上拉电阻和下拉电阻电路分析

上拉电阻和下拉电阻电路分析
接电源正极的拉电阻称之为上拉电阻,接电源负极的拉电阻称之为下拉电阻
在数字电路的世界中只能识别"0"和“1”,加入上拉电阻,可以把未知状态的电路控制为高电平“1”;加入下拉电阻,可以把未知状态的电路控制为低电平"0",可以有效的防止意外发生。

上拉电阻电路分析
在下图电路A中,没有加入上拉电阻,在开关没有导通时,输入端口A的电平状态是未知的。

在下图电路B中,加入了上拉电阻(连接到VCC的拉电阻称为上拉电阻),在开关没有导通时,输入端口B由于通过上拉电阻连接到VCC,所以电平状态钳制为高电平。

很明显B电路的设计优于A电路
下拉电阻电路分析
在下图电路C中,没有加入下拉电阻,在开关没有导通时,输入端口C的电平状态是未知的。

在下图电路D中,加入了下拉电阻(连接到GND的拉电阻称为下拉电阻),在开关没有导通时,输入端口D由于通过下拉电阻连接到GND,所以电平状态钳制为高电平。

很明显D电路的设计优于C电路
三极管驱动电路中往往也会加入上拉或者下拉电阻
在下图的继电器驱动电路中,NPN三极管的驱动电路加入了下拉电阻,DR没有输入驱动信号时,下拉电阻把三极管的基极钳制在低电平,能有效的防止三极管意外导通;PNP三极管的驱动电路加入了上拉电阻,DR没有输入驱动电信号时,上拉电阻把三极管的基极钳制在高电平能,能有效的防止三极管意外导能。

上拉电阻、下拉电阻总结
上拉电阻可以让信号钳制在高电平;下拉电阻可以让信号钳制在低电平
上拉、下拉电阻会用在哪些应用场合?你觉得三极管放大电路中的基极(b)偏置电阻算是上拉或者下拉电阻吗?。

485上拉电阻和下拉电阻

485上拉电阻和下拉电阻

485上拉电阻和下拉电阻
485总线是一种串行通信协议,常用于工业自动化领域的数据传输。

在485总线中,传输线一般采用双线制,分为A线和B线。

而上拉电阻和下拉电阻则是在485总线通信中常见的电路元件。

上拉电阻和下拉电阻都是一种电阻,它们的作用是控制总线上信号的电平。

在485总线中,上拉电阻和下拉电阻分别连接在A线和B线上,起到调整总线电平的作用。

上拉电阻是将总线电平拉高的电阻,它连接在总线A线上,并向上拉高总线电平。

上拉电阻的阻值一般较大,通常为1kΩ至10kΩ。

当总线无信号时,上拉电阻会将总线电平拉高至逻辑1的电平,以保证总线处于高电平状态。

下拉电阻则是将总线电平拉低的电阻,它连接在总线B线上,并向下拉低总线电平。

下拉电阻的阻值一般较小,通常为150Ω至300Ω。

当总线有数据传输时,总线会出现电平变化,下拉电阻则会将总线电平拉低至逻辑0的电平,以保证数据传输的准确性。

总的来说,上拉电阻和下拉电阻在485总线通信中起到非常重要的作用,它们可以保证总线电平的稳定性和数据传输的可靠性。

电阻之上拉电阻与下拉电阻详解(转)

电阻之上拉电阻与下拉电阻详解(转)

电阻之上拉电阻与下拉电阻详解(转)上拉(Pull Up )或下拉(Pull Down)电阻(两者统称为“拉电阻”)最基本的作⽤是:将状态不确定的信号线通过⼀个电阻将其箝位⾄⾼电平(上拉)或低电平(下拉),⽆论它的具体⽤法如何,这个基本的作⽤都是相同的,只是在不同应⽤场合中会对电阻的阻值要求有所不同,从⽽也引出了诸多新的概念,本节我们就来⼩谈⼀下这些内容。

如果拉电阻⽤于输⼊信号引脚,通常的作⽤是将信号线强制箝位⾄某个电平,以防⽌信号线因悬空⽽出现不确定的状态,继⽽导致系统出现不期望的状态,如下图所⽰:在实际应⽤中,10K欧姆的电阻是使⽤数量最多的拉电阻。

需要使⽤上拉电阻还是下拉电阻,主要取决于电路系统本⾝的需要,⽐如,对于⾼有效的使能控制信号(EN),我们希望电路系统在上电后应处于⽆效状态,则会使⽤下拉电阻。

假设这个使能信号是⽤来控制电机的,如果悬空的话,此信号线可能在上电后(或在运⾏中)受到其它噪声⼲扰⽽误触发为⾼电平,从⽽导致电机出现不期望的转动,这肯定不是我们想要的,此时可以增加⼀个下拉电阻。

⽽相应的,对于低有效的复位控制信号(RST#),我们希望上电复位后处于⽆效状态,则应使⽤上拉电阻。

⼤多数具备逻辑控制功能的芯⽚(如单⽚机、FPGA等)都会集成上拉或下拉电阻,⽤户可根据需要选择是否打开,STM32单⽚机GPIO模式即包含上拉或下拉,如下图所⽰(来⾃ST数据⼿册):根据拉电阻的阻值⼤⼩,我们还可以分为强拉或弱拉(weak pull-up/down),芯⽚内部集成的拉电阻通常都是弱拉(电阻⽐较⼤),拉电阻越⼩则表⽰电平能⼒越强(强拉),可以抵抗外部噪声的能⼒也越强(也就是说,不期望出现的⼲扰噪声如果要更改强拉的信号电平,则需要的能量也必须相应加强),但是拉电阻越⼩则相应的功耗也越⼤,因为正常信号要改变信号线的状态也需要更多的能量,在能量消耗这⼀⽅⾯,拉电阻是绝不会有所偏颇的,如下图所⽰:对于上拉电阻R1⽽⾔,控制信号每次拉低L都会产⽣VCC/R1的电流消耗(没有上拉电阻则电流为0),相应的,对于下拉电阻R2⽽⾔,控制信号每次拉⾼H也会产⽣VCC/R2R 电流消耗(本⽂假设⾼电平即为VCC)。

431上拉下拉电阻作用-定义说明解析

431上拉下拉电阻作用-定义说明解析

431上拉下拉电阻作用-概述说明以及解释1.引言1.1 概述上拉电阻和下拉电阻是电路中常见的元件,它们在数字电路和模拟电路中起着重要的作用。

上拉电阻和下拉电阻通常用于控制电路中的开关状态,以确保正确的信号传输和电路逻辑运算。

本文将详细探讨上拉电阻和下拉电阻的作用,并介绍它们在不同应用场景下的具体应用。

上拉电阻和下拉电阻是一种电阻器,用于将电路中的信号电压拉高或拉低到特定的电平。

上拉电阻将信号电压拉高,下拉电阻则将信号电压拉低。

在数字电路中,上拉电阻通常用于将逻辑门的输入端连接到高电平,以确保输入信号在断开状态下保持稳定。

下拉电阻则用于将逻辑门的输入端连接到低电平,同样也是为了保持输入信号在断开状态时的稳定性。

在模拟电路中,上拉电阻和下拉电阻用于调整信号的电平。

通过改变电阻的阻值,可以控制信号的幅值和频率响应。

上拉电阻和下拉电阻的作用在模拟电路中更加广泛,涵盖了信号放大、滤波和匹配等多个方面。

在这些应用中,上拉电阻和下拉电阻的精确选择和设计对电路性能至关重要。

总的来说,上拉电阻和下拉电阻在电路中扮演着至关重要的角色。

它们可以确保信号的稳定性和正确传输,以及调整信号的电平和频率响应。

对于电路设计者和工程师来说,了解上拉电阻和下拉电阻的作用和应用是非常重要的,这将有助于优化电路的性能和可靠性。

在接下来的正文部分,我们将更详细地探讨上拉电阻和下拉电阻的作用,并介绍它们在具体应用中的技术要点和实际应用案例。

1.2文章结构文章结构:本文共分为引言、正文和结论三个部分。

引言部分主要概述了上拉下拉电阻的作用和本文结构,引出了文章的目的。

正文部分主要包含了上拉电阻的作用、下拉电阻的作用以及上拉下拉电阻的应用。

结论部分对上拉下拉电阻的作用进行了总结,比较了二者的优劣,并展望了上拉下拉电阻的未来发展。

通过这样的结构安排,本文旨在全面介绍上拉下拉电阻的作用,并探讨其在实际应用中的潜力和发展前景。

1.3 目的本文的目的是探讨431上拉下拉电阻在电路中的作用。

【硬件设计】上拉电阻和下拉电阻用法

【硬件设计】上拉电阻和下拉电阻用法

【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

b.OC门电路必须加上拉电阻,以提高输出的搞电平值。

2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

同時管脚悬空就比较容易接受外界的电磁干扰。

4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。

在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。

6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。

同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。

从而提高芯片输入信号的噪声容限增强抗干扰能力。

三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

下拉电阻和上拉电阻的工作原理及必要性是什么?

下拉电阻和上拉电阻的工作原理及必要性是什么?

下拉电阻和上拉电阻的工作原理及必要性是什么?
下拉电阻和上拉电阻的工作原理及必要性是什么?
在电路中常说的拉阻指的就是上拉电阻和下拉电阻,上下拉电阻就是将不确定的信号通过一个电阻嵌位在高电平(1)或低电平(0),同时都有限流作用。

高电平(1)并不是说高电平就是1V,可以是3.3V或5V或其它电压,低电平(0)并不是说电平就是0V,可以是接近0v或0V的电压。

高电平、低电平只是代表两种状态。

上拉电阻是从电源到负载之间的电阻,下拉电阻是从地到负载之间的电流。

前者可以用于解决总线驱动能力不足提供电流,后者可用于吸收电流。

上下拉电阻的作用
1、提高电压准位。

例如TTL电路驱动COMS电路,若TTL电路输出高电平低于COSM电路最低高电平值,此时就需要在TTL电路的输出端接上拉电阻。

2、加大输出引脚驱动力。

3、N/A PIN防静电防干扰。

4、电阻匹配,抑制反射波干扰。

5、提高输入信号的噪音容限。

6、预设空间状态/缺省。

简单的来说上下拉电阻就是增大电流,加强电路的驱动能力。

上拉电阻和下拉电阻的作用是什么?

上拉电阻和下拉电阻的作用是什么?

什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。

上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。

下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。

那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。

而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。

上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。

上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。

下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。

上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。

上拉电阻和下拉电阻的应用

上拉电阻和下拉电阻的应用

上拉电阻和下拉电阻的应用嘿,咱来唠唠上拉电阻和下拉电阻的应用。

这上拉电阻和下拉电阻啊,就像是电子世界里的小帮手,能帮咱解决不少问题嘞。

先说上拉电阻吧。

它就像个小弹簧,把电压往上拉。

比如说在一个数字电路里,有个输入端口,如果这个端口没有连接任何信号的时候,上拉电阻就会把这个端口的电压拉到高电平。

这样就能避免这个端口处于不确定的状态,就像一个人站在十字路口,不知道往哪走,上拉电阻就给他指了个方向。

在一些传感器的接口电路里,上拉电阻就很常用。

传感器没有信号输出的时候,上拉电阻能让接口的电压保持稳定,等传感器有信号了,就能准确地检测到变化。

再说说下拉电阻。

它呢,就像个小秤砣,把电压往下拽。

在一些电路里,如果有个输出端口,但是没有信号输出的时候,下拉电阻就会把这个端口的电压拉到低电平。

这样可以防止这个端口出现意外的高电平,就像给一个调皮的小孩拴上一根绳子,不让他乱跑。

在一些开关电路里,下拉电阻可以保证开关断开的时候,电路的状态是确定的。

上拉电阻和下拉电阻还可以用来提高电路的抗干扰能力。

就像给电路穿上一层防护衣,不让外界的干扰信号轻易地影响电路的正常工作。

比如说在一个微控制器的输入端口,加上一个合适的上拉电阻或者下拉电阻,可以减少因为电磁干扰或者静电干扰而产生的错误信号。

在一些通信接口电路里,上拉电阻和下拉电阻也有重要的作用。

比如说在I2C 总线里,上拉电阻可以保证总线在空闲状态时的高电平,下拉电阻可以在某些情况下帮助确定总线的状态。

我给你讲个事儿哈。

我有个朋友,他自己做了个小电路板,一开始总是不稳定,有时候莫名其妙地就出问题了。

后来他发现是有几个输入端口没有加上拉电阻或者下拉电阻,导致端口的状态不确定。

他加上了合适的电阻之后,电路板就变得稳定多了。

从那以后,他就知道了上拉电阻和下拉电阻的重要性,做电路的时候都会认真考虑它们的应用。

这上拉电阻和下拉电阻啊,虽然看起来小小的,但是作用可不小嘞。

上拉电阻下拉电阻的总结

上拉电阻下拉电阻的总结

上拉电阻下拉电阻的总结一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

上拉电阻是指:将某电位点采用电阻与电源VDD相连的电阻。

比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。

下拉电阻就是在某电位点用电阻与地相连的电阻。

如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。

二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

b.OC门电路必须加上拉电阻,以提高输出的搞电平值。

2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

3、N/A pin防靜電、防干擾:A)在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

B)管脚悬空就比较容易接受外界的电磁干扰。

4. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。

同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。

从而提高芯片输入信号的噪声容限增强抗干扰能力。

4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

5、预设开关状态/缺省电位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。

关于RS485上拉下拉电阻的说明

关于RS485上拉下拉电阻的说明

关于RS485上拉下拉电阻的说明一、上拉下拉电阻作用:接电阻就是为了防止输入端悬空减弱外部电流对芯片产生的干扰保护cmos内的保护二极管,一般电流不大于10mA上拉和下拉、限流1. 改变电平的电位,常用在TTL-CMOS匹配2. 在引脚悬空时有确定的状态3.增加高电平输出时的驱动能力。

4、为OC门提供电流那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。

如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。

反之,尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!二、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流弱强只是上拉电阻的阻值不同,没有什么严格区分对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

三、为什么要使用上下拉电阻:一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。

三极管上拉电阻和下拉电阻

三极管上拉电阻和下拉电阻

三极管上拉电阻和下拉电阻三极管是一种常用的电子元件,广泛应用于各类电子设备中。

在三极管电路中,上拉电阻和下拉电阻是两个重要的元件,它们在电路中起到了重要的作用。

本文将分别介绍三极管上拉电阻和下拉电阻的作用和原理。

一、三极管上拉电阻上拉电阻是指连接在三极管的集电极和电源正极之间的电阻。

它的作用是将集电极与电源正极相连,以提供稳定的电压给三极管的集电极。

上拉电阻的阻值一般较大,常采用几千欧姆至几十千欧姆的范围。

三极管上拉电阻的主要作用有以下几个方面:1. 稳定工作点:上拉电阻通过限制集电极电流的大小,使得三极管能够在某个工作点上稳定工作。

上拉电阻的阻值越大,集电极电流就越小,从而使得工作点更加稳定。

2. 提供集电极电压:上拉电阻将电源正极与集电极相连,使得集电极能够获得稳定的电压。

这样,三极管的放大功能才能正常进行。

3. 防止漂移:上拉电阻通过限制集电极电流的大小,使得三极管的工作点不容易受到外界因素的干扰,从而防止工作点的漂移。

二、三极管下拉电阻下拉电阻是指连接在三极管的发射极和地之间的电阻。

它的作用是将发射极与地相连,以提供稳定的电压给三极管的发射极。

下拉电阻的阻值一般较小,常采用几十欧姆至几百欧姆的范围。

三极管下拉电阻的主要作用有以下几个方面:1. 提供发射极电压:下拉电阻将发射极与地相连,使得发射极能够获得稳定的电压。

这样,三极管的放大功能才能正常进行。

2. 稳定工作点:下拉电阻通过限制发射极电流的大小,使得三极管能够在某个工作点上稳定工作。

下拉电阻的阻值越小,发射极电流就越大,从而使得工作点更加稳定。

3. 防止漂移:下拉电阻通过限制发射极电流的大小,使得三极管的工作点不容易受到外界因素的干扰,从而防止工作点的漂移。

三、上拉电阻和下拉电阻的选择在实际应用中,选择合适的上拉电阻和下拉电阻对于三极管的工作非常重要。

具体选择的原则如下:1. 上拉电阻的阻值应适当大,以保证集电极电流的稳定性。

2. 下拉电阻的阻值应适当小,以保证发射极电流的稳定性。

对模拟电路中上下拉电阻作用的一点小总结

对模拟电路中上下拉电阻作用的一点小总结

对模拟电路中上下拉电阻作用的一点小总结上拉是对器件注入,下拉是输出电流;弱强只是上拉的阻值不同,没有什么严格区别;对于非集电极(或漏极)开路输出型(如一般门电路)提升电流和的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

二、上下拉电阻作用:1、提高电压准位:a.当TTL电路驱动COMS电路时,假如TTL电路输出的高电平低于COMS电路的最低高电平(普通为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

b.OC门电路必需加上拉电阻,以提高输出的搞电平值。

2、加大输出引脚的驱动能力,有的管脚上也常用法上拉电阻。

3、N/A pin防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,普通接上拉电阻产生降低输入阻抗,提供泄荷通路。

同時管脚悬空就比较简单接受外界的电磁干扰。

4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配简单引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

5、预设空间状态/缺省电位:在一些输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。

在I2C等总线上,空闲时的状态是由上下拉电阻获得6. 提高芯片输入信号的噪声容限:输入端假如是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。

同样假如输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个的集电极。

从而提高芯片输入信号的噪声容限增加抗干扰能力。

{电源到元件间的叫上拉电阻,作用是平常使该脚为高电平地到元件间的叫下拉电阻,作用是平常使该脚为低电平上拉电阻和下拉电阻的范围由器件来定(我们普通用10K)+Vcc+------+=上拉电阻|+-----+|元件||+-----++------+=下拉电阻-Gnd普通来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力比如说51的p1口还有,p0口必需接上拉电阻才可以作为io口用法上拉和下拉的区分是一个为拉电流,一个为灌电流普通来说灌电流比拉电流要大也就是灌电流驱动能力强一些}三、上拉电阻阻值的挑选原则包括:1、从节省功耗及芯片的灌电流能力考虑应该足够大;电阻大,电流小。

上拉、下拉电阻的作用分析.

上拉、下拉电阻的作用分析.

[图]上拉电阻与下拉电阻的作用2007-08-12上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。

同理,下拉电阻是把不确定的信号钳位在低电平。

上拉电阻是指器件的输入电流,而下拉指的是输出电流。

那么在什么时候使用上、下拉电阻呢?1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

另外,上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理关于上拉电阻,看图。

作为输入接VCC等于1,接GND=0。

如果按键短路(按下)电阻为零,按键按下,Out=0,当按键断开,Out=?显然当Out悬空输出VCC,这可以用仪表测量,这个VCC就是靠R1“上拉”产生的,顾名思义,R1就是上拉电阻。

上拉电阻的大小,取决于输出接负载的需要,通常逻辑电路对高电平输出阻抗很大,要求输出电流很小,在上拉电阻上压降可以忽略,当然上拉电阻不能太大,否则就不能忽略了。

实际电路还有这种结构这里的R1也是上拉电阻。

关于下拉电阻,用得少,道理和上面一样,只不过通过电阻“下拉”到GND。

关于RS485上拉下拉电阻的说明

关于RS485上拉下拉电阻的说明

关于RS4‎85上拉下‎拉电阻的说‎明一、上拉下拉电‎阻作用:接电阻就是‎为了防止输‎入端悬空减弱外部电‎流对芯片产‎生的干扰保护cmo‎s内的保护‎二极管,一般电流不‎大于10m‎A上拉和下拉‎、限流1. 改变电平的‎电位,常用在TT‎L-CMOS匹‎配2. 在引脚悬空‎时有确定的‎状态3.增加高电平‎输出时的驱‎动能力。

4、为OC门提‎供电流那要看输出‎口驱动的是‎什么器件,如果该器件‎需要高电压‎的话,而输出口的‎输出电压又‎不够,就需要加上‎拉电阻。

如果有上拉‎电阻那它的‎端口在默认‎值为高电平‎你要控制它‎必须用低电‎平才能控制‎如三态门电‎路三极管的‎集电极,或二极管正‎极去控制把‎上拉电阻的‎电流拉下来‎成为低电平‎。

反之,尤其用在接‎口电路中,为了得到确‎定的电平,一般采用这‎种方法,以保证正确‎的电路状态‎,以免发生意‎外,比如,在电机控制‎中,逆变桥上下‎桥臂不能直‎通,如果它们都‎用同一个单‎片机来驱动‎,必须设置初‎始状态.防止直通!二、定义:上拉就是将‎不确定的信‎号通过一个‎电阻嵌位在‎高电平!电阻同时起‎限流作用!下拉同理!上拉是对器‎件注入电流‎,下拉是输出‎电流弱强只‎是上拉电阻‎的阻值不同‎,没有什么严‎格区分对于‎非集电极(或漏极)开路输出型‎电路(如普通门电‎路)提升电流和‎电压的能力‎是有限的,上拉电阻的‎功能主要是‎为集电极开‎路输出型电‎路输出电流‎通道。

三、为什么要使‎用上下拉电‎阻:一般作单键‎触发使用时‎,如果IC本‎身没有内接‎电阻,为了使单键‎维持在不被‎触发的状态‎或是触发后‎回到原状态‎,必须在IC‎外部另接一‎电阻。

数字电路有‎三种状态:高电平、低电平、和高阻状态‎,有些应用场‎合不希望出‎现高阻状态‎,可以通过上‎拉电阻或下‎拉电阻的方‎式使处于稳‎定状态,具体视设计‎要求而定!一般说的是‎I/O端口,有的可以设‎置,有的不可以‎设置,有的是内置‎,有的是需要‎外接,I/O端口的输‎出类似与一‎个三极管的‎C,当C接通过‎一个电阻和‎电源连接在‎一起的时候‎,该电阻成为‎上C拉电阻‎,也就是说,如果该端口‎正常时为高‎电平,C通过一个‎电阻和地连‎接在一起的‎时候,该电阻称为‎下拉电阻,使该端口平‎时为低电平‎,作用吗:比如:当一个接有‎上拉电阻的‎端口设为输‎如状态时,他的常态就‎为高电平,用于检测低‎电平的输入‎。

数字电路中上拉电阻和下拉电阻作用和选用选择

数字电路中上拉电阻和下拉电阻作用和选用选择

数字电路中上拉电阻和下拉电阻作用和选用选择文章内容为数字中上拉和下拉电阻作用和选用挑选,希翼对大家有协助。

上拉电阻:1、当TTL电路驱动COMS电路时,假如TTL电路输出的高电平低于COMS电路的最低高电平(普通为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必需加上拉电阻,才干用法。

3、为加大输出引脚的驱动能力,有的管脚上也常用法上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,普通接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增加抗干扰能力。

6、提高的抗电磁干扰能力。

管脚悬空就比较简单接受外界的电磁干扰。

7、长线传输中电阻不匹配简单引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的挑选原则包括:1、从节省功耗及芯片的灌能力考虑应该足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应该足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的挑选应结合开关管特性和下级电路的输入特性举行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,普通地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注重两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平常,开关管断开,上拉电阻应适当挑选以能够向下级电路提供足够的电流。

3.凹凸电平的设定。

不同电路的凹凸电平的门槛电平会有不同,电阻第1页共6页。

上拉下拉电阻计算

上拉下拉电阻计算

上拉下拉电阻计算上拉和下拉电阻是数字电路中常用的元件,用于控制信号线上的电压水平。

本文将介绍上拉下拉电阻的计算方法和一些相关参考内容。

1. 上拉下拉电阻的作用上拉和下拉电阻是用来控制信号线上的电压水平的。

如果一个信号线没有连接到其他元件,它的电压就会漂浮,容易受到干扰。

通过加上一个上拉或下拉电阻,可以将信号线的电压确定到一个特定的状态。

上拉电阻将信号线拉向高电平(通常为VCC),下拉电阻将信号线拉向低电平(通常为地)。

2. 上拉电阻的计算方法上拉电阻的计算方法主要包括以下几个步骤:步骤1: 确定信号线上的电流需求。

根据所连接的元件的电流需求,确定上拉电阻能够提供足够的电流。

步骤2: 确定电压水平。

根据所连接的元件的电压需求,确定上拉电阻的电压水平。

通常,上拉电阻的电压水平为VCC。

步骤3: 使用欧姆定律计算电阻值。

根据上拉电阻提供的电流和电压水平,使用欧姆定律(电阻值 = 电压 / 电流)计算出上拉电阻的阻值。

3. 下拉电阻的计算方法下拉电阻的计算方法与上拉电阻类似,只是将电压水平设置为地。

下拉电阻的计算步骤如下:步骤1: 确定信号线上的电流需求。

步骤2: 确定电压水平。

下拉电阻的电压水平通常设置为地。

步骤3: 使用欧姆定律计算电阻值。

4. 相关参考内容下面列举一些与上拉下拉电阻相关的参考内容,供读者进一步学习和参考:- 集成电路中的上拉下拉电阻设计。

这篇文章介绍了在集成电路中使用上拉下拉电阻的一些设计原则和计算方法。

作者详细讲解了上拉下拉电阻的作用、计算方法以及注意事项。

- 电路设计引导手册。

这本手册是一本权威的电路设计参考书,其中包含了大量关于电路设计的知识和技巧。

其中有一节专门介绍了上拉下拉电阻的计算和应用。

- Arduino官方网站上的电路示例。

Arduino是一款广泛使用的开发板,它的官方网站上有许多电路示例,其中包含了很多使用上拉下拉电阻的案例和相应的电路图。

这些示例可以帮助读者更好地理解和应用上拉下拉电阻。

上拉电阻和下拉电阻的用法

上拉电阻和下拉电阻的用法

1、上拉电阻一般不是很大,从几K到几十K不等,最常用的是4.7—10K左右的。

上拉电阻的作用还是要通过对P0口电路分析来确定。

P0口输出级有个锁存器,一个数据选择器还有两个场效应管。

P0口做IO口使用时,控制信号C直接为0,数据选择器实际上接的是锁存器的反相输出端Q-,这时,如果IO口实际输出为0(即Q=0,Q-=1),下拉场效应管导通,外界可以通过场管检测到低电平。

而如果实际输出为1,这个场效应管是截止的,如果没有上拉电阻,P0口就没有办法知道确切的值,处于一种实际上悬空的状态。

这时如果有个电阻可以帮着接到高电平,则接口可以通过读这个高电平来代替单片机实际输出的高电平。

而低电平时,所有的电压降将全部落到上拉电阻上,对输出没有影响。

同时上拉电阻还有提高驱动能力的作用。

2、下拉电阻的作用实际上是吸收电流,有时候接口会有多个状态,比如高电平、低电平和高阻,甚至还有不确定的状态,这时候就需要使用下拉电阻,使我们能快速达到我们需要的状态。

3、拉电流是指IO口输出电流的能力,而灌电流是吸收电流的能力。

不管是单片机还是其他数字器件,它的IO口往往使用场效应管和三极管得到,而这些管子的电流输出能力会有个上限,这个就形成了拉电流。

也就是电流输出。

如果输出过大,那IO口就会发热,超过晶体管的耗散功率后,还有烧毁的危险。

灌电流也是类似,如果吸收的电流过多,同样有烧毁的可能。

4、上拉和下拉是非常重要的概念,在电路设计中用处很大,比如单片机,从理论上说只要P0口加上拉就可以了,但如果从可靠性角度讲,最好所有IO口都加上拉电阻(这部分书里一般都没有)。

下面贴一片我搜集的关于上拉和下拉的小文章,你可以看看。

上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

上拉、下拉电阻

上拉、下拉电阻

上拉、下拉电阻上下拉电阻上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

上下拉电阻:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

上拉电阻2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻:就是从电源高电平引出的电阻接到输出1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,CMOS)输出,那么不用上拉电阻是不能工作的, 这个很容易理解,管子没有电源就不能输出高电平了。

2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。

(就是并一个电阻在IC内部的上拉电阻上, 让它的压降小一点)。

当然管子按需要该工作在线性范围的上拉电阻不能太小。

当然也会用这个方式来实现门电路电平的匹配。

注意事项需要注意的是,上拉电阻太大会引起输出电平的延迟。

(RC延时) 一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。

下拉电阻:和上拉电阻的原理差不多, 只是拉到GND去而已。

上拉电阻与下拉电阻详解

上拉电阻与下拉电阻详解

上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。

以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。

2.下级电路的驱动需求。

同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。

3.高低电平的设定。

不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。

以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在低电平门槛之下。

4.频率特性。

以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。

上拉电阻的设定应考虑电路在这方面的需求。

下拉电阻的设定的原则和上拉电阻是一样的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[图]上拉电阻与下拉电阻的作用
2007-08-12
上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。

同理,下
拉电阻是把不确定的信号钳位在低电平。

上拉电阻是指器件的输入电流,而下拉指的是输岀电流。

那么在什么时候使用上、下拉电阻呢?
1、当TTL电路驱动CMOS!路时,如果TTL电路输岀的高电平低于CMOS!路的最低高电平(一般为3.5V ),这时就需要在TTL的输岀端接上拉电阻,以提高输岀高电平的值。

2、O C门电路必须加上拉电阻,以提高输岀的高电平值。

3、为加大输岀引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输岀电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。

6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

另外,上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理
关于上拉电阻,看图。

作为输入接VCC等于1,接GND=0
VCC
如果按键短路(按下)电阻为零,按键按下,Out=0,当按键断开,Out= ?显然当Out悬空输岀
VCC这可以用仪表测量,
这个VCC就是靠R1 “上拉”产生的,顾名思义,R1就是上拉电阻。

上拉电阻的大小,取决于输岀
接负载的需要,通常逻辑电路对高电平输出阻抗很大,要求输出电流很小,在上拉电阻上压降可以忽略,当然上拉电阻不能太大,否则就不能忽略了。

实际电路还有这种结构
这里的R1也是上拉电阻
关于下拉电阻,用得少,道理和上面一样,只不过通过电阻“下拉”到GND
单片机P0 口输岀结构一部分电路类似下图,实际可能用的是场效应管
Q2
当Q1, Q2分别导通,可以对外输岀0和1,当Q1, Q2都不导通时?要想输岀1,咋办?外接上拉
电阻!
为什么要使用拉电阻:
一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发
后回到原状态,必须在IC外部另接一电阻。

数字电路有三种状态:高电平、低电平、和高阻状
态,有些应用场合不希望岀现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有
的是需要外接,I/O端口的输岀类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的
时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连
接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。

上拉电阻是用来解决总线驱动能力不足时提供电流的。

一般说法是拉电流,下拉电阻是用来吸收电流的,也就是灌电流。

有时在修主板键盘口的时候,测量键盘口供电在接负载的情况下正常的话,但是不好用,在排除周围的阻容元件后,大家可能就会考虑到换io芯片了,换完以后也确实好用•不过本人在维修实
践中发现有时不用换io也能修好,只要把472的上拉电阻换小以后,键盘口也好用•比如换个102,272,222之类的,但是最低不能小于102 •看过资料如果电阻小于102的话,好像容易烧键盘•经过实践确实如此•这点经验给大家做个参考•如果换小以后还不行的话,也只能换io 了.。

相关文档
最新文档