化学热力学,化学平衡

合集下载

第2章 化学热力学基础和化学平衡

第2章 化学热力学基础和化学平衡

其变化值是可以确定的:

状态1(U1) → 状态2(U2)
△U= U2-U1
六、热力学第一定律

热力学第一定律(first law thermodynamics) 即能量守恒和转化定律(law of energy conservation and transformation) :

在任何过程中,能量是不会自生自灭的,
“恒容过程”。若体系变化时和环境之间无热量交换,
则称之为“绝热过程 ”。 途径 (path):完成一个热力学过程,可以采取多种
不同的方式。我们把每种具体的方式,称为一种途径。
过程着重于始态和终态;而途径着重于具体方式。
该过程可以经由许多不同的途径来完成。
下面给出其中两种途径: 0.5 10 5 Pa 4 dm3 1 10 5 Pa 途径 I 途径 II 2 10 5 Pa
四、热和功

热(heat):系统和环境之间,由于温度的差异而
交换的能量形式,用“Q”表示。

规定:系统吸热,Q为正;系统放热,Q为负。 功(work):除热之外,在系统和环境之间被传递 的能量形式,用“W”表示。 规定:系统对环境做功,W为负;环境对系统做 功,W为正。

体积功(volume work):由于系统体积改变(反 抗外力作用)而与环境交换的功。
0 νB B
B
νB 物质B的化学计量数(stoichiometric
number) ,量纲为一 注意:反应物的化学计量数为负值 生成物的化学计量数为正值
如反应: 1 N 2 3 H 2 NH 3
2 2
其化学计量数分别为:
ν(NH 3 ) 1 1 ν(N 2 ) 2 3 ν(H 2 ) 2

热力学基础、动力学基础、化学平衡知识要点

热力学基础、动力学基础、化学平衡知识要点

热力学基础、动力学基础、化学平衡知识要点—大众化学补充一、热力学基础(研究化学反映方向、程度(进行的可能性),反映涉及的能量) 对于化学反映:其中B ν为物质B 的化学计量数。

反映物的化学计量数为负,产物的化学计量数位正。

反映进度: 单位为mol.反映进度必需对应的化学计量方程式。

热和功1.2.1热---系统与环境之间由于存在温差而传递的能量。

系统吸热:Q >0; 系统放热:Q <0。

功---系统与环境之间除热之外以其它形式传递的能量;系统对环境做功,W <0(失功);环境对系统做功,W >0(得功)。

功的分类:体积功(膨胀功)、非体积功(如表面功、电功)。

1.2.2热力学第必然律: 焓: 1.3.1反映的标准摩尔焓变:r △,一个反映的焓变必需对应的化学计量方程式。

标准状态:气体:T ,p =100kPa ;液、固体:T ,1个大气压下,纯物质;溶液:溶质B ,b B =1mol·kg -1,,C B =1mol·L -1,1.3.2 f H △(B,相态,T ),单位是kJ·mol -1:在温度T 下,由参考状态单质生成物质B(νB =+1)的标准摩尔焓变,称为物质B 的标准摩尔生成焓。

参考态单质的标准摩尔生成焓为零。

1.3.3 c △相态,T ),单位是kJ·mol -1:在温度T 下, 物质B (νB = -1)完全氧化成指定产物时的标准摩尔焓变,称为物质B 的标准摩尔燃烧焓。

燃烧产物和O2的标准摩尔燃烧焓均为零。

1.3.4 Hess 盖斯定律:化学反映无论是一步完成仍是分几步完成,其反映焓变老是相同的对于化学反映:a A + b B → y Y + z Zr △T ) = ∑νBf H △:焓变=生成物的生成焓之和—反映物的生成焓之和;r △T ) =- ∑νB焓变=反映物的燃烧焓之和—生成物的燃烧焓之和; 自发转变:在没有外界(即没有非体积功)作用下,系统自身发生转变的进程。

化学平衡与热力学关系

化学平衡与热力学关系

化学平衡与热力学关系化学平衡是化学反应处于状态的一种表现形式,即反应反应物浓度与生成物浓度保持不变。

而热力学是研究物质热、功和能量变化的科学,它与化学平衡密切相关。

本文将探讨化学平衡与热力学之间的关系,以及它们在化学反应中的重要作用。

第一部分:化学平衡的热力学背景在化学反应中,反应物通过吸收或释放热量来转化为生成物。

热力学可以解释这些热量变化,并揭示了反应的能量变化过程。

化学反应的反应焓可以通过ΔH来表示,其中Δ代表变化,H代表焓。

当ΔH为正值时,反应吸热,反之则为放热。

这意味着化学反应的平衡不仅与物质的浓度有关,还与反应的热力学特性有关。

第二部分:平衡常数与热力学关系平衡常数是反应稳定状态下反应物和生成物浓度之比的平方根。

在一个封闭系统中,当平衡常数达到一定值时,反应就会达到平衡。

平衡常数可以用热力学参数来表示,例如ΔG、ΔH和ΔS。

ΔG为自由能变化,ΔH为焓变化,ΔS为熵变化。

根据热力学定律,当自由能变化ΔG为负值时,反应倾向于向正向方向进行;当ΔG为正值时,反应倾向于向反向方向进行。

因此,平衡常数与热力学参数之间有着直接的关系。

通过计算热力学参数,我们可以预测平衡常数的大小,从而了解反应的平衡倾向。

第三部分:熵增与平衡常数熵是描述物质分子无序程度的热力学函数,通过ΔS来表示。

在化学反应中,从一个有序的状态转变为一个无序的状态会导致熵增加,反之亦然。

平衡常数与ΔS之间存在着重要的关联。

根据热力学定律,当ΔS为正值时,系统的熵增加,反应向正向方向进行的可能性较大;当ΔS为负值时,系统的熵减少,反应向反向方向进行的可能性较大。

因此,对于反应体系来说,ΔS正值大小与平衡常数的大小正相关。

这意味着熵增加越大,平衡常数就越大,反应向正向方向进行的可能性就越大。

第四部分:温度对平衡常数的影响温度是化学反应中重要的热力学参数。

根据热力学定律,当温度升高时,系统的熵增加,使得平衡常数增大;当温度降低时,系统的熵减少,平衡常数减小。

化学热力学基础及化学平衡

化学热力学基础及化学平衡
16
3.1.7 反应进度
1. 反应进度 :描述反应 aA bB yY zZ
进行程度的物理量。
0 BB
B
B —物质B的化学计量数,可以是整数或分数,
及正值与负值。
νA=-a, νB=-b, νY= y, νZ= z 。
反应进度:单位是mol
nB nB( ) nB(0)
因气体的体积变化很大,体积功主要研究气体作的
体积功。若在定压过程:p始 = p终 = p环
体积功 W = -p ·ΔV=-ΔnRT
Δn:反应前后气体物质的量变化值
掌握
体积功:
W Fex l pex A l
pex V2 V1
pex V
V1
pex A:活塞面积
C2H4(g)+H2(g)→C2H6(g)
解: Q = -68.49kJ 2 = -136.98kJ
Δn=n(C2H6)-[n(C2H4)+n(H2)]=-1mol
W=-PΔV=-ΔnRT= -(-1) 298 8.314 = 2477.6J =2.48kJ
ΔU = Q + W = -136.98 + 2.48 = -134.50kJ
20
在一定条件下,化学反应 0 BB
B
反应的摩尔热力学能变rUm
rU m

U ξ
BU
n
反应的摩尔焓变 rHm
rHm

H ξ
BH
n
21
3.2 化学反应的反应热
3.2.1 热力学第一定律
定义:自然界的一切物质都具有能量;能量有各种不 同的形式,能够从一种形式转化为另一种形式;在转 化过程中,能量不生不灭,总值不变”。能量守恒与 转化定律应用于热力学系统,就称为热力学第一定律。

化学反应中的反应平衡和热力学

化学反应中的反应平衡和热力学

化学反应中的反应平衡和热力学一、化学平衡1.化学平衡的概念:在封闭系统中,正反两个化学反应的速率相等时,各种物质的浓度或含量不再发生变化的状态,称为化学平衡。

2.化学平衡的类型:(1)静态平衡:反应速率为零,反应物和生成物的浓度不再变化。

(2)动态平衡:正反反应速率不为零,但速率相等,反应物和生成物的浓度保持不变。

3.化学平衡的标志:(1)浓度不变:反应物和生成物的浓度在达到平衡后保持不变。

(2)含量不变:反应物和生成物的质量或物质的量在达到平衡后保持不变。

(3)百分含量不变:反应物和生成物的质量分数或物质的量分数在达到平衡后保持不变。

(4)物理性质不变:如颜色、密度、溶解度等在达到平衡后保持不变。

4.化学平衡的移动:(1)Le Chatelier原理:当一个处于平衡状态的系统受到外界影响时,它会发生变化以抵消这种影响,重新达到平衡。

(2)平衡移动的因素:温度、压强、浓度、催化剂等。

1.热力学第一定律:能量守恒定律,即在一个封闭系统中,能量不能被创造或消灭,只能从一种形式转化为另一种形式。

2.热力学第二定律:熵增原理,即在一个封闭系统中,熵(无序度)总是趋向于增加,导致系统趋向于平衡状态。

3.热力学第三定律:绝对零度的不可能性,即随着温度的降低,熵趋向于零,但不可能达到零。

4.焓变与反应热:(1)焓(H):系统在恒压下的能量。

(2)焓变(ΔH):反应物和生成物的焓之差,表示反应放热或吸热的能力。

(3)反应热:化学反应过程中放出或吸收的热量。

(4)放热反应:ΔH < 0,反应过程中放出热量。

(5)吸热反应:ΔH > 0,反应过程中吸收热量。

5.熵变与混乱度:(1)熵(S):系统混乱程度的度量。

(2)熵变(ΔS):反应物和生成物的熵之差,表示反应过程中混乱度的变化。

(3)自发的方向:ΔG < 0,反应自发进行。

(4)非自发的方向:ΔG > 0,反应非自发进行。

6.Gibbs自由能:(1)Gibbs自由能(G):系统在恒温恒压下进行非体积功的能力。

第三章化学热力学初步和化学平衡

第三章化学热力学初步和化学平衡

可逆途径
不同途径等温压缩环境对体系做的功
随着步骤的增加,W越来越小,直到沿着等温线往上,W最小
可逆过程(reversible process):一个体系能通 过原途往返而环境无功损失的过程
可逆过程的基本特点: (1)逆转不流痕迹
可逆过程
(2) 理想过程
(3) W可逆<W不可逆 可逆过程体系对 环境做功最大
*过程的关键是始、终态,而途径则着眼于具体方式。 **恒温过程, 恒压过程, 恒容过程, 绝热过程
四、内能(Internal Energy)又称为热力学能
1.体系内部所包含的各种能量之总和,绝对数值不可测。 2.广度状态函数。 3.内能的变化量有意义 4、理想气体的内能只是温度的函数, 即ΔUid = f ( T )
**温度一般为25 ℃(298K)
**大多数生成焓为负值,表明由单质生成化合 物时放出能量。
(2)意义: (i)计算化学反应的 rHm
反应ΔrH物mo = Δf HmoΔ(生rH成mo 物)- Δf H生mo成(反物应物)
(iiΔ)f H讨mo (反论应化物合) 物的稳Δf定Hmo性(生.成物)
1、恒容化学反应热(Q v)
弹式量热计示意图 1)体系体积在反应前后无 变化的反应称为恒容反应。
2)恒容条件下,Q v = ΔU
3)恒容反应热一般用 弹式量热计测定。
2、恒压化学反应热(Q p)
1)在恒压过程中完成的化 学反应,称为恒压反应。 2)恒压反应热一般用 保温杯式量热计测定。
保温杯式量热计示意图
l
I
注意:这里P外为环境压强
自由膨胀没有体积功
例题:恒温下,压力为106Pa的2m3理想气体在恒外压 5×105Pa膨胀直到平衡,此过程环境对体系作功多少?

化学热力学与化学平衡

化学热力学与化学平衡
热和功与过程紧密联系,没有过程就没有能量的传递。 -----------------热和功不是体系的状态函数.
2.1.2 热力学第一定律
体积功We :体系因体积变化抵抗外压所作的功。 如等压过程,体系膨胀对外作体积功: We = p外(V2 - V1 ) = p外△V
非体积功Wf:除体积功外的所有功。 如电功、机械功、表面功等.
故与有如下关系:
Qp = Qv + pΔV
当反应物和生成物都处于固态和液态时,反应的 ΔV值很小,可忽略,即W=0.

ΔH ΔU
对有气体参加的反应,W值往往较大。应用 理想气体状态方程式可得
W=- pΔV = p(V2 - V1) = (n2 - n1)RT = (Δn)RT
理想气体有如下关系:
恒温过程
p2=2.02×105Pa T2=398K
终态
2.1.2 热力学第一定律
一、热和功 能量传递有两种形式,一种是传热,一种是做功。 热heat :由于温度不同而在体系和环境之间传递的能
量叫做热,用符号Q•表示,单位是焦耳(J)。 功work :除热之外的其他各种方式在体系和环境之间
传递的能量叫做功,用符号W表示,单位也是焦耳(J)
reaction
ξ=lmol
CO(NH2)2(s) + 3/2 O2(g) ==CO2 (g) + N2 (g) + 2H2O (l)

rH
m
632.1kJ mol-1
C (石墨) + O2 (g) = CO2 (g) rHm○ = - 393.5 kJ·mol-1 (1)
C (金刚石) + O2 (g) = CO2 (g)

化学平衡与化学反应的热力学分析

化学平衡与化学反应的热力学分析

化学平衡与化学反应的热力学分析热力学是研究能量转化和传递的学科,它广泛应用于化学领域,尤其在化学平衡和化学反应的研究中起着重要的作用。

本文将对化学平衡和化学反应的热力学分析方法进行探讨。

一、化学反应的热力学基础化学反应的热力学基础是“热力学第一定律”,它表明能量是守恒的。

在化学反应中,反应过程中涉及的能量转化可以通过热力学参数来描述。

这些参数包括焓变(ΔH)、熵变(ΔS)和自由能变(ΔG)。

热力学第一定律可以表示为:ΔU = Q + W其中,ΔU是系统的内能变化,Q是热量的变化,W是功的变化。

根据热力学第一定律,当一个化学反应发生时,系统的内能会有所变化,这会导致温度的变化。

二、化学平衡与热力学在化学反应中,当反应速率达到一定值时,称为化学平衡。

化学平衡在热力学上表现为反应物和生成物之间的自由能变化为零。

这可以用以下方程表示:ΔG = ΔH - TΔS其中,ΔG是自由能变化,ΔH是焓变,ΔS是熵变,T是温度。

当ΔG为零时,化学反应处于平衡状态。

在这种情况下,焓变和熵变相互抵消,保持自由能的稳定。

三、热力学分析方法1. 发热/吸热反应的热力学分析发热反应是指在反应过程中释放热量的反应,吸热反应则是吸收热量的反应。

这些反应的热力学参数可以通过对其热效应的测量来确定。

常用的测量方法有燃烧热计、热量计等。

2. 熵变的热力学分析熵变是反应系统中混乱程度的度量,它可以通过测量反应物和生成物的热容和温度变化来计算。

熵变的正负值决定了反应的趋势,正值表示混乱程度增加,反应向正方向进行;负值表示混乱程度减小,反应向反方向进行。

3. 自由能的热力学分析自由能是描述反应系统能量稳定性的参数。

通过测量焓变和熵变,可以计算出反应的自由能变化。

当自由能变化为负值时,反应是自发进行的;当自由能变化为正值时,反应是不自发进行的;当自由能变化为零时,反应处于平衡状态。

四、热力学分析在化学工程中的应用热力学分析在化学工程中有广泛的应用。

化学反应的热力学与化学平衡的关系

化学反应的热力学与化学平衡的关系

化学反应的热力学与化学平衡的关系热力学是研究物质之间的能量转化和能量传递规律的学科,而化学平衡是指化学反应达到一种稳态,反应物和生成物的浓度保持不变的状态。

化学反应的热力学和化学平衡之间存在着紧密的关系,下面我们就来详细探讨一下。

热力学是研究化学反应中能量变化的学科,它通过热力学参数来描述反应的热效应。

热力学中的基本定律是能量守恒定律、熵增加定律和自由能变化定律。

能量守恒定律指出,在一个封闭系统中,能量的总量保持不变;熵增加定律则指出,在一个孤立系统中,熵总是趋向增加;自由能变化定律表明,在恒温恒压下,系统的自由能趋向于减少。

根据这些定律,可以使用热力学参数来预测和解释化学反应中的能量变化。

化学平衡是指在化学反应中,反应物和生成物的浓度达到一种稳定状态,在这种状态下,前后反应速率相等。

根据化学平衡的原理,可以推导出平衡常数和平衡浓度的关系。

平衡常数是在特定反应温度下,反应物和生成物浓度的比值的常数,它表征了反应的进行方向和强度。

当平衡常数小于1时,反应主要向反向进行,当平衡常数大于1时,反应主要向前进行。

平衡常数与反应温度有关,温度升高会导致平衡常数的变化。

化学反应的热力学和化学平衡之间存在着密切的关系。

根据化学平衡原理,当一个化学反应达到平衡时,它的反应焓变和反应熵变均为零。

反应焓变为零意味着在平衡状态下反应物和生成物的热能相等,反应熵变为零意味着平衡状态下系统的无序程度不再随时间变化。

由于热力学参数与反应的能量变化有关,因此反应的热力学参数也与化学平衡有关。

在实际的化学反应中,通过控制反应的温度、浓度和压力等条件,可以实现对反应的控制和调节。

利用热力学参数,我们可以预测反应的能量变化,从而选择合适的条件进行反应。

而平衡常数则可以帮助我们了解反应的平衡位置和反应的进行方向,进一步指导实验操作。

总之,化学反应的热力学和化学平衡之间存在着紧密的关系。

热力学通过研究物质之间能量转化的规律,为化学平衡的实现提供了理论基础。

化学平衡和热力学的平衡

化学平衡和热力学的平衡

化学平衡和热力学的平衡在化学反应中,当反应物转化为产物时,有时反应会在一定条件下达到平衡态。

这种平衡态称为化学平衡。

同时,热力学是研究能量转化和传递的学科,而热力学平衡则是指系统处于稳定的能量状态。

化学平衡和热力学平衡在化学研究和应用中发挥着重要的作用。

本文将对这两个概念进行探讨。

一、化学平衡的概念和特征化学平衡是指在封闭系统中,反应物与产物的浓度或压强达到一定的稳定状态,且在该状态下,反应物与产物的物质转化速率相等。

化学平衡时,反应物与产物之间的摩尔比例称为平衡常数。

化学平衡的特征包括:1. 反应物与产物浓度或压强不再发生明显的变化;2. 反应物与产物的浓度或压强达到一定的比例关系;3. 正向反应和逆向反应在相同条件下速率相等。

化学平衡的条件取决于反应物质的性质,温度和压力等因素。

温度变化可改变平衡常数的数值,而压力变化对固体和液体反应产生的影响较小。

当平衡条件中某个因素发生变化时,平衡将发生偏移以适应新的条件。

二、热力学平衡的概念和条件热力学平衡是指系统内所有宏观和微观的状态和性质都不发生变化。

热力学平衡可以分为两个方面:热平衡和力学平衡。

1. 热平衡是指系统的温度在整个系统内部保持均匀,不出现温度梯度的现象。

在热平衡中,热量的流动是从高温区到低温区的,直到两者温度相等。

2. 力学平衡是指一个系统中物体的运动状态不变,不会出现加速度、减速度或转动的现象。

在力学平衡时,物体的受力和力的矩等于零。

热力学平衡的条件包括:1. 系统内各部分保持热力学平衡;2. 系统不与外界交换物质或能量;3. 系统处于闭合状态。

当系统不满足以上条件之一时,热力学平衡将被打破,系统将趋向于恢复平衡状态。

三、化学平衡和热力学平衡的关系化学平衡和热力学平衡是密切相关的概念,在一定条件下彼此影响。

化学平衡中,系统达到平衡状态时,热力学平衡也将同时存在。

由于化学平衡和热力学平衡的条件不同,因此它们的描述和计算方法也有所不同。

化学平衡常数与化学反应热力学

化学平衡常数与化学反应热力学

化学平衡常数与化学反应热力学化学平衡常数和化学反应热力学是化学中重要的概念,它们与化学反应的平衡性和热力学性质密切相关。

本文将讨论化学平衡常数和化学反应热力学的概念、计算方法以及它们之间的关系。

一、化学平衡常数化学平衡常数是指在化学反应达到平衡时,反应物和生成物浓度的比值。

对于一般的化学反应A + B ↔ C + D,化学平衡常数的定义公式为:Kc = [C][D] / [A][B]其中[A]、[B]、[C]和[D]分别代表反应物A、B以及生成物C、D的浓度。

Kc为平衡常数,表示反应达到平衡时反应物和生成物的浓度比值。

化学平衡常数是一个与温度有关的常数,它反映了化学反应的平衡性质。

当Kc>1时,平衡位置偏向生成物一侧;当Kc<1时,平衡位置偏向反应物一侧。

当Kc=1时,反应物和生成物的浓度大致相等,反应处于动态平衡状态。

化学平衡常数的计算通常需要实验数据或者理论计算方法。

根据化学方程式和实验数据,可以通过测定反应物和生成物的浓度来计算平衡常数。

化学平衡常数的值可以用于分析反应的平衡性质和预测反应的方向。

二、化学反应热力学化学反应热力学是研究化学反应与能量变化之间的关系。

化学反应过程中,通常会伴随着能量的吸收或者释放。

根据能量变化的情况,化学反应可以分为放热反应和吸热反应。

放热反应是指在反应过程中放出热量,反应物的总能量高于生成物的总能量。

放热反应的热力学值为负值,表示反应释放出的能量。

吸热反应是指在反应过程中吸收热量,生成物的总能量高于反应物的总能量。

吸热反应的热力学值为正值,表示反应吸收的能量。

根据化学反应的热力学性质,可以对化学反应进行定量的描述。

化学反应的热力学值可以通过实验测定或者计算方法得到。

热力学值的大小可以用于分析反应的热稳定性,以及预测反应的方向。

三、化学平衡常数与化学反应热力学的关系化学平衡常数与化学反应热力学之间存在着密切关系。

根据化学定律“吉布斯自由能变化的最小原则”,在恒温恒压条件下,反应的平衡位置取决于吉布斯自由能变化。

热力学平衡与化学平衡

热力学平衡与化学平衡

热力学平衡与化学平衡热力学平衡与化学平衡是化学领域中重要的概念。

热力学平衡指系统内各物质组分的相对浓度不再发生变化,而达到稳定的状态。

化学平衡则是指在一定条件下,反应物与生成物之间的浓度保持恒定,反应速率相互平衡。

1. 热力学平衡热力学平衡的概念源于热力学第二定律,它描述了系统自发过程的方向,即系统朝着熵增加的方向进行。

当系统达到热力学平衡时,系统内能量状态和物质组分不再发生变化,达到了最稳定的状态。

热力学平衡与反应物的自由能变化密切相关。

根据吉布斯自由能变化的表达式,当系统的吉布斯自由能变化为零时,系统达到热力学平衡。

吉布斯自由能变化的表达式为ΔG = ΔH - TΔS,其中ΔH为反应的焓变,T为温度,ΔS为熵变。

2. 化学平衡化学反应在一定条件下,会逐渐趋向于一种平衡状态,此时反应物与生成物之间的浓度不再发生变化,反应速率相互平衡,达到了化学平衡。

化学平衡与热力学平衡有着紧密的联系。

根据化学反应速率与物质浓度之间的关系,当反应物与生成物的浓度达到一定比例时,反应速率前后保持一致,反应达到化学平衡。

化学平衡的条件是反应物与生成物的浓度比例保持不变。

这一比例由平衡常数K表示,反应物与生成物浓度的比值与K成正比。

平衡常数的表达式为K = [C]^c[D]^d/[A]^a[B]^b,其中A、B为反应物,C、D 为生成物,a、b、c、d为化学方程式中各物质的系数。

3. 热力学平衡与化学平衡的关系热力学平衡和化学平衡在某种程度上是相互关联的。

热力学平衡是基于能量的考虑,它关注系统内部的能量状态和物质组分的变化。

而化学平衡则更注重反应速率和浓度之间的平衡。

在热力学平衡和化学平衡的条件下,物质组分和能量状态都达到了最稳定的状态,系统不再发生可观察的变化。

但需要注意的是,在热力学平衡条件下,系统达到了最稳定状态,但不一定是化学平衡;而在化学平衡条件下,系统既达到了最稳定状态,也达到了热力学平衡。

4. 应用举例热力学平衡和化学平衡的理论在实际应用中具有重要意义。

理解化学反应中的化学平衡和热力学平衡

理解化学反应中的化学平衡和热力学平衡

04
化学平衡与热力学平衡关系
Chapter
化学平衡与热力学平衡联系
平衡态的定义
化学平衡和热力学平衡都是描述系统达到稳定状态的概念,其中各种宏观性质不随时间变 化。
平衡常数的应用
在化学平衡中,沉淀溶解平衡常数(Ksp)、酸碱平衡常数(Ka、Kb)、电离平衡常数 (Kw)等,这些平衡常数都可以用热力学数据来计算。
热力学平衡状态下,系统中各种宏观 性质达到稳定,这种稳定状态会对化 学反应的平衡产生影响,从而改变反 应物和生成物的浓度。
在某些条件下,化学平衡可以转化为 热力学平衡,例如当反应物和生成物 浓度相等时,化学平衡即达到热力学 平衡状态。同时,热力学平衡也可以 转化为化学平衡,例如在恒温恒压条 件下,系统达到热力学平衡时,化学 反应也达到动态平衡状态。
03
热力学平衡
Chapter
热力学系统分类
孤立系统
与外界既没有物质交换也没有能量交 换的系统。
开放系统
与外界既有能量交换又有物质交换的 系统。
封闭系统
与外界有能量交换但没有物质交换的 系统。
热力学平衡条件
01
热平衡
系统内部各部分温度 相等,且与外界温度 相等。
02
力学平衡
系统内部各部分压力 相等,且与外界压力 相等。
配位平衡实验
通过向配合物溶液中加入不同种类的配体或金属离子,观察配合物的 生成和稳定性变化,探究配位平衡的移动和影响因素。
典型案例分析
沉淀溶解平衡案例
在含有PbI2固体的溶液 中,加入NaI固体,发 现PbI2的溶解度降低, 说明同离子效应对沉淀 溶解平衡的影响。
氧化还原平衡案例
将Zn片插入CuSO4溶液 中,观察到Zn片上有红 色物质析出,同时溶液 颜色变浅,说明发生了 Zn + CuSO4 = ZnSO4 + Cu的置换反应,建立 了氧化还原平衡。

chapter2 化学热力学基础与化学平衡

chapter2 化学热力学基础与化学平衡

第二章化学热力学基础与化学平衡Chapter 2The Basis of Chemical Thermodynamics andChemical Equalibrium热力学是热和温度的科学,把热力学应用于化学,称为化学热力学。

§2-1 化学热力学的体系与状态The Systems and States of Chemical Thermodynamics一、化学热力学的特点和范围:在研究化学反应时,人们总会思考一些问题:当几种物质放在一起时,a.能否发生反应?b.反应速率多大?c.会发生怎样的能量变化?d.到什么程度时反应达到平衡?e.反应机理如何?1.化学热力学的范围:a、c、d 属于化学热力学问题,而b、e属于化学动力学问题。

热力学研究范围为:化学反应方向,限度以及伴随能量的变化2.特点:(1) 化学热力学解决化学反应中能量是如何转换的──能量守恒定律,解决上面问题中的c——热力学第一定律。

(2) 化学热力学解决在指定条件下,化学反应朝哪个方向进行以及反应的限度,解决上面问题中的a、d ——热力学第二定律。

这两个定律是人类对含有极大量质点物质长期实践中总结出来的,这两个定律可以用数学式表示,但无法用数学来证明。

3.局限性对于个别分子、原子的性质,即微观粒子的性质的解决是无能为力的,所以对于被研究对象无需知道过程的微观进程,更不需要物质结构方面的知识。

化学热力学研究问题时没有时间概念,不涉及变化过程的速率问题。

二、体系和环境(System & Surrounding)1.定义(Definition):在热力学中,被指定为研究的对象称为体系;与体系密切相关的周围部分称为环境。

2.体系的分类(Classification of system)(1) 敞开体系(opened system):体系与环境之间既有能量交换,又有物质交换。

(2) 封闭体系(closed system):体系与环境之间有能量交换,无物质交换。

化学平衡的热力学平衡计算

化学平衡的热力学平衡计算

化学平衡的热力学平衡计算化学平衡是指化学反应在一定条件下达到动态平衡的状态,其中热力学平衡计算是评估平衡状态的重要方法。

本文将介绍化学平衡的基本概念,并详细讲解热力学平衡计算的步骤和应用。

一、化学平衡的基本概念在化学反应中,反应物(A、B)经过反应转变为生成物(C、D),化学平衡指的是反应物和生成物的浓度或物质的量在一定条件下保持不变的状态。

平衡常数(K)是衡量反应在平衡状态下的相对浓度的指标。

平衡常数的大小和反应的位置有关,当平衡常数越大时,反应偏向生成物;反之,当平衡常数越小时,反应偏向反应物。

二、热力学平衡计算的步骤热力学平衡计算是根据热力学原理来推导化学平衡的计算方法。

以下是热力学平衡计算的基本步骤:1. 写出平衡反应的化学方程式首先,根据实验数据或理论计算结果,确定平衡反应的化学方程式。

例如,对于气态反应A(g) + B(g) ⇌ C(g),化学方程式可以表示为A + B ⇌ C。

2. 写出平衡常数表达式根据平衡反应的化学方程式,可以推导出平衡常数表达式。

平衡常数(K)由反应物和生成物的浓度(或物质的量)之比组成。

对于反应A +B ⇌ C,平衡常数表达式可以写为K = [C] / ([A] * [B]),其中[]表示浓度。

3. 列出平衡条件根据实验条件或问题描述,列出平衡条件。

平衡条件包括初态和平衡态的浓度(或物质的量)。

将这些条件代入平衡常数表达式中。

4. 求解未知量通过解方程组,求解未知量。

根据平衡条件和平衡常数表达式,可以得到未知物质的浓度(或物质的量)。

5. 检验计算结果将求解得到的未知量代入平衡常数表达式中,检验计算结果是否满足平衡条件。

如果结果符合平衡条件,则平衡计算正确。

三、热力学平衡计算的应用热力学平衡计算在化学工业、环境科学和生物化学等领域有广泛应用。

以下是热力学平衡计算的几个典型应用:1. 预测平衡位置通过计算平衡常数和平衡条件,可以预测反应在不同条件下的平衡位置。

化学平衡与热力学

化学平衡与热力学

化学平衡与热力学在化学反应中,当反应物转化为产物时,反应会达到一个平衡状态。

这个平衡状态可以通过热力学原理来解释和预测。

本文将详细探讨化学平衡与热力学之间的关系,以及理解和应用热力学原理来解释和预测平衡的方法。

一、化学平衡的定义和表达式化学平衡是化学反应过程中反应物和产物浓度保持不变的状态。

当反应达到平衡时,反应物与产物的反应速度相等,但并不意味着反应停止。

反应仍然在进行,只是反应物和产物之间的转化速率相等。

平衡的表达式通常通过化学反应的摩尔浓度来表示。

对于一般的反应:aA + bB ↔ cC + dD(aA和bB为反应物,cC和dD为产物),平衡常数K可以用以下表达式表示:K = ([C]^c * [D]^d) / ([A]^a * [B]^b)方括号表示物质的摩尔浓度,小的字母表示物质的系数。

在特定的温度下,K值是一个固定的常数,它描述了反应物与产物之间的平衡浓度关系。

二、热力学和平衡常数热力学是研究能量转化和传递的科学。

在热力学中,系统的自由能(G)是一个非常重要的概念。

对于一个化学反应,系统的自由能变化(ΔG)可以通过以下公式计算:ΔG = ΔH - TΔS其中,ΔH表示反应的焓变,T表示温度,ΔS表示反应的熵变。

当ΔG < 0时,反应是自发进行的,而当ΔG > 0时,反应不能自发进行。

当ΔG = 0时,反应达到平衡。

通过Gibbs-Helmholtz方程,我们可以得到ΔG和平衡常数K之间的关系:ΔG = -RTlnK其中,R是气体常数,T是温度。

这个方程表明了平衡常数K和反应的热力学性质之间的关系。

通过计算ΔG可以确定反应是否可逆,以及平衡常数的大小。

三、通过平衡常数预测反应方向由平衡常数的表达式,我们可以得知当K > 1时,产物的浓度较高;而当K < 1时,反应物的浓度较高。

因此,平衡常数可以用来预测反应的方向。

如果K值很大,意味着反应向右方向(产物方向)偏移,而如果K值很小,意味着反应向左方向(反应物方向)偏移。

化学反应中的化学平衡与反应热力学

化学反应中的化学平衡与反应热力学

化学反应中的化学平衡与反应热力学化学反应是化学学科的重要组成部分,其中反应平衡和反应热力学是深入理解和探究化学反应的关键。

本文将从反应平衡和反应热力学两个方面探讨化学反应。

一、反应平衡反应平衡是指化学反应达到一种动态平衡状态,反应物和生成物浓度达到一定比例,反应速率前后相等。

反应平衡状态可以用化学平衡定律来描述。

化学平衡定律是指在一定温度下,反应物和生成物在反应过程中达到浓度一定比例的状态,该比例与化学物质摩尔比例有关,可以用反应物摩尔浓度比值的乘积与生成物摩尔浓度比值的乘积之比来描述,称为反应平衡常数。

反应平衡常数与反应热力学有密切关系。

反应平衡常数依据配平反应方程式而定,可以用反应物和生成物的摩尔数之比计算得出。

反应热力学则是考虑反应过程中的能量变化,一些反应可以放出热量,也可以吸收热量,这是自发反应和非自发反应之间的重要区别。

二、反应热力学反应热力学研究化学反应中的热量变化和热力学性质。

前提是考虑反应吸收或者释放的能量变化。

因为反应过程中,化学键的形成和断裂产生的化学键能将直接影响反应的热力学性质。

反应热力学性质包括焓、熵、自由能等量。

焓是反应过程中的热量变化,表示反应物和生成物之间的热量差异。

熵是反应过程中可以用来衡量分子无序程度的物理量。

自由能则是反应是否热力学可行的判断依据。

一个反应在可逆条件下达到平衡态时,焓变为0,体系自由能变化为状态函数,这样的过程称为可逆过程。

化学反应中的化学平衡状态对应可逆过程的平衡态,同时反应平衡常数与可逆过程的自由能变化有关。

可以用反应物和生成物化学势之差来计算反应的自由能。

三、结合反应平衡和反应热力学的实例若考虑一个化学反应A+B=C,反应过程放热,N个分子达到平衡状态,可以通过化学平衡定律来描述反应平衡状态中反应物和生成物的浓度比。

同时,通过反应热力学性质可以描述反应过程中热能的变化,建立反应焓,熵和自由能三大物理量的模型,用于判断反应热力学热力学可行性和反应趋势等性质。

化学热力学——精选推荐

化学热力学——精选推荐

五、化学热力学、化学平衡【体系】作为研究对象的一定物质或空间所组成的整体,也称系统。

体系以外的其他物质或空间则称作环境。

例如研究硝酸银和氯化钠在水溶液中的反应,含有这两种物质的水溶液就是体系,而盛溶液的烧杯、溶液上方的空气等就是环境。

热力学体系可分三种:孤立体系、封闭体系、敞开体系。

【环境】指所研究的物质体系以外的其它部分(见体系条)。

关于生态环境详见“环境部分”。

【敞开体系】体系与环境之间既有物质交换,又有能量交换。

【封闭体系】体系与环境之间没有物质交换,只有能量交换。

【孤立体系】体系与环境之间既没有物质交换,又没有能量交换。

【状态】即体系的状态,在热力学中用体系的性质来规定其状态。

决定体系状态的性质有温度、压力、体积、组成等,比如当研究的对象是一定量的纯净气体时,温度和压力一定时,体系的状态就定了。

【状态函数】用于规定体系的热力学状态的宏观性质,如体积、温度、压力、物质的量等都叫做状态函数。

状态函数的变化只取决于体系的始态和终态,而与变化的途径无关。

【压力】物理学中压强的概念,在化学热力学中常称作压力。

单位是帕斯卡(Pa),压力为1Pa的含义是:1平方米面积上受到的垂直作用力为1牛顿(1Pa=1Nm-2)。

【压强】见压力条。

【理想气体】忽略了分子本身的体积和分子间作用力的气体。

这种气体是不存在的,这只是一种理想状态,当真实气体处在较高的温度和较低的压力的状态下可近似地看成是理想气体。

【理想气体状态方程】即PV=nRT。

式中P为气体压力,V为气体体积,n为气体的摩尔数,R为气体常数,T为热力学温度。

【气态方程】见理想气体状态方程条。

【气体常数】理想气体状态方程中的一个常数,常用R表示,R=8.314J·mol-1·K-1。

【广度性质】也叫容量性质,是体系宏观性质的一类。

广度性质的数值与体系中物质的数量成正比,例如体积、质量、内能等。

【强度性质】体系的宏观性质的另一类,其数值与体系中物质的数量无关,仅由体系本身的性质决定,没有加和性,整个体系的强度性质与体系各个部分的强度性质的数值都相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学热力学 化学平衡一、选择题( )1. 下列过程中,△G=0的是(A) 氨在水中解离达平衡 (B) 理想气体向真空膨胀 (C) 乙醇溶于水 (D) 炸药爆炸 ( )2. 一定条件下,合成氨反应呈平衡状态, 3H 2+N 2=2NH 3-------K 1, 32 H 2+12N 2=NH 3-----K 2, 则K 1与K 2的关系为 (A) K 1=K 2 (B) K 12 = K 2 (C) K 22=K 1 (D) 无法确定( )3. 下列反应中哪个是表示△r H m =△f H m (AgBr ,s )的反应(A) Ag +(aq)+Br ―(aq)=AgBr(s) (B) Ag(s)+1/2 Br 2(l)=AgBr(s)(C) 2Ag(s)+Br 2(g)=2AgBr(s) (D) Ag(s)+1/2 Br 2(g)=AgBr(s)( )4.已知:A+B −→−M+N ,Δ r H 1=35 kJ·mol -1;2M+2N −→−2D ,Δ r H 2=-80 kJ·mol -1;则A+B −→−D 的Δ r H 3是 (A) -5kJ·mol -1 (B) -10kJ·mol -1 (C) -45kJ·mol -1 (D) 45kJ·mol -1 ( )5. H 2 O(l ,100℃,101.3 kPa) −→−H 2 O(g ,100℃,101.3 kPa), 设H 2 O(g)为理想气体,则由始态到终态体系所吸收的热量Q 为(A) >ΔH (B) <ΔH (C) =ΔH (D) =ΔU( )6. 下列单质的Δf H m 不等于零的是(A) Fe(s) (B) C(石墨) (C) Ne(g) (D) Cl 2 (l)( )7. 合成氨反应3H 2(g)+N 2(g) 2NH 3(g)在恒压下进行时,若向体系中引入氩气,则氨的产率(A) 减小; (B) 增大; (C) 不变; (D) 无法判断。

( )8. 下列反应中,△r H m 与产物的△f H m 相同的是(A )2H 2(g )+O 2(g )→2H 2O (l ) (B )NO (g )+½O 2(g )→NO 2(g )(C )C (金刚石) →C (石墨) (D )H 2(g )+½O 2(g )→H 2O (g )( )9. 在标准压力和 373 K 下,水蒸气凝聚为液态水时体系中应是(A) ΔH = 0 (B) ΔS = 0 (C) ΔG = 0 (D) ΔU = 0( )10. 某体系在失去15kJ 热给环境后,体系的内能增加了5kJ ,则体系对环境所作的功是(A) -20 kJ (B) -10 kJ (C) 10 kJ (D) 20 kJ( )11. 已知 Zn(s) + 1/2O 2 (g) =ZnO(s)Δ r H m 1 = -351.5 kJ·mol -1 Hg(l) + 1/2O 2 (g) =HgO(s,红) Δ r H m 2 = -90.8 kJ·mol-1 则 Zn(s) + HgO(s,红) =ZnO(s) + Hg(l) 的Δ r H m 为(kJ·mol -1 )(A) 442.3 (B) -260.7 (C) 260.7 (D) -442.3( )12.下列物理量中,属于状态函数的是(A) ΔH (B) ΔU (C) Q (D) H( )13. 稳定纯态单质在 298 K,100 kPa 下,下述正确的是(A) S m,Δf G m为零(B) Δ f H m不为零(C) S m不为零, Δf H m为零(D) S m,Δ f G m,Δ f H m均为零()14. 某温度下,一个可逆反应的平衡常数为Kc,同温下,经测定,计算得,Jc<Kc,则此反应(A) 处于平衡状态(B) 正向进行(C) 逆向进行(D) 没有具体数据,无法判断()15. 化学反应在任何温度下都不能自发进行时,其(A) 焓变和熵变两者都是负的; (B) 焓变是正的,熵变是负的;(C) 焓变和熵变两者都是正的; (D) 焓变是负的,熵变是正的。

()16. 某化学反应其△H为-122kJ·mol-1,△S为-231J·mol-1·K-1,则此反应在下列哪种情况下自发进行。

(A) 在任何温度下自发进行;(B) 在任何温度下都不自发进行;(C) 仅在高温下自发进行;(D) 仅在低温下自发进行。

()17. 已知: Mg(s)+Cl2 (g) =MgCl2 (s) Δr H m=-642 kJ.mol-1,则(A) 在任何温度下,正向反应是自发的(B) 在任何温度下,正向反应是不自发的(C) 高温下,正向反应是自发的;低温下,正向反应不自发(D) 高温下,正向反应是不自发的;低温下,正向反应自发()18. 某化学反应可表示为A(g) + 2B(s) 2C(g)。

已知Δ r H m<0,下列判断正确的是(A) 仅常温下反应可以自发进行(B) 仅高温下反应可以自发进行(C) 任何温度下反应均可以自发进行(D) 任何温度下反应均难以自发进行()19. 已知CO(g) C(s)+1/2 O2 (g) 的Δr H m>0,Δr S m<0,则此反应(A) 低温下是自发变化(B) 任何温度下都是非自发的(C) 高温下是自发变化(D) 低温下是非自发变化,高温下是自发变化()20. 某反应在标准态和等温等压条件下,在任何温度都能自发进行的条件是(A) Δr H m<0 , Δr S m>0 (B) Δr H m<0 , Δr S m<0(C) Δr H m>0 ,Δr S m<0 (D) Δr H m>0 ,Δr S m>0()21. 25℃时NaCl在水中的溶解度约为6 mol·dm-3,若在1 dm3 水中加入1 molNaCl,则NaCl(s)+H2 O(l)→NaCl(aq)的(A) ΔS>0,ΔG>0 (B) ΔS>0,ΔG<0 (C) ΔG>0,ΔS<0 (D) ΔG<0,ΔS<0()22. 分几步完成的化学反应的总平衡常数是(A) 各步平衡常数之和(B) 各步平衡常数之平均值(C) 各步平衡常数之差(D) 各步平衡常数之积()23. 冰熔化时,在下列各性质中增大的是(A) 蒸气压(B) 熔化热(C) 熵(D) 吉布斯自由能()24. 室温下,稳定状态的单质的标准摩尔熵为(A) 零(B) 1 J·mol-1·K-1 (C) 大于零(D) 小于零()25. 某温度时,化学反应A + 1/2B1/2A2B的平衡常数K=1×104 ,那么在相同温度下,反应A2 B 2A +B 的平衡常数为(A) 1×100 (B)1×10-8 (C) 1×10-4 (D) 1×104()26. 下列反应达平衡时,2SO2 (g) + O2 (g) 2SO3 (g),保持体积不变,加入惰性气体He,使总压力增加一倍,则(A) 平衡不发生移动(B) 平衡向右移动(C) 平衡向左移动(D) 条件不充足,不能判断()27. 已知在一定温度下∶SnO2 (s) + 2CO(g) Sn(s) + 2CO2 (g) K c= 0.024,CO(g) + H2O(g) CO2 (g) + H2(g) K c= 0.034,则SnO2 (s) + 2H2(g) Sn(s) + 2H2O(g) 的K c为(A) 0.058 (B) 21 (C) 8.2×10-4 (D) 0.71()28. N2(g) + 3H2(g) 2NH3(g) K c= 0.63 ,反应达到平衡时,若再通入一定量的N2(g),则K c,Q c和△r G m的关系为(A) Q c = K c,△r G m= 0 (B) Q c>K c,△r G m>0(C) Q c<K c,△r G m<0 (D) Q c<K c,△r G m>0()29. H2(g)燃烧生成水蒸气的热化学方程式正确的是(A) 2H2(g) + O2(g) = 2H2O(l) △r H= -242 kJ·mol-1(B) 2H2 + O2 =2H2O △r H= -242 kJ·mol-1(C) H2 + 1/2O2 = H2O △r H= -242 kJ·mol-1(D) 2H2(g) + O2(g) =2H2O(g) △r H= -484 kJ·mol-1()30. 如果一个反应的吉布斯自由能变为零,则反应(A) 能自发进行(B) 是吸热反应(C) 是放热反应(D) 处于平衡状态()31. 相同的反应物转变成相同的产物时,如果反应分两步进行,那么要比一步进行时(A) 放热多(B) 熵增加多(C) 内能增加多(D) 焓、熵、内能变化相同()32. 已知∶ H2(g) + S(s) H2S(g) K1 S(s) + O2 (g) SO2 (g) K2则反应H2(g) + SO2 (g) O2 (g) + H2S(g) 的平衡常数是(A) K1+ K2 (B) K1- K2 (C) K1×K2 (D) K1/ K2()33. 在300 K时,反应(1)的K p值为2.46,则反应(2)的K p值为(1) NO2 (g) 1/2N2O4(g); (2) 2NO2 (g) N2O4(g)(A) 6.05 (B) 4.92 (C) 2.46 (D) 1.57二、填空题1. 在下表变化方向栏内用箭头指示变化方向:序号可逆反应△r H m操作变化方向(1) 2SO2 (g)+O2 (g) 2SO3(g) <0 加热( )(2) C(s)+H2O(g) CO(g)+H2 (g) >0 冷却( )(3) NH4Cl(s) NH3(g)+HCl(g) >0 加压( )(4) N2O4(g) 2NO2 (g) <0 减压( )2. 298K时,水的蒸发热为43.93kJ·mol-1,则Q为____ ___ _,△U为___ 。

3. 在25℃时,NaCl在水中的溶解度为6 mol·dm-3,在此温度下,若将100gNaCl置于500g水中,则NaCl 溶解过程的△r G 0,△r S 0(填>或<号=)。

4. 已知823 K时反应(1) CoO(s) + H2(g) Co(s) + H2O(g) K p1= 67(2) CoO(s) + CO(g) Co(s) + CO2 (g) K p2 = 490则反应(3) CO2 (g) + H2(g) CO(g) + H2O(g) K p3= 。

相关文档
最新文档