第三章多元线性回归模型计量经济学,南京审计学院.ppt
第三章多元线性回归模型(计量经济学,南京审计学院)
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
第3章 多元线性回归模型 《计量经济学》PPT课件
于是:
βˆ
ˆ1 ˆ 2
0.7226 0.0003
0.0003 1.35E 07
15674 39648400
01.0737.71072
⃟ 正规方程组 的另一种写法
对于正规方程组 XY XXβˆ
XXβˆ Xe XXβˆ
于是 Xe 0 (*)
或
ei 0
(**)
X jiei 0
i
(*) 或( ** )是多元线性回归模型正规方程 组的另一种写法。
第三章 经典单方程计量经济学模型: 多元线性回归模型
• 多元线性回归模型 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 回归模型的其他形式
§ 3. 1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
多元线性回归模型 : 表现在线性回归模型 中的解释变量有多个。
的秩 =k+1 ,即 X 满秩。
假设 2. 随机误差项零均值,同方差。
0
0
0
E
(μ
μ
)
E
1
n
1
n
E
12
n 1
1 n
2 n
var(1 ) cov(1, n ) 2 0
2I
cov(
n
,
1
)
var(n )
0
2
i E(i )
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟ 随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏 估计量为:
ˆ 2
ei2 n k 1
ee n k 1
计量经济学第三章-多元线性回归模型PPT课件
用矩阵表示
Y1 1 X 21 X k1 1 u1
Y2
1
X 22
Xk
2
2
u2
Yn
1 X 2n
X
kn
k
u
n
Y
X
βu
n 1
nk
第8页/共55页
k 1 n1
8 8
矩阵表示方式
总体回归函数 E(Y) = Xβ 或 Y = Xβ + u
样本回归函数 Yˆ = Xβˆ 或 Y = Xβˆ + e
第1页/共55页
1
怎样分析多种因素的影响?
分析中国汽车行业未来的趋势,应具体分析这样一些问题:
中国汽车市场发展的状况如何?(用销售量观测) 影响中国汽车销量的主要因素是什么?
(如收入、价格、费用、道路状况、能源、政策环境等)
各种因素对汽车销量影响的性质怎样?(正、负)
各种因素影响汽车销量的具体数量关系是什么?
( j 2,3, , k)
假定5: 无多重共线性假定 (多元中增加的)
假定各解释变量之间不存在线性关系,或各个解
释变量观测值之间线性无关。或解释变量观测值
矩阵X的秩为K(注意X为n行K列)。
Ran(X)= k 即 (X'X) 可逆 假定6:正态性假定
Rak(X'X)=k
ui ~ N(0, 2)
u ~ N(0, 2I)
定值的矩阵
2、 无偏特性E(ˆK ) K
(证明见教材P101附录3.1)
3、 最小方差特性
在 K 所有的线性无偏估计中,OLS估计ˆK
具有最小方差
(证明见教材P101或附录3.2)
结论:在古典假定下,多元线性回归的 OLS估
计量经济学 多元线性回归模型及参数估计 ppt课件
i
)
i 1 n
E(X
ik i )
0 0 0
i1
i 1
i1
0
计量经济学 多元线性回归模型及参 数估计
二、多元线性回归模型的参数估计
1.普通最小二乘估计
随机抽取被解释变量和解释变量的n组样本观测值
X i 1 ,X i 2 , ,X i, Y k i i 1 , 2 , , n
则有
YX ˆe
其中
Y 1
Y
Y2
Y n
1 X 1
X11
X21
X12
X22
X1k X2k
1 Xn1
Xn2
Xnk
n(k1) 1
e
e2
e n
计量经济学 多元线性回归模型及参 数估计
2.多元线性回归模型的基本假定(见教材P64-65)
习惯上,把常数项看成为一个虚变量(记作Xio) 的系数,在参数估计过程中该虚变量的样本观测值 始终取1(即Xi0 ≡1)。
这样: 模型中解释变量的数目为(k+1)。
计量经济学 多元线性回归模型及参 数估计
• 多元线性回归模型的矩阵表达式为: 注意这里的符号
YX
和教材P63的对 应关系。
其中
Y
Y Y
一、多元线性回归模型及其基本假定 二、多元线性回归模型的参数估计 三、OLS参数估计量的统计性质 四、样本容量问题 五、多元线性回归模型实例
计量经济学 多元线性回归模型及参 数估计
一、多元线性回归模型及其基本假定
• 由于:
– 在实际经济问题中,一个变量往往受到多个原 因变量的影响;
– “从一般到简单”的建模思路。
秩(X)=k+1,即Xn×(k+1)为列满秩矩阵。
计量经济学-3章:多元线性回归模型PPT课件
YXβ ˆe
Y ˆ Xβ ˆ
4/5/2021
.
17
2 模型的假定
(1) 零均值假设。随机误差项的条件期望为零,即 E(ui)=0 ( i=1,2,…,n)
其矩阵表达形式为:E(U)=0 (2)同方差假设。随机误差项有相同的方差,即
Var(ui)E(ui2) 2 (i=1,2,…,n)
(3)无自相关假设。随机误差项彼此之间不相关,即
(i=1,2,…,n)
上式为多元样本线性回归函数(方程),简称样本回归函 数(方程)(SRF, Sample Regression Function).
ˆ j (j=0,1,…,k)为根据样本数据所估计得到的参数估计量。
4/5/2021
.
13
(4)多元样本线性回归模型
对应于其样本回归函数(方程)的样本回归模型:
4/5/2021
.
3
教学内容
一、模型的建立及其假定条件 二、多元线性回归模型的参数估计:OLS 三、最小二乘估计量的统计性质 四、拟合优度检验 五、显著性检验与置信区间 六、预测 七、案例分析
4/5/2021
.
4
回顾: 一元线性回归模型
总体回归函数 E (Y i|X i)01X i
总体回归模型 Y i 01Xiui
0 0
2 0 0 2
0
0
0 0 0 2
2I n
4/5/2021
.
u1un
u2un
un2
20
(4)解释变量X1,X2,…,Xk是确定性变量,不是随机 变量,与随机误差项彼此之间不相关,即
Cov(Xji,ui)0 j=1,2…k , i=1,2,….,n
第3章 多元线性回归模型10301(计量经济学)PPT课件
第四节 多元线性回归模型检验
一、常用的检验方法
1. R(复相关系数)检验法
TSS (Yi Y)2 (Y (i Y ˆi)(Y ˆi Y))2 (Yi Y ˆi)22(Yi Y ˆi)Y (ˆi Y)(Y ˆi Y)2
5
总体回归模型n个随机方程的矩阵表达式为
Y 1 1 2 X 2 1 3 X 3 1 . .k . X k 1 u 1 Y 2 1 2 X 2 2 3 X 3 2 . .k . X k 2 u 2 . . . . . . . Y n 1 2 X 2 n 3 X 3 n . .k . X k n u n
一、多元线性回归模型的定义
设所研究的对象(因变量Y)受多个因素X1,X2,…,Xk和随机 干扰项u的影响,假设各因素与Y的关系是线性的,这样就 可把一元线性回归模型自然推广到多元的情形。
Y i X 1 i1 2 X 2 i 3 X 3 i . .k . X k i u i (i1,,n)
ei
ei称为残差或剩余项(residuals),可看成是总体回归函数
中随机扰动项i的近似替代。
样本回归函数的矩阵表达:
Yˆ XBˆ
或
Y XBˆ E
其中:
ˆ 1
ˆ
Bˆ
2
e1
E
e2
ˆ
en
k
8
二、多元线性回归模型的基本假设条件
⑴Y与X之间的关系是线性的; ⑵所有观测值的随机干扰向量期望值为0:E(u)=0 ⑶所有观测值的随机干扰项具有同方差:D (u)= E (uuT)=σu2I u ; ⑷不同观测值的随机干扰项之间相互独立: Cov(ui, uj) =0 (i≠j); ⑸随机干扰项ui与解释变量xk不相关:Cov(ui, xj) = 0 (j=1,2,.....k); ⑹ X不是随机变量,为确定矩阵,且在两个或多个自变量之间没有
第三章(1) 多元线性回归模型课件
分离差的大小
解释的那部分离差的大小。也
称剩余平方和。
第三章 多元线性回归模型
§ 3-3 多元线性回归模型的统计检验 一、 拟合优度检验 检验模型对样本观测值的拟合程度。用在总离差分解 基础上确定的可决系数R2 (调整的可决系数 ) 度量。 1、总离差平方和的分解
总离差平方和TSS 回归平方和ESS
3、随机误差项在不同 样本点之间是独立的,
Cov( i,
不存在序列相关
因为 i与 j相互独立,有:
j)=0 i≠j
无自相关假定表明:产生 误差(干扰)的因素是完 全随机的,此次干扰与彼 次干扰互不相关,互相独 立。由此应变量Yi的序列 值之间也互不相关。
第三章 多元线性回归模型
§ 3-1 多元线性回归模型及其基本假定
3、有效性(最小方差性):
指在所有线性、无偏估计量中, OLS参数估计量的 方差最小。
4、 服从正态分布,即:
其中,
, G2是随机误差项的方差,
Cjj是矩阵(X’X)-1 中第j行第j列位置上的元素。
第三章 多元线性回归模型
§ 3-2 多元线性回归模型的参数估计
一、 参数的最小二乘估计
二、 OLS估计量的统计性质及其分布
三、随机误差项方差Q2的估 计
参数估计的另一项任务是: 求随机误差项 i 的分布参数
称作回归标准差 (standard error of regression), 常作为对所估计回归线的拟
合优度的简单度量。
i~N(0, Q2)
随机误差项 i 的 方差的估计量为:
可以
证明:
说明 是QS 的无偏估计量。
t-Statistic 6.411848 22.00035 4.187969
《计量经济学》第三章 多元线性回归模型
Yi 1 2 X 2i 3 X 3i ... k X ki ui
7
多元样本回归函数
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki
或
ˆ ˆ ˆ ˆ Yi 1 2 X 2i 3 X3i ... k X ki ei
22
ˆ ˆ 因 2 是未知的,可用 2代替 2 去估计参数 β 的标
准误差:
ˆ ● 当为大样本时,用估计的参数标准误差对 β 作标 准化变换,所得Z统计量仍可视为服从正态分布 ˆ ●当为小样本时,用估计的参数标准误差对 β 作标
准化变换,所得的t统计量服从t分布: ˆ βk - βk t ~ t (n - k ) ^ ˆ SE( βk )
i i
i
e e 0 4.残差 ei 与 X 和
3.
i
e X
i
3i
ei X 2i 0
2i
X 3i 都不相关,即
ˆ 5.残差 ei 与 Yi 不相关,即
e Yˆ 0
i i
18
二、OLS估计式的性质-统计性质
OLS估计式(用矩阵表式) 1.线性特征:
ˆ = (X X)-1 X Y β
2 i
ˆ ei2 (Yi - Yi )2
ˆ X X ... X )]2 ˆ min e [Yi -(1 ˆ2 2i ˆ3 3i k ki
求偏导,令其为0:
( ei2 ) 0 ˆ
j
13
即 ˆ ˆ ˆ ˆ -2 Yi - (1 2 X 2i 3 X 3i ... ki X ki ) 0
计量经济学-第三章-多元线性回归-PPT精选文档
第一节 模型的建立及其假定条件
2. 多元线性回归模型与一元模型的形式有什么不同?
Y X u i 0 1 i i Y X X X u 0 1 1 2 2 k k
多元总体线性回归方程,简称总体回归方程。
设 ( 是对总体 X , X , , X ; Y ), i 1 , 2 , , n 1 i 21 i ki i
X X u 21 K 1 0 1 X X u 22 K 2 1 2 X X (k u 2 n kn n ( k 1 ) k 1 ) 1 n ( n 1 )
第一节 模型的建立及其假定条件
1. 为什么要引入多元线性回归模型? 在实际经济问题中,一个经济变量往往不只受到一个 经济因素的影响,而是受到多个经济因素的影响。如,商 品的需求量不但受到商品本身价格的影响,还会受到消费 者偏好、消费者收入以及其它相关商品价格、预期价格等 因素的影响。 引入多元线性回归模型,为我们深入探究某经济问题 如何被多个经济因素所影响提供了可能,并有助于我们解 析出经济问题背后存在的内在规律。 多元线性回归模型是一元线性回归模型的推广,其基 本原理和方法同一元模型完全相似。
第一节 模型的建立及其假定条件
5. 多元线性回归模型的假定条件 假定2和假定3可以由下列矩阵表示:
2 E(u1 ) E(u u2) E(u un) 1 1 2 E ( u u ) E ( u ) E ( u u ) 2 1 2 n 2 E(u u ) E(u u ) E(u2) n 1 n 2 n 2 0 0 2 0 0 2I
4第三章多元线性回归模型分析(二)PPT课件
ˆ
2
1 n
n
ei2
i1
这个估计量表面上好象是 2 的一个十分自然的估计量,
但是需要注意到,最小二乘残差并不是母体残差完整的
估计量,这是因为 ei yi xib i xi (b ) ,由于 是未知的,
因此这个估计量可能被扭曲了。
▪ 这说明,所猜想的方差估计量不行,而要寻 找2的无偏估计。
现在假设矩阵 D C (XX)1 X ,则有: Dy b0 b ,因此:
Var[ b0 | X] 2[(D (XX)1 X)][( D (XX)1 X)]
因为 CX I [D (XX)1 X]X ,则有: DX 0 ,因此有:
Var[ b0 | X] 2 (XX) 1 2 DD
其中:
tr(M) tr[In X(XX)1 X] tr(In ) tr[X(XX)1 X] n tr[XX(XX)1] n K
因此,
E[ee | X] (n K) 2
由此可知,上述猜想的方差的“自然估计”ˆ 2 是一个有偏估计,
虽然其偏异随着样本容量增加趋于零。根据上述期望的计算, 可以得到方差参数的无偏估计为:
量未解释的那部分离差的大小。
定理 残差平方和分解定理 对于包含常数项的线性回归模型而言,下述平方和分解公式成立:
SST SSR SSE
这说明整个“离差平方和”等于“回归平方和”加上“残差平方和”。
证明:根据矩阵 M0 的定义,则有: SST (M0y)(M0y) yM0y 其中 y Xb e ,代入得到:
假设X中包含常数项(所有列都是1)和一个回归变量x,
1
则
X
1 1
x1
x2
xn
n2
X X
计量经济学课件:第三章 多元线性回归模型
第三章 多元线性回归模型第一节 多元线性回归模型及基本假定问题:只有一个解释变量的线性回归模型能否满足分析经济问题的需要?简单线性回归模型的主要缺陷是:把被解释变量Y 看成是解释变量X 的函数是前提是,在其它条件不变的情况下,并且,所有其它影响Y 的因素都应与X 不相关,但这在实际情况中很难满足。
怎样在一元线性回归的基础上引入多元变量的回归? 看教科书第72—73页关于汽车销售量的影响因素的讨论。
一、多元线性回归模型的意义1、建立多元线性回归模型的意义,即一元线性回归模型的缺陷,多个主要影响因素的缺失对模型的不利影响。
在一元线性回归模型中,如果总体回归函数的设定是正确的,那么,根据样本数据得到的样本回归模型就应该有较好的拟合效果,这时,可决系数就应该较大。
相反,如果在模型设定时忽略了影响被解释变量的某些重要因素,拟合效果可能就会较差,此时可决系数会偏低,并且由于忽略了一些重要变量而对误差项的影响会加大,这时误差项会表现出一些违背假定的情况。
2、从一个解释变量到多个解释变量的演变。
一个生产函数的例子,一个商品需求函数的例子,(教材第74页)。
二、多元线性回归模型及其矩阵表示1、一般线性回归模型的数学表达式。
设 12233i ii k k ii Y XXXu ββββ=+++++i=1,2,3,…,n在模型表达式里,1β仍是截距项,它反映的是当所有解释变量取值为零时,被解释变量Y 的取值;j β(j=2,3,…,k )为斜率系数,它的经济含义:在其它变量不变的情况下,第j 个解释变量每变动一个单位,Y 平均增加(或减少)j β个单位,这就是所谓的运用边际分析法对多元变量意义下回归参数的解释。
因此,称j β为偏回归系数,它反映了第j 个解释变量对Y 的边际影响程度。
4、2、总体回归函数,即12233(|)i i i k ki E Y X X X X ββββ=++++3、样本回归函数,即12233ˆˆˆˆˆi i k k iY X X Xββββ=++++ 4、将n 个样本观测值代入上述表达式,可得到从形式上看,像似方程组的形式。
计量经济学3 多元回归模型hf122页PPT文档
V(a μX r )E (μ 'μX )2I
• 假设5:X与随机项μ不相关。 The covariances between Xi and μi are zero.
• 各解释变量X之间不存在严格线性关系。 There is no perfect multicollinearity among the explanatory variables.
• 对于n> k+1,rank(X)=k+1
1X11 X12 X1k
X
1X21 1 Xn1
e
e2
en
二、多元线性回归模型的基本假设
对一元回归模型基本假设 的回忆与扩展
• 假设1:模型设定假设 • 正确性。
The regression model is correctly specified.
• 线性性。
The regression model is linear in the parameters.
或 x'x Q n
x11 x1k
其中,x
xn1 xnk
• 假设4:随机扰动项假设 • 0均值假设。The conditional mean value
of μi is zero.由模型设定正确假设推断。
E(i Xi)0,i1,2, ,n E(μX)0
Y i 0 1 X i 1 2 X i2 k X i ki i=1,2…,n
第3章-多元回归模型PPT课件
t = bˆ 1j
s ( bˆ 1j )
x Var(bj ) = ∑
σ²
j²(1-Rj²)
问题:如果该解释变量和其他某些解释
2021变/3/12量高度相关,会导致什么结果?
47
案例分析
棒球运动员的薪水
被解释变量:棒球运动员的薪水
解释变量:
1、加入俱乐部的年数years
2、平均每年的比赛次数gamesyr
7、如何预测被解释变量的期望值? 8、如何预测被解释变量的值?
2021/3/12
2
3.1 三变量线性回归模型
一元回归分析的弱点
Y = b0 + b1X+ µ b1刻划了解释变量X对Y的影响 其他影响Y的因素被放入µ当中
2021/3/12
3
一元回归分析的弱点
Y = b0 + b1X+ µ
要用OLS法得到b1的无偏估计量,必要条
2021/3/12
14
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设1、随机误差项与各解释变量X之间不相关(更 强的假设是各个解释变量X都是确定性变量,不是随 机变量,这样假设1自动满足)
2021/3/12
15
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
3、平均每年击球次数bavg
aa/2
-c
0
c
临界值c
|t| > c的概率?
在实践中,一般取α=5%,确定一个小概率事件
t~t(n-2) 给20定21/3/样12 本容量n和显著性水平α,就可以计算40c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质。
一.假设条件
(1)E(ut)=0, t=1,2,…,n (2)E(ui uj)=0, i≠j (3)E(ut2)=σ2, t=1,2,…,n (4)Xjt是非随机量, j=1,2, … k
t=1,2, … n
8
除上面4条外,在多个解释变量的情况下,还有 两个条件需要满足: (5)(K+1)< n;
这里,β是可支配收入对消费额的总影响,显然β和
β2的 含义是不同的。
5
回到一般模型
Yt
β 0
β1 X1t
β2 X 2t
... βk X kt
ut
t=1,2,… ,n
即对于n组观测值,有
Y1
β0
β 1
X
11
β2
X
21
β3
X
31
... βK
X
K1
u1
Y2
β0
β 1
X12
β2 X 22
β3 X 32
β2的含义是,在流动资产不变的情况下,可支配收入变动 一个单位对消费额的影响。这是收入对消费额的直接影响。
收入变动对消费额的总影响=直接影响+间接影响。 (间接影响:收入影响流动资产拥有量影响消费额)
但在模型中这种间接影响应归因于流动资产,而不是收入
,在因下而面,的β模2型只中包:括收C入t 的直接D影t 响 u。t , t 1,2,..., n
0
1
2
,
...
K
u1
u
u2 ... un
7
第二节 多元线性回归模型的估计
多元线性回归模型的估计与双变量线性模型类似,仍采用
最小二乘法。当然,计算要复杂得多,通常要借助计算机。
理论推导需借助矩阵代数。下面给出最小二乘法应用于多元
线性回归模型的假设条件、估计结果及所得到的估计量的性
(Y X β)(Y X β)
(Y β X )(Y X β)
Y Y β X Y Y X ββ X X β
17
注意到上式中所有项都是标量,且
(ˆ
X
Y
)
Y
X
β
故
S Y Y 2β X Y β X X β
令
(S)
0
β
用矩阵微分法,我们可得到
X X β X Y
与采用标量式推导所得结果相同。由上述结果,我们有
Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
(3) X 是 是一个非随机元素矩阵。 (4)Rank(X) = (K+1) < n. ------相当于前面 (5)、 (6) 两条
即矩阵X的秩 =(K+1)< n 当然,为了后面区间估计和假设检验的需要,还要加 上一条:
(5) ut ~ N(0, 2 ) ,t=1,2,…n
11
二.最小二乘估计
β ( X X )1 X Y 18
三. 最小二乘估计量 β的性质 我们的模型为 Y X u
估计式为
Yˆ
Xβ
1.β 的均值
β ( X X )1 X Y
(X X )1 X (Xβ u)
(X X )1 X Xβ (X X )1 X u
β ( X X )1 X u
19
E(β) β ( X X )1 X E(u)
我们可用同样的方法定义决定系数:
R2
解释变差 总变差
1
e2 Y Y
2
或 R 2 ESS 1 RSS
TSS
TSS
为方便计算,我们也可以用矩阵形式表示R2
32
我们有:残差 残差平方和:
e1
e
e2
... en
Y
Y
,其中, Y Xβ
et 2 ee
(Y Y )(Y Y ) (Y X β)(Y X β)
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Cov(β0 ,β1)
...
Cov(β
0
,β
K
)
Var (β1 )
...
Cov(β1
,β
K
)
...
...
...
...
Cov(β
K
,β
0
)
Cov(β K ,β1)
Var(β K )
( X X )1 2
24
3. 2 的估计
与双ˆ 2变量线性et模2 型相似, 2的无偏估计量是
n (K 1)
亿美元(1个billion),食品消费支出增加1.12亿 元(0.112个 billion)。
收入不变的情况下,价格指数每上升一个点, 食品消费支出减少7.39亿元(0.739个billion)
4
例2:
Ct
β 1
β 2 Dt
β3Lt
ut
其中,Ct=消费,Dt=居民可支配收入 Lt=居民拥有的流动资产水平
14
n
X1t
...
X Kt
X1t X1t 2
...
X Kt X1t
...
X Kt
... X1t X Kt
...
...
...
X Kt 2
β 0
β1 =
1
X
11
1 X12
... 1 Y1
...
X
1n
Y2
... β K
... ... ... ... ...
... βK
XK2
u2
......
Yn
β0
β 1
X 1n
β2 X 2n
β3 X 3n
... βK
X Kn
un
6
其矩阵形式为: Y X u
其中 Y1
Y
Y2
... Yn
1
X
1
...
1
X11 X12 ... X1n
... ... ... ...
X K1
X
K
2
...
Xቤተ መጻሕፍቲ ባይዱ
Kn
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
β 0 X 2t β1 X 2t X 1t ...... β K X 2t X Kt X 2tYt
......
......
......
......
β 0 X kt β1
X kt X 1t ...... β K
X Kt 2
X ktYt
按矩阵形式,上述方程组可表示为:
X X 1 X 2 In X X X 1
X X 1 X X X X 1 2
X X 1 2
23
如前所述,我们得到的实际上不仅是β 的方差,而且是
一个方差-协方差矩阵,为了反映这一事实,我们用下面的 符号表示之:
Var
Cov(β)
(
X
X
) 1
2
展开就是:
Var(β0 )
Cov(β1
,β
0
)
由OLS估β计量(
X
的公式
X )1
X
Y
ˆ
Y
可知, 可表ˆ示为k一Y个矩阵和应变量观测值向量 的乘积:
k ( X X )1 X
其中
ˆ
是一个 (K+1)*n 非随机元素矩阵。
因而显然有 是线性估计量。
26
现设 为* 的任意一个线性无偏估计量,即 * cY
其中c 是一个(K+1)*n非随机元素矩阵。则 * cY c( X u) c X cu
β0 ,β1,...β k
这是因为我们在估计
的过程中,失去了
(K+1)个自由度。
4. 高斯-马尔科夫定理
Y Xβ u
对于
以及标准假设条件(1)-(4),
普通最小二乘估计量是最佳线性无偏估计量(BLUE)
25
我们已在上一段中证明了无偏性,下面证明线性和最小方
差用矩性阵。和证向明量的的路形子式与ˆ 。双变量模型中类似,只不过这里我们采
Var(
β
),非主对角线元素是相应的协方差,如下所示:
21