两个重要极限

合集下载

2.6 两个重要极限

2.6  两个重要极限
2
).

因为
n 1 1 n , < +⋯+ < 2 2 2 2 n +n n +1 n +n n +1
n 1 又 lim 2 = lim = 1, n→ ∞ n + n n→ ∞ 1 1+ n n 1 lim 2 = lim = 1, 由夹逼准则得 n→ ∞ n + 1 n→ ∞ 1 1+ 2 n 1 1 1 lim ( 2 ) = 1. + +⋯+ 2 2 n→ ∞ n +1 n +2 n +n
显然 f ( n + 1) > f ( n), 所以 f ( n ) 是单调递增的 ;
1 1 1 1 f ( n) < 1 + 1 + + ⋯ + < 1 + 1 + + ⋯ + n −1 2! n! 2 2
所以 f ( n )是有界的 ; 1n 所以 lim xn 存在. 记为lim(1 + ) = e (e = 2.71828⋯ ) n→ ∞ n→∞ n
这个重要极限, 可写成 这个重要极限
lim u u→0
sinu
= 1 其中, u可以为函数.
例2.
sin kx 求 lim x →0 x
sin kx sin kx 解:lim = lim k ⋅ x →0 x →0 x kx
sin kx = k ⋅ lim x → 0 kx
= k·1= k
例3.
∵ f ( x ) g( x ) = f ( x ) g( x ) ≤ M f ( x )
∴ − M f ( x ) ≤ f ( x ) g( x ) ≤ M f ( x )

两个重要极限

两个重要极限

高等数学 两个重要极限 (Two important limits)
advanced mathematics
sin x 1. lim =1 x0 x
1 0.75 0.5 0.25
f ( x)
5
s i nx x
10 15
-15
-10
-5
o
-0.25 -0.5
高等数学 两个重要极限 (Two important limits)
例10

求极限
2x 3 x lim( ) . x 2 x 1
2x 3 x 2 l i m( ) l i m(1 )x x 2 x 1 x 2x 1
2 x 1 2 x 2 2 x 1
2 lim(1 ) x 2x 1
2 lim(1 ) x 2x 1
2 x 1 1 2 2
e
2x x 2 x 1 lim
e.
2 (1 ) 2x 1 lim 1 x 2 2 (1 ) 2x 1
2 x 1 2
e.
高等数学
advanced mathematics
3 1 另解: 2x 3 x 2x )x l i m( ) l i m( x 2 x 1 x 1 1 2x 3 x 3 x l i m(1 ) (1 ) x 2x 2 x lim x 1 x 1 x l i m(1 ) (1 ) x 2x 2x


4x 1 5 x

4 2 (2)求 lim(1 ) x 3x 3x 3x 4 2 4 4 2 e2 lim(1 ) lim(1 ) x x 3x 3x
e .3 x

第五节 两个重要极限

第五节 两个重要极限
x u 5
类型5: 幂指式的极限,先利用幂的有关运 算把式子变换成含有标准式,再用公式
求.
练习
3 x 2x 求 lim( ) . x 2 x
极限的常用计算方法
1.代入法
x 4 3x 8 lim 2 x 2 x x 3
0 2.多项式的 型,分子分母同时分解, 0 约掉同为无穷小的公因
第5节 两个重要极限
sin x 1. lim 1. x 0 x
sin x 观察函数 当 x 0时的变化趋势 . x
y sin x x
sin x 重要极限lim 1的使用要求: x 0 x
1、式中含有三角函数的分式; 2、分母与正玄函数的角变量相同; 3、角变量趋近于0. sin x 重要极限lim 1的推广(类型四) : x 0 x 公式 要求
x
1 2
例5
计算li m 1 x .
x 0 2 x
解 方法1 令 u = -x,因为 x 0 时 u 0,
( 所以 l i m 1 x l i m 1 u)
x 0 2 x u0

2 u
lim
u0
1
(1 u)
1 . 2 2 1 e u
x 0
2 5 x
答案: e
6
有时,所给函数在自变量的某个趋向 下,底的极限为1,指数的极限为无穷,
人们称这类极限为1 ”型未定式. “

1 重要极限lim 1 e的使用要求: x x
(1)幂指式的底是由1与一个接近于0的变量和 (2)底中的变量与指数间互为倒数.
sin x x 0 lim lim 1 ( 型) x 0 x 0 sin x x 0 sin 推广: lim lim 1(上下一致) 0 0 sin

两个重要极限的证明

两个重要极限的证明

两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。

当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。

即111sin 222x x <<tgx ,sinx<x<tgx 。

除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。

(1) 由偶函数性质,上式对02x π-<<时也成立。

故(1)式对一切满足不等式0||2x π<<的x 都成立。

由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。

函数f(x)=sin x x的图象如图(b )所示。

2.证明:1lim(1)n n n →∞+存在。

证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。

(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。

由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。

再令a=1,b=1+12n代入(1)。

由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。

不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。

联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。

于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。

两个重要极限

两个重要极限
§2.6 两个重要的极限
两个重要极限
(1)
sin x lim 1 x 0 x
复合形式 :
sin ( x) 若有 lim ( x) 0, 则有 lim 1 ( x)
说明: 上式中分母的变量与分子中正弦符号后面的变
量在形式上必须是一样的, 在 x 的变化过程中,
0 呈“ 0
” 型未定式.
x 1
1 x 1
e
(1 型 )

常用等价无穷小:
当 x 0时, sin x ~ tan x ~ arcsin x ~ arctan x ~ ln(1 x) ~ e 1 ~ x
x
1 2 1 cos x ~ x 2 a (1 x) 1 ~ a x (a 0)
tan 2 x 例1 求 lim . x 0 1 cos x
1 x lim (1 ) e x x
复合形式:
lim (1 x) e
x 0
1 x
1 ( x) 若有 lim ( x) , 则有 lim[ 1 ] e. ( x)
若有 lim ( x) 0, 则有 lim[ 1 ( x)]
1 ( x)
x0
1 cos 2 x ( 2) lim ; x 0 x sin x
x 1 cos x
;
sin 3 x (4)lim ; x 0 3
sin( x 2) (5)lim ; x2 x2
1 (6) lim x sin . x x
1 n (2) lim (1 ) e n n
x 求 lim 2 x x 1
2 x
x2 x x (提示:2 ) x 1 x 1 x 1

两个重要极限

两个重要极限

x


现在若以天为单位计算复利,则x年末资金变为:
Q
1
r 365
365
x


若以
1 n
年为单位计算复利,则x年末末资金变为:Q
1
r n
nx


若令 n ,即每时每刻计算复利(称为连续复利)则x年末末资金为:
lim
n
Q
1
r n
nx
=
Q
lim
n
1
r n
n r
rx
=Q erx 元 。
高等数学
或若
lim
xa
x
0
a可以是有限数x 0
, ,

1
1
x
x
lim1 x lim 1 x e 。
xa
x0
例1.5 求
lim
x
1
2 x
x

解 令 2 t ,则 x 2 当 x 时 t 0 ,于是
x
t
lim
x
1
2 x
x
lim t0
1 t
2 t
ltim0
1 t
1 2 t
x0 x
t0 sint
两个重要极限
1.2 第二个重要极限:
lim
x
1
1 x
x
e
注意:这个重要极限也可以变形和推广:
(1) 令 1,则t x
时 x 代入后得t 到 0
1
lim1 t t
t0
e

(2) 若limxa Nhomakorabeax
a可以是有限数x 0
, , 则

两个重要极限公式

两个重要极限公式

两个重要极限公式
两个重要极限公式:极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。

1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。

特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。

2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x →∞时,(1+1/x)^x的极限等于e;或当x →0 时,(1+x)^(1/x)的极限等于e。

极限的求法
连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

利用恒等变形消去零因子(针对于0/0型)
利用无穷大与无穷小的关系求极限。

利用无穷小的性质求极限。

利用等价无穷小替换求极限,可以将原式化简计算。

利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

2-3节两个重要极限

2-3节两个重要极限

222 xxx222
xx 22
22

11
1122
111llliiimm 222xxx00
1 。
ssiinn222 xx 22

xx 22
22
22xx00
xx 22

22
2
重要极限(I):lim sin x 1 , lim sin (x) 1 ((x) 0 )。
x0 x
( x)
例53. 求lim x0
1 cos x x2

解解::解解:l:imlliimm1 x0xx00
11coccsooxss x 2xx22
xx
11lliimmssiinn
222ssisniinn222xxx
limlliimm
xxx000
lim sin x lim 1 1 。 x0 x x0 cos x
重要极限(I):lim sin x 1 , lim sin (x) 1 ((x) 0 )。
x0 x
( x)
例例22. 求lim sin kx (k0)。 x0 x
解解解:::lilmimssininkkxxkklliimm ssiinn kx
x
3
2
x2 3

3

lim1 x
x
3
2
2


e3.
解法2
1 1 x lim1 1 x
原式
lim
x
1
x 2 x


x lim1
x 2
x
x
x x
其中
lim1

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

1.4两个重要极限

1.4两个重要极限

x
于是
3 x lim (1 + ) = lim(1 + t ) t = lim[(1 + t ) t ]3= [lim(1 + t ) t ]3 = e 3 x →∞ t →0 t →0 t →0 x x 3 x 3 3 3 或 lim(1 + ) = [lim(1 + ) ] = e3 x →∞ x →∞ x x
π
ESC
一. 极限的四则运算法则 二.第一个重要 极限 第一个重要
x 1 2 cos 另一方面, x = 1 − 2 sin > 1 − x ,于是有 另一方面, 2 2 1 2 sin x 1 − x < cos x < <1. 2 x
2
1 2 由准则Ⅰ 因为 lim (1 − x ) = 1 ,由准则Ⅰ可得 x →0 2 sin x =1. lim x →0 x
n →∞
ESC
二.第一个重要 极限 第一个重要
sin x =1 1. lim x→0 x
(1.4.1)
证 因为 sin( − x) = − sin x = sin x ,所以 −x −x x 由正值趋于零的情形. 只讨论 x 由正值趋于零的情形. 作单位园O 作单位园O, 设圆心角 ∠AOB = x ,延长 OB交过 A点的切线于于 D , 面积< 则 ∆AOB 面积<扇形 AOB 面积< 面积. 面积< ∆AOD 面积.即 ESC
ESC
一. 极限的四则运算法则 二.第二个重要 极限 第二个重要
lim x 2. x→∞(1+ 1)x = e
表1
(1.4.7)
1 x x → ∞ 时 (1 + ) 之值的变化情况 x

极限存在准则 两个重要极限

极限存在准则  两个重要极限

2.单调有界准则 单调有界准则
如果数列 xn满足条件
x1 ≤ x 2 L ≤ x n ≤ x n + 1 ≤ L , 单调增加 x1 ≥ x 2 L ≥ x n ≥ x n + 1 ≥ L , 单调减少
则 准 Ⅱ 单 有 数 必 极 . 调 界 列 有 限
单调数列
几何解释: 几何解释
x1 x 2 x 3x n x n + 1
末 列 那 数 xn的 限 在 且 极 存 , lim xn = a.
n→∞
n→ ∞
则 ′ 如 当x∈Uδ ( x0 )(或x > M)时 有 或 时 , 准 Ⅰ 果
0
(1) g(x) ≤ f ( x) ≤ h(x), (2) x→x g( x) = A, x→x h( x) = A, lim lim
例1 求 lim (
n→ ∞
1 n +1
2
+
1 n +2
2
+L+
1 n +n
2
).
n 1 1 n , < +L+ < 解 Q 2 2 2 2 n +n n +1 n +n n +1
n 1 又 lim 2 = lim = 1, n→ ∞ n + n n→ ∞ 1 1+ n n 1 lim 2 = lim = 1, 由夹逼定理得 n→ ∞ n + 1 n→ ∞ 1 1+ 2 n 1 1 1 lim ( 2 ) = 1. + +L+ 2 2 n→ ∞ n +1 n +2 n +n
t 原式 = lim t→ sint 0

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

令t =1x, 则:
lim(1
1
x)x
=
lim(1
1)t
=
e.
x0
t
t
此结论可推广到
1
lim1 ( x)( x) = e
xa
条件是x a时, ( x) 0,其中a可为
有限值,也可为
2020年9月1日星期二
(20ppt,scau,L.G.YUAN)
14
例5 求 lim(1 1 )x .
n2 n n2 1
又 lim n
n = lim n2 n n
1 1 1 = 1,
n
lim
n
n = lim n2 1 n
1 = 1,
1 1 n2
由夹逼定理得
lim( 1 1 L 1 ) = 1.
n n2 1 n2 2
n2 n
2020年9月1日星期二
(20ppt,scau,L.G.YUAN)
2020年9月1日星期二
(20ppt,scau,L.G.YUAN)
6
例2 证明数列 xn = 3 3 L 3 (n重根 式)的极限存在.
证: 显然 xn1 > xn , xn是单调递增的 ;
又 x1 = 3 3, 假定 xk 3, xk1 = 3 xk 3 3 3,
xn 是有界的 ;
原式
=
lim x (1
x 1 )x
x
=
e e 1
=
e2
2020年9月1日星期二
(20ppt,scau,L.G.YUAN)
16
三、小结
1.两个准则
夹逼准则; 单调有界准则 .
2.两个重要极限
10 lim sin x = 1; x0 x

数学分析3.4两个重要的极限

数学分析3.4两个重要的极限

第三章函数极限4 两个重要的极限一、证明:limx→0sin xx=1.证:∵sinx<x<tanx(0<x<π2),∴1<xsin x<1cos x(0<x<π2),∴cosx<sin xx<1(0<x<π2),又cos-x=cosx,sin−x−x =sin xx,∴对0<|x|<π2,有cosx<sin xx<1.由limx→0cosx=1,根据极限的迫敛性,limx→0sin xx=1.例1:求limx→πsin x π−x.解:令t=π-x,则sinx=sin(π-t)=sint,且当x→π时,t→0,∴limx→πsin xπ−x=limt→0sin tt=1.例2:求limx→01−cos xx2.解:limx→01−cos xx2=limx2→012sin x2x22=12,二、证明limx→∞1+1xx=e.证:设f(x)=1+1n+1n, g(x)=1+1nn+1, n≤x<n+1, n=1,2,…,则f(x)递增且有上界,g(x)递减且有下界,∴limx→+∞f x与limx→+∞g x都存在,取{x n}={n},由归结原则得lim x→+∞f x=limn→+∞1+1n+1n=e,limx→+∞g x=limn→+∞1+1nn+1=e,又1+1n+1<1+1x≤1+1n,则1+1n+1n<1+1xx<1+1nn+1,根据迫敛性定理得limx→+∞1+1xx= e.设x=-y,则1+1x x=1−1y−y=1+1y−1y,且当x→-∞,y→+∞,从而有lim x→−∞1+1xx=limy→+∞1+1y−1y−1·1+1y−1=e.∴limx→∞1+1xx=e.注:e的另一种形式:lima→01+a1a=e.证:令a=1x ,则当a→0时,1x→∞,∴lima→01+a1a=lim1x→∞1+1xx=e.例3:求limx→01+2x1x.解:limx→01+2x1x=lim12x→∞1+2x12x2=e2.例4:求limx→01−x1x.解:limx→01−x1x=lim−1x→∞1[1+(−x)]−1x=1e.例5:求limn→∞1+1n−1n2n.解:1+1n −1n2n<1+1nn→e(n→∞),又当n>1时有1+1n −1n2n=1+n−1n2n2n−1−nn−1≥1+n−1n2n2n−1−2→e(n→∞,即n−1n2→0).由迫敛性定理得:limn→∞1+1n−1n2n=e.习题1、求下列极限: (1)lim x →0sin 2x x;(2)limx →0sin x 3 (sin x)2;(3)lim x →π2cos xx −π2;(4)limx →0tan x x;(5)limx →0tan x −sin xx 3;(6)limx →0arctan xx;(7)lim x →+∞x sin 1x;(8)limx →asin 2 x −sin 2 ax −a;(9)limx → x +1−1(10)limx →0 1−cos x 21−cos x.解:(1)limx →0sin 2x x=lim2x →02sin 2x 2x=2;(2)lim x →0sin x 3(sin x)2=limx →0 x 3sin x 3x 3(sin x )2=limx 3→0sin x 3x3·lim x 2→0xsin x 2·lim x →0x =0; (3)lim x →π2cos x x −π2=lim x −π2→0−sin x −π2x −π2= -1;(4)limx →0tan x x=limx →0sin x x·limx →01cos x=1;(5)lim x →0tan x −sin xx 3=limx →0sinx 1cos x −1x 3=limx →0sin x·1−cos xcos x x 3=limx →02sinx 2cos x 2·2 sin x 2 2cos xx3=limx →04 sinx 2 3·cos x2cos x x3=limx →0sin x 2 3·cos x2cos x 2 x 23=lim x2→0sinx 2x 23·lim x 2→0cosx 22lim x →0cos x =12;(6)令arctan x=y ,则x=tany ,且x →0时,y →0, ∴limx →0arctan xx=limy →0ytan y =limy →0cos ysin y y=1;(7)lim x →+∞x sin 1x =lim 1x→0sin1x1x =1;(8)lim x →asin 2 x −sin 2 ax −a =limx →a sin x −sin a (sin x+sin a)x −a=limx →a2cosx +a 2 sin x −a2x −a·2sin a=limx −a2→0sinx −a2x −a 2·cos a ·2sin a= sin2a ;(9)limx →x +1−1lim x →0( x+1+1)sin 4xx=8lim4x →0sin 4x 4x=8;(10)lim x →0 1−cos x 21−cos x=limx →0 2sin x 222 sin x 22= 2limx →0sinx 22 x 22 sinx 2x 22= 2.2、求下列极限:(1)limx→∞1−2x−x;(2)limx→01+ax1x(a为给定实数);(3)limx→01+tan x cot x;(4)limx→01+x1−x1x;(5)limx→+∞3x+23x−12x−1;(6)limx→+∞1+αxβx(α,β为给定实数)解:(1)limx→∞1−2x−x=lim−x2→∞1+1−x2−x22=e2;(2)limx→01+ax1x=lima x→01+ax1axa=e a;(3)limx→01+tan x cot x=limtan x→01+tan x1tan x=e;(4)limx→01+x1−x1x=limx→01+x1x1−x1x=limx→01+x1xlim−x→0[1+−x]1−x−1=e2;(5)limx→+∞3x+23x−12x−1=limx→+∞1+33x−16x−33=lim33x−1→0+1+33x−123x−1−13=lim33x−1→0+1+33x−123x−13lim33x−1→0+1+33x−113=e2;(6)limx→+∞1+αxβx=limx→+∞1+αxαβxα=limαx→0+1+αxxααβ=eαβ.3、证明:limx→0limn→∞cos xcos x2cos x22…cos x2n=1.证:∵cos xcos x2cos x22…cos x2n=2n+1cos xcos x2cos x22…cos x2nsin x2n2n+1sin x2n=sin 2x2n+1sin x2n=sin 2x2xsin x2nx2n=x2nsin x2n·sin 2x2x;∴当x≠0时,limn→∞ cos xcos x2cos x22…cos x2n=limx2n→0x2nsin x2n·sin 2x2x=sin 2x2x;lim x→0limn→∞cos xcos x2cos x22…cos x2n=lim2x→0sin 2x2x=1.当x=0时,cos xcos x2cos x22…cos x2n=1,∴limx→0limn→∞cos xcos x2cos x22…cos x2n=1.4、利用归结原则计算下列极限:(1)limn→∞n sinπn;(2)limn→∞1+1n+1n2n.解:(1)∵limx→∞x sinπx=limx→∞sinπxπx·x=limπx→0sinπxπx·limx→∞x=0根据归结原则,limn→∞n sinπn=0.(2)∵当x>0时,1+1x +1x2x>1+1xx→e(x→+∞),又1+1x +1x2x=1+x+1x2x2x+1+xx+1<1+x+1x2x2x+1→e(x→+∞,即x+1x2→0),∴limx→+∞1+1x+1x2x=e根据归结原则,limn→∞1+1n+1n2n=e.。

极限的两个重要极限公式

极限的两个重要极限公式

极限的两个重要极限公式极限是数学中的一个重要概念,它描述了函数在无穷接近某一点时的趋势。

在微积分中,极限是一个基础概念,它被广泛应用于求导、积分和微分方程等数学领域。

在本文中,我们将介绍两个极限公式,它们是极限理论中的重要公式。

一、夹逼定理夹逼定理是极限理论中的一个重要定理,它描述了当一个函数在某一点的两侧趋近于一个相同的极限时,该函数在该点的极限也将趋近于该极限。

更具体地说,夹逼定理可以用以下公式表示:设函数f(x)、g(x)和h(x)在区间[a, b]上有定义,且对于该区间内的任意x,都有g(x) ≤ f(x) ≤ h(x)。

如果lim g(x) = lim h(x) = L,那么lim f(x) = L。

这个定理的证明比较简单,我们可以通过使用不等式来证明。

具体来说,我们可以使用以下不等式:g(x) ≤ f(x) ≤ h(x)由于lim g(x) = lim h(x) = L,所以当x趋近于某一点时,g(x)和h(x)都会趋近于L。

因此,我们可以把上述不等式两侧同时取极限,得到:lim g(x) ≤ lim f(x) ≤ lim h(x)由于lim g(x) = lim h(x) = L,所以L ≤ lim f(x) ≤ L这意味着当x趋近于某一点时,f(x)的极限将趋近于L。

因此,我们可以得出结论:当一个函数在某一点的两侧趋近于一个相同的极限时,该函数在该点的极限也将趋近于该极限。

二、洛必达法则洛必达法则是极限理论中的另一个重要定理,它描述了当一个函数在某一点上的极限不存在时,我们可以通过求导数的极限来确定该函数的极限。

更具体地说,洛必达法则可以用以下公式表示:设函数f(x)和g(x)在某一点x0的某个去心邻域内有定义,且在该点上f(x0) = g(x0) = 0。

如果lim f'(x)/g'(x)存在(其中f'(x)和g'(x)分别表示f(x)和g(x)在点x处的导数),那么lim f(x)/g(x)也存在,且lim f(x)/g(x) = lim f'(x)/g'(x)。

高数第一章极限存在准则 两个重要极限

高数第一章极限存在准则 两个重要极限

准则的适用范围与注意事项
适用范围
夹逼准则适用于被夹逼的数列或函数在某点的极限求解;单调有界准则适用于单调且有界的数列极限求解。
注意事项
在使用夹逼准则时,需要找到合适的夹逼数列,并确保它们的极限相等;在使用单调有界准则时,需要证明数列 的单调性和有界性。同时,两个准则都只能用于求解数列或函数的极限值,不能用于求解其他数学问题。
数列极限存在的条件可以归结为数列 的单调性和有界性。如果数列单调增 加(或减少)且有上界(或有下界) ,则数列收敛,即存在极限。
03
序列极限的求法
可以通过对数列进行变形、放缩、裂 项、分组等方法来求解数列的极限。
其他相关的重要极限
第一个重要极限
lim(x→0)sinx/x=1,这个极限在三角 函数的求导以及某些复杂极限的求解 过程中有重要作用。
第一个重要极限可以用于求解三角函数的极限问题,也可以用于证明一 些三角恒等式和不等式。
第二个重要极限是自然对数的底数e的定义基础,也是求解一些复杂极限 问题的重要工具。同时,它也与指数函数、对数函数等有着密切的联系。
准则一:夹逼准则
01 02
定义
如果数列${x_n}$、${y_n}$和${z_n}$满足条件$y_n leq x_n leq z_n$, 且$lim_{n to infty} y_n = lim_{n to infty} z_n = a$,则数列${x_n}$ 的极限存在且等于$a$。
02 两个重要极限的详解
第一个重要极限:sinx/x的极限
01
02
03
定义与表达式
当x趋近于0时,sinx/x的 极限值为1,即lim(x->0) sinx/x = 1。
几何意义

两个重要极限的应用探讨

两个重要极限的应用探讨

两个重要极限的应用探讨两个重要极限的应用探讨一、引言微积分学是现代数学的重要组成部分,而极限理论则是微积分学的理论基础。

在极限理论中,两个重要极限扮演着至关重要的角色。

它们不仅是微积分学的基础,而且在解决实际问题中也具有广泛的应用。

本文将对这两个重要极限的应用进行深入探讨。

二、两个重要极限的概述第一个重要极限是:当x趋近于0时,sinx/x的极限为1。

这个极限可以用几何解释和代数解释两种方法来理解。

几何解释是将sinx表示为一个三角形的斜边,x表示三角形的底边,当底边无限缩短时,斜边与底边的比值趋近于1。

代数解释则是利用泰勒级数展开sinx,得到sinx/x的极限为1。

第二个重要极限是:当x趋近于无穷大时,(1+1/x)^x的极限为e。

这个极限可以通过二项式定理和夹逼定理来证明。

二项式定理将(1+1/x)^x展开为多项式,夹逼定理则证明了当x趋近于无穷大时,多项式的极限为e。

三、两个重要极限的应用1.三角函数的应用第一个重要极限在三角函数中有广泛的应用。

例如,在求解三角函数的极限问题时,可以利用第一个重要极限将问题转化为求sinx或cosx的极限。

此外,在求解三角函数的导数时,也需要利用第一个重要极限。

例如,在求解sinx的导数时,可以将sinx表示为(sinx/x)x,然后利用第一个重要极限和导数的定义求解。

2.复利计算的应用第二个重要极限在复利计算中有广泛的应用。

例如,在求解连续复利的极限问题时,可以利用第二个重要极限将问题转化为求(1+r/n)^(nt)的极限,其中r为年利率,n为每年计息次数,t为投资时间。

此外,在求解连续复利的导数时,也需要利用第二个重要极限。

例如,在求解连续复利函数e^(rt)的导数时,可以利用第二个重要极限和导数的定义求解。

3.经济学中的应用两个重要极限在经济学中也有广泛的应用。

例如,在求解经济增长率和折现率的问题时,可以利用第二个重要极限将问题转化为求(1+r)^(-t)的极限,其中r为折现率,t为时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重要极限2 lim (1 1)x e. x x
证 因为对任何实数x 1,都有[x] x [x] 1,所以
(1 1 )[x] (1 1)x (1 1 )[x]1
[x] 1
x
[x]
当x 时,[x]和[x] 1都以整数变量趋于 ,从而
lim (1
x
1 )[x] [x] 1
lim
下面我们来证明limcos x 1. x0
因为
0 ≤ 1 cos x 2sin2 x 2sin x sin x ≤ 21 x x,
2
22
2
且 lim x 0, 所以由定理6推得 lim(1 cos x) 0,
x0
x0
可知lim cos x 1, 又因为lim1 1, 所以再次
x0
5.极限的运算法则
(1) lim( f ( x) g(x)) lim f ( x) lim g(x)
(2) lim[ f (x) g(x)] limf (x) limg(x)
(3)

limg(x) 0,lim
f (x) g(x)
limf (x) . limg(x)
(4) lim[cf ( x)] c lim f ( x)
x
-0.1 0.99833
-0.01 0.99998
-0.001 …. 0.9999998
lim sin x 1 x0 x
证明

sin x
lim
1.
x x0+
即 sin x x tan x
各式同除以sin x (因为sin x 0),得 1 x 1 , sin x cos x
即 cos x sin x 1. x
(1
1
x
)
2.868
2.732
x
-1000 -10000
2.720 2.7183
-100000 …
2.71828
lim(1 1 ) x e
x
x
lim(1 1 )x e (1 )
x
x
令t 1,
lim(1
1 )x
lim(1
1
t)t
e
x x
x
t0
1
lim(1 t)t e (1 )
t 0
1
例 2 求 lim sin 5x x0 x
解: lim sin 5x lim 5sin 5x 5lim sin 5x
x0 x
x0 5x
x0 5x
令 5x t, 当 x 0 时,有 t 0
所以 ,原式 5lim sin t t0 t
51 5
注:在运算熟练后可不必代换,直接计算:
推广:
lim sin 5x 5lim sin 5x 51 5
从而有
cosx sinx 1.
(8)
x
注意 cos x 1 2sin 2 x 1 2( x)2 1 x2 ,
2
2
由上式与(8)式得 1 x2 sin x 1. 2x
因为 lim(1 x2 ) 1, lim1 1,
x0
2
x0
由夹逼准则,可得
lim sin x 1. x0 x
x
(1
1 )[x]1(1 [x] 1
[
1 x]
) 1
1
e 1 e.

lim (1
x
1 )[ x]1 [x]
lim
x
(1
1 )[x] (1 [x]
[1x])
e 1 e.
由夹逼准则知 lim (1 1)x e.
x
x
下面证 lim (1 1)x e.
x0
x0 sin 3x
33
4、 lim sin x _____0_____.
x 2x
1
5、 lim(1 x) x ____e_____.
x0
6、
lim (1 x )2x x x
__lixm____1__1x_
x
2
e2
1
7、
lim (1
x
1)x x
____e_____.
思考题
计算
lim
x
(5) lim[ f ( x)]k [lim f ( x)]k
❖第一个重要极限 lim sin x ?
x0 x
X
1
0.5
sin x
0.84147 0.95885
x
0.1 0.99833
0.01 0.99998
0.001 …. 0.9999998
X -1 -0.5
sin x
0.84147 0.95885
x0 x
x0 5x
设 为某过程中的无穷小量 ,
lim sin 1 某过程
练习1. 求下列极限:
(1) lim sin 3x x0 x
解:lim sin 3x lim 3sin 3x 3lim sin 3x 31 3x0ຫໍສະໝຸດ xx0 3xx0 3x
(2) lim sin 5x x0 3x
解:lim sin 5x lim(sin 5x)(5) 1 5 5
则sin x =BD,tan x=AC,
SOAB S扇形OAB SOAC , 当0 x π时,
2
1 sin x 1 x 1 tan x,
2
22
即 sin x x tan x.
而当 π x 0时, 有0 x π ,从而有
2
2
sin(x) x tan(x),
即 sin x x tan x. 即当 0 | x | π时,有 | sin x || x || tan x | .
所以
lim1
2
xx
2
lim(1 u) u
x0
u0
1
lim[(1 u)u ]2 u0
1
[lim(1 u)u ]2 u0
e2
方法二 掌握熟练后可不设新变量
2
1
lim 1 x x lim[(1 x) x ]2
x0
x0
[lim(1
1
x) x
]2
x0
e2
例3 lim( x 1)3x x x
x
x
解 因为
1
x
1 2
1
1
1
x
2


lim
1 1 x
e,
x x
x x
所以,有
lim
x
1 1 2
lim
1
1
1
x
2
x x x x
1
lim1
1
x 2
1
e2 .
x x
例2


lim1
2
xx
.
x0
解 方法一 令 u = -x, 因为 x 0 时 u 0,
x0 3x x0 5x 3
33
使用 lim sin x 1 时须注意 : x0 x
(1)类型:
0型 0
sin
(2)推广形式:
lim
某过程
1
( lim 0 ) 某过程
(3)等价形式: lim x 1 x0 sin x
例3

lim
x1
sin(x 1) x2 1

lim
x1
sin(x 1) x2 1
lim
x1
sin(x 1) (x 1)(x 1)
sin(x 1) lim[ x1 x 1
1] x 1
lim sin(x 1) lim x1 x 1 x1
1 x 1
1 1 1 11 2
例 4 求 lim x sin 1
x
x

lim x sin 1
x
x
sin 1
lim x
x 1
1
x
思考题
lim sin x lim 1 sin x
练习8. lim x sin x ___1___
x x
练习9. lim x sin x __0____
x0
x
❖第二个重要极限 lim (1 1 )x ?
x
x
X 10 100 1000 10000 100000 …
(1
1
x
)
2.594
2.705
2.717 2.718
2.71827
x
X -10 -100
1
20 lim (1 ) e. 某过程
练习题
1、 lim sin x
x0 x
lim sin x x0 x
2、 lim sin 2x lim sin 2x lim sin 2x 3x 2 x0 sin 3x x0 sin 3x x0 2x sin 3x 3
3、 lim x cot3x lim 3x cos3x 1 1
推广 为某过程中的无穷小量 , lim (1 ) e 某过程
使用 lim(1 1)x e 须注意 :
x
x
(1)类型:
1 型
1
(2)推广形式: lim (1 ) e 某过程
( lim 0 ) 某过程
1
(3)等价形式:lim(1 t)t e t 0
x
例 1 计 算 lim1 1 2 .
§1-4
极限 lim sin x x0 x
极限 lim (1
x
1 x
)x
❖预备知识
1.有关三角函数的知识
tan x sin x cos x
sin0 0 cos0=1 | sin x |1 | cos x | 1
2.有关对数函数的知识
ln x loge x
相关文档
最新文档