(完整版)高中数学选修2-2第一章导数测试题

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

高中数学苏教版高二选修2-2学业分层测评:第一章_导数及其应用_4

高中数学苏教版高二选修2-2学业分层测评:第一章_导数及其应用_4

学业分层测评(四)(建议用时:45分钟)学业达标]一、填空题1.函数y =-2e x sin x 的导数y ′=________.【解析】 y ′=(-2e x )′sin x +(-2e x )·(sin x )′=-2e x sin x -2e x cos x =-2e x (sin x +cos x ).【答案】 -2e x (sin x +cos x )2.函数f (x )=x e -x 的导数f ′(x )=________.【解析】 f ′(x )=x ′·e -x +x (e -x )′=e -x -x e -x =(1-x )e -x .【答案】 (1-x )e -x3.函数f (x )=cos ⎝ ⎛⎭⎪⎫12x -π4,则f ′(3π)=________. 【解析】 因为f ′(x )=-sin ⎝ ⎛⎭⎪⎫12x -π4·⎝ ⎛⎭⎪⎫12x -π4′ =-12sin ⎝ ⎛⎭⎪⎫12x -π4, 所以f ′(3π)=-12sin ⎝ ⎛⎭⎪⎫3π2-π4=-12sin 5π4=24. 【答案】 244.曲线C :f (x )=e x +sin x +1在x =0处的切线方程是________.【解析】 ∵f ′(x )=e x +cos x ,∴k =f ′(0)=2,切点为(0,2),切线方程为y =2x +2.【答案】 y =2x +25.(2016·东营高二检测)设函数f (x )的导数为f ′(x ),且f (x )=x 2+2x ·f ′(1),则f ′(0)=________.【解析】 f ′(x )=2x +2f ′(1),令x =1,则f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.【答案】 -46.(2016·佛山高二检测)若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________.【解析】 y ′=k +1x ,则曲线在点(1,k )处的切线的斜率为k +1,∴k +1=0,∴k =-1.【答案】 -17.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________.【解析】 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=x 0+1,y 0=ln(x 0+a ).又y ′=(x +a )′x +a =1x +a 及导数的几何意义, ∴1x 0+a=1, 即x 0+a =1.因此,y 0=ln(x 0+a )=0,∴x 0=-1,∴a =2.【答案】 28.(2016·广州高二检测)若函数为y =sin 4x -cos 4x ,则y ′=________________.【解析】 ∵y =sin 4x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )=-cos 2x ,∴y ′=(-cos 2x )′=-(-sin 2x )·(2x )′=2 sin 2x .【答案】 2sin 2x二、解答题9.求下列函数的导数.(1)y =1-2x 2;(2)y =e sin x ;(3)y =sin ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1). 【解】 (1)设y =u ,u =1-2x 2,则y ′=(u )′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2) (-4x )=-2x 1-2x2. (2)设y =e u ,u =sin x ,则y x ′=y u ′·u x ′=e u ·cos x =e sin x cos x .(3)设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos ⎝ ⎛⎭⎪⎫2x +π3. (4)设y =5log 2u ,u =2x +1,则y ′=y u ′·u x ′=10u ln 2=10(2x +1)ln 2.10.求曲线y =2sin 2x 在点P ⎝ ⎛⎭⎪⎫π6,12处的切线方程. 【解】 因为y ′=(2sin 2x )′=2×2sin x ×(sin x )′=2×2sin x ×cos x =2sin 2x ,所以y ′|x =π6=2sin ⎝ ⎛⎭⎪⎫2×π6= 3. 所以过点P 的切线方程为y -12=3⎝ ⎛⎭⎪⎫x -π6, 即3x -y +12-3π6=0.能力提升]1.若f (x )=sin x sin x +cos x,则f ′⎝ ⎛⎭⎪⎫π4等于________. 【解析】∵f ′(x )=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2 =1(sin x +cos x )2=11+sin 2x, ∴f ′⎝ ⎛⎭⎪⎫π4=11+sin π2=12. 【答案】 122.(2014·江西高考)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【导学号:01580010】【解析】 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=eln e =e ,∴点P 的坐标为(e ,e).【答案】 (e ,e)3.已知函数y =f (x )在点(2,f (2))处的切线为y =2x -1,则函数g (x )=x 2+f (x )在(2,g (2))处的切线方程为________.【解析】 由题意知,f (2)=3,f ′(2)=2,则g (2)=4+f (2)=7.∵g ′(x )=2x +f ′(x ),∴g ′(2)=4+f ′(2)=6.∴函数g (x )在(2,g (2))处的切线方程为y -7=6×(x -2),即6x -y -5=0.【答案】 6x -y -5=04.已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.【解】(1)f′(x)=1-ae x,因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=1-ae=0,解得a=e.(2)当a=1时,f(x)=x-1+1e x,f′(x)=1-1e x.设切点为(x0,y0),∵f(x0)=x0-1+1e x0=kx0-1,①f′(x0)=1-1e x0=k,②①+②得x0=kx0-1+k,即(k-1)(x0+1)=0. 若k=1,则②式无解,∴x0=-1,k=1-e.∴l的直线方程为y=(1-e)x-1.。

高中数学选修22:第一章导数及其应用单元测试题.doc

高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。

新课标高二数学选修2-2第一章导数及其应用测试题

新课标高二数学选修2-2第一章导数及其应用测试题

一选择题 ( 本大题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请将所选答案写在答题卡上 )1.设 y1 x2 ,则 y' ().sin xA .2x sin x (1x 2 ) cos xBsin 2 xx 2 )C .2x sin x (1Dsin x2.设 f ( x) ln x 2 1 ,则 f ' (2)( A .4B.2C.1555. 2xsin x(1 x 2 ) cos xsin 2xx 2 ).2x sin x (1sin x).D. 352x 3.已知 f (3) 2, f ' (3) 2 ,则 limx 33 f ( x)x 3的值为().A . 4B . 0C . 8D .不存在 4.曲线 y x 3 在点 (2,8) 处的切线方程为( ). A . y 6x 12 B . y 12x 16 C . y 8x 10 D. y 2x 32 5.已知函数 f ( x) ax 3 bx 2 cx d 的图象与 x 轴有三个不一样交点(0,0), ( x 1,0) ,( x 2 ,0) ,且 f ( x) 在 x 1 , x 2 时获得极值,则 x 1 x 2 的值为( )A . 4RB.5C.6 D.不确立6.在()1 x 3 1 ax 2,当获得极大值,当 获得极上的可导函数f x2bxc x (0,1) x(1,2)32 小值,则b2的取值范围是().A . (1 ,1) a 1. (1,1)1,1)1,1)BC. ( D. (4122 42 27.函数 f ( x)e x (sin x cos x) 在区间 [0, 2 ] 的值域为().2A . [ 1 , 1 e 2 ]B. ( 1 , 1 e 2 )C. [1, e 2 ]D. (1, e 2 )2 2a2 28.积分 a2x 2dx ().aA .1a2B .1a 2C . a 2D . 2 a 2429.由双曲线 x2y 2 1 ,直线 y b, yb 围成的图形绕 y 轴旋转一周所得旋转体的体积为a 2b 2()A . 8ab2B . 8a 2bC .4a 2bD . 4ab 2333310.由抛物线 y 2 2x 与直线 yx 4 所围成的图形的面积是().A . 18B .38C .16D . 163311.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ).A. 3 V B. 3 2V C.3 4V D .23V12.某人要剪 一个如图 所示 的实 心纸花瓣,纸花 瓣的界限 由六段 全等的 正弦曲 线弧 y sin x(0 x ) 构成,此中曲线的六个交点正好是一个正六边形的六个极点,则这个纸花瓣的面积为().A . 6 3 32.3 3 2 . 62D .3 3 2B 122C2第Ⅱ卷(非选择题,共 90 分)二、填空题(每题 5 分,共 20 分。

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

高二数学选修2-2第一章导数及其应用测试题一选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.设xx y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin )1(sin 22---2.设1ln )(2+=x x f ,则=)2('f ( ).A .54B .52C .51D .533.已知2)3(',2)3(-==f f ,则3)(32lim 3--→x x f x x 的值为( ).A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ).A .)1,41(B .)1,21(C .)41,21(-D .)21,21(-7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ).A .]21,21[2πeB .)21,21(2πe C .],1[2πe D .),1(2πe8.积分=-⎰-a adx x a 22( ).A .241a π B .221a π C .2a π D .22a π9.由双曲线12222=-by a x ,直线b y b y -==,围成的图形绕y 轴旋转一周所得旋转体的体积为( )A .238ab πB .b a 238πC .b a 234πD .234ab π10.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ).A .18B .338C .316D .1611.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界由六段全等的正弦曲线弧)0(sin π≤≤=x x y 组成,其中曲线的六个交点正好是一个正六边形的六个顶点,则这个纸花瓣的面积为( ).A .2336π+B .223312π+C .26π+D .22336π+ 第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分。

选修2-2第1章第1-2节 导数的概念及运算(理)(习题+解析)

选修2-2第1章第1-2节 导数的概念及运算(理)(习题+解析)

选修2-2第1章第1-2节导数的概念及运算(理)(习题+解析)年级 高二 学科 数学 版本 苏教版(理)课程标题 选修2-2第1章第1-2节 导数的概念及运算1. 已知f (x )=x 2+2xf ′(1),则f ′(0)等于( )A. 0B. -4C. -2D. 22. 设f 0(x )=cos x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 010(x )=( )A. sin xB. -sin xC. cos xD. -cos x3. 设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是 ( )A. [-2,2]B. [2,3]C. [3,2]D. [2,2]4. 曲线y =x x -2在点(1,-1)处的切线方程为( )A. y =x -2B. y =-3x +2切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程。

11. 设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0。

(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值。

12. 已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线。

若1C 和2C 有且仅有一条公切线,求a 的值,并写出此公切线的方程。

1. B 解析:∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2, ∴f (x )=x 2-4x ,∴f ′(x )=2x -4,∴f ′(0)=-4。

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课改高二数学选修2-2第一章导数及其应用测试题(时间120分钟,分值150分)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷(选择题,共60分)一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.设xx y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .x x x x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .xx x x sin )1(sin 22---2.设1ln )(2+=x x f ,则=)2('f ( ).A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ).A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(-27.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe8.积分=-⎰-aadx x a 22( ). A .241a π B .221a πC .2a πD .22a π9.由双曲线12222=-by a x ,直线b y b y -==,围成的图形绕y 轴旋转一周所得旋转体的体积为( )A .238ab π B .b a 238π C .b a 234π D .234ab π 10.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). A .18B .338C .316 D .1611.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V 12.某人要剪一个如图所示的实心纸花瓣,纸花瓣的边界 由六段全等的正弦曲线弧)0(sin π≤≤=x x y 组成,其中 曲线的六个交点正好是一个正六边形的六个顶点,则这个 纸花瓣的面积为( ). A .2336π+ B .223312π+ C .26π+ D .22336π+第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共16分。

(完整word版)【高中数学选修2-2:第一章-导数及其应用-单元测试题

(完整word版)【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1x 2在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是( )A.134 B.54 C .8D .43.点P 在曲线y =x 3-x +23上移动,设点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,π2]B .[0,π2]∪[34π,π)C .[34π,π) D .[π2,34π]4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32 B .m >32 C .m ≤32D .m <325.函数f (x )=cos 2x -2cos 2x2的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫π3,2π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝⎛⎭⎪⎫0,π3D.⎝⎛⎭⎪⎫-π6,π6 6.设f (x )在x =x 0处可导,且lim Δx →0f (x 0+3Δx )-f (x 0)Δx=1,则f ′(x 0)等于( )A .1B .0C .3D.137.经过原点且与曲线y =x +9x +5相切的切线方程为( )A .x +y =0B .x +25y =0C .x +y =0或x +25y =0D .以上皆非8.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( )A .增函数B .减函数C .常数D .既不是增函数也不是减函数9.若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( ) A .0个根 B .1个根 C .2个根D .3个根10.一点沿直线运动,如果由始点起经过t s 后距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1 s 末B .0 sC .4 s 末D .0,1,4 s 末11.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x ,x ∈(1,2],则⎠⎛02f(x)d x 等于( )A .34 B .45 C .56D .不存在12.若函数f(x)=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a>bB .a<bC .a =bD .a 、b 的大小不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f(x)=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.14.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a =f(1),b =f(2),c =f(3),则a 、b 、c 的大小关系是________.15.已知函数f(x)为一次函数,其图像经过点(2,4),且⎠⎛01f(x)d x =3,则函数f(x)的解析式为________.16.(2010·江苏卷)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.三、解答题(本大题共6小题,共70分,解答应出写文字说明、证明过程或演算步骤)17.(10分)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.18.(12分)已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2)上单调递减.(1)求a 的值;(2)若点A(x0,f(x0))在函数f(x)的图像上,求证:点A 关于直线x =1的对称点B 也在函数f(x)的图像上.19.(12分)设x =-2与x =4是函数f(x)=x3+ax2+bx 的两个极值点.(1)求常数a ,b ;(2)试判断x =-2,x =4是函数f(x)的极大值还是极小值,并说明理由.20.(12分)已知f(x)=ax3-6ax2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.21.(12分)(2010·重庆卷)已知函数f(x)=ax 3+x 2+bx(其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值.22.(12分)已知函数f (x )=ln(ax +1)+1-x 1+x ,x ≥0,其中a >0.(1)若f (x )在x =1处取得极值,求a 的值; (2)求f (x )的单调区间;(3)若f (x )的最小值为1,求a 的取值范围.参考答案 1.答案 A解析 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1、x 3是极大值点,只有x 2是极小值点.2.答案 D3.答案 B4.答案 A解析 因为函数f (x )=12x 4-2x 3+3m , 所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.5.答案 A解析 f (x )=cos 2x -cos x -1,∴f ′(x )=-2sin x ·cos x +sin x =sin x ·(1-2cos x ). 令f ′(x )>0,结合选项,选A. 6.答案 D 7.答案 D 8.答案 A 9.答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),当x∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝⎛⎭⎪⎫83-4a +1=113-4a <0,f (x )=0在(0,2)上恰好有一个根,故选B. 10.答案 D 11.答案 C解析 数形结合,如图.⎠⎛02f(x)d x =⎠⎛01x 2d x +⎠⎛12(2-x)d x = ⎪⎪⎪13x 310⎪⎪⎪+(2x -12x 2)21=13+(4-2-2+12) =56,故选C . 12.答案 A解析 f ′(x)=x cos x -sin xx 2, 令g(x)=x cos x -sin x ,则g ′(x)=-x sin x +cos x -cos x =-x sin x.∵0<x<1,∴g ′(x)<0,即函数g(x)在(0,1)上是减函数,得g(x)<g(0)=0,故f ′(x)<0,函数f(x)在(0,1)上是减函数,得a>b ,故选A .13.答案 23解析 f ′(x)=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.14.答案 c<a<b解析 f(2)=f(π-2),f(3)=f(π-3),因为f ′(x)=1+cos x ≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f(π-2)>f(1)>f(π-3),即c<a<b.15.答案 f(x)=23x +83解析 设函数f(x)=ax +b(a ≠0),因为函数f(x)的图像过点(2,4),所以有b =4-2a.∴⎠⎛01f(x)d x =⎠⎛01 (ax +4-2a)d x=[12ax 2+(4-2a)x] |10=12a +4-2a =1. ∴a =23.∴b =83.∴f(x)=23x +83. 16.答案 21解析 ∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x-a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.17.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-x 3310=12-13=16.又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S2=⎠⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫1-k 2x 2-x 331-k 0=16(1-k)3. 又S =16,所以(1-k)3=12,∴k =1-342.18.解析 (1)由函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减,∴x =1时,取得极大值,∴f ′(1)=0. 又f ′(x)=4x3-12x2+2ax , ∴4-12+2a =0⇒a =4.(2)点A(x0,f(x0))关于直线x =1的对称点B 的坐标为(2-x0,f(x0)),f(2-x0)=(2-x0)4-4(2-x0)3+4(2-x0)2-1 =(2-x0)2[(2-x0)-2]2-1 =x40-4x30+ax20-1=f(x0),∴A 关于直线x =1的对称点B 也在函数f(x)的图像上. 19.解析 f ′(x)=3x2+2ax +b. (1)由极值点的必要条件可知:f ′(-2)=f ′(4)=0,即⎩⎪⎨⎪⎧12-4a +b =0,48+8a +b =0,解得a =-3,b =-24.或f′(x)=3x2+2ax+b=3(x+2)(x-4)=3x2-6x-24,也可得a=-3,b=-24.(2)由f′(x)=3(x+2)(x-4).当x<-2时,f′(x)>0,当-2<x<4时,f′(x)<0.∴x=-2是极大值点,而当x>4时,f′(x)>0,∴x=4是极小值点.20.解析a≠0(否则f(x)=b与题设矛盾),由f′(x)=3ax2-12ax=0及x∈[-1,2],得x=0.(1)当a>0时,列表:f(x)在[0,2]上是减函数.则当x=0时,f(x)有最大值,从而b=3.又f(-1)=-7a+3,f(2)=-16a+3,∵a>0,∴f(-1)>f(2).从而f(2)=-16a+3=-29,得a=2.(2)当a<0时,用类似的方法可判断当x=0时f(x)有最小值.当x=2时,f(x)有最大值.从而f(0)=b=-29, f(2)=-16a-29=3,得a=-2.综上,a=2,b=3或a=-2,b=-29.21.解析 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的解析式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令 g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时, g ′(x )>0,从而g (x )在[-2,2]上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.22.分析 解答本题,应先正确求出函数f (x )的导数f ′(x ),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.解析 (1)f ′(x )=a ax +1-2(1+x )2=ax 2+a -2(ax +1)(1+x )2, ∵f (x )在x =1处取得极值,∴f ′(1)=0,即a ·12+a -2=0,解得a =1.(2)f ′(x )=ax 2+a -2(ax +1)(1+x )2, ∵x ≥0,a >0,∴ax +1>0.①当a ≥2时,在区间[0,+∞)上,f ′(x )>0,∴f (x )的单调增区间为[0,+∞).②当0<a<2时,由f′(x)>0,解得x> 2-a a.由f′(x)<0,解得x< 2-a a.∴f(x)的单调减区间为(0, 2-aa),单调增区间为(2-aa,+∞).(3)当a≥2时,由(2)①知,f(x)的最小值为f(0)=1;当0<a<2,由(2)②知,f(x)在x=2-aa处取得最小值,且f(2-aa)<f(0)=1.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).。

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标⾼⼆数学选修2-2第⼀章导数及其应⽤测试题(含答案)新课改⾼⼆数学选修2-2第⼀章导数及其应⽤测试题第Ⅰ卷(选择题,共40分)⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分)1.设xx y sin 12-=,则='y ().A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22---2.设1ln )(2+=x x f ,则=)2('f ().A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为().A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线⽅程为().A .126-=x yB .1612-=x yC .108+=x yD .322-=x y 5.满⾜()()f x f x '=的函数是A . f (x )=1-x B. f (x )=x C . f (x )=0D . f (x )=16.曲线34y x x =-在点(-1,-3)处的切线⽅程是A . 74y x =+ B. 72y x =+ C. 4y x =- D. 2y x =-7.若关于x 的函数2m n y mx -=的导数为4y x '=,则m n +的值为 A. -4 B. 1- C. D . 48.设ln y x x =-,则此函数在区间(0,1)内为A .单调递增, B.有增有减 C.单调递减, D.不确定 9.函数3()31f x x x =-+在闭区间[-3,0]上的最⼤值、最⼩值分别是A . 1,-1 B. 3,-17 C. 1,-17 D. 9,-1910.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所⽰,则函数)(x f 在开区间),(b a 内有极⼩值点 A 1个B 2个C 3个D 4个第Ⅱ卷(⾮选择题,共60分)⼆、填空题(每⼩题5分,共15分。

(完整版)高二数学选修2-2导数单元测试题(有答案)

(完整版)高二数学选修2-2导数单元测试题(有答案)

2
(1)当 a 2 时,求函数 f ( x) 极小值;( 2)试讨论曲线 y
f (x) 与 x 轴公共点的个数。
为 1 ,则 a _________ 。 6
2
39.已知 x 1 是函数 f ( x) mx3 3(m 1)x2 nx 1的一个极值点, 其中 m,n R, m 0 ,
( I )求 m 与 n 的关系式;
A、(2,3) B、(3,+∞)
C、(2,+∞)
24、方程 6x 5-15x 4+10x3+1=0 的实数解的集合中 ( )
D、(- ∞, 3)
A、至少有 2 个元素 B 、至少有 3 个元素 C、至多有 1 个元素 D 、恰好有 5 个元素
二.填空题
25.垂直于直线 2x+6y+1=0 且与曲线 y = x 3+ 3x-5 相切的直线方程是
A、 有极大值 B 、无极值 C 、有极小值
D、无法确定极值情况
18.f(x)=ax 3+3x2+2, f ’ (-1)=4 ,则 a=( )
A、 10 B 、 13
3
3
C 、 16
3
D
、 19
3
19. 过抛物线 y=x2 上的点 M( 1 , 1 )的切线的倾斜角是 (
)
24
A、300
B 、450 C 、600
解得
x1 1 2 , x2 1 2.
当 x 1 2,或 x 1 2时 , f (x) 0; 当
1 2 x 1 2时, f (x) 0. 故 f ( x) x 3 3x 2 3x 2在 ( ,1 2) 内 是 增 函 数 , 在
因 f ( x0 )
3( x02 1) ,故切线的方程为 y

(word完整版)高中数学选修2-2第一章导数测试题

(word完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一)时间:120分钟总分:150分一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则()A . a = 1, b = 1B . a =— 1, b = 1C . a = 1, b =— 1D . a =— 1, b =— 13.设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =() In2 A . e 2B . eC^^D . ln24. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( )B . f ‘ (x) = 2 x sinx — x cosx, sinx 厂C . f (x)= 2 x + x cosxD . f ‘sinx 厂(x)= 2 x — x cosx-3 -316. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:①f(x)在区间[—2,—1]上是增函数;②x=—1是f(x)的极小值点;③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数;④x= 2是f(x)的极小值点.其中,所有正确判断的序号是()A .①②B .②③C.③④ D .①②③④7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是()A. O w a w 21B. a= 0 或a = 7C. a<0 或a>21D. a= 0 或a= 218某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)()A . 30 元B. 60 元C. 28 000元D. 23 000 元x9. 函数f(x) = —g(a<b<1),则()A. f(a) = f(b) B . f(a)<f(b)C. f(a)>f(b)D. f(a), f(b)大小关系不能确定10. 函数f(x)=-x3+x2+ x —2的零点个数及分布情况为()1A .一个零点,在一X,—3内1B. 二个零点,分别在—x,—3 , (0,+x)内1 1c.三个零点,分别在一x,—3 , 一3,0, (1,+*)内1D. 三个零点,分别在—X,—3,(0,1), (1,+工)内11. 对于R上可导的任意函数f(x),若满足(x—1)f‘ (x) >0,则必有()A . f(0) + f(2)<2f(1) B. f(0) + f(2)< 2f(1)C. f(0) + f(2) >2f(1) D . f(0) + f(2)>2f(1)12. 设f(x)是定义在R上的可导函数,且满足f‘ (x)>f(x),对任意的正数a,下面不等式恒成立的是()A. f(a)<e a f(0)B. f(a)>e a f(0)C. f(a)v号D.")>罟二、填空题侮小题5分,共20分)113. 过点(2,0)且与曲线y=-相切的直线的方程为/输入(结束〕116. 已知函数f(x) = qmx2+ Inx—2x在定义域内是增函数,则实数m的取值范围为________ .三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17. (10 分)设函数f(x) = —x3—2mx2—m2x + 1 —m(其中m> —2)的图象在x = 2处的切线与直线y= —5x+ 12平行.(1) 求m的值;(2) 求函数f(x)在区间[0,1]上的最小值.18. (12 分)已知函数f(x) = kx3—3(k + 1)x2—k2+ 1(k>0),若f(x)的单调递减区间是(0,4),1(1)求k的值;(2)当k<x时,求证:2 x>3—-x19. (12分)已知函数f(x)= kx3—3x2+ 1(k> 0).(1)求函数f(x)的单调区间;⑵若函数f(x)的极小值大于0,求k的取值范围.20. (12分)湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调101 查,旅游增加值y万元与投入x(x> 10)万元之间满足:y= f(x) = ax2+而x—bl口希,a, b 为常数,当x= 10 时,y= 19.2;当x= 20 时,y= 357(参考数据:ln2 = 0.7, In3 = 1.1, ln5 = 1.6)(1)求f(x)的解析式;⑵求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游收入—投入)1 121. (12 分)已知函数f(x) = 3X3—2X2+ cx+ d 有极值.(1)求c的取值范围;1 一⑵若f(x)在x= 2处取得极值,且当x<0时,f(x)<6d2+ 2d恒成立, 求d的取值范围.22. (12分)(2015银川一中月考)设a为实数,函数f(x) = e x—2x+ 2a, x€ R.(1)求f(x)的单调区间与极值;⑵求证:当a>ln2 — 1 且x>0 时,e x>x2—2ax + 1.答案2 A •/y'= 2x+ a,•••曲线y = x2+ax+ b在(0, b)处的切线方程的斜率为a, 切线方程为y —b= ax,即ax—y+ b= 0;・a= 1, b= 1.3. B f ‘(x) = (xlnx) '= lnx + 1,「• f ‘ (x o ) = lnx o + 1 = 2,「. x o = e.4. B f (x) =2x + 2f ‘ (1),A f (1)= 2 + 2f ‘ (1),即 f ‘ (1)=- 2,二 f (x) = 2x -4,A f (0)=- 4.5. D 由定积分的几何意义可知,函数y = f(x)的图象与x 轴围成 的阴影部分的面积为1 — 3f(x)dx — 3f(x)dx.故选D.i6. B 由函数y =f(x)的导函数的图象可知:(1) f(x)在区间[—2, — 1]上是减函数,在[—1,2]上是增函数,在[2,4] 上是减函数;(2) f(x)在x =— 1处取得极小值,在x = 2处取得极大值.故②③正 确. 7. A f (x) = 3x 2 + 2ax + 7a ,当 △= 4a 2 — 84a <0,即卩 0W a <21 时,f ‘ (x) >0恒成立,函数不存在极值点.故选 A.& D 设毛利润为L(P),由题意知 L(P)= PQ — 20Q = Q(P — 20) =(8 300— 170P — P 2)(P — 20) =—P 3 — 150P 2 + 11 700P — 166 000, 所以 L ‘ (P) = — 3P 2— 300P + 11 700, 令 L ' (P)= 0,解得 P = 30 或 P =— 130(舍 去). 此时,L(30)= 23 000.根据实际问题的意义知,L(30)是最大值,即零售价定为每件 30元时,最大毛利润为23 000元.e x — xe x x — 11. C F (x) = ( x) 选C.sinx + x (sinx)'=^x sinx +G cosx ,故9. C F(x)=—否 2 = e x,当x<1时,f‘ (x)<0,即f(x)在区间(一汽1)上单调递减,又•: a<b<1,二f(a)>f(b).110. A 利用导数法易得函数f(x)在一 = ,—3内单调递减,在1 1 59—3, 1内单调递增,在(1, +x)内单调递减,而f — 3 = —27<o,f(1)=—1<0,故函数f(x)的图象与x轴仅有一个交点,且交点横坐标在1— X,—3内,故选A.11. C 当1<x< 2 时,f‘(x)》0,贝y f(2)>f(1); 而当0W x< 1 时,f‘(x)<0,贝S f(1)<f(0),从而f(0) + f(2)> 2f(1).f x f' x 一f x12. B 构造函数g(x)=孑,贝S g' (x)= e x >0,故函数f x fa f 0g(x) = *在R 上单调递增,所以g(a)>g(0),即f er>f-^,即f(a)>e a f(0). DD D13. x+ y —2= 0解析:设所求切线与曲线的切点为P(x o, y o),1 1T y'= —p,二y' |x=x o= —鬲所求切线的方程为1y—y o= —x0(x一X o).T点(2,0)在切线上,= y 「・x2y o= 2—X.①由①②解得X o =1, y o•••所i4.n解析: 1 1 jn jn jnM = 1 1— x 2dx = 4 nX 12 = 4, N =/2o cosxdx = sinx 刖=1,冗 M<N ,不满足条件 M>N ,贝S S = M = 4.15.16. [1,+乂)1解析:根据题意,知f ‘ (x)= mx + --2>0对一切x>0恒成立,x1 2121 1二 m >- - 2 + _,令 g(x) =-- 2 + _=_ -- 1 2+ 1,则当_ = 1 时,函 X x x x x x数g(x)取得最大值1,故m 》1.17.解:(1)因为 f ‘ (x)=- 3x 2-4mx - m 2, 所以 f ‘ (2) = - 12-8m -m 2=- 5,解得m =- 1或m =- 7(舍去),即m =- 1. (2)令 f ‘ (x)=- 3x 2+ 4x — 1= 0,1解得 X 1 = 1 , x 2 = §.当X 变化时,f ‘ (x), f(x)的变化情况如下表:解析:f ‘(x)= mX m 1 + a =2x +1,得 m = 2,a = 1. 则 f(x) = x 2 + x , 丄—1 _ 11f n n n + 1 n n +1, 11 1 1其和为彳―2 + 1—§ +—4 +…+1-七=1-丄=亠 nn + 1 n + 1 n + 1F (x) 一+f(x)2\ 150 2721 50所以函数f(x)在区间[0,1]上的最小值为f3 = 50.18.解:(1)f ‘ (x) = 3kX — 6(k + 1)x ,2k + 2由 f ‘ (x)<0 得 0<x<一 ,T f(x)的递减区间是(0,4),(2)当k = 0时,函数f(x)不存在极小值, 2 8 12 当k>0时,依题意f =迄—迄+1>0, 即k 2>4,所以k 的取值范围为(2,+乂 ).2k + 2 ‘=4,k = 1.1 11 (2)证明:设 g(x) =2 x + x ,g‘(x)= x —x 2.••• g ‘ (x)>0,「. g(x)在 x € [1,+乂)上单调递增.1••• x>1 时,g(x)>g(1), 即卩 2 x + ->3,zv二 2 x>3 — £zv19. 解:(1)当 k = 0 时,f(x) = — 3x 2 + 1,• f(x)的单调增区间为(一乂,0],单调减区间[0,+乂 ).2当 k>0 时,f ‘(x)= 3kx 2— 6x = 3kxx —k , ••• f(x)的单调增区间为 ,单调减区间为0 当x>1时, o20.解:(1)由条件得1解得a =—而,b =1,X 101 x 则 f(x)= — 100+ 50 x — ln^0(x > 10).(2)由题意知x 2 51 xT (x) = f(x) — x =—而+50x — ln^0(x > 10),令「(x)= 0,贝S x = 1(舍去)或 x = 50.当 x € (10,50)时,T ‘ (x)>0, T(x)在(10,50)上是增函数; 当 x € (50, +乂)时,T (x)<0, T(x)在(50, +乂)上是减函数, 二x = 50为T(x)的极大值点,又T(50) = 244故该景点改造升级后旅游利润 T(x)的最大值为24.4万元.1 121.解: (1) v f(x) = §x 3—*2+cx + d ,二f ‘ (x) = x 2 — x +c,要使 f(x)有极值,则方程 f ‘ (x) = x 2— x + c = 0, 1 有两个实数解,从而 △= 1 —4c>0,二c<4.(2) v f(x)在x = 2处取得极值, ••• f (2) = 4 — 2+ c = 0, • c =-1 1-2. •- f(x) = 3X 3 — ^x 2 — 2x + d.a x 102+ x 10— blnl 19.2 a x 202 + 101而 x 20— bln2= 35.7—x 51 1+ ——- 50 + 50 x x — 1 x — 5050xV f (x) = x 2 — x — 2= (x — 2)(x + 1),•••当 x € ( — s,— 1)时,F (x)>0,函数单调递增,当 x € (— 1,2] 时,f ‘ (x)<0,函数单调递减.• x<0时,f(x)在x =— 1处取得最大值右+ d ,1 一V x<0 时,f(x)v§d 2 + 2d 恒成立,••• d<— 7 或 d>1,即d 的取值范围是(— s,— 7)U (1,+乂). 22.解:(1)f ‘ (x) = e — 2, x € R.令 f (x) = 0,得 x = ln2.于是,当x 变化时,f (x)和 f(x)的变化情况如下表:故f(x)的单调递减区间是(一s, |n2),单调递增区间是(In2,+s ), f(x)在x = In2处取得极小值,极小值为f(ln2) = 2— 2ln2 + 2a.(2)证明:设 g(x) = e 一x 2 + 2ax — 1, x € R , 于是 g ‘ (x) = 3— 2x + 2a , x € R.由(1)及 a>ln2 — 1 知,对任意 x € R ,都有 g ‘ (x)>g ‘ (In2) = 2— 2ln2 + 2a>0,所以g(x)在R 内单调递增.于是,当a>l n2 — 1时,对任意x € (0,+s ),都有g(x)>g(0),而 g(0)=0, 从而对任意x € (0,+s ),都有g(x)>0, 即 e x — x 2 + 2ax —1>0, 故 e x >x 2 — 2ax + 1.Vd + 7- 6即(d + 7)(d —14. 已知M = * 1d1 —x2dx, N= n cosxdx,则程序框0 图输出的S= . 15. 设函数f(x) = x m+ ax 的导数为f‘ (x)= 2x+ 1,1则数列fn(n€ N+)的前n项和是 __________ .。

(完整版)新课改高二数学选修2-2第一章导数及其应用测试题(含答案),推荐文档

(完整版)新课改高二数学选修2-2第一章导数及其应用测试题(含答案),推荐文档

] 的值域为(
).
2
2
A.
[
1
,
1
e
2
]
22
B.
(
1
,
1
e
2
)
22
C.[1, e 2 ]
D. (1, e 2 )
a
8.积分
a 2 x 2 dx (
).
a
A. 1 a 2 4
B. 1 a 2 2
C. a 2
D. 2a 2
10.由抛物线 y 2 2x 与直线 y x 4 所围成的图形的面积是( ).
故 f (x) 在 (,1)和(1,) 上是增函数;
若 x (1,1) ,则 f '(x) 0
故 f (x) 在 (1,1) 上是减函数;
所以 f (1) 2 是极大值, f (1) 2 是极小值。 ┅┅┅┅┅┅┅┅ (6 分)
(2)曲线方程为 y x3 3x ,点 A(0,16) 不在曲线上。
设 g(x) 3x 2 2x ,则 g(x) 3(x 1)2 1 ,于是有 33
t g(x)max g(1) 5 ∴当 t 5 时, f (x) 在区间 (1,1) 上是增函数 ┅┅┅┅┅┅┅┅┅┅ (8 分)
又当 t 5 时, f '(x) 3x 2 2x 5 3(x 1)2 14 , 33
f '(1)
f
'
(1)
0
,即
3a 3a
2b 2b
3 3
0, 0.
解得
a 1,b 0
┅┅ (3 分)
∴ f '(x) x3 3x ,∴ f '(x) 3x2 3 3(x 1)(x 1)

最新人教A版高中数学选修2-2 第一章 导数及其应用 综合检测习题(含答案解析)

最新人教A版高中数学选修2-2 第一章 导数及其应用 综合检测习题(含答案解析)

第一章导数及其应用综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( )A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C.6D.7[答案] D[解析] 由导数的几何意义知,曲线y=x2+3x在点A(2,10)处的切线的斜率就是函数y=x2+3x在x =2时的导数,y′|x=2=7,故选D.4.函数y=x|x(x-3)|+1( )A.极大值为f(2)=5,极小值为f(0)=1B.极大值为f(2)=5,极小值为f(3)=1C.极大值为f(2)=5,极小值为f(0)=f(3)=1D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3[答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3) ∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:x (-∞,0)0 (0,2) 2 (2,3) 3 (3,+∞)f ′(x ) ++-+f (x )无极值极大值5极小值1极大极小故应选B.5.(2009·安徽理,9)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3 [答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式. ∵f (x )=2f (2-x )-x 2+8x -8, ∴f (2-x )=2f (x )-x 2-4x +4, ∴f (x )=x 2,∴f ′(x )=2x ,∴曲线y =f (x )在点(1,f (1))处的切线斜率为2,切线方程为y -1=2(x -1),∴y =2x -1. 6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 [答案] D[解析] f ′(x )=3x 2+2ax +3, ∵f (x )在x =-3时取得极值, ∴x =-3是方程3x 2+2ax +3=0的根, ∴a =5,故选D.7.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A.①②B.③④C.①③D.①④[答案] B[解析] ③不正确;导函数过原点,但三次函数在x=0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎛241xdx =ln x |42=ln4-ln2=ln2.10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( ) A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图 过A ⎝⎛⎭⎪⎫-6,-32得z 最大, 最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C [解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数, 当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.⎠⎛-2-1d x(11+5x )3=________.[答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎛-2-1d x(11+5x )3=F (-1)-F (-2) =-110×62+110×12=110-1360=772.14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝ ⎛⎭⎪⎫ax -1x ′=a +1x2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n=lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =n n +1,∴a n =lg nn +1, ∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝ ⎛⎭⎪⎫2,12.故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2),f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x 得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎛02(2x -x 2)d x +|⎠⎛02(2x 2-4x )d x |=⎠⎛02(2x -x 2)d x -⎠⎛02(2x 2-4x )d x .因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x ,所以S =⎝⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想. [解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切, 所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点. 当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值;(2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.[分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值; (2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝ ⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞. ①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤tan θ≤a 23. ②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a -3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23, 当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2第一章单元测试 (一)时间:120分钟 总分:150分一、选择题(每小题5分,共60分)1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos xC .f ′(x )=sin x 2x +x ·cos xD .f ′(x )=sin x 2x-x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-13.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( )A .e 2B .e C.ln22 D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( )A .0B .-4C .-2D .25.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( )A. ⎠⎜⎛-33f (x )d x B.⎠⎛13f (x )d x +⎠⎛1-3f (x )d x C. ⎠⎜⎛-31f (x )d x D. ⎠⎜⎛-31f (x )d x -⎠⎛13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:①f(x)在区间[-2,-1]上是增函数;②x=-1是f(x)的极小值点;③f(x)在区间[-1,2]上是增函数,在区间[2,4]上是减函数;④x=2是f(x)的极小值点.其中,所有正确判断的序号是()A.①②B.②③C.③④D.①②③④7.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=218.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)()A.30元B.60元C.28 000元D.23 000元9.函数f(x)=-xe x(a<b<1),则() A.f(a)=f(b) B.f(a)<f(b)C .f (a )>f (b )D .f (a ),f (b )大小关系不能确定10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( )A .一个零点,在⎝ ⎛⎭⎪⎫-∞,-13内B .二个零点,分别在⎝ ⎛⎭⎪⎫-∞,-13,(0,+∞)内 C .三个零点,分别在⎝ ⎛⎭⎪⎫-∞,-13,⎝ ⎛⎭⎪⎫-13,0,(1,+∞)内 D .三个零点,分别在⎝ ⎛⎭⎪⎫-∞,-13,(0,1),(1,+∞)内 11.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)12.设f (x )是定义在R 上的可导函数,且满足f ′(x )>f (x ),对任意的正数a ,下面不等式恒成立的是( )A .f (a )<e a f (0)B .f (a )>e a f (0)C .f (a )<f (0)e aD .f (a )>f (0)e a二、填空题(每小题5分,共20分)13.过点(2,0)且与曲线y =1x 相切的直线的方程为________.14.已知M =⎠⎛011-x 2d x ,N =⎠⎜⎜⎛0π2cos x d x ,则程序框图输出的S =________.15.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N +)的前n 项和是________.16.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设函数f (x )=-x 3-2mx 2-m 2x +1-m (其中m >-2)的图象在x =2处的切线与直线y =-5x +12平行.(1)求m 的值;(2)求函数f (x )在区间[0,1]上的最小值.18.(12分)已知函数f (x )=kx 3-3(k +1)x 2-k 2+1(k >0),若f (x )的单调递减区间是(0,4),(1)求k 的值; (2)当k <x 时,求证:2x >3-1x19.(12分)已知函数f (x )=kx 3-3x 2+1(k ≥0).(1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围.20.(12分)湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y 万元与投入x (x ≥10)万元之间满足:y =f (x )=ax 2+10150x -b ln x 10,a ,b 为常数,当x =10时,y =19.2;当x =20时,y =35.7.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6)(1)求f (x )的解析式;(2)求该景点改造升级后旅游利润T (x )的最大值.(利润=旅游收入-投入)21.(12分)已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.22.(12分)(2015·银川一中月考)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R.(1)求f (x )的单调区间与极值;(2)求证:当a >ln2-1且x >0时,e x >x 2-2ax +1.答案1.C f ′(x )=(x )′·sin x +x ·(sin x )′=12x·sin x +x ·cos x ,故选C.2.A ∵y ′=2x +a ,∴曲线y =x 2+ax +b 在(0,b )处的切线方程的斜率为a ,切线方程为y -b =ax ,即ax -y +b =0.∴a =1,b =1.3.B f ′(x )=(x ln x )′=ln x +1,∴f ′(x 0)=ln x 0+1=2,∴x 0=e.4.B f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.5.D 由定积分的几何意义可知,函数y =f (x )的图象与x 轴围成的阴影部分的面积为⎠⎛1-3f (x )d x -⎠⎛13f (x )d x .故选D. 6.B 由函数y =f (x )的导函数的图象可知:(1)f (x )在区间[-2,-1]上是减函数,在[-1,2]上是增函数,在[2,4]上是减函数;(2)f (x )在x =-1处取得极小值,在x =2处取得极大值.故②③正确.7.A f ′(x )=3x 2+2ax +7a ,当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.故选A.8.D 设毛利润为L (P ),由题意知L (P )=PQ -20Q =Q (P -20)=(8 300-170P -P 2)(P -20)=-P 3-150P 2+11 700P -166 000,所以L ′(P )=-3P 2-300P +11 700,令L ′(P )=0,解得P =30或P =-130(舍去).此时,L (30)=23 000.根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.9.C f ′(x )=-e x -x e x (e x )2=x -1e x , 当x <1时,f ′(x )<0,即f (x )在区间(-∞,1)上单调递减,又∵a <b <1,∴f (a )>f (b ).10.A 利用导数法易得函数f (x )在-∞,-13内单调递减,在⎝ ⎛⎭⎪⎫-13,1内单调递增,在(1,+∞)内单调递减,而f ⎝ ⎛⎭⎪⎫-13=-5927<0,f (1)=-1<0,故函数f (x )的图象与x 轴仅有一个交点,且交点横坐标在⎝⎛⎭⎪⎫-∞,-13内,故选A.11.C 当1≤x ≤2时,f ′(x )≥0,则f (2)≥f (1);而当0≤x ≤1时,f ′(x )≤0,则f (1)≤f (0),从而f (0)+f (2)≥2f (1).12.B 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x>0,故函数g (x )=f (x )e x 在R 上单调递增,所以g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0).13.x +y -2=0解析:设所求切线与曲线的切点为P (x 0,y 0),∵y ′=-1x 2,∴y ′ |x =x 0=-1x 20,所求切线的方程为 y -y 0=-1x 20(x -x 0). ∵点(2,0)在切线上,∴0-y 0=-1x 20(2-x 0),∴x 20y 0=2-x 0.① 又∵x 0y 0=1,②由①②解得⎩⎪⎨⎪⎧x 0=1,y 0=1, ∴所求直线方程为x +y -2=0.14.π4解析:M =⎠⎛011-x 2d x =14π×12=π4,N =∫π20cos x d x =sin x |π20=1,M <N ,不满足条件M >N ,则S =M =π4.15.n n +1解析:f ′(x )=mx m -1+a =2x +1,得⎩⎪⎨⎪⎧m =2,a =1. 则f (x )=x 2+x ,1f (n )=1n (n +1)=1n -1n +1, 其和为⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 16.[1,+∞)解析:根据题意,知f ′(x )=mx +1x -2≥0对一切x >0恒成立,∴m ≥-⎝ ⎛⎭⎪⎫1x 2+2x ,令g (x )=-⎝ ⎛⎭⎪⎫1x 2+2x =-⎝ ⎛⎭⎪⎫1x -12+1,则当1x =1时,函数g (x )取得最大值1,故m ≥1.17.解:(1)因为f ′(x )=-3x 2-4mx -m 2,所以f ′(2)=-12-8m -m 2=-5,解得m =-1或m =-7(舍去),即m =-1.(2)令f ′(x )=-3x 2+4x -1=0,解得x 1=1,x 2=13.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )在区间[0,1]上的最小值为f ⎝ ⎛⎭⎪⎫3=5027.18.解:(1)f ′(x )=3kx 2-6(k +1)x ,由f ′(x )<0得0<x <2k +2k ,∵f (x )的递减区间是(0,4),∴2k +2k =4,∴k =1.(2)证明:设g (x )=2x +1x ,g ′(x )=1x -1x 2.当x >1时,1<x <x 2,∴1x >1x 2,∴g ′(x )>0,∴g (x )在x ∈[1,+∞)上单调递增.∴x >1时,g (x )>g (1),即2x +1x >3,∴2x >3-1x .19.解:(1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0],单调减区间[0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx ⎝ ⎛⎭⎪⎫x -2k ,∴f (x )的单调增区间为(-∞,0],⎣⎢⎡⎭⎪⎫2k ,+∞,单调减区间为⎣⎢⎡⎦⎥⎤0,2k .(2)当k =0时,函数f (x )不存在极小值,当k >0时,依题意f ⎝ ⎛⎭⎪⎫2k =8k 2-12k 2+1>0,即k 2>4,所以k 的取值范围为(2,+∞).20.解:(1)由条件得⎩⎪⎨⎪⎧ a ×102+10150×10-b ln1=19.2a ×202+10150×20-b ln2=35.7, 解得a =-1100,b =1,则f (x )=-x 2100+10150x -ln x 10(x ≥10).(2)由题意知T (x )=f (x )-x =-x 2100+5150x -ln x 10(x ≥10),则T ′(x )=-x 50+5150-1x =-(x -1)(x -50)50x, 令T ′(x )=0,则x =1(舍去)或x =50.当x ∈(10,50)时,T ′(x )>0,T (x )在(10,50)上是增函数;当x ∈(50,+∞)时,T ′(x )<0,T (x )在(50,+∞)上是减函数, ∴x =50为T (x )的极大值点,又T (50)=24.4.故该景点改造升级后旅游利润T (x )的最大值为24.4万元.21.解:(1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0,有两个实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴f (x )=13x 3-12x 2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值76+d ,∵x <0时,f (x )<16d 2+2d 恒成立,∴76+d <16d 2+2d ,即(d +7)(d -1)>0,∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).22.解:(1)f ′(x )=e x -2,x ∈R.令f ′(x )=0,得x =ln2.于是,当x 变化时,f ′(x )和f (x )的变化情况如下表:故+∞),f (x )在x =ln2处取得极小值,极小值为f (ln2)=2-2ln2+2a .(2)证明:设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R.由(1)及a >ln2-1知,对任意x ∈R ,都有g ′(x )≥g ′(ln2)=2-2ln2+2a >0,所以g (x )在R 内单调递增.于是,当a >ln2-1时,对任意x ∈(0,+∞),都有g (x )>g (0),而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0,即e x -x 2+2ax -1>0, 故e x >x 2-2ax +1.。

相关文档
最新文档